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Abstract
Shiffrin and Steyvers (1997) introduced a model of recognition memory called retrieving effectively from memory
(REM) and successfully applied it to a number of basic memory phenomena. REM incorporates differentiation,
wherein item repetitions are accumulated in a single mnemonic trace rather than separate traces. This allows REM
to account for several benchmark findings, including the null list-strength effect in recognition (Ratcliff, Clark, &
Shiffrin, 1990). The original REM treated massed and spaced repetitions identically, which prevents it from
predicting a mnemonic advantage for spaced over massed repetitions (i.e., the spacing effect). However, Shiffrin
and Steyvers discussed the possibility that repetitions might be represented in a single trace only if the subject
identifies that the repeated item was previously studied. It is quite plausible that subjects would notice repetitions
more for massed than for spaced items. Here we show that incorporating this idea allows REM to predict three
important findings in the recognition memory literature: (1) the spacing effect, (2) the finding of slightly positive
list-strength effects with spaced repetitions, as opposed to massed repetitions or increased study time, and (3) list-
strength effects that have been observed using very large strong-to-weak ratios (see Norman, 2002).
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Retrieving effectively from memory (REM; Shiffrin &
Steyvers, 1997) is a well-known model of human memory
that has successfully accounted for a number of memory phe-
nomena, including the word-frequency effect (Malmberg &
Murnane, 2002), the strength-based mirror effect (Criss,
2006), output interference (Criss, Malmberg, & Shiffrin,
2011), the list-strength effect (Malmberg & Shiffrin, 2005),
intentional forgetting (Lehman & Malmberg, 2011),
retrieval-induced forgetting (Verde, 2013), the letter frequency
effect (Malmberg, Steyvers, Stephens, & Shiffrin, 2002),
source recognition (Osth, Fox, McKague, Heathcote, &
Dennis, 2018), effects of midazolam (Malmberg,
Zeelenberg, & Shiffrin, 2004), and some implicit-memory
tasks (Schooler, Shiffrin, & Raaijmakers, 2001). In Shiffrin
and Steyvers’s initial REM article, they presented several

versions of REM, but the one called REM.1 is most often used
when modeling recognition. As we review below, however,
REM.1 has a simplifying assumption that renders it unable to
explain some memory phenomena. Specifically, in REM.1
item repetitions are always accumulated in a single mnemonic
trace, even when other study items intervene between presen-
tations. In the present article, we give a brief overview of
REM’s historical underpinnings, and then explore a version
that Shiffrin and Steyvers called REM.3, which, notably, lacks
this simplification. We show how this version is able to ac-
count for (1) the spacing effect, (2) the finding of slightly
positive list-strength effects with spaced repetitions, as op-
posed to massed repetitions or increased study time, and (3)
list-strength effects that have been observed using very large
strong-to-weak ratios.

A brief history

REM is a direct descendant of the search of associative
memory (SAM) model (Raaijmakers & Shiffrin, 1980,
1981). SAM was originally applied to free and cued recall
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(e.g., Huber, Tomlinson, Jang, & Hopper, 2015; Mensink
& Raaijmakers, 1988, 1989; Raaijmakers & Phaf, 1999;
Sirotin, Kimball, & Kahana, 2005; Tomlinson, Huber,
Rieth, & Davelaar, 2009) and was later applied to recog-
nition (Gillund & Shiffrin, 1984). The latter version of
SAM was able to account for a number of benchmark
findings in the recognition literature including the word-
frequency effect (Allen & Garton, 1968; Glanzer &
Bowles, 1976; Gorman, 1961; Schulman, 1967), the list-
length effect (Strong, 1912; Underwood, 1978), and in-
creases in recognition performance with increased study
time (Ratcliff & Murdock, 1976).

SAM’s recognition implementation was eventually
abandoned because it could not account for two important
phenomena. One of these was the strength-based mirror
effect (Criss, 2006; Stretch & Wixted, 1998). In recogni-
tion, a mirror effect occurs when an increase in the hit rate
is accompanied by a decrease in the false-alarm rate
(Glanzer & Adams, 1990). For example, low-frequency
words produce a higher hit rate and lower false-alarm rate
than high-frequency words (Glanzer & Adams, 1985), so
word-frequency manipulations produce a mirror effect.
Although SAM can predict stimulus-based mirror effects,
it cannot predict the false-alarm portion of the mirror ef-
fect with between-list strength manipulations (i.e., a
higher false-alarm rate following study of a weak as com-
pared to a strong list).

Of greater relevance to the present work is the second
phenomenon: the list-strength effect. Research on the list-
strength effect emerged from studies on the list-length
effect, in which adding items to a list decreases the pro-
portion of items remembered (Ebbinghaus, 1885; Ratcliff
& Murdock, 1976; Roberts, 1972; Strong, 1912). In stud-
ies of the list-strength effect, a subset of items is strength-
ened by additional presentations, increased study time, or
an elaborative-encoding task. Because the list contains
both weak and strong items, it is termed a “mixed” list,
and performance on this mixed list is compared to two
baseline lists, one on which all items are strengthened
(“pure strong”) and one on which no items are strength-
ened (“pure weak”). This paradigm is known as the
mixed-pure paradigm (Ratcliff, Clark, & Shiffrin, 1990).
A positive list-strength effect is characterized by a larger
strong-item advantage in mixed lists than pure lists.

It can be helpful to think of the list-strength effect in
terms of what Shiffrin, Ratcliff, and Clark (1990) termed
the ratio of ratios (Rr). This is a ratio of the strong-to-
weak ratios between mixed and pure lists. Let mPW, mPS,
mMW, and mMS denote memory performance on pure-
weak, pure-strong, mixed-weak, and mixed-strong items,
respectively. Then,

Rr ¼ mMS=mMWð Þ= mPS=mPWð Þ

A list-strength effect occurs if Rr > 1, a null list-strength
effect occurs ifRr = 1, and a negative list-strength effect occurs
if Rr < 1.1

The list-strength effect occurs in free recall (Fritzen, 1975;
Hastie, 1975; Malmberg & Shiffrin, 2005; Sahakyan,
Abushanab, Smith, & Gray, 2014; Tulving & Hastie, 1972;
Wixted, Ghadisha, & Vera, 1997) and some cued-recall tests
(Bäuml, 1997; Verde, 2009). However, it does not occur in
standard cued recall (Wilson & Criss, 2017) or item recogni-
tion (Hirshman, 1995; Murnane & Shiffrin, 1991a, 1991b;
Ratcliff et al., 1990; Ratcliff, McKoon, & Tindall, 1994;
Ratcliff, Sheu, & Gronlund, 1992; Yonelinas, Hockley, &
Murdock, 1992). Ratcliff et al.’s (1990) initial demonstration
of the null list-strength effect in recognition was surprising, as
a positive list-strength effect was predicted by most models of
the time, including SAM (Gillund & Shiffrin, 1984),
MINERVA 2 (Hintzman, 1984, 1986, 1988), the theory of
distributed associative memory (TODAM; Murdock, 1982,
1983, 1989), the composite holographic associative recall
model (CHARM; Eich, 1982, 1985; Metcalfe, 1990), and
the matrix model (Humphreys, Bain, & Pike, 1989; Pike,
1984). Shiffrin et al. (1990) showed that, without modifica-
tion, no extant model could simultaneously predict a null list-
strength effect and a positive list-length effect (for a review,
see Clark & Gronlund, 1996; for debate concerning TODAM,
cf. Murdock & Kahana, 1993a, 1993b, to Shiffrin, Ratcliff,
Murnane, & Nobel, 1993).2

To accommodate the null list-strength effect in SAM,
Shiffrin et al. (1990; see Shiffrin & Raaijmakers, 1992, for a
review) incorporated the concept of differentiation (see
Gibson, 1940; Gibson & Gibson, 1955). To that point,
implementations of SAM had stored multiple presentations
of the same item in separate mnemonic traces called images
(Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1980,
1981). Instead, Shiffrin et al. proposed that item repetitions
should be accumulated in a single image. We postpone dis-
cussion of the implementation of differentiation until we have
described REM. The key point for now is that storing strong
items in a single image allowed SAM to predict a null list-
strength effect and positive list-length effect. In SAM, adding
additional images to memory increases noise, thus reducing
performance. However, when repetitions are stored in a single
image, noise does not increase, thereby allowing a list-length
effect to occur without a list-strength effect.

1 Note that the calculation of the Rr uses mean performance across subjects
rather than computing a separate Rr for each subject. This is because the mean
Rr when computed for individual subjects is inevitably influenced by outliers,
such as a subject with d´ scores of 2.90, 0.05, 2.85, and 2.02 on mixed-strong,
mixed-weak, pure-strong, and pure-weak items, respectively (Rr = 41.11).
2 There is debate concerning whether the list-length effect occurs in recogni-
tion (see Annis, Lenes, Westfall, Criss, & Malmberg, 2015; Cary & Reder,
2003; Dennis & Humphreys, 2001; Dennis, Lee, & Kinnell, 2008). We do not
address this debate in the present article, as it does not directly bear on how
strong items are mnemonically stored.
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Retrieving effectively from memory

Although Shiffrin et al. (1990) found a way for SAM to pre-
dict the null list-strength effect, SAM was unable to simulta-
neously account for the strength-based mirror effect.
Consequently, Shiffrin and Steyvers (1997) developed REM,
a model that shares many characteristics with SAM, including
differentiation (see Criss & Howard, 2015; Criss & Koop,
2015; Kılıç, Criss, Malmberg, & Shiffrin, 2017). A detailed
description of REM is beyond the scope of the present article,
and unfamiliar readers are encouraged to consult Shiffrin and
Steyvers’s original article. Here we focus on those aspects of
REM critical for strength effects.

In REM, item features are represented by positive integers
drawn from the geometric distribution with parameter g. Each
item ismade up ofw features, and images are vectors of length
w. Images are error-prone copies of study items.When an item
is studied, information for each feature is stored in the image
with probability u. If information for a feature is stored, it is
copied correctly with probability c. If it is copied incorrectly, a
different feature is drawn from the geometric distribution.
Positions in the image vector for which no information was
copied (correctly or incorrectly) are represented by 0.

Most implementations of REM set the number of features,
w, to 20 and the probability that a feature will be copied
correctly, c, to .7. The u and g parameters vary according to
experimental variables. For example, in modeling item
strengthening, Shiffrin and Steyvers (1997) had strong-item
features encoded with probability .4 but weak-item features
encoded with probability .28 (i.e., ustrong = .4 and uweak =
.28). The g parameter is used to vary the frequency of item
features, with higher values of g producing more common
features than lower values.

Finally, note that the value of g known to the subject often
differs from the value of g used to draw item features. REM
makes the assumption that subjects are unaware of experimen-
tal manipulations such as word frequency. Therefore, although
features for low-frequency words may be drawn with g = .325
and features for high-frequency words may be drawn with g =
.45, the value stored for incorrectly copied features will be
drawn with g = .4 (the value of g assumed to reflect subjects’
beliefs about environmental base rates). Subjects also evaluate
the diagnosticity of features with reference to their beliefs
about environmental base rates. We therefore distinguish be-
tween gdraw (the value of g used to draw target and distractor
features) and gbase (the value of g known to subjects).

At test, probes are matched to each image in memory, with
the probability that each image feature was generated by the
probe and the probability that each image feature was gener-
ated by a different study item computed. Notably, a match of a
common feature (e.g., 1) is far less diagnostic than a match of
an uncommon feature (e.g., 8), and the recognition decision
takes this into account. The evidence that a probe is a target is

expressed as a ratio between the probability that the probe is a
target and the probability that the probe is a distractor. Unless
subjects have been instructed to use a particularly conserva-
tive or liberal criterion, a target is called “old” if the odds that it
is a target exceeds 1; otherwise, it is called “new.”

Like the differentiation version of SAM (Shiffrin et al.,
1990), repetitions in REM accumulate in a single image. As
an item becomes better learned (i.e., as its degree of differen-
tiation increases), it becomes less confusable with other im-
ages, and thus exerts less interitem interference than weaker
items. Therefore, as the strength of a target’s competitors de-
creases, the probability of recognizing it on a recognition test
decreases, and as the strength of a target’s competitors in-
creases, the probability of recognizing it on a recognition test
increases. So, in the mixed-pure paradigm, mixed-weak items
are better recognized than pure-weak items because, on aver-
age, mixed-weak targets have stronger competitors than pure-
weak targets. In contrast, pure-strong items are better recog-
nized than mixed-strong items because, on average, pure-
strong targets have stronger competitors than mixed-strong
targets. As such, REM is capable of predicting a negative
list-strength effect.

Figure 1 shows the results of 1,000 simulations using the
mixed-pure paradigm. For this and all subsequent simulations,
hit and false-alarm rates of 1 and 0 were changed to .995 and
.005, respectively, when calculating d′. Examination of the hit
and false-alarm rates for the pure-weak and pure-strong lists
demonstrates that REM correctly predicts the strength-based
mirror effect, with the pure-strong list yielding a higher hit rate
and lower false-alarm rate than the pure-weak list. REM also
predicts a negative list-strength effect, with better discrimina-
tion of mixed-weak than of pure-weak items, but slightly bet-
ter discrimination of pure-strong than of mixed-strong items
(Rr = 0.915). Consequently, REM accounts for both of the
findings that SAM could not.

Almost all implementations of REM make an important,
simplifying assumption: Strengthened items are always stored
in a single image. Although this simplification is reasonable
for strengthening that occurs via increased study time, massed
repetitions, or more elaborative encoding, it probably is not
reasonable for spaced repetitions, because subjects will not
always realize that a repeated item was studied earlier.
Shiffrin and Steyvers (1997) recognized this, and therefore
described a version of REM they termed REM.3.

REM.3 incorporates a mechanism by which spaced repeti-
tions can be superimposed on the originally generated image.
Critically, for superimposition to occur, a repetition must be
recognized as hav ing prev ious ly been s tudied .
Algorithmically, REM.3 treats each target during the study
phase like a test probe. The simulated subject matches the
target to all images in memory and, if the odds that the target
was previously studied exceed a given criterion, the target is
superimposed on the most similar image. If the criterion is not
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exceeded, a new image is generated. REM.3 thus has two
criterion parameters, which we will term criterionstudy and
criteriontest. The former represents the threshold required for
superimposition during the study phase; the latter represents
the threshold required for calling a test probe “old.”

Shiffrin and Steyvers (1997) noted that a number of com-
plexities arise with REM.3, not least of which is that the time
needed to run the simulations increases considerably. Given
that the qualitative predictions of REM.1 and REM.3 were the
same, at least for the phenomena Shiffrin and Steyvers con-
sidered, they did not pursue REM.3 further. To our knowl-
edge, no subsequent articles implementing REM simulations
have used REM.3.

Given the additional complexity inherent in REM.3, one
might reasonably ask why we are pursuing it here. One factor
underpinning the present investigation is that REM.3 offers
more psychological realism than does REM.1. Consider a
study phase from the perspective of a subject. When an item
is repeated, its repetition might or might not be recognized as
previously studied. These two situations are phenomenologi-
cally different, and thus computational models should treat
them differently. In the case in which the repetition is recog-
nized as being previously studied, subjects are able to retrieve
the initial presentation and update it. In effect, the two epi-
sodes are bound. Conversely, if the repetition is not recog-
nized as having previously been studied, no retrieval should
take place, and a new mnemonic trace should be formed.

Our second reason for examining REM.3 is more practical:
Some phenomena cannot be accommodated by REM.1, but
REM.3 may be able to handle these data. Indeed, at least one
phenomenon, the spacing effect, is inconsistent with REM.1.
The spacing effect refers to the finding that spaced repetitions
have a mnemonic advantage over massed repetitions; this
phenomenon has been documented in a number of tests of
memory (Glanzer, 1969; Greene, 1990; Hintzman, 1969;
Madigan, 1969; Melton, 1967, 1970; Strong, 1916;
Underwood, 1969, 1970; Verkoeijen & Delaney, 2008; Xue
et al., 2011; for reviews, see Cepeda, Pashler, Vul, Wixted, &

Rohrer, 2006; Delaney, Verkoeijen, & Spirgel, 2010;
Dempster, 1988; Ruch, 1928). Critically, if REM treats
massed and spaced repetitions identically, then they will nec-
essarily be recognized at the same rate, and therefore REM.1
cannot account for the spacing effect.

Because REM.1 predicts a negative list-strength effect in
recognition, and because it predicts an increasingly negative
list-strength effect as the strength of strong items increases,
there is another phenomenon for which it cannot account. This
was first documented by Norman (1999), who used a modi-
fied version of the mixed-pure paradigm termed the strong-
interference paradigm. Norman (1999) hypothesized that pre-
vious studies had failed to detect a list-strength effect because
strong items were insufficiently strengthened. Because the
mixed-pure paradigm tests strong items, experimenters need
to keep strong-item performance below ceiling. In the strong-
interference paradigm, only weak items are tested, thereby
allowing strong items to be strengthened to ceiling. The
strong-interference paradigm uses two list types: a weak-
interference list and a strong-interference list. Both lists con-
tain targets and interference items, only the former of which
are tested. Targets are presented the same number of times on
both lists. However, interference items are given more presen-
tations on the strong-interference list than the weak-
interference list. For example, Norman (2002, Exp. 1) present-
ed interference items six times on the strong-interference list,
and once on the weak-interference list. For both lists, targets
were presented once. Critically, this produced a list-strength
effect, with better discrimination on the weak-interference
than the strong-interference list.

The present simulations

The purpose of the present work was to assess whether
REM.3 is a viable alternative to REM.1. REM.1 cannot ex-
plain the spacing effect or the results from the strong-

Fig. 1 REM and the mixed-pure paradigm: Predicted d′, hit rates, and false-alarm rates. The parameters were gbase = 0.4, gdraw = 0.35, w = 20, ustrong =
0.4, uweak = 0.28, c = 0.7, and criteriontest = 1.
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interference paradigm. Here we assessed whether REM.3 can
predict these phenomena.

Simulation 1: Setting criterionstudy

REM assumes that, when making old/new decisions on a rec-
ognition test, subjects optimize performance by making an
“old” decision whenever the probability that the probe is a
target exceeds the probability that the probe is a distractor.
In REM.3, each item on the study list is subjected to the same
evaluative process. However, is a criterion of 1 still reasonable
in this case? Two factors suggest that it may not be.

First, on a recognition test, subjects are asked to make a
binary decision: Did this item appear on the study list? Here,
even a small amount of evidence one way or the other is
sufficient to tip the proverbial scales. During a study list, in
contrast, subjects are not overtly assessing whether each item
was previously studied. Instead, motivated subjects are active-
ly attempting to commit each item to memory and, presum-
ably, recognizing that an item was studied earlier only occurs
if the mnemonic trace is particularly strong. In REM.3, then, if
the first presentation of an item was poorly encoded, or if,
given the total length of the study list, it does not stand out,
it does not make sense for the original image to be updated.

There is a second reason that a stricter value for criterion-
study is desirable. In REM.3, when a study item is identified as
having previously been studied, it is superimposed on the
most similar image. Superimposition can go wrong in two
ways: First, the study item may not have actually appeared
on the study list. This is akin to a false alarm on a test list. In
this case, the updated image was actually produced by a dif-
ferent study item. Second, even if the item was previously
studied, it may match an image generated by a different study
item to a higher degree than the item that was actually studied.
In both cases, the item is superimposed on the wrong image,
leading to images with features from multiple targets.

To test the degree to which incorrect superimposition is a
problem in REM.3, we simulated study phases on which no
items were repeated. Our dependent variable of interest was
the proportion of trials that resulted in superimposition.
Because no items were repeated, an error was made whenever
superimposition occurred.

Method

For this and all subsequent simulations, we fixed parameters
to values common in the REM literature. We set w to 20, c to
.7, gdraw to .35, and gbase to .4. For ease of exposition, we
differentiate between two u parameters: u1 and u2. The u1
parameter denotes the probability of storing features from a
study item when a new image is generated; the u2 parameter
denotes the probability of storing features from a study item

when superimposition occurs. Note that, during superimposi-
tion, only item features in positions where the image contains
no information can be encoded.3 In REM.1, it is standard for
u2 to be less than 2u1, because subjects are assumed to devote
fewer resources to information that has already been learned.
Here we set u1 to .28 and u2 to .12. This means that, when a
study item is identified as new, each feature is stored with
probability .28, and when superimposition takes place, each
feature for which information has not yet been stored is copied
to the old image with probability u2. This matches the ustrong
and uweak values of .4 and .28 used by Shiffrin and Steyvers
(1997).

We varied three parameters: gdraw (.3, .35, .4, .45, .5), list
length (2, 4, 8, 16, 32, 64, 128, 256), and criterionstudy (1, 2,
3). We ran 1,000 simulations for each combination of these
three factors, resulting in 120,000 simulated subjects.

Two algorithmic decisions bear mentioning. First, when an
item was identified as having previously been studied, it was
superimposed on the most similar image in memory. If a tie
occurred between two or more images, the item was
superimposed on the more recently generated image.
Second, none of our simulated study lists contained any re-
peated items, even by chance. As each study item was gener-
ated, it was checked against the existing items and, if it
matched any, it was replaced. These algorithmic precautions
were used in this and all subsequent simulations.

Results and discussion

The simulation results are shown in Fig. 2. The probability of
superimposition errors increased as word frequency (i.e., g-
draw) increased. This makes sense, because higher-frequency
distractors are more prone to false alarms than are lower-
frequency distractors (Glanzer & Adams, 1985). In REM, this
is because they are more likely to match an image by chance;
the same process operates for study-phase items in REM.3. It
is also clear that the probability of errors increases with list
length. This is intuitively reasonable because, as the number
of images increases, the probability of a study itemmistakenly
matching an image increases. This is akin to the higher false-
alarm rates observed when comparing short and long lists
(e.g., Gillund & Shiffrin, 1984). Of greatest importance for
the present purposes is that, for all gdraw values and list
lengths, the probability of superimposition errors decreases
as criterionstudy increases.

3 Shiffrin and Steyvers (1997) initially used three parameters: u, t1, and t2,
where t1 and t2 represented the numbers of study units for weak and strong
items, respectively, and u represented the probability of storing a feature for
each unit of study time. In later articles, it was pointed out that these actually
amount to two parameters rather than three. Since that time, the t1 and t2
parameters have been dropped. For example, consider the values used by
Shiffrin and Steyvers: t1 = 7, t2 = 10, and u = .04. These can be collapsed into
two parameters: u1 = t1 × u = .28, and u2 = t2 × u = .4.
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None of the results from Simulation 1 are particularly sur-
prising; indeed, they are necessary outcomes of the math un-
derlying the model. However, what they demonstrate is that a
value of 1 for criterionstudy is too liberal for a study phase. For
example, collapsing across gdraw, the probability of superim-
position errors with criterionstudy = 1 was .138 for 32-item lists
and .164 for 64-item lists. By increasing criterionstudy to 2,
mean error rates drop to .064 and .070, respectively, and by
increasing criterionstudy to 3, mean error rates drop to .039 and
.041, respectively. These error rates seem more reasonable,
given that subjects are usually not asked to make old/new
decisions during the study phase.

As we mentioned above, these results are necessary out-
comes of the model. Nevertheless, it is critical that these re-
sults mimic human data. Unfortunately, it is not possible to
collect behavioral data on the probability of superimposition
errors. Asking subjects to report whether each item on the
study list was studied earlier renders the study phase a de facto
continuous-recognition task; the subjects in such an experi-
ment would presumably use the criterion they would use dur-
ing an old/new recognition test. Therefore, Simulation 1 is
necessarily speculative with regard to subjects’ actual criterion
placement at study. Yet the results appear reasonable, given
what we know about human memory. Here, high-frequency
items were more likely to be incorrectly superimposed on
previously generated images than low-frequency items. This
makes sense on distinctiveness grounds: High-frequency
words are regularly encountered in everyday life, so
distinguishing between whether the familiarity elicited by
the study item stems from studying it recently or simply from
encountering it recently is challenging. In contrast, low-
frequency words are rarely encountered, so identifying the
reason for the familiarity is easy. The same logic applies to
the list-length results: As the number of items studied

increases, the probability that the familiarity elicited by a
study item stems from an earlier study item increases.

We systematically varied criterionstudy in the remainder of
our simulations. By and large, changes in criterionstudy rarely
affect the qualitative pattern of the results. However, the situ-
ations in which the qualitative pattern is affected by criterion-
study demonstrate that REM.3 better predicts human data as
criterionstudy increases.

Simulation 2: The spacing effect

In REM.1, the simplifying assumption that spaced repetitions
are always accumulated in a single image means that massed
and spaced repetitions are identical. As we discussed in the
introduction, this prevents REM.1 from predicting an advan-
tage for spaced over massed repetitions. Given its robustness
(Delaney et al., 2010), REM.3 must be able to predict the
spacing effect to remain viable. The purpose of Simulation 2
was to assess whether REM.3 results in better memory for
spaced (i.e., probabilistically superimposed repetitions) or
massed (i.e., always superimposed) images.

Method

We simulated a 2 (strengthening method: massed vs. spaced)
× 3 (list length: 16, 32, 64) design. Each study list consisted of
an equal number of massed and spaced items, all of which
were presented twice.

We used the following fixed parameters: gdraw = .4, gbase =
.35, w = 20, c = .7, u1 = .28, u2 = .12, and criteriontest = 1. The
criterionstudy parameter was varied as in Simulation 1 (1, 2, 3).

Massed repetitions were always stored in a single im-
age, with the assumption that the immediate repetition of

Fig. 2 Superimposition errors as a function of criterionstudy, gdraw, and list length. The parameters were gbase = 0.4, w = 20, u1 = 0.28, u2 = 0.12, c = 0.7,
and u2 = 0.12.
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an item is almost always obvious to subjects. Features
from massed items were thus copied with probability u1
+ u2. This is identical to how repetitions are treated in
REM.1. When subjects recognized a spaced repetition as
having previously been studied, it was superimposed on
the most similar image, with new information copied with
probability u2. When a spaced repetition was not recog-
nized as having previously been studied, its features were
copied to a new image with probability u1. Notice that
correctly superimposed spaced items were functionally
identical to massed items, with features from both copied
with probability u1 + u2. Spaced and massed items only
differed when the second presentation was stored in a new
image rather than the originally generated image, or when
incorrect superimposition occurred.

Results and discussion

Figure 3 displays the results from Simulation 2. It is evident
that REM.3 correctly predicts a discrimination advantage for
spaced over massed items, regardless of criterionstudy.

The results of Simulation 2 demonstrate that REM.3
predicts the spacing effect. Recall that, in REM.1, repeti-
tions are always accumulated in a single image, regardless
of whether other items intervene between presentations.
This renders REM.1 unable to predict the spacing effect
since, algorithmically, there is no difference between
massed and spaced items. This is of crucial importance,
as the spacing effect is a fundamental memory effect: It is
consistently observed both in and out of the laboratory
(Carpenter, Cepeda, Rohrer, Kang, & Pashler, 2012;
Mumford, Costanza, Baughman, Threlfall, & Fleishman,
1994), and even in nonhuman animals (Menzel, Manz,
Menzel, & Greggers, 2001; Tomsic, Berón de Astrada,
Sztarker, & Maldonado, 2009).

In REM.3, although massed items accumulate in a sin-
gle image as in REM.1, spaced items are only stored in a
single image when repetitions are recognized as having
previously been studied. Therefore, in REM.3, massed
and spaced items are only distinguishable when superim-
position does not occur—put another way, spaced items
are identical to massed items when correct superimposi-
tion takes place. Interestingly, it is this failure of super-
imposition that results in the spacing effect—that is, hav-
ing multiple images for a spaced item results in superior
memory, as compared to a single image.

Why would separate images for an item be mnemoni-
cally advantageous? Multiple images for a given item is,
in effect, a case of failed differentiation—given the central
role that differentiation plays in REM, a mnemonic ad-
vantage stemming from its failure may appear counterin-
tuitive. Although, as we will discuss later, multiple-image
storage produces some costs, there are some benefits for
the undifferentiated item. First, multiple images allow
copying errors to be corrected. Recall that, when a feature
is copied from a study item to an image, it is copied
correctly with probability c and incorrectly with probabil-
ity 1 – c. If a feature was copied incorrectly on one study
attempt, it may be copied correctly on another study at-
tempt. Notably, this cannot occur when superimposition
occurs because, in that case, subjects focus on feature
positions for which no information has been encoded.
Second, multiple images allow for features to be more
widely dispersed throughout the search set, thereby in-
creasing the signal-to-noise ratio during the test phase.
For subjects, this means that the recognition probe need
only match one of multiple images for an “old” response
to be made—that is, multiple-image storage affords mul-
tiple retrieval routes, thereby enhancing memory.

In the remaining simulations, we turned to two phenomena
from studies of the list-strength effect: REM.3 needs to predict

Fig. 3 Recognition of spaced and massed items. The parameters were gbase = 0.4, gdraw = 0.38, w = 20, u1 = 0.28, u2 = 0.12, c = 0.7, and criteriontest = 1.

Behav Res



a null list-strength effect with the mixed-pure paradigm, but a
positive list-strength effect with the strong-interference para-
digm. Although REM.1 predicts the former result, it cannot
predict the latter.

Simulation 3: The mixed-pure paradigm

As we described in the introduction, the mixed-pure paradigm
generally produces a null or negative list-strength effect in
recognition (i.e., Rr ≤ 1) (Ratcliff et al., 1990). As a second
test of REM.3’s viability, we investigated whether it can pre-
dict this result.

Method

Each simulated subject studied five lists: a pure-weak list, on
which all items were presented once; a massed pure-strong
list, on which all items were presented multiple times, with
strengthening accomplished through immediate repetitions; a
spaced pure-strong list, on which all items were presented
multiple times, with unique items intervening between repeti-
tions; a pure mixed list, on which half of the items were pre-
sented once and half were repeated in a massed fashion; and a
spaced mixed list, on which half of the items were presented
once and half of the items were presented multiple times in a
spaced fashion. In the spaced pure-strong list and the spaced
mixed list, all items were presented once before any items
were presented a second time, all items were presented twice
before any items were presented a third time, and so on.

The following variables were systematically manipulated
across simulations: the number of strong-item presentations
(2, 3, 4, 5, 6), criterionstudy (1, 2, 3), and list length (28 vs.
84). The full design can thus be conceived of as a 2 (list type:
pure vs. mixed) × 2 (strengthening method: massed vs.
spaced) × 2 (list length: 28 vs. 84) × 5 (strong-item presenta-
tions: 2–6) × 3 (criterionstudy: 1–3) mixed design, with list
type and strengthening method manipulated within simulated
subjects and the remaining factors manipulated between sim-
ulated subjects. We ran 1,000 simulations per cell, yielding
30,000 simulated subjects.

We used the following fixed parameters: gdraw = .35, gbase =
.4, w = 20, c = .7, u1 = .28, u2 = .12, and criteriontest = 1.
Algorithmically, strong items were treated as in Simulation 2.

Results and discussion

Figure 4 shows d′ results for the pure weak (top), pure strong
(second row), mixed weak (third row), and mixed strong
(bottom) conditions, and Fig. 5 shows Rr results. As expected,
massed strengthening produces a slightly negative list-
strength effect, with an average Rr across simulations of
0.937. Surprisingly, spaced strengthening produces a slightly

positive list-strength effect, with an average Rr across simula-
tions of 1.123. The Rr is slightly larger with an 84-item list
(1.133) than with a 28-item list (1.113) and increases as
criterionstudy increases (Rr = 1.083, 1.136, and 1.150 for
criterionstudy values of 1, 2, and 3, respectively).

Why is the list-strength effect slightly positive with spaced
strengthening? In Simulation 2, we showed that, relative to
single-image storage, multiple-image storage yielded a mne-
monic benefit. Yet the present simulation demonstrates that
this mnemonic benefit comes with a cost: Although items
stored in multiple images are remembered better than those
encoded in single images, these images also produce more
interitem interference than they would have if superimposition
had occurred. As an image’s strength increases, its degree of
interference on other images decreases (i.e., differentiation).
When superimposition fails, the size of the search set in-
creases, thereby decreasing overall performance as in the
list-length effect.

REM predicts that memory will decline as the size of the
search set increases—that is, a list-length effect (e.g., Strong,
1912). Notice, too, that, although superimposition does not
increase the size of the search set, a failure to superimpose a
repetition on the previously generated image does. As such,
when superimposition is made probabilistic, as in REM.3,
performance suffers, particularly for weaker items.

Do these results falsify REM.3? The prevalent view in the
literature is that the list-strength effect is negative or null in
recognition. Yet careful examination of the Rr values reported
with massed and spaced strengthening suggests that the list-
strength effect tends to be null or slightly positive with spaced
strengthening, and null or negative with massed
strengthening. For example, Ratcliff et al. (1990, Exp. 5) ma-
nipulated strengthening method (spaced vs. massed) within
subjects and between lists using the mixed-pure paradigm.
They found a negative list-strength effect, with massed
strengthening that did not quite reach the adopted significance
level (Rr = 0.89, p = .055, two-tailed). In contrast, the Rr was
slightly positive in the spaced-strengthening condition (Rr =
1.03, n.s.). Ratcliff et al. (1992) used massed strengthening in
Experiment 1 and obtained an Rr of 1.04; in Experiment 2,
they used spaced strengthening and obtained an Rr of 1.21,
broadly consistent with the predictions of REM.3.

Table 1 shows the Rr values reported in published reports
of the list-strength effect in recognition. We excluded experi-
ments that used very fast presentation rates (Ratcliff et al.,
1994; Yonelinas et al., 1992), as these are known to produce
positive list-strength effects because of rehearsal borrowing
(i.e., weak items are presented too quickly, so that on mixed
lists, subjects rehearse strong items during weak-item presen-
tations; for a discussion, see Yonelinas et al., 1992). We also
excluded studies that used stimuli other than words or word
pairs (e.g., Murnane & Shiffrin, 1991a, 1991b; Norman, Tepe,
Nyhus, & Curran, 2008). Such stimuli have not been modeled
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Fig. 4 Values for d′ in the mixed-pure paradigm, as a function of
criterionstudy, degree of strengthening, and list length. The top row is
pure weak, the second row is pure strong, the third row is mixed weak,

and bottom row is mixed strong. The parameters were gbase = 0.4, gdraw =
0.35, w = 20, u1 = 0.28, u2 = 0.12, c = 0.7, and criteriontest = 1.

Fig. 5 Ratio of ratio (Rr) values in the mixed-pure paradigm as a function of criterionstudy, degree of strengthening, and list length. The parameters were
gbase = 0.4, gdraw = 0.35, w = 20, u1 = 0.28, u2 = 0.12, c = 0.7, and criteriontest = 1.
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in REM, and there is evidence that they may be more suscep-
tible to interitem interference than are words (see Osth,
Dennis, & Kinnell, 2014). Finally, we included only experi-
ments using the full mixed-pure paradigm—that is, we ex-
cluded experiments that included only the pure-weak list or
only the pure-strong list (e.g., Hirshman, 1995). Across these
experiments, the mean Rr for massed strengthening is 0.916,
but the mean Rr for spaced strengthening is 1.062.

It is critical to note that REM.1 cannot account for even a
slightly positive list-strength effect in recognition, and there-
fore is unable to account for this massed–spaced discrepancy.
In contrast, Simulation 3 shows that REM.3 can account for a
positive list-strength effect with spaced strengthening and a
negative list-strength effect with massed strengthening.

REM.3 predicts that disrupting the differentiation process
will yield a slightly positive list-strength effect, but that, when
differentiation is allowed to occur for all repeated items, the
list-strength effect will be negative. As we described above,
some evidence for this comes from an examination of list-
strength effects from massed and spaced strengthening tech-
niques. However, more direct evidence comes from a recent
study by Sahakyan and Malmberg (2018). Sahakyan and
Malmberg directly interfered with the differentiation process

by having subjects complete a secondary task during the study
phase. Crucially, this produced a list-strength effect in recog-
nition, consistent with the argument we have presented here.

Simulation 4: Norman (2002, Exp. 1)

As we described in the introduction, Norman (1999, 2002)
introduced the strong-interference paradigm as an alternative
to Ratcliff et al.’s (1990) mixed-pure paradigm. In the strong-
interference paradigm, only weak items are tested, thereby
allowing experimenters to strengthen strong items to ceiling.
Another difference between the two paradigms is that in the
strong-interference paradigm, interference items are presented
on both lists. The only difference is that on the weak-
interference list, the interference items are given fewer presen-
tations than on the strong-interference list.

Norman (2002) used the strong-interference paradigm to
test for a list-strength effect in recognition, operationalized
as better discrimination in the weak-interference list than the
strong-interference list. The stimuli were unrelated, medium-
frequency words. List type was manipulated within subjects,
with order of conditions counterbalanced. On the weak-
interference list, subjects studied five untested primacy
buffers, 50 targets and 50 interference items randomly com-
bined, and five untested recency buffers. Subjects were not
made aware of the buffer/target/interference item distinction,
and thus attempted to learn all items. The strong-interference
list was identical to the weak-interference list except that after
the five recency buffers, the 50 interference items were pre-
sented five more times. Therefore, the interference/target
strength ratio was 1:1 on the weak-interference list and 6:1
on the strong-interference list. Note, as well, that interference
items were all presented a second time before any were repeat-
ed a third time, all were presented a third time before any were
presented a fourth time, and so on. Each repetition of the 50
interference items was randomized anew.

Two methodological precautions bear mentioning: First, to
attenuate the probability of rehearsal borrowing, for each
study presentation, subjects were asked whether the word’s
referent could fit into a banker’s box. Second, to equate the
study–test lag between lists, a longer distractor task was inter-
polated between study and test in the weak-interference list.
Neither of these features were incorporated in our simulations:
To our knowledge, no one has incorporated different encoding
tasks in REM. In addition, because we did not include context
in our REM simulations, equating study–test lag is not
necessary.

Test lists consisted of the 50 targets and 50 distractors. At
test, subjects rated their confidence that the probes were “old”
on a six-point scale. If they believed that a probe was old (i.e.,
if they selected 4, 5, or 6 on the confidence scale), they then
made a remember/know judgment (see Tulving, 1985).

Table 1 Ratio of ratio (Rr) values reported in previous experiments
using the mixed-pure paradigm

Study Experiment Strengthening Manipulation Rr

Ratcliff et al. (1990) 1 Massed 0.88

Ratcliff et al. (1990) 2 Massed 1.10

Ratcliff et al. (1990) 3 Massed 0.93

Ratcliff et al. (1990) 4A Massed 0.77

Ratcliff et al. (1990) 4B Massed 0.80

Ratcliff et al. (1990) 5A Spaced 1.03

Ratcliff et al. (1990) 5B Massed 0.89

Ratcliff et al. (1990) 6A Spaced 1.02

Ratcliff et al. (1990) 6B Spaced 1.08

Ratcliff et al. (1990) 6C Spaced 0.97

Ratcliff et al. (1992) 1 Massed 1.04

Ratcliff et al. (1992) 2 Spaced 1.21

Ratcliff et al. (1990, Exp. 4) is broken into Experiments 4A and 4B. This
distinction was not used in the original article, but they had a between-
subjects manipulation: For one group, distractors were targets from the
previous study–test cycle; for the other, distractors were novel in the
experiment. Experiment 4A is the novel-distractor condition;
Experiment 4B is the old-distractor condition. Ratcliff et al. (1990, Exp.
5) is broken into Experiments 5A and 5B for spaced and massed strength-
ening, respectively. Ratcliff et al. (1990, Exp. 6) had three spaced-
strengthening conditions; we have therefore broken it into Experiments
6A, 6B, and 6C. Experiment 6A presented all strong items before all
weak items on the mixed study list, Experiment 6B presented all
mixed-weak items before all mixed-strong items at study, and
Experiment 6C randomized the mixed study list without regard to
strength.
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Norman (2002) presented d′, computed by changing confi-
dence ratings of 4, 5, and 6 to “old” responses and ratings of
1, 2, and 3 to “new” responses. We did not simulate
confidence-scale responding; rather, we simply had simulated
subjects make old/new recognition decisions.

Norman’s (2002) results produced a list-strength effect: d′
was higher on the weak-interference list (M = 2.35, SE = 0.12)
than on the strong-interference list (M = 2.22, SE = 0.10). The
hit rate was higher in the weak-interference list (M = .91) than
in the strong-interference list (M = .77). Interestingly, the
false-alarm rate was also higher in the weak-interference list
(M = .22) than in the strong-interference list (M = .11).4 Hit
and false-alarm rates, then, produced a concordant effect (i.e.,
hit and false-alarm rates increasing together) rather than a
mirror effect (i.e., a decreasing false-alarm rate with an in-
creasing hit rate).

Simulation 4A: REM.1

We began by investigating whether REM.1 could account for
Norman’s (2002) results. To our knowledge, this has yet to be
investigated in the literature. If REM.1 is capable, then utiliz-
ing a more complex version like REM.3 would violate the
principle of parsimony.

Method

The goal of the strong-interference paradigm is to strengthen
interference items to ceiling on the strong-interference list.
When Shiffrin and Steyvers (1997) simulated list-strength ma-
nipulations, they set ustrong to .4. However, this keeps strong-
item performance below ceiling. Here we varied ustrong (.4, .6,
.8) in order to simulate increasingly strengthened strong
items.5 We set uweak to .28, as did Shiffrin and Steyvers.
Note that, since REM.1 treats massed and spaced repetitions
identically, one cannot directly manipulate the number of
strong-item presentations; instead, the encoding parameter,
u, serves as a proxy for the number of presentations.

Because Norman (2002) used medium-frequency words,
we set gdraw to .38. The other parameters were fixed at values
used in our previous simulations: gbase = .4,w = 20, c = .7, and
criteriontest = 1 (recall that REM.1 does not have a criterion-
study parameter).

Results and discussion

Figure 6 shows d′, hit rates, and false-alarm rates as a function
of ustrong. Examination of the hit and false-alarm rates reveals
that REM.1 correctly predicts the concordant effect observed
by Norman (2002). However, REM.1 predicts a negative list-
strength effect, with better discrimination on the strong-
interference list than the weak-interference list. Indeed, as u-
strong increases, the magnitude of the strong-list advantage
increases.

Simulation 4A therefore demonstrates that REM.1 cannot
predict Norman’s (2002) results. In particular, this is due to
differentiation: As the strength of strong images increases,
they become more insulated from related images, and there-
fore produce less interference.

Simulation 4B: REM.3

Method

In our REM.3 simulations, we only varied the criterionstudy
parameter (1, 2, 3, 4). The following fixed parameters were
used: gdraw = .38, gbase = .4, w = 20, c = .7, u1 = .28, u2 = .12,
and criteriontest = 1.

Results and discussion

Figure 7 shows d′, hit rates, and false-alarm rates as a function
of criterionstudy. Qualitatively, the results for criterionstudy
values of 2, 3, and 4 replicate Norman’s (2002) results, with
better discrimination on the weak-interference than the strong-
interference list. However, when criterionstudy is 1, REM.3
predicts equivalent discrimination between lists. Note, as well,
that the hit and false-alarm rates replicate the concordant effect
from Norman’s experiment: Both hit and false-alarm rates are
higher on the weak-interference than on the strong-
interference list.

We are not concerned that a value of 1 for criterionstudy
fails to produce a list-strength effect in REM.3. On the basis of
the results of Simulation 1, we do not think that 1 is a reason-
able value for criterionstudy. The fact that higher values for
criterionstudy produce results that are more consistent with
the empirical data further bolsters this position.

Why is REM.3 able to replicate Norman’s (2002) pattern
when REM.1 could not? Consider the size of the search set
between the weak- and strong-interference lists in REM.1. In
both cases, there is one image for each unique study item (i.e.,
110 total images, for the 10 serial-position buffers, 50 targets,
and 50 distractors). The only difference is that the images for
the strong-interference items are more complete copies of the
study items, and thus are less likely to produce interference
than the weak-interference images.

4 We do not have standard errors for hit and false-alarm rates. This is because
Norman (2002) presented means as a function of confidence scale responses.
5 One might wonder why we are varying u rather than more directly manipu-
lating the number of strong-item presentations, as in the REM.3 simulations.
Recall, however, that in REM.1multiple presentations of an item are simulated
by increasing the probability of encoding item features. Therefore, varying u is
how one strengthens items in REM.1.
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Next, consider the search sets in REM.3. In the weak-
interference condition, there will be a maximum of 110
images (for some subjects there will be fewer, owing to
incorrect superimposition; see Simulation 1). The search
set for the strong-interference condition, in contrast, will
be much larger: Whenever superimposition fails to occur,
a new image is generated. This drastically increases inter-
ference, thus lowering performance on the targets.

Note that the explanation above makes sense when
considering the experimental session from the perspective
of subjects. Given the relatively long lags between repe-
titions in Norman’s (2002) experiment, it is reasonable to
assume that subjects sometimes failed to notice that an
item had been studied earlier. Such an occurrence should
result in multiple mnemonic traces—that is, failed
differentiation.

The explanation above also sheds light on Norman’s
(2002) concordant effect. Prima facie, this finding is puz-
zling, since strength manipulations generally produce a
mirror effect, with a higher hit rate and lower false-alarm
rate on strong than on weak test lists (Criss, 2006; Stretch
& Wixted, 1998). However, because of the larger search set

in the strong-interference than in the weak-interference
condition, more evidence is needed to call a probe “old,”
resulting in a lower hit rate. At the same time, false alarms
are less likely on the strong-interference list, both because
of the larger search set and because interference-item im-
ages are more differentiated than images for the weak-
interference list, thereby lowering the probability of a
distractor inadvertently matching one.

Simulation 5: Norman (1999, Exp. 4)

Norman (2002, Exp. 1) used relatively long study phases,
with 360 trials in the study phase of the strong-interference
list. To ensure that the REM.3 results from Simulation 4B
were not an artifact of the large number of study trials, we
also performed simulations for Experiment 4 of Norman
(1999). This experiment had two between-subjects condi-
tions, which we simulate in Simulations 5A and 5B. One
condition was very similar to Norman (2002, Exp. 1), but
with a shorter study list. In the other condition, distractors

Fig. 6 Values for d′, hit rates, and false-alarm rates in simulations of Norman (2002, Exp. 1) with REM.1, as a function of ustrong. The parameters were
gbase = 0.4, gdraw = 0.38, w = 20, uweak = 0.28, and criteriontest = 1.

Fig. 7 Values for d′, hit rates, and false-alarm rates in simulations of Norman (2002, Exp. 1) with REM.3, as a function of criterionstudy. The parameters
were gbase = 0.4, gdraw = 0.38, w = 20, u1 = 0.28, u2 = 0.12, c = 0.7, and criteriontest = 1.
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were semantically related to targets (e.g., alligator–croco-
dile). Both experiments revealed a list-strength effect.

Simulation 5A: Unrelated distractors

Description

The procedure of Norman (1999, Exp. 4) was very similar
to that of Norman (2002, Exp. 1). The strong-interference
paradigm was used, with interference items presented
once in the weak-interference list and six times in the
strong-interference list. However, there were 16 targets
instead of 50, 48 interference items instead of 50, and
three primacy and recency buffers instead of five. In ad-
dition, only eight of the 16 targets were presented at test,
along with eight distractors. Unlike the confidence judg-
ments made in Norman (2002), Norman (1999) used stan-
dard old/new recognition.

Norman (1999) uncovered a list-strength effect as mea-
sured by d′: Discrimination was better on the weak-
interference list (M = 2.28, SE = 0.08) than the strong-
interference list (M = 1.90, SE = 0.09). The hit and false-
alarm rates produced the concordant effect observed in
Norman (2002): The hit rate was higher in the weak-
interference list (M = .91, SE = .02) than the strong-
interference list (M = .66, SE = .03), and the false-alarm rate
was higher in the weak-interference list (M = .12, SE = .01)
than in the strong-interference list (M = .03, SE = .01).

Method

Other than the number of targets, interference items, serial-
position buffers, and distractors, the algorithm and parameters
for Simulation 5Awere identical to those used in Simulation 4B.

Results and discussion

Figure 8 shows d′, hit rates, and false-alarm rates as a function
of criterionstudy. As in Simulation 4B, criterionstudy values of
2, 3, and 4 produced a list-strength effect, whereas a criterion-
study value of 1 produced a null list-strength effect. These sim-
ulations also replicated the concordant effect observed in
Simulation 4B and the empirical data.

Simulation 5B: Semantically related
distractors

Description

This condition was identical to the unrelated-distractors
condition, save that each distractor was semantically re-
lated to a target from the study phase. The results matched
those found in the unrelated-distractors condition: There
was a list-strength effect, with better discrimination (as
measured by d′) in the weak-interference list (M = 1.87,
SE = 0.08) than in the strong-interference list (M = 1.48,
SE = 0.09). The concordant effect was also replicated:
The hit rate was higher in the weak-interference list (M
= .85, SE = .02) than in the strong-interference list (M =
.58, SE = .03), and the false-alarm rate was higher in the
weak-interference list (M = .18, SE = .02) than in the
strong-interference list (M = .07, SE = .01).

Method

To simulate semantic relatedness in REM, we set eight fea-
tures for each distractor equal to eight features of one of the
targets. Otherwise, Simulation 5B was identical to Simulation
5A.

Fig. 8 Values for d′, hit rates, and false-alarm rates in simulations of Norman (1999, Exp. 4, unrelated-distractors condition) with REM.3, as a function of
criterionstudy. The parameters were gbase = 0.4, gdraw = 0.38, w = 20, u1 = 0.28, u2 = 0.12, c = 0.7, and criteriontest = 1.

Behav Res



Results and discussion

Figure 9 shows d′, hit rates, and false-alarm rates as a function
of criterionstudy. REM.3 replicates the concordant effect, re-
gardless of criterionstudy. Similarly, values of 3 or 4 for
criterionstudy produce a list-strength effect, consistent with
Norman’s (1999) results. However, a value of 1 for criterion-
study produces a negative list-strength effect, and a value of 2
for criterionstudy produces a null list-strength effect.

General discussion

The purpose of the present work was to assess whether REM
is viable when stripped of one of its simplifying assumptions.
In REM.1, item repetitions are always stored in the same im-
age; in REM.3, repetitions are superimposed on the original
image only if subjects recognize the repetition as having pre-
viously been studied. In Simulation 1, we showed that, al-
though a value of 1 for criteriontest is reasonable, a value of
1 for criterionstudy is not. Because subjects are not explicitly
asked to make old/new judgments at study, the threshold for
superimposing a study item needs to be higher. In Simulation
2, we demonstrated that REM.3 correctly predicts an advan-
tage for spaced over massed repetitions. In Simulation 3, we
examined whether REM.3 predicts a negative or null list-
strength effect with the mixed-pure paradigm. REM.3 actually
predicts a slightly positive list-strength effect with spaced
strengthening, but examination of published reports of the
list-strength effect in recognition provides empirical support
for this prediction. Finally, in Simulations 4 and 5, we showed
that REM.3 can account for positive list-strength effects ob-
served with the strong-interference paradigm.

Differentiation is a critical feature of a number of models of
human memory (McClelland & Chappell, 1998; Norman &
O’Reilly, 2003; Shiffrin & Raaijmakers, 1992; Shiffrin et al.,
1990; Shiffrin & Steyvers, 1997). The idea makes intuitive
sense: As information becomes better learned, its mnemonic

trace becomes more distinctive (i.e., more dissimilar from oth-
er mnemonic traces), and it is thus less likely to interfere with
other memories. Consequently, although adding items to a list
depresses memory (Strong, 1912), increasing the strength of
some items on a list does not, at least when item recognition
(Ratcliff et al., 1990) or cued recall (Wilson &Criss, 2017) are
tested. Without differentiation, REM predicts both list-
strength and list-length effects; with differentiation, REM pre-
dicts a list-length effect without a list-strength effect.

REM.3 provides a more complete picture. In REM.1, the
simplifying assumption that repetitions are always accumulat-
ed in a single image, regardless of the time elapsed between
presentations or the number of interpolated items, renders it
unable to account for the spacing effect. Obviously, if massed
and spaced repetitions are identical, they will be recognized at
the same rate. Here we showed that making superimposition
dependent upon subjects identifying the repetition as having
previously been studied produces an advantage for spaced
over massed items, consistent with the spacing effect
(Delaney et al., 2010).

The list-strength effect is one of the phenomena responsible
for the emergence of REM. Broadly, REM.1 is consistent with
experiments on the list-strength effect: Strengthening some
items on a list protects the weaker items from interitem inter-
ference, thus resulting in a negative list-strength effect. Yet,
although REM.1 always predicts a negative list-strength ef-
fect, this is inconsistent with null and slightly positive list-
strength effects observed in the literature with spaced strength-
ening (Ratcliff et al., 1990; Ratcliff et al., 1992). Similarly, the
prediction of an increasingly negative list-strength effect as
strong-item strength increases is inconsistent with positive
list-strength effects observed with the strong-interference par-
adigm (Norman, 1999, 2002). We have demonstrated that
REM.3 is consistent with these results.

A model with a number of similarities to REM.3 is a free-
recall version of REM presented by Malmberg and Shiffrin
(2005). Malmberg and Shiffrin demonstrated empirically that,
in free recall, a positive list-strength effect is observed with

Fig. 9 Values for d′, hit rates, and false-alarm rates in simulations of Norman (1999, Exp. 4, semantically-related-distractors condition) with REM.3, as a
function of criterionstudy. The parameters were gbase = 0.4, gdraw = 0.38, w = 20, u1 = 0.28, u2 = 0.12, c = 0.7, and criteriontest = 1.
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spaced strengthening but not massed strengthening. They ex-
plained this using the one-shot hypothesis of context storage,
according to which a maximum amount of context informa-
tion can be stored during any given study trial (see also
Burgess, Hockley, & Hourihan, 2017). Consequently, pre-
senting an item for 2 or 6 s will result in the same amount of
context information being stored. This means that spaced
items accumulate more context information than massed
items.

We did not implement context in our REM.3 simulations.
Of course, we assume that context exists, inasmuch as subjects
limit search to images generated during the study episode.
Indeed, it would have been relatively straightforward to add
context information to images (e.g., Malmberg & Shiffrin,
2005; Mensink & Raaijmakers, 1988, 1989). However, al-
though we do not dispute the role of context in the free-
recall list-strength effect, we question its ability to describe
recognition data. It is well known that, although changing
contexts between study and test produces robust effects in free
recall, similar manipulations have no effect in recognition. For
example, studying a list on land and being tested under water
(or vice versa) depresses free recall relative to studying and
testing on land or under water (Godden & Baddeley, 1975),
but this pattern does not extend to recognition (Godden &
Baddeley, 1980). To achieve context effects in recognition,
experimenters must use very salient, item-to-item context
changes, such as presenting to-be-remembered words on pic-
ture backgrounds (Hockley, 2008; Murnane, Phelps, &
Malmberg, 1999). For this reason, context-based explanations
in free recall often do not generalize to recognition (see
Sahakyan, Delaney, Foster, & Abushanab, 2013; Sahakyan
& Kelley, 2002; see also the discussion in Ensor, Guitard,
Bireta, Hockley, & Surprenant, 2019).

As Shiffrin and Steyvers (1997) noted, the addition of mul-
tiple images for spaced items makes REMmore complex and,
as a consequence, makes simulations less feasible. Although
we acknowledge the importance of parsimony in computa-
tional modeling, in this case a relatively minor change in the
model substantially increases its explanatory power.
Moreover, it helps us evaluate a possible reason for some
previously puzzling results in the literature. Finally, the as-
sumption that repeated items are incorporated into the existing
image only if the subject notices that they are repeated is a
possibility that is testable.
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