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Abstract
Eye-tracking provides an opportunity to generate and analyze high-density data relevant to understanding cognition.
However, while events in the real world are often dynamic, eye-tracking paradigms are typically limited to assessing gaze
toward static objects. In this study, we propose a generative framework, based on a hidden Markov model (HMM), for
using eye-tracking data to analyze behavior in the context of multiple moving objects of interest. We apply this framework
to analyze data from a recent visual object tracking task paradigm, TrackIt, for studying selective sustained attention in
children. Within this paradigm, we present two validation experiments to show that the HMM provides a viable approach to
studying eye-tracking data with moving stimuli, and to illustrate the benefits of the HMM approach over some more naive
possible approaches. The first experiment utilizes a novel ‘supervised’ variant of TrackIt, while the second compares directly
with judgments made by human coders using data from the original TrackIt task. Our results suggest that the HMM-based
method provides a robust analysis of eye-tracking data with moving stimuli, both for adults and for children as young as
3.5–6 years old.
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Introduction

Eye-tracking provides temporally rich behavioral data
(gaze) that is closely linked to many cognitive functions.
It has been widely used to study cognition, in diverse
research areas including category learning (e.g., Rehder
& Hoffman 2005), visual attention (e.g., Doran, Hoffman,
& Scholl, 2009), sports expertise (e.g., Smuc, Mayr, &
Windhager, 2010), visual perception (e.g., Gegenfurtner,
Lehtinen, & Säljö, 2011), implicit bias and stereotype
(e.g., Pyykkönen, Hyönä, & van Gompel, 2009), language
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processing (e.g., Barr 2008) and psychological disorders
such as schizophrenia (e.g., Holzman et al. 1974).
Beyond psychology, eye-tracking applications include
safety evaluation in driving (e.g., Palinko, Kun, Shyrokov,
& Heeman, 2010), usability studies in human–computer
interaction (e.g., Jacob & Karn 2003), and diagnosis of
Alzheimer’s disease (e.g., Fernández, Castro, Schumacher,
& Agamennoni, 2015).

Most of these applications rely on the extensive work
that has been done assessing two important components of
gaze: fixation (maintenance of gaze on a single location)
and saccade (quick movement of gaze between two
fixations) (Cassin, Solomon, & Rubin, 1984). There exist
well-documented standards for identifying and analyzing
fixations and saccades in eye-tracking data (Duchowski,
2017), and a meta-analysis study has shown that the
most commonly used eye-tracking measures are number
of fixations, mean fixation duration, and gaze duration
(a function of multiple fixations) (Jacob & Karn, 2003).
These have been incorporated into user-friendly analysis
software built into commercial eye-trackers, and there
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also exists open-source software for fixation-and-saccade-
based analyses of generic eye-tracking data (e.g., Dink &
Ferguson 2015). These analytical advances have facilitated
adoption of fixation- and saccade-based eye-tracking
methods as standard tools in investigating cognition and
behavior.

While fixations and saccades describe most human eye
movement in response to stationary or rapidly moving
visual stimuli, tracking of smoothly moving stimuli obeys
a different dynamic, namely smooth pursuit—slow eye
movement that maintains the image of a moving object on
the fovea (Cassin et al., 1984). Far less research using eye-
tracking methods has studied smooth pursuit, in part due
to a relative lack of analysis tools. A recent comprehensive
review of eye-tracking methodology mentioned smooth
pursuits only three times and noted that “a robust and
generic algorithm for their detection is currently an open
research problem” (Duchowski, 2017, p. 176). As a result,
many eye-tracking studies rely on hand-coding by trained
human coders (e.g., Franchak, Kretch, Soska, & Adolph,
2011; Bambach, Crandall, Smith, & Yu, 2018). In part
because eye-tracking samples so densely over time, this
can be costly in terms of time and effort (for example, the
human coding in Experiment 2 of the present study took
45–50 human hours, involving over half a million human
judgments), and can be subject to inconsistencies between
coders.

It may not be immediately apparent why analysis of
smooth pursuit eye movements can be so much more
challenging than analysis of fixations and saccades. To
better understand the challenges involved, consider an
example scenario illustrated in Fig. 1. If objects are
moving, they may overlap for brief periods of time (Fig. 1,
panel 2). The eye-tracking information during this period
of overlap can be insufficient to infer which object the
participant is tracking, and this information must therefore
be aggregated with information from before and/or after
the period of overlap. Object overlap is a problem even
when the eye-tracker perfectly captures the participant’s

gaze, but, especially in crowded visual environments, the
complications for analysis are dramatically exacerbated by
noise intrinsic to both eye-trackers and human behavior
(including inaccurate eye-tracker calibration, oculomotor
control, blinking/head movement, etc.), which effectively
increase the overlap area between objects. This is especially
true in children, since the human smooth pursuit system
develops much more slowly than the saccadic system,
reaching maturity only in adulthood (Ross, Radant, &
Hommer, 1993; Katsanis, Iacono, & Harris, 1998; Luna,
Velanova, & Geier, 2008). As a result, simple methods of
identifying what object participants are tracking can be quite
inaccurate; for example, as we will discuss later, our data
from a visual object tracking task suggest that, as much
as 1/3 of the time, the object closest to the participant’s
measured gaze is not the object they are tracking.

In this paper, we propose a novel hidden Markov model
(HMM) approach to analyzing eye-tracking data in the
context of multiple moving objects of interest. Given
continuous gaze data collected from a participant tracking
moving objects with known positions over time, our model
can accurately determine the object being tracked at each
time point. Because our method uses raw gaze data instead
of pre-classified fixation/saccade data, our method works in
contexts that include either or both of smooth-pursuit and
fixation/saccade eye-movements, bypassing the difficult
problem of identifying smooth pursuit movements. We
anticipate that our model may be useful for researchers
in cognitive science and related areas and have made an
open-source Python implementation freely available.

A hiddenMarkovmodel approach

Hidden Markov Models (HMMs) are a popular generative
model for time series data, in which observed data are
assumed to be drawn, at each time point, from a distribution
depending on an unobserved hidden state. To make learning
the model tractable, a “Markov” assumption is made;
namely, the hidden state is assumed to depend only on

1 2 3

Fig. 1 An example on an object collision (Panel 2), during which the object being tracked is ambiguous, without using information from the past
(Panel 1) or future (Panel 3)
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Fig. 2 An example trial of the standard TrackIt task (endogenous condition), on a 4 × 4 grid with 4 distractor objects. The target object here is the
grey triangle, as indicated before the trial. A video of an example TrackIt trial can be found at https://osf.io/utksa/

temporally proximal hidden states, and not on distant hidden
states. An HMM is a natural choice for a simple model
of human visual object tracking; at each time point t , the
participant is looking at something S(t) (the hidden state),
and we observe eye-tracking data E(t) that is primarily a
function of S(t) and random noise. Because humans tend to
follow individual objects for at least short periods of time
(rather than constantly switching between objects), at least
for short timesteps, the state S(t) is strongly related to the
preceding and successive states (S(t − 1) and S(t + 1)).1

Unlike simpler models that consider data at each time point
independently, the HMM uses this short-term dependence to
mitigate noise and handle complex scenarios such as object
collisions (when multiple objects briefly occupy the same
space), without sacrificing the fine temporal resolution of
eye-tracking data.

Selective sustained attention and TrackIt

Selective sustained attention (SSA) is an important cog-
nitive process that enables everyday functioning and task
performance by allowing us to: (1) choose components of
our environment to process at the exclusion of others and
(2) maintain focus on those components over time. SSA
relies on both endogenous factors (e.g., internal goals) and
exogenous factors (e.g., stimulus salience), and studying
how these factors develop and interact in guiding attention
during childhood is of special interest for SSA development
research (O’Connor, Manly, Robertson, Hevenor, & Levine,
2004).

Unfortunately, quantifying SSA in young children has
proven challenging. Though studies have attempted to
downward extend the Continuous Performance Task (CPT;
the standard task for measuring sustained attention in adults)
to make it easier and more engaging for children, 50% of

1While human attention is likely not really Markovian (i.e., the
attentive state at a time t may depend directly on attentive states at very
distant timepoints), these dependencies vary widely with context (e.g.,
the types of objects and the task at hand), and modeling long-term
dependencies is beyond the scope of this work.

children 4.5 or younger were still unable to complete the
task and provide usable data (for review see Fisher & Kloos
2016).

TrackIt, introduced by Fisher, Thiessen, Godwin, Kloos,
and Dickerson (2013), is a child-appropriate visual object-
tracking task recently developed to measure SSA, that can
capture differential contribution of exogenous and endoge-
nous control of attention and allow flexible assessment over
a range of developmental years (including pre-school years),
with parameters for adjusting difficulty with age (Kim,
Vande Velde, Thiessen, & Fisher, 2017). In the TrackIt task
(illustrated in Fig. 2), participants visually track a single tar-
get object moving about on a grid, among other moving
distractor objects. At the end of each such trial, all objects
vanish from the grid, and participants are asked to identify
the target’s final grid cell location the target occupied before
vanishing. Previous work has shown that children as young
as 3 years old can consistently complete the TrackIt task and
provide usable data (Fisher et al., 2013).

Prior studies using TrackIt have measured task perfor-
mance mainly in terms of this final response—whether the
final grid cell was correctly identified. However, this mea-
sure has several limitations. For example, Kim et al. (2017)
suggested that many behavioral ‘errors’ may be attributable
to participants’ limited visual resolution when identifying
the final grid cell location of the target (thereby clicking an
adjacent cell). Also, this measurement is made after task and
only indirectly tells us what participants do during task.

To address these limitations of data currently available
directly from TrackIt, we began collecting eye-tracking
data. Analyzing these rich data, however, involved address-
ing the non-trivial technical challenge described above,
namely that of robustly identifying the object a partici-
pant is tracking from noisy eye-tracking data, even when
objects are moving, crowded, and potentially overlapping.
This problem motivated the development of the new method
we propose in this paper; this new method can facilitate
analyses of smooth pursuit eye movements in the context of
the TrackIt task and can be useful for analyzing eye-tracking
data in more general experimental contexts.
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Related work

Several prior studies have reported using HMMs to ana-
lyze eye-tracking data. Kärrsgård and Lindholm (2003) used
HMMs for an eye-typing application (in which users form
words by fixating on characters on a display). More recently,
Haji-Abolhassani & Clark (2013, 2014) used HMMs to
predict the visual tasks being performed by participants
viewing a painting. Although not using eye-tracking data,
Kumar, Harding, and Shiffrin (2018) used a similar algorithm
to analyze computer mouse movements in adults, in another
task recently proposed to measure SSA. Finally, a substan-
tial line of work has used HMMs to study eye movement
patterns involved in face recognition (Chuk, Chan, & Hsiao,
2014, 2015; Chuk, Chan, Shimojo, & Hsiao, 2016; Chuk,
Crookes, Hayward, Chan, & Hsiao, 2017b; Chuk, Chan, &
Hsiao, 2017; Brueggemann, Chan, & Hsiao, 2016). A MAT-
LAB toolbox has also been published implementing these
analyses (Coutrot, Hsiao, & Chan, 2018).

All of the above studies share several features that
contrast them from the current study. First, the stimuli
presented were static images. While Coutrot et al. (2018)
used conversational video stimuli, the regions of interest,
which were the faces of speakers, were essentially stationary
relative to the display. In contrast, our stimuli are videos of
moving objects, and so the parameters of our HMMs evolve
over time as objects move. Second, all prior analyses were
based on first identifying fixations and then modeling these
fixations using HMMs, whereas the HMM in the current
study directly models continuous eye-tracking data. Thus,
the approach that we present below is more appropriate
for measuring smooth pursuit, which is not composed of
fixations. Finally, the prior studies used repetitive tasks
(e.g., face recognition with aligned face stimuli) or identical
tasks performed by different participants, so that many
identically distributed samples can be combined (across
stimuli or across participants) to learn a single HMM.
This was a good fit for the studies that investigated where
most humans gaze when presented with certain kinds of
stimuli; however, this approach is not a good fit for the
current study or other studies that involve smooth pursuit
of objects moving in a non-predetermined fashion. In the
current study, object trajectories are randomly generated
before each trial, and we are interested in studying broad
patterns of behavior, independent of specific stimuli and
locations presented. As a result, each trial is distinct, and an
HMM must be fit for each trial using data from only that
trial. The approach we describe below makes this possible
because positions of objects of interest over time are known.

To the best of our knowledge, HMMs have been used
only a few times in the context of tracking moving objects.
Citorı́k (2016) used a rather different HMM-based approach
for analyzing eye-tracking data in the classic multiple object

tracking paradigm of Pylyshyn and Storm (1988). Their
approach utilized a separate HMM for each stimulus object,
with two states indicating whether or not that object is being
tracked. Beyond behavioral studies, Mantiuk, Bazyluk, and
Mantiuk (2013) described the use of an HMM algorithm
similar to the one described in this paper in a real-time 3D
scene rendering system.

Finally, a few other approaches have been considered
for automated analysis of eye-tracking data in dynamic
contexts. Most relevantly, Zelinsky and Neider (2008)
proposed a shortest-distance model (SDM), which assumes,
at each time point, that participants are tracking the object
closest to their gaze. This model, which we use as a baseline
for comparison in our experiments, does not leverage
temporal information, and our experiments consistently
show that our proposed HMM method outperforms the
SDM in terms of correctly identifying the tracked object and
detecting switches between objects.

Other methods have been proposed based on determin-
ing dynamic areas of interest (Papenmeier & Huff 2010;
Friedrich, Rußwinkel, & Möhlenbrink, 2017). These papers
focus on precisely specifying the spatial regions in which
gaze corresponds to tracking a particular object. Our HMM
method, on the other hand, focuses on using temporal
structure to improve tracking classification. Thus, these
methods are complementary; for example, our HMM can
be used with more complex emission distributions based
on AOIs computed using the methods in these papers
(from the geometry of displayed shapes), instead of the
spherical Gaussian distributions we describe in “Hidden
Markov model”. As an example application, in the three-
dimensional setting studied by Papenmeier and Huff (2010),
the HMM could serve to distinguish between tracking two
objects when they overlap (due to the two-dimensional view-
ing projection). A more subtle but important distinction is
that these papers use a “strict” spatial criterion (gaze point
inside the AOI) for matching, whereas we use a “soft” spatial
criterion (quantified by the likelihood of a gaze point under
a Gaussian distribution around the object). The “strict” cri-
terion may be appropriate, for example, when studying con-
straints of the visual system during object tracking. On the
other hand, when studying attention, for which gaze is a less
precise proxy, the more lenient “soft” criterion may be more
appropriate (especially for child participants, due to noisier
oculomotor control Ross et al. 1993; Katsanis et al. 1998;
Luna et al. 2008). The HMM can also be made to enforce the
“strict” criterion by using a uniform emission distribution
over the object (0 probability outside the object).

Contributions and organization of this paper

The main contribution of this paper is to propose and
evaluate a method for using continuously sampled gaze
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data to identify a sequence of objects that a participant
tracks during an experiment, given the positions of possible
objects of interest over time. In particular, we present an
HMM-based method that can handle smoothly moving,
crowded, and potentially overlapping target objects, and
can identify tracked objects densely over time with high
temporal precision. As discussed above, we do not know of
other previously proposed methods that can handle this kind
of data; therefore, we compare the proposed new approach
to both a simpler baseline model and human coding of
smooth pursuit eye-tracking data.

In “Hidden Markov model” we formally present our pro-
posed HMM approach. Section “The TrackIt task” describes
the TrackIt task, a task paradigm recently used for studying
sustained attention development in young children, which we
use as a setting for validating the proposed HMM model.
In “Experiment 1: supervised TrackIt” and “Experiment 2:
comparison with human coding”, we present the results
of two validation experiments designed to evaluate the
proposed method. Section “Measuring HMM model fit”
briefly discusses diagnostic methods for evaluating some of
the assumptions underlying our proposed HMM analysis.
Finally, Section “Conclusions and future directions” dis-
cusses some implications of our results, as well as possible
extensions of the proposed model.

Source code and reproducibility

Supporting materials for both experiments reported in this
paper are freely available via the Open Science Framework
at https://osf.io/u8jbs/. Specifically available are:

1. Python scripts for reproducing all our analyses, results,
and figures.

2. All eye-tracking and TrackIt data used.

3. Videos of an example Supervised TrackIt trial (used in
Experiment 1) and an example standard TrackIt trial
(used in Experiment 2).

4. All human-coded data and human coder materials
(including coding protocol script, Solomon Coder con-
figuration file, and an example trial video reconstruc-
tion used by the coders) for Experiment 2.

5. The Python executable used to collect all eye-tracking data
with the SMI RED-250 mobile eye tracker (SMI, 2009).

Finally, a TrackIt executable and its source code are freely
available at http://www.psy.cmu.edu/∼trackit/.

HiddenMarkovmodel

Overview of hidden Markov model We model the partici-
pant as being, at each time point t , in a state S(t) ∈ S. When
in the state S(t), we model the participant’s eye-tracking
data with a Gaussian emission distribution centered at the
center XS(t) of the object S(t). In the case of TrackIt, if
ND denotes the number of distractors (e.g., in Experiment 1,
ND = 4), N = ND + 1 (1 target, ND distractors). Figure 3
illustrates the main components of our model in this context.
Note, however, that the model is quite general. For example,
the Gaussian emission distribution can be easily generalized
for non-elliptical objects. The model might even be adapt-
able to a multiple object tracking setting by using centroids
of sets of objects rather than the objects themselves (Fehd
& Seiffert 2008, 2010; Hyönä, Li, & Oksama, 2019).

Notation Spatial coordinates are measured in pixels (≈
0.02◦ of visual field) with (0, 0) denoting the bottom
left corner of the display. xmin, xmax, ymin, and ymax

respectively denote the minimum and maximum horizontal

Observation 1 Observation 2 Observation 3

S(1) S(2) S(3)

X(1) X(2) X(3)

Hidden State 1 Hidden State 2 Hidden State 3

)b()a(

Fig. 3 a Graphical model schematic of HMM. The initial state (object)
S(1) is sampled uniformly at random. At each time point t , we observe
a gaze data point X(t), distributed according to a Gaussian centered
around the state S(t). At the next time point t + 1, a new state S(t + 1)

is sampled according to a distribution depending on S(t), and the pro-
cess repeats. b Example conditional distribution of E(t) given S(t) =
“Blue Moon”

Behav Res (2020) 52:1225–1243 1229

https://osf.io/u8jbs/
http://www.psy.cmu.edu/~trackit/


and vertical coordinates observable by the eye-tracker. The
observable region R := [xmin, xmax] × [ymin, ymax] is a
rectangle including the entire grid traversable by TrackIt
objects. Within the context of any particular trial, T denotes
the trial length (in 60 Hz frames), and t ∈ [T ] :=
{1, 2, ..., T } indexes individual frames.

Hidden state model The sequence of underlying hidden
states is modeled as a Markov chain with a fixed initial
distribution π ∈ [0, 1]S (such that

∑
S∈SπS = 1) and

transition matrix � ∈ [0, 1]S×S (such that, for each S ∈ S,∑
S′∈SπS,S′ = 1). Since, in this study, we are interested in

using our model to classify participants’ behavioral states
over time, to avoid biasing the model, π is constrained to
be uniform (i.e., πs1 = · · · = πsN ), and � is constrained to
have identical diagonal values c1 and identical off-diagonal
values c2; i.e.,

� =

⎡

⎢
⎢
⎢
⎣

c1 c2 · · · c2

c2 c1 · · · c2
...

...
. . .

...
c2 c2 · · · c1

⎤

⎥
⎥
⎥
⎦

.

We set c1 = 599
600 and c2 = (1 − c1)/N , corresponding to an

average of 1 uniformly random transition per 600 frames (≈
10 s); this choice is due to the tuning procedure used to learn
the model hyperparameters (see “Supervised TrackIt”).

Emission distributions Let S : [T ] → S denote the
sequence of states assumed by the participant. At each time
point, if the participant is in the state corresponding to
tracking the object s, the model assumes the eye-tracking
data of the participant is distributed according to an isotropic
Gaussian centered at the center of S; that is, for each t ∈ [T ]
and s ∈ S,

E(t)|S(t) = s ∼ N
(
Xs(t), σ

2I2

)
,

where E : [T ] → R denotes the eye-tracker trajectory, and,
for each S ∈ S, XS : [T ] → R denotes the trajectory of the
object corresponding to state S. The spherical standard
deviation σ , which we model as common across objects, is
an important hyperparameter whose selection is discussed
below.

Model fitting Because, when analyzing eye-tracking data
from TrackIt, we have no a priori knowledge of the true
state sequence S, the model is trained in an unsupervised
manner, using a maximum likelihood estimate (MLE); that
is, the estimated sequence of states is that which maximizes
the likelihood of the observed eye-tracking data. Our
implementation uses the Viterbi algorithm (Forney, 1973),
a standard dynamic programming algorithm for efficiently
computing the MLE of an HMM.

Parameter selection The main free parameters in the model
are the transition probability c2 and the spherical standard
deviation σ of the Gaussian emission distributions. The
optimal values for these parameters depend on context-
specific factors such as the size and density of objects,
as well as properties of the participant (e.g., have less
precise smooth pursuit eye-movements than adults (Ross
et al., 1993; Katsanis et al., 1998; Luna et al., 2008),
corresponding to larger σ ). Since, when determining
whether to make a transition at a particular frame, the model
essentially trades-off between the cost of transitioning and
the cost of selecting an object far from the gaze point,
both of these parameters essentially modulate how often
the model transitions between objects. Hence, to keep
analysis simple in this paper, we fix c2 to a sensible
value (corresponding to the 0.1-Hz mean transition rate we
enforce in Experiment 1), and report results across a large
range of σ parameters, highlighting results at some values
of σ that we found to provide the best results. We also
varied experiment parameters between Experiments 1 and 2,
giving some indication of how different σ should be used in
different settings. At present, we do not have an automatic
method for calibrating σ , and we suggest that users either
consider results over a range of σ values or calibrate σ by
having human coders manually code a small subset of data.

The TrackIt task

TrackIt is a recently developed task paradigm for measuring
SSA in children (Fisher et al., 2013). TrackIt has been shown
to have good psychometric properties for measuring SSA,
and research in several labs has linked performance on TrackIt
to classroom learning, numeracy skills, prospective memory,
and proactive control (Fisher et al. 2013; Erickson,
Thiessen, Godwin, Dickerson, & Fisher, 2015; Doebel
et al. 2017; Doebel, Dickerson, Hoover, & Munakata, 2018;
Brueggemann & Gable 2018; Mahy, Mazachowsky, &
Pagobo, 2018).

In the standard TrackIt task, participants visually track a
single target object as it moves on a grid, among moving
distractor objects. For each trial, the target and distractor
objects are constructed with random colors (selected
without replacement from a set of nine distinct colors) and
shapes (selected without replacement from a set of nine
distinct shapes); that is, out of 81 possible objects, target and
distractor objects are selected randomly under the constraint
that no color or shape is repeated within a trial. See Fig. 2 for
an example. At the beginning of each trial, objects appear on
a grid, centered in random, distinct grid cells, and the target
object is indicated by a red circle around it.

Upon starting the trial (by button press), the red circle dis-
appears, and the objects begin to move in piecewise-linear
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trajectories from grid cell to grid cell at a constant speed
(500 pixels, or 10◦, per second). At the end of each trial,
all objects vanish, and the participant is asked to indicate
with their finger the grid cell the target object last occupied
before disappearing.

The path of each object is randomized, with the constraint
that the target has to be in the center of a grid cell at the
end of the trial, to reduce ambiguity for the participant in
determining its final location. Due to this constraint, trial
length is not fixed, but varies slightly between trials (to
allow the target to reach the center of a grid cell), with a
minimum of 10 s.

The grid size, object speed, number of distractors, and
minimum trial length, are experimenter-selected TrackIt
parameters; the above values were suggested by prior work
as appropriate for young children. In Experiment 1, we
used an “easy” 4 × 4 grid size with four distractor objects,
while in Experiment 2, we used a “hard” 6 × 6 grid with
six distractors. These settings span the range of parameters
recommended for use with young children by previous work
(Kim et al., 2017); all other parameters were set to the
default values in TrackIt.

Experiment 1: supervised TrackIt

Evaluating the performance of the HMM model requires
comparing its predictions to a “ground truth” estimate of the
object the participant is tracking. In this section, we report
results from one approach to obtaining such ground truth.
Specifically, we conducted TrackIt experiments in which we
used several features to amplify the salience of the target
object relative to distractors (see details below). The core
assumption inherent to this approach is that by making the
target object highly salient, we make the task relatively easy
such that the participants are able to successfully track the
prescribed target at all time points; thus, we use the target
object itself as an estimate of ground truth. Additionally,
since we are interested in the HMM’s performance in
the context of possible attention switches among different
objects, rather than using a single target for the entire trial,
we changed the target periodically throughout the trial. We
also lengthened trials to ensure several object transitions
would take place.

Supervised TrackIt

To tune the parameter σ and evaluate model performance,
we designed a ‘supervised’ variant of TrackIt, in which
we know, with relatively high confidence, what object the
participant is looking at (i.e., the ‘true state’) at most
time points. To do this, we made the target flash white
repeatedly (for 100 ms, separated by 200 ms) during the

entire trial, making it salient and easy to track. Participants
were instructed to follow the flashing object with their
eyes. Rather than using a single target for the entire trial,
the flashing target changed at random intervals (uniformly
between 5 s and 15 s). To allow multiple target changes,
trials were lengthened to a minimum of 30 s (from 10 s
in Unsupervised TrackIt). Changing the target within trials
was essential to ensure the fitted model could accurately
detect transitions between objects; without this, the model
would learn to always estimate a single most likely target
during each trial (i.e., the selected σ would be too large).
As in Unsupervised TrackIt, the target was circled in red
and flashed before trial start, so participants could begin
the trial tracking the correct object. Other parameters and
preprocessing steps were identical to the Unsupervised
TrackIt setup. TrackIt recorded the flashing target’s identity
in each frame, allowing us to compare model predictions to
this ‘ground truth’. Some error is introduced by the delay
with which participants transition after the blinking object
changes. Better results might be obtained by ignoring a few
frames after each change when measuring error, but our
results are robust without doing this.

Experimental procedure

Participants Fifteen healthy adult volunteers aged 18 to
31 (M = 22.5; SD = 3.4; 13 female, two male) and
15 typically developing 5-year-old children aged 5.1 to
5.9 (M = 5.3; SD = 0.23; seven female, eight male)
each performed 12 trials of Supervised TrackIt, including
two initial practice trials during which the experimenter
explained the task. Practice trials were not analyzed, giving
ten usable trials/participant.

Materials and apparatus Stimuli were presented on a
Lenovo laptop screen with physical dimensions 19.1 cm
× 34.2 cm and pixel dimensions 1080 × 1920 pixels
(approximately 22◦ × 40◦ of visual field). Participants were
seated at a desk facing the screen with their heads about
0.5 m away from the screen. The SMI RED-250 mobile
eye-tracker (SMI, 2009) was used to record continuous
gaze positions at 60 Hz during TrackIt trials. After using
SMI’s iView X software to calibrate the eye-tracker, we
used a custom Python script (available in the supplementary
material https://osf.io/vqjgs/) to collect eye-tracking data
synchronized with TrackIt.

TrackIt parameters We used a 4 × 4 grid size, object speed
of 500 pixels/second, four distractors, and minimum trial
length of 10 s (as suggested by prior work as appropriate
for young children; (Kim et al., 2017)). These parameters
are recommended for use with children younger than 5 by
previous work (Kim et al., 2017), but we used these settings
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Table 1 Missing gaze data before and after preprocessing

Population Proportion of Frames

Raw Data After Interpolation After Interpolation & Filtering

Adults 7.9% 4.1% 2.4%

5 year olds 41.1% 30.3% 15.0%

with 5-year-old participants since this validation experiment
necessitated high participant performance to simulate an
accurate ground truth. All other parameters were set to the
default values in TrackIt.

Datapreprocessing Child eye-tracking data contains a large
proportion of missing values (due to children looking away
from task or moving excessively), and so we preprocessed
data to mitigate this. Whenever a short interval of at most ≤
10 consecutive frames (≈ 167 ms) of eye-tracking data was
missing, we linearly interpolated gaze during those frames
from non-missing data immediately before and after that
interval. Then, we discarded all data from participants for
whom more than 50% (> 5 trials) were missing more than
more than 50% of frames (3 children); our reported results
are on data from the remaining 12 children. Even after these
steps, intervals of (> 10 frames of) eye-tracking data may
still be missing. For these frames, the HMM automatically
assigns a ‘null’ state, and the frames before and after each
such interval are fit independently by the Viterbi algorithm.
When evaluating model performance, we report results both
treating these frames as incorrect classifications (giving a
conservative ‘worst-case’ lower bound on performance) and
ignoring these frames (giving a less conservative ‘average-
case’ performance estimate).

Table 1 shows, for each population and condition, the
proportion of frames missing eye-tracking data, in the
raw data, after interpolating short intervals of missing

data, and after filtering participants with excessive missing
data. As expected, the proportion of missing data was far
larger for children than for adults. Both preprocessing steps
significantly improved data quality, especially with data
from child participants.

Evaluating model performance We compared our HMM’s
performance to that of a ‘Shortest Distance Model’ (SDM;
Zelinsky & Neider 2008) that assumed that, at each time
point, the participant was looking at the object closest to their
gaze. This model is equivalent to a variant of our HMM with
uniform transition matrix �, thus ignoring the underlying
Markov model and using only emission probabilities.

Our main measure of model (HMM or SDM) perfor-
mance is decoding accuracy, the proportion of frames
(across all participants and trials) on which the model
agrees with the “ground truth” (location of the target in the
supervised version of the task).

Recall that the HMM has a free parameter σ that must be
selected by the user. In this experiment, we report results for
50 logarithmically spaced values of σ between 10 and 104

pixels (≈ 0.2◦-24◦ of visual field).

Results

Figure 4 shows the HMM’s accuracy, as a function of σ , along
with that of the SDM and ‘chance’ of 20% (one out of five
total objects), for adult and child participants, respectively.

(b)(a)

Fig. 4 a Semi-log plot of HMM, SDM, and chance accuracies for adult data, as functions of HMM parameter σ . Dashed lines indicate bootstrapped
95% confidence bands. The point of optimal HMM performance (our suggested value of σ ) is indicated by a triangle. Only accuracies on
non-missing frames are shown, but curves computed using all frames were qualitatively similar. b Same plot for child data
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While both the HMM and the SDM perform much better
on adult data than on child data, curves are qualitatively
similar for both populations. For very small σ (e.g., < 100
(≈ 2◦)), the cost of selecting an object even slightly further
than the closest object outweighs the cost of transitioning
states, and so the HMM behaves essentially like the SDM.
For very large σ (e.g., > 2000 (≈ 49◦)), the emission
distributions of all objects become similar, and the HMM
may fail to ever transition, performing worse than the SDM.
As we expected, the optimal σ for children was much larger
than that for adults (870 pixels (≈ 18◦) versus 490 pixels
(≈ 10◦)), reflecting less precise visual tracking of the target
object. However, for both adults and children, in a large
range of approximately σ ∈ [102, 103] (≈ 2◦ − 21◦), the
accuracy of the HMM is significantly higher than that of
the SDM, with a mean performance difference larger than
the statistical uncertainty (in terms of the radius of 95%
confidence intervals around the mean accuracy; see Fig. 4).

This analysis suggests that superiority of the HMM
decoder depends on the value of σ , albeit quite robustly.
Hence, to objectively evaluate decoder performance inde-
pendently of tuning, we next used leave-one-out cross-
validation: For each of the 15 participants, we measured the
accuracy of the HMM on this “held-out” participant when
using the σ value that maximized the mean accuracy over
the other 14 participants. Table 2, which reports the average
of this “held-out” accuracy over participants, indicates that
the HMM provides a large mean improvement (≥ 16.1% in
adults, ≥ 20.9% in children) in accuracy over the SDM.

Experiment 2: comparison with human
coding

Our results with Supervised TrackIt in Experiment 1 sug-
gested that the HMM provides a significant improvement
over the accuracy of a SDM baseline model which simply
selects the closest object to the eye gaze at each time point.
While this is a promising first result in favor of the HMM
model, the results of Experiment 1 are insufficient to fully

provide a confident assessment of the HMM’s performance,
for a number of reasons.

First, the sample of 15 children and 15 adults is fairly
small. Second, the results from Experiment 1 (Table 2)
allow for the possibility that the HMM’s decoding accuracy
for child data might be as low as 50-60%. Given the much
higher accuracy measured in adults, it is possible that a
significant proportion of the measured “error” of the HMM
model stemmed not from true model errors, but rather
from an inaccurate assumption about ground truth, because
children may have struggled to continuously follow the
target object even under the condition of high salience.

Third, Experiment 1 involved only data from 5-year-
old children, whereas TrackIt is intended for use with
children as young as 3 years old (Kim et al., 2017) (for
whom decoding accuracy might be even lower). Finally,
the Supervised TrackIt might differ from the Unsupervised
TrackIt task in ways that affect the performance of
the HMM. For example, the transition probabilities of
the HMM were calibrated to match the mean transition
frequency of the Supervised TrackIt task, whereas the
transition frequencies of children in Unsupervised TrackIt
are unknown.

Experiment 2 was designed to address these limitations
and provide a more direct assessment of the HMM as a
tool for decoding the object of attention in the standard
TrackIt task, and to do so over a larger sample of child
participants, with a larger range of ages. To accomplish
this, we used the output of TrackIt and the eye-tracker to
construct video recordings of eye-gaze data overlaid on the
original TrackIt task, and used human coders to estimate the
object of attention from these videos. We then compared the
output of the HMM and SDM algorithms to these human
judgments.

Methods

TrackIt settings In the previous experiment, it was neces-
sary for the participant to perform the task successfully,
and so we used TrackIt settings that are known to yield

Table 2 Mean (across participants) proportion of supervised frames correctly classified, based on using the other 14 participants to select the
optimal σ

Population HMM SDM

All frames
Adult 91.4%(2.7%) 75.3%(2.5%)

Child 52.7%(3.9%) 31.8%(2.3%)

Non-missing or interpolated frames only
Adult 93.5%(1.3%) 76.8%(1.5%)

Child 60.7%(2.2%) 36.8%(2.1%)

Numbers in parentheses are radii of 95% normal confidence intervals, based on standard errors across participants
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high performance in 5-year-old participants (Kim et al.,
2017). In Experiment 2, we used parameter settings that
are age-appropriate for 4 to 6-year-old participants based
on prior research (Kim et al., 2017). Specifically, the fol-
lowing TrackIt settings were used: object speed was 500
pixels per second, grid size was 6×6, number of distractors
was six. Thus, we expected the task to be challenging for
the 3-year-old children, but wanted to test if, with the help
of eye-tracking measurement, informative features of their
attention may be still be retrieved. Since we did not need to
accommodate multiple object transitions within each trial,
we also used more a conventional minimum trial length of
10 s.

Each participant performed two conditions of the TrackIt
task – the “Exogenous” condition and the “Endogenous”
condition – designed to differentially measure top-down
vs. bottom-up attentional components which have been
distinguished in the attention development literature (Oakes,
Kannass, & Shaddy, 2002; Colombo & Cheatham 2006).
This condition difference was not relevant for the present
paper (these data were collected as part of a larger project
and the effects of condition on attention will be reported
separately elsewhere). To ensure that condition did not
affect any of the conclusions of this experiment, we ran
all analyses on the data from each condition separately; all
results were qualitatively identical, with minor quantitative
differences. To simplify presentation of results, in this paper
we present average results over the two conditions.

For completeness, we briefly describe the two conditions
here. In the endogenous condition, the target is differenti-
ated from the distractors only by being circled before the
start of the trial, as described in “The TrackIt task”. Hence,
during the trial, participants must rely primarily on their
internal goal representation to support their SSA in a top-
down fashion, in the absence of external support. In the
Exogenous condition, the target object is differentiated from
the distractor objects throughout the trial in two ways. First,
the distractor objects are constrained to all be identical (i.e.,
the same shape and color), and distinct from the target.
Second, the target rhythmically “shrinks” and “unshrinks”
(specifically, it alternates between its default size and a 50%
reduced size, at 3 Hz) throughout the trial. These features
increase the salience of the target relative to the distractors,
thereby exogenously supporting maintenance of attention
on the target. Participants performed the two conditions on
two separate days (approximately 1 week apart), with order
counter-balanced.

Participants Fifty typically developing children, aged 3.5
to 6 years (M = 4.60, SD = 0.67), each performed
11 TrackIt trials, including one initial practice trial during
which the experimenter explained the task. Practice trials
were not analyzed, giving ten usable trials per participant

per condition. After removing eight participants’ data due to
eye-tracking data quality issues (as described in Experiment
1 under “Data preprocessing”), 42 children, ages 3.5 to 6
years (M = 4.65, SD = 0.71) contributed data to the
analysis.

Materials and apparatus Stimulus display and eye-tracking
setup were identical to those in Experiment 1.

Data preprocessing Data preprocessing (to reduce missing
eye-tracking data) was identical to that in Experiment 1.
Frames that were missing even after preprocessing were
excluded from the evaluation of model performance. After
preprocessing, data from 42 children (840 unique trials)
remained. As noted below, unlike in Experiment 1, when
evaluating model performance, we ignored missing frames.

Video coding procedure Here, we describe our procedure
for coding videos of participants’ eye-tracking data. A
detailed protocol can be found at https://osf.io/54kyd/.
An example of a trial video reconstruction used for
video coding can be viewed at https://osf.io/m6kru/. After
preprocessing, 84 sessions (one session per participant in
each condition) of ten trials each were analyzed. For each
trial, using the outputs of TrackIt and the eye-tracker, we
generated a video reconstruction (at 1/10 the original speed)
consisting of the participants’ gaze overlaid on a video of
the original TrackIt object trajectories. Two human coders
then used the videos to identify which object, if any, the
participant was tracking at each time point.

Each of the 84 sessions was randomly assigned to either
Coder 1 or Coder 2. Additionally, to assess inter-coder
reliability, a randomly selected 20% of sessions were coded
by both coders. Ultimately, 45 sessions were coded only by
Coder 1, 21 sessions were coded only by Coder 2, and 18
sessions (the “overlap dataset”) were coded by both coders.

To make the task manageable for human coders,
sessions were coded every six frames (yielding ten
judgments/second), and, accordingly, the HMM and SDM
classifications were down-sampled by a factor of 6. Coding
was performed using Solomon Coder (Péter, 2017). Each
10-Hz timepoint was coded as one of

{“Object 0”, “Object 1”, ..., “Object 6”, “Off Screen”, “Off Task”},
with each “Object” code corresponding to one of the seven

displayed objects, “Off Screen” corresponding to missing
eye-tracking data, and “Off Task” corresponding to the
coder being unable to identify the object being tracked.
Altogether, 501,147 total judgments were made. Inter-
coder reliability in terms of joint proportion of agreement
was 84.5% (95% confidence interval (80.6%, 88.5%)),
out of 25075 total judgments per coder on the overlap
dataset. When we excluded “Off Task” frames (as we
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do when comparing HMM and SDM to human coding)
agreement increased to 95.3% (95% confidence interval
(93.0%, 97.6%)).

Evaluating model performance As in Experiment 1, we
compared our HMM’s performance to that of a ‘shortest
distance model’ (SDM) that assumed that, at each time
point, the participant was looking at the object closest to
their gaze.

Also as in Experiment 1, our first measure of model
performance was the proportion of frames agreeing with
ground truth (where “ground truth” is now human coding
instead of Supervised TrackIt object locations). However,
this measure does not capture more specific attention
dynamics that may play out over a finer temporal scale, such
as, attentional switches between objects.

Thus, for Experiment 2, we additionally evaluated how
well the models can identify attentional switches. That
is, for each pair (t, t + 1) of consecutive timepoints
(with non-missing eye-tracking data), we identified whether
the model (HMM, SDM, or human coding) identified an
attentional switch (i.e., whether Ŝ(t) = Ŝ(t + 1)). This
resulted in a binary sequence of “switch predictions” (i.e.,
“Switch” or “No Switch”) for all non-missing timepoints.
We then compared the HMM and SDM switch predictions
with the human-coded switch predictions using a variety
of common binary classification performance measures.
Note that, because the classification problem is strongly
imbalanced (i.e., 96.9% of frames were classified as “No
Switch” by human coders), accuracy (i.e., the proportion of
frames agreeing with human coders) is a poor measure of
switch detection performance—for example, a trivial model
that always predicts “No Switch” achieves an accuracy of
96.9%. Instead, we measured:

1. Precision: proportion of detected switches that are true
2. Recall: proportion of true switches that are detected
3. Matthews’ correlation coefficient (MCC): Pearson cor-

relation between predicted switches and true switches
4. F1 score (a.k.a., Dice coefficient): harmonic mean of

Precision and Recall

Of these, Precision and Recall are one-sided performance
measures, in that a model that predicts only “Switch” would
have perfect Recall and very low Precision, and a model that
predicts only “No Switch” would have perfect Precision and
very low Recall. MCC and the F1 score are balanced, in that
they yield a score of 1 only if the predicted switch sequence
is exactly identical to the true switch sequence. In this sense,
MCC and F1 are better measures of performance in practical
settings, and we chose to present Precision and Recall
results because they illustrate how performance depends on
the parameter σ , and why the HMM outperforms the SDM
in practice.

Each statistic above was calculated separately for each
of the 84 sessions; below, we report means and normal
confidence intervals over the 84 sessions. Note that, unlike
in Experiment 1, where Supervised TrackIt provided a
”ground truth” value for every frame, in Experiment 2,
no ground truth is available for frames with missing eye-
tracking data. For this reason, we only report numbers with
missing data frames removed (as opposed to treating them
as “incorrect” predictions).

Results

Proportion of frames agreeingwith human coding Figure 5
shows the HMM accuracy, as a function of σ , and that
of the SDM, as well as the joint proportion of agreement
for human coders, when omitting frames classified as
“Off Task” by either coder. Both models performed far
above ‘chance’ accuracy of ≈ 14.3% (1/7 total objects).
For very small σ (e.g., < 50 (≈ 1◦)), the HMM
behaves essentially like the SDM. For very large σ , the
HMM has trouble detecting attention switches, and so
performance decays. However, for nearly all σ considered,
the HMM significantly outperforms the SDM (65.7%
±1.2% accuracy), reaching peak accuracy (85.4% ± 1.8%)
at σ = 300 pixels (≈ 6◦). Figure 5 also shows two estimates
of agreement between human coders, to which performance

Fig. 5 Accuracy (in terms of proportion of frames agreeing with hand-
coding) for HMM (as a function of σ parameter) and SDM, as well as
joint proportion of agreement between human coders. Markers indicate
σ -values for which the HMM was actually computed; other values are
linearly interpolated. Shaded regions indicate 95% normal confidence
intervals, also linearly interpolated between σ -values for which the
HMM was actually computed. As motivated in “Discussion”, two
versions of joint proportion of agreement between human coders are
plotted: for the dashed black line, frames in which either coder gave
an “Off Task” coding were omitted, while, for the dashed white line,
these frames were included
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Fig. 6 Precision, Recall, Matthews’ correlation coefficient (MCC),
and F1 score for predicting attentional switches using the HMM and
SDM, as well as for human coders (using each coder as a ground truth
for the other, and then averaging over coders). Blue markers indicate
σ -values for which the HMM was actually computed; other values are
linearly interpolated. One may note that, in terms of Recall, the SDM
exhibits higher performance than the HMM—this makes sense given
that the SDM labels frames as switches much more liberally in gen-
eral. Hence, correspondingly, the SDM performs poorly in terms of
Precision, which penalizes incorrect “switch” predictions. In terms of
MCC and F1 score, which incorporate precision and recall into more

balanced measures of accuracy, the HMM outperforms the SDM for
σ values considered. Blue and orange shading indicate 95% normal
confidence intervals, also linearly interpolated between σ -values for
which the HMM was actually computed. As motivated in “Discus-
sion”, two versions of human performance (inter-rater agreement) are
plotted: for the dashed black line, frames in which either coder gave
an “Off Task” coding were omitted, while, for the dashed white line,
these frames were included. Grey shading indicates the region between
the lower 95% confidence bound of the white line and the upper 95%
confidence bound of the black line

of the HMM may be compared with some care, as discussed
in “Discussion”.

We note that this accuracy for the HMM is much higher
than the ≈ 65% lower bound estimated in Experiment 1.
This is despite the fact that we use more challenging
parameters in the TrackIt task in Experiment 2 (6 distractors
in Experiment 2 vs. 4 distractors in Experiment 1). This
finding supports the possibility that, in Experiment 1, we
were able to reasonably approximate the “ground truth” for
adults but not for children.

Detection of attentional switches Figure 6 displays several
performance measures of the HMM’s and SDM’s abilities
to detect attentional switches. As we expected, the SDM
has a reasonable Recall of 0.68 (i.e., it detects 68% of true
attentional switches). However, it has a Precision of only
0.07 (i.e., 93% of the switches it predicts are spurious).
This is only slightly higher than the “chance” Precision
(0.03) of a model that predicts “Switch” in every time
frame, making it hardly usable for researching attentional
switches. In the HMM, as σ increases from 0, Recall
decays gradually and Precision increases significantly, at
least up to σ = 300, at which point Precision plateaus.
For this value of σ = 300, the HMM offers much more
balanced Precision of 0.36 and Recall of 0.45. According

to the more balanced performance metrics, the HMM is
far more informative of attentional switches than the SDM
for essentially all values of σ considered, with an MCC of
0.37 (compared to 0.17) and an F1 score of 0.40 (compared
to 0.16), for σ = 300. Reassuringly, the optimal value
of σ = 300 under both of these measures is the same
as the value optimizing the proportion of frames agreeing
with human coding, as described above, suggesting that the
same decoding model reliably approximates human coding
under both these measures. Table 3 gives precise numerical
confusion matrices for the HMM (with σ = 300), and
for the SDM, over all 501147 judgments made in this
experiment.

Table 3 Confusion matrices for attentional switch detection for HMM
(with σ = 300) and SDM, using human-coding as ground truth

HMM SDM

“Switch” “No Switch” “Switch” “No Switch”

Human “Switch” 7159 13019 11173 5012

Human “No Switch” 9026 471943 126077 358885

Green and red cells indicate correct and incorrect predictions,
respectively
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Table 4 Confusion matrices for attentional switch detection for HMM
(with σ = 300) and SDM, allowing for a slack of 200 ms between
detected and true switches

HMM SDM

“Switch” “No Switch” “Switch” “No Switch”

Human “Switch” 11827 8351 30118 55

Human “No Switch” 4837 476132 107132 363842

Since the observed precision and recall numbers were not
extremely high (e.g., Precision and Recall < 0.5 for the best
HMM model, and < 0.6 for human-to-human reliability),
we considered the possibility that our measure of prediction
correctness (i.e., an exact match between the model and
human predictions on each frame) was too stringent. This
consideration was motivated by the anecdotal observation
that even human coders sometimes disagreed on the exact
frame at which an attentional switch occurred, but more
often agreed on whether or not a switch occurred within a
few frames. Furthermore, Solomon Coder appears to have
a limited temporal precision, of 3–10 eye-tracking frames
(≈ 50–170 ms seconds), when sub-sampling the video
for coding, potentially causing temporal ambiguity when
lining up the human labels with the model predictions. For
these reasons, we also considered a more lenient measure
of correctness, identical to the first, except that model
“Switch” predictions were considered to agree with human

“Switch” predictions if they were within two video-coding
frames (200 ms).

By all metrics, performance of both HMM and SDM,
as well as inter-coder agreement, improved under this more
lenient measure; detailed results are given in Table 4 and
Fig. 7. While the precision and recall of the SDM both
improved (precision from 0.07 to 0.24 and recall from 0.68
to 0.99), the precision of the SDM was still very low.
The precision and recall of the HMM (with σ = 300)
also both improved (precision from 0.36 to 0.59 and recall
from 0.45 to 0.71). Again, according to the more balanced
performance metrics, the HMM significantly outperforms
the SDM for essentially all values of σ considered, with
an MCC of 0.62 (compared to 0.41) and an F1 score of
0.63 (compared to 0.37), for σ = 300. These results can
be interpreted as a trade-off between the temporal precision
and the detection performance of the model—the model is
more reliably able to detect switches to within 250 ms than
to within 50 ms.

Measuring HMMmodel fit

The HMM proposed in this paper relies on a number
of assumptions about participant behavior; for example,
it assumes that, on any frame, the participant is tracking
exactly one of the displayed objects. In reality, participants
may behave in many other ways. For example, they may
simultaneously track multiple objects (Pylyshyn & Storm
1988; Meyerhoff, Papenmeier, & Huff, 2017), or they may
gaze towards empty portions of the display (e.g., former

Fig. 7 Precision, Recall, Matthews’ correlation coefficient (MCC), and F1 score for predicting attentional switches using the HMM and SDM,
allowing for a slack of 200 ms between detected and true switches. Allowing for this slack improves performance of all models according to all
measures (compare Fig. 6). As in Fig. 6, the SDM exhibits good (almost perfect) Recall, but at the cost of very low Precision, while, for most σ

values considered, the HMM performs better according to Precision, MCC, and F1 score
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positions of objects (Ferreira, Apel, & Henderson, 2008;
De Groot, Huettig, & Olivers, 2016). An important feature
of generative models such as the HMM is the ability to
explicitly compute the likelihood of observed data under
modeling assumptions, and thereby to detect violation of
those modeling assumptions. In this section, we discuss
a likelihood-based method for detecting trials in which
behavior deviates from the single-object-tracking behavior
assumed by the HMM.

To motivate our approach, recall the null-hypothesis
testing framework used in statistics, in which one justifies
conclusions drawn from the data by assuming a simple
“null” model and then comparing statistics of the observed
data to those predicted (via calculation or simulation) under
the null model. This allows standardized quantification
(e.g., a p value) of how unusual the (statistics of) the data are
under the null model, which is then considered indicative of
how well the null model fits the data.

A trial log-likelihood statistic As a simple example, which
we investigate here, one can ask how well a particular
state sequence (such as the maximum likelihood sequence
our HMM outputs) explains the gaze data in a trial. To
answer this, we propose a “trial log-likelihood” (TLL)
statistic of a state sequence S, defined as the log of the
likelihood of the observed gaze data in a trial given the state
sequence S. Due the Markov assumption and the Gaussian
emission distributions, the log-likelihood of a trial is simply

proportional to − 1
T

∑T
t=1

‖E(t)−X
Ŝ(t)

(t)‖2

σ 2 (i.e., the negative
mean of the squared distances between the gaze points and
the corresponding object centers, normalized by the squared
σ parameter). This simple form lends a clear intuition for
the TLL statistic: TLL tends to be low when the participants
gaze tends to be far from the most likely object.

We implemented the TLL statistic (included in the sup-
porting materials at https://osf.io/ysgcz/), and we performed
a simple validation of the TLL statistic as follows. Since
coders used the “Off Task” classification to code frames
on which the participant did not appear to be tracking any
single object, we hypothesized that TLL of the MLE state
sequence should correlate negatively with the proportion
of frames in a trial that were classified as “Off Task; i.e.,
trials with more frames classified as “Off Task” should
be unlikely under the HMM, which only models single-
object tracking. Indeed, the Pearson correlation (across
trials) between TLL and the proportion of “Off Task” frames
was −0.36 (with 95% confidence interval (−0.42, −0.30)

according to Fisher Z-transformation and (−0.44, −0.30)

according to bootstrapping with 104 repetitions).

Addressing poormodel fit Having identified trials with low
goodness-of-fit, a researcher can handle these trials in one

of several ways, including (a) omitting these trials from
downstream analysis, (b) manually coding these trials, or
(c) adding a new state to the HMM to account for behavior
during these trial when a clear behavioral pattern (e.g.,
following the centroid of some objects, corresponding to
a Gaussian distribution around that centroid, or “looking
at nothing” (Ferreira et al., 2008; De Groot et al., 2016),
corresponding perhaps to a Gaussian distribution around the
former position of an object that has moved or disappeared
from the display) can be identified.

To pursue option (c) in a principled manner, given
an HMM with a particular set of states and transition
matrix, one can leverage the fact that the HMM is a
fully-specified generative model to test the null hypothesis
that the data were generated by that HMM under any
possible state sequence. Specifically, one could compare the
maximum likelihood (over state sequences) of the data to
the maximum likelihood of simulated data from the HMM.
This would allow one to objectively compare the fit of
HMMs with different sets of states. Since, in the current
paper, we do not study modifications of the HMM states, we
leave investigation of this idea for future work.

Discussion

While it is encouraging to see that the HMM quite reliably
outperforms the SDM, ultimately, the purpose of this
evaluation is to try to understand whether the performance
of the HMM (in terms of frame classification accuracy,
switch detection, or some other metric) is “good enough” for
it to be used in place of human coders in real experimental
settings. In addition to noting that this will depend on
the particulars of the experiment, it is important to note
some limitations of the performance measures provided in
our experiments. As illustrated by imperfect inter-coder
agreement, the classifications provided by human coders are
a “noisy” ground truth. For this reason, rather than “perfect
performance” (e.g., 100% accuracy or F1 score of 1),
we cautiously suggest comparing the HMM’s performance
under each measure to corresponding measures of inter-
coder reliability, which suggest how well the HMM could
possibly perform in our evaluation. For this reason, Figs. 5,
6, and 7 include plots of inter-coder reliability under each
measure (computed by using each coder as a “ground truth”
for the predictions of the other (on the overlap dataset) and
then averaging over coders).

Even this comparison must be interpreted with some
care. In our evaluation, we required the HMM and SDM
to provide an object classification for every frame that
the human “ground truth” did not identify as Off Task or
Off Screen. However, evaluation of inter-coder agreement
suggested that the majority of frames on which coders
disagree are those for which one, but not both, coders
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classified the frame as “Off Task”; when omitting these
frames, human performance (plotted in dashed black)
is significantly above that of the HMM and SDM,
whereas, when counting these frames as incorrect, human
performance (plotted in dashed white) was comparable to
that of the HMM. While omitting these frames gives humans
a much easier task than the model HMM (thus potentially
overestimating agreement), since these are typically the
most difficult (ambiguous) frames to classify, the alternative
of counting these frames as incorrect may conversely
underestimate human agreement, since humans operated
under the assumption that “Off Task” was a valid judgment.
Thus, a fair measure of human performance to which
to compare model performance likely lies somewhere in
between these two lines.

These results suggest that it may be desirable to allow
the HMM an equivalent of the “Off Task” classification,
or, more specifically, to allow it to explicitly abstain from
classifying some difficult frames, which are ambiguous
even for human coders. While we have some initial thoughts
on how this might be achieved (e.g., adding an explicit
“Ambiguous” or “Off Task” state with emission distribution
uniform over the display), this would require, at the very
least, tuning a new hyperparameter and determining how
to evaluate classifications in this state; hence, we leave this
for future work. For the time being, we have proposed a
trial log-likelihood (TLL) statistic, which can be used as a
indicator for the quality of the fit of the HMM to the data,
and we have shown that the TLL statistic correlates with
human coders’ “Off Task” classifications.

Conclusions and future directions

This paper proposed a novel algorithm, based on a hidden
Markov model, to predict the object a participant is tracking
in a dynamic visual scene, given their gaze position and
the positions of possible objects of interest over time. The
HMM converts noisy spatiotemporal eye-tracking data into
a sequence of a small number of states, simultaneously
denoising the data and making it more behaviorally
interpretable. The model is flexible in that input data can
be from any visual stimulus with known moving objects or
areas of interest, and many analyses can be performed on
its output. A Python implementation of the HMM is freely
available online, and we invite other researchers to use it in
their own studies.

We evaluated this model in the context of a child object
tracking task, TrackIt, using both a supervised variant of
TrackIt and judgments of human coders to provide ground
truth labels. The main evaluation setting was a rather
challenging setting, with noisy eye-tracking data provided

by young (3–6 years old) children and a dense scene of
seven fast-moving objects.

The findings of this validation study are as follows. First,
compared to a shortest distance model (SDM) baseline that
assumes the participant is attending to the object closest to
their gaze, the HMM can consistently improve prediction
accuracy on an average frame by at least 15–20%. Second,
while the HMM requires the user to specify an additional
hyperparameter σ , it outperforms the SDM baseline for a
large range of values of σ . Third, for appropriate σ , the
accuracy of the HMM on child data, in a fairly dense TrackIt
environment with seven moving objects, is approximately
85%. Fourth, the HMM is able to detect attentional switches
with far more precision than the SDM baseline, allowing
for a slight loss in recall. Finally, by several measures,
the agreement between the HMM and human coders is
comparable to the agreement between two human coders,
suggesting that the HMM method may be sufficiently
accurate for use in behavioral experiments.

We reiterate that at present, we do not have a general,
automatic method for calibrating the tuning parameter σ

in the HMM. σ depends on both the physical properties
(e.g., display size and resolution, viewing distance, object
speed) of the experimental setup and characteristics of
the participant (e.g., age). Practical solutions include
considering results over a range of σ values or calibrating σ ,
either by having human coders manually code a small subset
of data from the task being studied or by directly estimating
the variance of the participant’s gaze data when tracking
an object (e.g., using a calibration experiment consisting of
TrackIt with no distractor objects). Statistical approaches,
such maximum likelihood, may also be applicable. When in
doubt, both intuition and our empirical results suggest that
erring on the side of using a smaller σ value will minimize
potential bias introduced by the HMM model, while still
outperforming the SDM.

Applications to attention research

The temporal dynamics of attention span several timescales,
and eye-tracking is among the few behavioral tools that
allow researchers to probe the fastest of these timescales.
Attention has been studied at sub-second timescales as
well as on the scale of minutes or hours (Van Dongen
& Dinges 2005; Aue, Arruda, Kass, & Stanny, 2009;
Smith, Valentino, & Arruda, 2003; Arruda, Zhang, Amoss,
Coburn, & Aue, 2009; Fiebelkorn, Pinsk, & Kastner, 2018).
For example, recent work, based on both high-frequency
(ECoG) neural data and behavioral data, has advanced an
account of attention as a system that oscillates rapidly
(at 4–8 Hz) between perceptual sampling and attentional
switching/exploratory (motor) states modulated by intrinsic

Behav Res (2020) 52:1225–1243 1239



neural oscillatory rhythms (Helfrich et al., 2018; VanRullen,
2018; Fiebelkorn & Kastner, 2018). A temporally precise
behavioral measure of attentional switches, such as the
TrackIt-eye-tracking combination studied here, may be
especially useful for finely investigating the behavioral side
of this high-frequency system.

In the context of SSA development research in children,
the rich data and potentially greater sensitivity of the
combined TrackIt and eye-tracking set-up may further
address the measurement gap for SSA in young children. It
may be possible, for example, to perform within trial time-
course analyses or individual difference analyses that were
previously infeasible due to limited density and quality of
data provided by each participant. We believe this work
could be useful towards building a normative account
of sustained attention development, especially in young
children, with potential implications for early detection of
atypicalities in attention development.

Extension to natural scenes with automatic object
detection

The most limiting constraint of the proposed method is that
it requires knowing the positions of all objects of interest.
While readily available for artificially-generated stimuli,
this information may be difficult to obtain in studies that
use videos of natural scenes or are not computer-based.
An especially interesting context is that of head-mounted
video and gaze-tracking, which are becoming popular tools
for studying behavior in natural environments (Smith, Yu,
Yoshida, & Fausey, 2015). Many studies utilizing these
technologies rely on human coding to identify what objects
participants are viewing at each timepoint (Franchak et al.,
2011; Bambach et al., 2018). Besides being slow, expensive,
and difficult to replicate, this is infeasible in real-time
feedback settings (discussed below).

To bypass this limitation, a promising approach, which
we are currently pursuing, is to combine our HMM
approach with algorithms for automated object detection
in video, which have become quite fast and robust in
recent years (Redmon, Divvala, Girshick, & Farhadi, 2016;
Ren, He, Girshick, & Sun, 2015; Wang, Shen, & Shao,
2018). While further work will be needed to evaluate
the effectiveness of the HMM method in natural scenes,
this technology could accelerate behavioral research in
natural environments by quickly identifying objects with
which participants interact visually. Given the diversity
possible in natural scenes, several additional challenges
will likely be needed to make this technology robust,
however. For example, rather than following a single object,
viewing natural scenes often requires tracking multiple
objects simultaneously (Meyerhoff et al., 2017). As noted
previously, this may require introducing additional states

in the HMM corresponding to subsets of visible objects.
Extensive research in the multiple object and multiple
identity tracking paradigms suggests that gaze may be
concentrated around the centroid of the tracked objects, with
occasional looks to the individual tracked objects (Hyönä
et al., 2019). This could be incorporated into the HMM
by adding a state whose emission distribution is Gaussian
around the centroid, or a mixture of a Gaussian around the
centroid and Gaussians around the individual objects.

Online extensions for eye-tracking-based feedback

The HMM approach described in this paper maximizes the
joint likelihood over the entire sequence of object-tracking
predictions, based on a forwards-backwards algorithm that
traverses the entire gaze data sequence twice. The method
thus requires that the entire experimental data have already
been collected. A number of innovative recent papers
have utilized eye-tracking to provide real-time feedback
to humans as they perform certain tasks, in contexts
such as visual search (Drew & Williams, 2017), manual
assembly (Renner & Pfeiffer, 2017), and medical (Ashraf
et al., 2018) or programming (Sun & Hsu, 2019) education.
Eye-tracking-based feedback has potential to be faster,
cheaper, and more widely usable than similar feedback
based on neural data collected as participants perform
tasks in an fMRI (Awh & Vogel 2015; Faller, Cummings,
Saproo, & Sajda, 2019), given the huge expense and
practical constraints associated with fMRI, as well as the
relatively slow timecourse of the BOLD signal. For these
and other applications, it may be desirable to adapt our
proposed model to the online setting, in which object-
tracking predictions must be made rapidly and using only
data from previous (as opposed to future) timepoints to
inform the current prediction. This could likely be achieved
by replacing the HMM in our proposed method with one
of several variants of HMMs and the forwards-backwards
algorithm that have been previously proposed for online
settings (Stiller & Radons 1999; Liu, Jaeger, & Nakagawa,
2004; Mongillo & Deneve 2008). Nevertheless, further
work may be necessary to ensure that predictions are
sufficiently fast and accurate to provide helpful feedback.

Towards a cognitivemodel of object tracking

Our decoder is based on a generative model of eye-
tracking data. This model may be a suggestive first step
towards linking eye-tracking data to the cognitive process
of visual object tracking, and, perhaps, to the higher-level
construct of visual SSA. Currently, the model plausibly
encodes how eye-tracking data is generated when following
a particular object X, but the model of how the object
X itself is selected is overly simplistic (fixed transition
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probabilities, independent of object properties and other
experimental parameters). Using such a model to study
participant performance during task (as in this study)
requires fixing the HMM with uniform initial and transition
probabilities, so that the model does not intrinsically prefer
some states over others (e.g., in the case of TrackIt,
the model should treat the target identically to the other
objects). Conversely, a realistic cognitive model should have
non-uniform probabilities (e.g., preferring to follow the
target over distractors, by virtue of SSA). Hence, a major
step in developing such a cognitive model would be fitting
its parameters to behavioral data. For Gaussian HMMs, this
can be done using expectation maximization, specifically
the Baum-Welch algorithm Bilmes & et al. 1998), which we
suggest as a fruitful direction for future work.
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