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Abstract
Multilevel models (MLMs) have been proposed in single-case research, to synthesize data from a group of cases in a multiple-
baseline design (MBD). A limitation of this approach is that MLMs require several statistical assumptions that are often violated
in single-case research. In this article we propose a solution to this limitation by presenting a randomization test (RT) wrapper for
MLMs that offers a nonparametric way to evaluate treatment effects, without making distributional assumptions or an assumption
of random sampling. We present the rationale underlying the proposed technique and validate its performance (with respect to
Type I error rate and power) as compared to parametric statistical inference in MLMs, in the context of evaluating the average
treatment effect across cases in an MBD. We performed a simulation study that manipulated the numbers of cases and of
observations per case in a dataset, the data variability between cases, the distributional characteristics of the data, the level of
autocorrelation, and the size of the treatment effect in the data. The results showed that the power of the RTwrapper is superior to
the power of parametric tests based onF distributions forMBDswith fewer than five cases, and that the Type I error rate of the RT
wrapper is controlled for bimodal data, whereas this is not the case for traditional MLMs.
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Multilevel models1 (MLMs) are frequently used to analyze
nested data in various subfields of the behavioral and the so-
cial sciences. Examples of this type of data include repeated
measurements of individuals in longitudinal research, students
that are nested in schools in educational research, or em-
ployees that are nested in companies in organizational psy-
chology. MLMs have also been proposed for the statistical
analysis of single-case experimental designs (SCEDs; e.g.,
Ferron, Bell, Hess, Rendina-Gobioff, & Hibbar, 2009;

Ferron, Farmer, & Owens, 2010; Jenson, Clark, Kircher, &
Kristjánsson, 2007; Van den Noortgate & Onghena, 2003a,
2003b, 2007, 2008). SCEDs are a group of experimental de-
signs that are increasingly being used in various fields of the
behavioral sciences, including special education (Alnahdi,
2015), school psychology (Swaminathan & Rogers, 2007),
and clinical psychology (Kazdin, 2011), as well as in the med-
ical sciences, where they are referred to as “N-of-1 designs”
(Gabler, Duan, Vohra, & Kravitz, 2011). In contrast to case
studies or other nonexperimental research, SCEDs are de-
signed experiments in which a single entity is measured over
time on one or more dependent variables under different levels
(i.e., treatments) of one or more independent variables
(Barlow, Nock, & Hersen, 2009). Note that “entity” can refer
to various units, such as a single person, a classroom, or a
group of subjects (Levin, O’Donnell, & Kratochwill, 2003).

One of the simplest SCEDs is the AB phase design, in
which a single subject is measured repeatedly during a base-
line phase (A phase) and a subsequent treatment phase (B
phase). AB phase designs are often replicated across different
persons, behaviors, or settings to evaluate the generalizability
of the results (for convenience, we will refer to all of these
types of replications as “cases”). AB phase designs can be

1 Multilevel models are known by different names, depending on the
discipline (Raudenbush & Bryk, 2002). Some synonyms include “hierarchical
regression models,” “mixed effects models,” “random-coefficient regression
models,” and “covariance component models.” In this article, we will use the
term “multilevel models.”
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replicated in either sequential replication designs or simulta-
neous replication designs (Onghena, 2005). In sequential rep-
lication designs, multiple SCEDs are executed one after an-
other, whereas in simultaneous replication designs, multiple
SCEDs are executed simultaneously. The multiple-baseline
design (MBD) across participants is a simultaneous replica-
tion design that consists of several single-case AB phase de-
signs (Onghena & Edgington, 2005). A survey by Shadish
and Sullivan (2011) that investigated the characteristics of a
large body of published single-case research showed that more
than half of the surveyed studies utilized an MBD across par-
ticipants, indicating that these designs are used very often in
single-case research.

An advantage for the internal validity of an MBD over
sequentially replicated AB phase designs is that the data for
the participants are collected concurrently, which enables
between-series comparisons, in addition to the within-
series AB comparisons that are also possible in sequentially
replicated AB phase designs. More specifically, the inter-
vention can be introduced in a time-staggered way, so that
the length of each case’s A phase is extended a little further
than the previous case’s. In this way, researchers can com-
pare cases already in the treatment phase to cases that are
still in the baseline phase at the same point in time. The
possibility of such between-series comparisons strengthens
the internal validity of the MBD because any observed ef-
fects may be more confidently attributed to the introduction
of the treatment rather than to external events that might
affect all cases (Baer, Wolf, & Risley, 1968; Kazdin, 2011;
Koehler & Levin, 2000). Furthermore, it is generally rec-
ommended to randomize the time-staggered intervention
points in anMBD, because this further increases the internal
validity of the design (Edgington, 1969, 1996; Heyvaert,
Wendt, Van den Noortgate, & Onghena, 2015; Levin,
Ferron, & Gafurov, 2018; Kratochwill & Levin, 2010;
Marascuilo & Busk, 1988; Tyrrell, Corey, Feldman, &
Silverman, 2013; Wampold & Worsham, 1986). More spe-
cifically, randomizing the intervention points can statistical-
ly control for confounding variables that are time-related.

In MBDs the repeated measurements are nested within
cases, and as such, the entire dataset can be modeled by a
two-level model that allows estimation of the average treat-
ment effect across cases as well as case-specific treatment
effects (Van den Noortgate & Onghena, 2003a, 2003b).
Furthermore Onghena, Michiels, Jamshidi, Moeyaert, and
Van den Noortgate (2018) noted that MLMs constitute a ver-
satile and comprehensive framework for the analysis and
meta-analysis of SCEDs that connects to general statistical
theory. A two-level model is defined by the following regres-
sion equation at the first level:

yi j ¼ β0 j þ β1 j*Phasei j þ ei j; andei j∼N 0;σ2
e

� �
; ð1Þ

with yij being the value of the outcome variable for case j at
measurement occasion i, β0j the regression intercept (i.e., the
mean level of the baseline phase) for case j, β1j the regression
coefficient of the treatment effect for case j, Phaseij a dummy
variable that takes the value of 0 in the baseline phase and the
value of 1 in the treatment phase, and eij the residuals of the
model, which are assumed to be normally distributed with a
mean of 0 and a variance of σ2

e . For the second level, the
following regression equations can be used:

(
β0 j ¼ θ00 þ u0 j
β1 j ¼ θ10 þ u1 j

; and
u0 j
u1 j

� �
∼N 0;σ2
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At the second level of the MLM, the case-specific inter-
cepts (β0j) and regression coefficients (β1j) are modeled using
separate parameters for the average baseline level (θ00) and
treatment effect (θ10) across participants and for the case-
specific deviations from these average values (u0j and u1j,
respectively). When applied to modeling MBD data, the in-
clusion of case-specific residual error terms (u0j and u1j)
makes sense because it is unlikely that baseline levels and
treatment effect sizes are identical across all cases.
Furthermore, the model assumes that u0j and u1j are multivar-
iate normally distributed with means of 0, variances of σ2

u0 and

σ2
u1, respectively, and a covariance of σu1u0 = σu0u1. Although

all parameters within the two-level model can be of potential
interest and relevance, single-case researchers are usually
mainly interested in the average treatment effect over the in-
cluded cases (θ10).

2

The variance–covariance matrix of MLMs is traditionally
estimated using maximum likelihood procedures (ML;
Raudenbush & Bryk, 2002). An advantage of ML estimates
is that they are consistent and asymptotically normal, which
enables parametric significance testing and the construction of
confidence intervals. MLMs can be estimated using either full
maximum likelihood (FML) or restricted maximum likeli-
hood (REML). The difference between FML and REML is
that in REML the variances and covariances are estimated
after controlling for fixed effects, which results in less biased
variance and covariance components (Harville, 1977). Given
that ML procedures are based on large-sample theory, it fol-
lows that sample sizes must be large in order for ML estimates
to be unbiased. Although sample size recommendations for
Level-1 and Level-2 units of MLMs may vary considerably
(e.g., Clarke &Wheaton, 2007; Maas &Hox, 2004), it is clear
that in the context of analyzing single-case MBDs, sample
sizes are far too small for the asymptotic properties of ML
estimates to apply. Consequently, statistical inferences about

2 Equations 1 and 2 only represent the most basic two-level model. Three- and
higher-level models are possible, and more complex error structures can also
be included, to model, for example, autocorrelated errors (see, e.g., Onghena
et al., 2018).
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ML estimates cannot rely on these properties. A simulation
study by Ferron et al. (2009) showed that although estimates
for fixed effects are still unbiased in the context of analyzing
single-case research, the estimates of the variance components
are biased. This bias in variance components results in biased
standard errors for the fixed effects, and thus inflated or de-
flated Type I error rates for statistical inferences about fixed
effects based on t or F tests (Moeyaert, Ugille, Ferron,
Beretvas, & Van den Noortgate, 2013). Adjusted F-test pro-
cedures have been proposed in an attempt to remedy this is-
sue. For example, the Satterthwaite approximation involves
adjusting the estimated degrees of freedom of the variance–
covariance matrix so that the F ratio is approximately correct
(Fai & Cornelius, 1996; Satterthwaite, 1941). The Kenward–
Roger approximation is an extension of the Satterthwaite ap-
proximation and includes an adjustment for small-sample size
bias, which involves adjusting both the F statistic and the
degrees of freedom and results in more conservative p values
than the latter approximation (Kenward & Roger, 1997).
However, a problem with these adjustment procedures is that
they do not deal with the uncertainty regarding the variance
component estimates for small sample sizes (Burrick &
Graybill, 1992; Kenward & Roger, 2009).

Another way to estimate the variance–covariance matrix of
an MLM is by Bayesian estimation (Baldwin & Fellingham,
2013; Browne, Draper, Goldstein, & Rasbash, 2002; Shadish
et al., 2014). Moeyaert, Rindskopf, Onghena, and Van den
Noortgate (2017) compared the bias of the fixed effects and
variance components for both ML estimation and Bayesian
estimation procedures (using weakly informative priors;
priors that are intentionally weaker than the actual evidence
that is available). With respect to the estimation of fixed ef-
fects, the results showed that ML estimation and Bayesian
estimation produced very similar estimates. However, both
the ML and Bayesian variance estimates were biased and im-
precisely estimated if there were only three participants. When
the number of participants was increased to seven, the relative
bias was close to 5% and the estimates were more precise. In
addition, when priors were more informative in the Bayesian
estimation procedure, both the fixed effects and the variance
components could be estimated more precisely. Although the
use of informative priors yielded the most precise results,
Moeyaert et al. (2017) argued that the use of weakly informa-
tive priors is the most appropriate choice for single-case re-
search. One justification of this argument is that the choice of a
prior distribution can have a substantial impact on the
resulting statistical inferences of the MLM, especially given
the small sample sizes that are common in single-case research
(Gelman, 2006; Gelman, Carlin, Stern, & Rubin, 2013). A
second reason is that weakly informative priors still allow
the data to speak for themselves, without the prior having
too large an influence on the overall model (Spiegelhalter,
Abrams, & Myles, 2004).

In this article, we propose a nonparametric approach for
making statistical inferences regarding the fixed effects of an
MLM, by using MLMs within a randomization test (RT)
framework. In this approach, fixed-effect estimates can be
used as the test statistic in an RT, and nonparametric p values
can be derived for these estimates without requiring distribu-
tional assumptions such as normality or an assumption of
random sampling, and without being dependent on potentially
biased variance components of the MLM. From the outset, we
want to emphasize that the validity of this approach is depen-
dent on the requirement that some form of experimental ran-
domization be present in the design. As such, this approach is
only valid for randomized single-case designs.

In the following paragraphs we will first use empirical data
to demonstrate how an MBD can be analyzed with respect to
the average treatment effect across cases, in a two-level model
with REML estimation and Kenward–Roger-adjusted F tests.
Second, we will introduce the RT, explain the rationale of the
test, and illustrate its use with the same dataset. Third, we will
explain how both the MLM and RT procedures can be com-
bined in order to enable nonparametric inferences for the av-
erage treatment effect in an MLM that have guaranteed nom-
inal Type I error rate control. Fourth, we will compare this
combined MLM-RT and MLM with respect to Type I error
rate and power for MBDs with small numbers of participants
and measurement occasions, by means of a Monte Carlo sim-
ulation study.

Analyzing multiple-baseline designs
with multilevel models using maximum
likelihood estimation

In this section, we illustrate the use of a two-level model to test
the null hypothesis of no average treatment effect on data col-
lected by Franco, Davis, and Davis (2013). These authors used
an MBD across six nonverbal children with autism who were
taught to engage in social interaction within play routines. The
children’s social interaction was assessed by using behavioral
observation techniques and video coding of all intentional com-
munication acts, defined as any attempt that the child made to
interact with an adult within the social routine (using vocaliza-
tions, gestures, or eye gaze). The main outcome variable
consisted of the maximum number of child actions to maintain
social interaction during a single social routine.

The data for this illustration were recovered from Fig. 1 of
Franco et al. (2013) using the “GetData Graph Digitizer,” ver-
sion 2.26 (Fedorov, 2013). The study by Franco et al. had
unequal numbers of measurements for each case (17, 18, 19,
20, 22, and 24) and included two follow-up sessions, but for the
following illustrations, we limited the analyses to the A and B
phases for which complete data for all cases were available (i.e.,
the first 17 sessions of the six children). We added this
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restriction for computational simplicity and because this focus
on complete data is consistent with the design logic of simulta-
neous replication and between-series comparisons in MBDs
(Baer et al., 1968; Kazdin, 2011; Koehler & Levin, 2000).
Analyses for unequal numbers of measurements for each case
are possible in principle, but they would require more extensive
coding and additional assumptions about the missing data. We
will return to this limitation of equal numbers of repeated mea-
surements for each case in the Discussion section.

Figure 1 displays the results for the first 17 sessions of the
six children, with A denoting the baseline phase, in which no
social interaction training was present, and B denoting the
treatment phase, in which so-called prelinguistic milieu teach-
ing techniques were applied (for details on these techniques,
see Franco et al., 2013). Note the time-staggered way in which
the treatment phase is started for the first up to the sixth child:

at Session 4, Session, 5, Session 6, Session 7, Session 9, and
Session 11, respectively.

With respect to the average treatment effect parameter (θ10),
the null hypothesis of the two-level model states that the value
of this parameter would be 0. With the R script “example-
data.R” provided in the Appendix, we can verify the observed
value for this parameter for the two-level model described in
Eqs. 1 and 2 using REML: θ10 = 11.9497. The R script uses the
pbkrtest (Halekoh & Højsgaard, 2014) and lmerTest
(Kuznetsova, Brockhoff, & Christensen, 2017) packages to
compute the Kenward–Roger-adjusted F test, and it then
gives the following output for the Franco et al. (2013) data:

This analysis-of-variance table shows that there is a statis-
tically significant treatment effect if a 5% significance level is
used, F(1, 8.0906) = 37.49, p < .001.

Fig. 1 Maximum numbers of child actions to maintain social interactions for 17 sessions in an MBD with six children in the study by Franco et al.
(2013). The phases marked by “A” are the baseline phases and the phases marked by “B” are the treatment phases
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Note that although the Kenward–Roger approximation pro-
vides a more accurate (and conservative) hypothesis test for the
average treatment effect across participants, in comparison to an
unadjusted F test, it is still an F test, and as such the validity of
its conclusions is dependent on the specific assumptions that are
made for the application of F tests. These assumptions include
random sampling, normally distributed errors at each level of
the MLM, and equality of variances at each level of the MLM.
However, research has shown that these assumptions are often
not plausible in many domains of the social sciences, and espe-
cially not in single-case research (Micceri, 1989; Ruscio &
Roche, 2012; Shadish & Sullivan, 2011; Solomon, 2014). An
alternative way of making statistical inferences about the aver-
age treatment effect size in MBDs, without requiring any dis-
tributional assumptions or an assumption of random sampling,
is by analyzing the data with an RT.

Analyzing multiple-baseline designs
with randomization tests

RTs are nonparametric hypothesis tests that have been pro-
posed for the analysis of MBDs (Bulté & Onghena, 2009;
Koehler & Levin, 1998; Marascuilo & Busk, 1988;
Wampold & Worsham, 1986). An RT can be used for statisti-
cal inference within a random-assignment model rather than a
random-sampling model. In a random-assignment model, the
statistical significance of a treatment effect can be determined
by repartitioning the data a large number of times according to
the randomization schedule of the randomized design and by
calculating a test statistic S for each repartitioning of the data
(Edgington&Onghena, 2007). This process yields a reference
distribution that can be used for calculating nonparametric p-
values (for small numerical examples and the underlying
rationale, see, e.g., Heyvaert & Onghena, 2014; Levin et al.,
2018; Onghena, 2018; Onghena, Tanious, De, & Michiels,
2019). By contrast, statistical tests within a random-
sampling model (e.g., an F or t test) assume that the observed
data were randomly sampled from a theoretical distribution
(e.g., a normal distribution) in order to make valid statistical
inferences about a treatment effect. In contrast, the RT does
not make specific distributional assumptions or an assumption
of random sampling, but obtains its validity from the random-
ization schedule that was actually used when designing the
study. However, this also means that the use of RTs is only
valid for single-case experimental designs (SCEDs) that in-
corporate some type of experimental random assignment.
Note that the RTcan be usedwith various type of test statistics,
depending on the research question (Ferron & Sentovich,
2002; Onghena & Edgington, 2005).

Using the same empirical data as for the MLM example,
we will now illustrate how MBDs can be randomized and
analyzed with RTs. In that example, the start points of the

treatment for each child could have been randomly deter-
mined, taking into account that, in accordance with the What
Works Clearinghouse Single-Case Design Standards
(Kratochwill et al., 2010), each A phase and each B phase
should contain at least three measurement occasions. Given
these restrictions, the actual randomization can be performed
by sampling the set of available start points (determined by the
minimum number ofmeasurement occasions per phase; in this
case, Measurement Occasions 4–15) without replacement,
and arranging them from small to large. This method has been
called the “restricted Marascuilo–Busk procedure” by Levin
et al. (2018), and this procedure performed well in their study
in terms of Type I error rate control and power to detect im-
mediate abrupt intervention effects. If s denotes the number of
start points and n denotes the number of participants, then the
number of possible randomizations equals s!/(s – n)!, given
that s ≥ n. In the example, this means that there are 12!/6! =
665,280 possible randomizations.

Suppose that the randomly generated start points are 4, 5, 6,
7, 9, and 11 for Participants 1–6, respectively. Rather than
using a theoretical reference distribution (such as a t or F
distribution) to calculate a p value for the average treatment
effect across cases, the RT uses an empirical reference distri-
bution that is derived from the observed data. This is accom-
plished first by defining a measure that is sensitive to the effect
that is expected (i.e., before observing the data), and second
by calculating this measure for a large number of different
start point randomizations on the observed data. Hence, the
chosen measure operates as a test statistic, and the reference
distributions consist of all values of this measure that could
have been obtained if other start points were chosen (given a
true null hypothesis).

For the present example, the treatment effect for each case
is defined as the absolute mean difference between the A
phase observations and the B phase observations. The average
treatment effect for the complete MBD dataset is defined as
the mean of the six treatment effects. With the R script “ex-
ample-data.R” provided in the Appendix, we can verify that
the observed value of this test statistic is 11.8353 in the present
example. Next, we construct the empirical reference distribu-
tion for this observed value by calculating the selected test
statistic for 4,999 different randomizations of treatment start
point (the observed value of the test statistic is included in the
reference distribution, bringing the total number of values to
5,000).3 After the reference distribution is derived, the two-
sided p value can be defined as the proportion of test statistics
in the randomization distribution that are at least as extreme as
the observed test statistic. Using the R script “example-

3 In principle, 665,280 values can be calculated, but in order to keep the
example computationally feasible, only 5,000 values were sampled. Such a
Monte Carlo RT gives p values that are very close to the RT for the complete
reference distribution (Edgington & Onghena, 2007).
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data.R,” the two-sided p value is .008, indicating a statistically
significant average treatment effect across cases at the 5%
significance level. Note that this statistical inference is valid
without requiring any of the assumptions that were required in
the MLM example. However, we should emphasize that the
inference is only valid when the start points of the MBD are
indeed randomized.

Nonparametric inference for fixed effects
in multilevel models: The randomization test
wrapper

The rationale of the RT can be applied to any test statistic—
hence, to any outcome of a statistical analysis, such as an
analysis using an MLM (Cassell, 2002; Heyvaert et al.,
2017; Onghena et al., 2018). If we apply the rationale to the
tests used in anMLM, theMLM is repeatedly fitted to the data
for K randomizations, and each time the resulting average
treatment effect parameter of the MLM model fit is saved as
an element of the reference distribution of the RT. Thus, the
RT is wrapped around the MLM estimation procedure, hence
the term “MLM-RTwrapper.” The result is a reference distri-
bution of K average treatment effect parameters that can be
used to assess the statistical significance of the observed av-
erage treatment effect. As before, the average treatment effect
estimated with a two-level model for the example data is
11.9497. With the R script “example-data.R” provided in the
Appendix, we can verify that for the MLM-RT wrapper, the
two-sided p value for K = 5,000 is .0128. This is substantially
larger than the p value for the conventional MLM, but still
well below .05.

To more fully evaluate the added benefits of an RTwrapper
procedure, the Type I error rate and the power must be
assessed. In the remaining section of this article, we will eval-
uate the Type I error rate and power of the proposed RTwrap-
per by means of a simulation study (see, e.g., Peres-Neto &
Olden, 2001, for a recommendation in this direction). In ad-
dition, we will compare the performance of the RTwrapper (in
terms of Type I error rate and power) with the performance of
parametric statistical inference in MLMs using F tests. Note
that in the simulation study we will refer to the randomization
test wrapper as “MLM-RT.”

Type I error rate and power of an MLM-RT
wrapper to analyze randomized MBDs: A
Monte Carlo simulation study

Method

A Monte Carlo simulation study was performed in which we
manipulated the following simulation factors:

& Number of cases: 3, 4, 5, or 6.
& Number of measurement occasions per case: 20, 30, 40, or

50.
& Distributional characteristics: Data were generated from

a standard normal distribution with an independent error
structure, as in Eqs. 1 and 2; from a uniform distribution;
from a first-order autoregressive model (AR1) with a pos-
itive autocorrelation of .6 and normally distributed resid-
uals; or from a bimodal distribution (consisting out of two
normal distributions with means of − 2 and 2, respective-
ly). All distributions were set to have a mean of zero and a
variance of 1, except for the AR1 model, in which the
variance was slightly higher. More specifically, the vari-

ance of an AR1 model is σ2e
1−AR2, where e is sampled from a

standard normal distribution (σ2
e = 1). Given an AR value

of .6, the variance of the AR1 model is 1.5625.
& Size of the treatment effect: 0, 0.5, 1, 1.5, 2, 2.5, or 3.
& Between-case variance: 1, 2, or 4.
& Employed meta-analytic technique: MLM or MLM-RT.

The significance level of all tests was set at 5%.
The number of cases in this simulation study was based on

a survey by Shadish and Sullivan (2011), who found that for a
large body of published single-case studies, the average num-
ber of cases in MBDs was 3.64. We chose three cases as a
lower limit, because we obtained convergence problems for
the MLM with the Kenward–Roger approximation for MBD
datasets of fewer than three cases. The upper limit was chosen
to be substantially larger than the lower limit in order to in-
vestigate the effect of the number of cases on the power, but
still small enough to be relevant for single-case researchers,
given the empirical average of 3.64 cases.

The number of measurement occasions for each case was
also based on the results of Shadish and Sullivan (2011), who
found that more than 90% of the surveyed studies contained
49 or fewer measurement occasions per case, with the median
value being 20. On the basis of this observation, our selection
of measurement occasions ranged from 20 to 50, with incre-
ments of ten measurement occasions. Note that the number of
measurement occasions was kept constant across all cases
within a single simulation condition.

Variability between the data of the individual cases within
an MBD dataset was introduced by adding residual errors
from a normal distribution with a mean of zero and a variance
of 1, 2, or 4 to the null data of each case. In addition, the
variance of the treatment effects was manipulated by generat-
ing treatment effects for every treatment measurement occa-
sion in theMBD from a normal distribution with a mean equal
to the average treatment effect but with differing variances (1,
2, or 4). It is worth mentioning that the random errors added to
the data of the individual cases were uncorrelated with the
random errors added to the treatment effects. Note also that
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this way of generating the data yields datasets that contain
more between-case variability than within-case variability.
This was a deliberate choice, because research has shown that
empirical datasets often contain considerably more between-
case than within-case variability (Moeyaert, Ugille, Ferron,
Beretvas, & Van den Noortgate, 2014).

With respect to the distributional characteristics of the gen-
erated data, a normal distribution was chosen in order to com-
pare the performance of the MLM and MLM-RT for data in
which the normality assumption of the MLM was not violat-
ed. The data from an AR1 model were included because re-
search has shown that single-case data often contain positive
autocorrelation (Shadish & Sullivan, 2011; Solomon, 2014).
To keep the simulation study computationally manageable, we
included only one value for the AR parameter. The autocorre-
lation of .6 was based on Shadish and Sullivan, who investi-
gated the level of autocorrelation in published SCED data
from various single-case designs. Their results showed that
the level of autocorrelation ranged from near zero to .752,
depending on the design. On the basis of Shadish and
Sullivan’s results, we chose .6 as a “bad-case scenario” value.

The uniform distribution and the bimodal distribution were
included to account for two situations in which the normality
assumption of the MLM is plainly violated. The uniform dis-
tribution was chosen because it is one of the simplest and most
basic statistical distributions (Johnson, Kotz, & Balakrishnan,
1995) and because of its prominence as a benchmark in other
simulation studies (Keller, 2012; Michiels, Heyvaert, &
Onghena, 2018). In terms of observed data, it means simulat-
ing a condition in which there are no outliers, there is no
distinct mode, and all scores within intervals of the same
length are equally probable. The bimodal distribution was
chosen because bimodality is common in behavioral research
(Micceri,1989) and because previous simulation studies had
shown that standard techniques might lack robustness to de-
viations from unimodality (Keller, 2012; Poncet, Courvoisier,
Combescure, & Perneger, 2016). In terms of observed data, it
means simulating a condition in which two overlapping clus-
ters of data unexpectedly appear, while keeping the number
and size of the outliers comparable to the standard normal
distribution. The bimodal distribution was generated by sam-
pling data points from two normal distributions, withmeans of
− 2 and 2, with equal probability. This level of mode separa-
tionwas chosen in order to keep the modes clearly separated at
all levels of between-case variability of the simulated data.

With regard to the size of the treatment effect, a wide range
of values was chosen, with the upper limit being determined
by a few single-case meta-analyses showing very high aver-
age treatment effect sizes of 3 or more (Fabiano et al., 2009;
Heyvaert, Maes, Van den Noortgate, Kuppens, & Onghena,
2012; Heyvaert, Saenen, Campbell, Maes, & Onghena, 2014).
This resulted in a selection of seven effect sizes, ranging from
0 to 3 in 0.5 increments.

Crossing all levels of all simulation factors resulted in
2,688 simulation conditions. For each condition, p values
were calculated for 1,000 generated datasets. The power was
defined as the proportion of p values that were equal to or
smaller than .05 across all replications. For the MLM-RT
technique, we used 1,000 random assignments to calculate a
nonparametric p value for each replication. This implied
1,000,000 calculations for a single condition of MLM-RT.

Results

The results of the simulation study are summarized in Fig. 2.
Note that in this figure, the y-axis label “Proportion of
Rejections” is to be interpreted as the estimated power of the
RT when the treatment effect was nonzero and as the Type I
error rate when the treatment effect was zero.

Figure 2 shows a substantial difference in the average
Type I error rates between MLM (left-hand panels) and
MLM-RT (right-hand panels): Whereas the average Type
I error rates of MLM are not controlled at all and can
amount to 25% or more, MLM-RT has an average Type
I error rate controlled at 5% or lower, as it should for a
valid test at the 5% significance level. Closer inspection
of Fig. 2a indicates that the main problem with the Type I
error rate control for MLM occurs for the bimodal data,
with an average Type I error rate above 75%.

With respect to estimated statistical power, all panels
in Fig. 2 show the typical S-shaped power curve, in
which the proportion of rejected null hypotheses in-
creases monotonically when the treatment effect size
increases. Figure 2a shows that, disregarding the bimod-
al data because of their grossly inflated Type I error
rate, uniform data yield the highest power for both
MLM and MLM-RT, followed by normal data, and then
by data from an AR1 model.

Figure 2b shows that the power of both MLM and MLM-
RT increases as the number of cases increases, but that this
effect of number of cases is larger for MLM than for MLM-
RT. Furthermore, even with the inflated Type I error rate, the
power of theMLM is substantially lower than the power of the
MLM-RT for three or four cases. For five and six cases with
the uniform, normal, and autocorrelated datasets, this large
power advantage for MLM-RT over MLM disappears.

In Fig. 2c, we can see that there is a positive relation be-
tween the number of measurement occasions per case and the
power for bothMLM andMLM-RT, as was expected. Over all
conditions, the effect of the number of measurement occasions
was smaller for MLM than for MLM-RT. From comparing
panels b and c, we can see that the power of MLM is mostly
determined by the number of cases and to a much lesser extent
by the number of measurement occasions per case, whereas
both factors matter about equally for MLM-RT.
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Finally, Fig. 2d shows that the power of both MLM and
MLM-RT is negatively affected by increasing between-case
variance. The effects of between-case variance are similar for
the two techniques.

In sum, the most important results of the simulation study
are (1) that the Type I error rate of MLM-RT is controlled at the
nominal significance level throughout the simulation study,
while the Type I error rate of MLM is grossly inflated for

Fig. 2 Effects on the Type I error rates and power of MLM andMLM-RT
of four different simulation factors (averaged over all other simulation
factors). (a) The effects of data type. (b) The effects of the number of
cases. (c) The effects of the number of measurement occasions (MO). (d)

The effects of the level of between-case variance (BCV). MLM = multi-
level model, MLM-RT = multilevel model with randomization test, AR1
= first-order autoregressive model

Behav Res (2020) 52:654–666 661



bimodal data, and (2) that MLM-RT has greater power than
MLM for multiple-baseline datasets with three or four cases,
and similar power for multiple-baseline datasets with five or six
cases for the uniform, normal, and autocorrelated datasets.

Discussion

In this article, we have presented an MLM-RTwrapper in the
context of analyzing data from single-case MBDs. First we
gave an introduction to MLMs and demonstrated how they
can be used to analyze data collected in MBDs. Second, we
discussed and illustrated how RTs can be used as a nonpara-
metric alternative for evaluating the average treatment effect
across cases in an MBD. Third, we demonstrated how both
approaches can be combined in order to make statistical infer-
ences about the average treatment effect parameter of the
MLM, without requiring distributional assumptions or an as-
sumption of random sampling. Fourth, we evaluated the Type
I error rate and power of both MLM and MLM-RT by means
of a Monte Carlo simulation study.

The results of our Monte Carlo simulation study showed that
the Type I error rate of MLM-RTwas controlled at the nominal
significance level for all conditions and that the Type I error rate
of MLM using the Kenward–Roger adjustment for the degrees
of freedom was controlled for the normal, uniform, and AR1
data, but not for bimodal data. These results for the MLM are
in line with the simulation results obtained by Ferron et al. (2009;
Ferron et al., 2010), but they also expand the previous results in a
number of respects. Ferron et al. (2009; Ferron et al., 2010)
simulated independent and autocorrelated data from a normal
distribution and found that the use of the Kenward–Roger meth-
od led to accurate statistical inference about treatment effects,
given the small numbers of participants that are common in
MBDs. Complementary to this result, we found that for
nonnormal distributions (e.g., bimodal data), grossly inflated
Type I error rates for MLM are possible, even when using the
Kenward–Roger adjustment for the degrees of freedom. This
result showcases one of the downsides of the standard use of
inferential statistical tests based on F distributions for single-
case data. Furthermore, it illustrates that simulation results ob-
tained under optimal conditions for a parametric test (simulating
from a normal distribution) are not directly generalizable to more
realistic conditions. The good news is that the use of an RT
wrapper aroundMLMcan remedy this problemwith bimodality.

The power results of our Monte Carlo simulation study are
also in line with the simulation results obtained by Levin et al.
(2018), who examined the performance of randomization tests
forMBDwith different types of randomization schedules. They
found Type I error rate control of the RT approach for normal
and autocorrelated data and acceptable power values for small
numbers of participants (smaller than six), just as in our simu-
lation study. The result in our study that MBD data generated

from an AR1 model yield the smallest power for the MLM is
also consistent with theMLM power literature (Ferron &Ware,
1995; Shadish, Kyse, & Rindskopf, 2013). Interestingly, we
found that the power for both MLM and MLM-RTwas largest
for uniform MBD data. Although the simulation study by
Michiels et al. (2018) had already shown that this is the case
for RT-based analyses, one would not expect that this would be
the case for MLM, given the model’s assumption about nor-
mality of the residual errors. Further research will be needed to
provide more insight into this effect.

In contrast to the previous simulation studies by Ferron
et al. (2009; Ferron et al., 2010) and Levin et al. (2018), we
included both MLM and an MLM-RTwrapper for our analy-
sis of MBD data. Our results indicated that Type I error rate
control is guaranteed better by the MLM-RTwrapper and that
the power of the latter analysis is substantially greater than the
power of regular MLM for MBD datasets with three and four
cases. This is an important result, because a survey by Shadish
and Sullivan (2011) showed that MBDs from published re-
search use only an average of 3.64 cases. As such, we recom-
mend that single-case researchers use MLM-RTwhenever an-
alyzing MBDs with fewer than five cases. Furthermore, we
propose that the MLM-RT wrapper be used every time the
parametric assumptions of MLM are considered implausible,
regardless of the number of cases in the dataset.

Limitations and future research

We now discuss a few limitations of the present simulation
study and propose future research avenues that can address
these limitations. First, in the present simulation study the
power of MLM and MLM-RT was only compared for the
average treatment effect across all participants. MLMs also
output various other parameters (e.g., various variance com-
ponents or individual treatment effects) that can provide useful
information regarding treatment effectiveness. Future research
could focus on evaluating the power of MLM and the MLM-
RT wrapper for various alternative MLM parameters.
However, we should remark that not all MLM parameters
are appropriate for use in MLM-RT. More specifically, be-
cause MLM-RT is based on the random assignment of exper-
imental conditions in the SCED, only MLM parameters that
pertain to the difference between the baseline phase and the
treatment phase can be evaluated. For example, it is not pos-
sible to use MLM-RT for nonparametric inference with re-
spect to between-case variance, because the experimental ma-
nipulation does not have an effect on this parameter. That
being said, it is possible to use MLM-RT for evaluating dif-
ferences in slope or differences in nonlinear effects between
the baseline phase and the treatment phase by using more
complex MLMs. An interesting avenue for future research
could also be the modeling of delayed abrupt or immediate
gradual intervention effects, as was examined by Levin,
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Ferron, and Gafurov (2017) for RTs, and comparing theMLM
andMLM-RT. In this context, it will also be relevant to inves-
tigate the performance of the MLM between-series estimator
proposed by Ferron, Moeyaert, Van den Noortgate, and
Beretvas (2014) and its robustness to bimodal distributions.

A second limitation is that the present simulation study
only considered MBDs. Shadish, Kyse, and Rindskopf
(2013) noted thatMLMs can also be used to analyze data from
other designs, such as replicated ABAB designs, alternating-
treatment designs, and changing-criterion designs. An advan-
tage of MLM-RT is that it can be used for any type of ran-
domized SCED, as long as the randomization in the RT pro-
cedure mimics the type of randomization that was used in the
(replicated) single-case experiment that is being analyzed. In
this sense, future simulation studies could compare the power
of MLM and MLM-RT for other designs.

A third limitation is that we only considered a specific
instance of a two-level model (which is described in the
introduction section), whereas there are many different
ways in which the fixed and random effects in a two-level
model can be specified. For this reason, future research
should consider other instances of two-level models when
comparing the power of MLM and MLM-RT. Furthermore,
another avenue for further research is the application of
MLM-RT to three-level models for the meta-analysis of
multiple MBDs (e.g., Moeyaert et al., 2013).

A fourth limitation of this study is that we only simu-
lated data from continuous and symmetrical distributions.
Future research might focus on testing the generalizability
of our results to discrete and/or skewed data. This should
be particularly interesting and worthwhile, because
Shadish and Sullivan (2011) found that more than 90%
of the single-case designs in their review of the literature
used some type of count variable as the outcome measure.

A fifth and final limitation is that we simulated complete
datasets, so our findings are limited to sets without missing
data and with equal case lengths. Future simulation studies
will be needed to examine the performance of MLM-RT for
datasets with missingness and unequal phase lengths.

This last limitation also holds for the R script “example-
data.R,” provided in the Appendix, and for the illustrative
analyses of the Franco et al. (2013) data presented in this
article. If we want to extend MLM-RT to handle missing or
incomplete data, two conditions would have to bemet: (1) The
multilevel model estimation procedure should be able to han-
dle the missingness or incompleteness, and (2) the randomi-
zation procedure should avoid complete between-series ex-
changeability. With respect to the first condition, there are
two main options: full maximum likelihood estimation
(Fitzmaurice, Davidian, Verbeke, & Molenberghs, 2009;
Snijders & Bosker, 2012) and multiple imputation (Peng &
Chen, 2018; Sinharay, Stern, & Russell, 2001). However, for
the inferences to remain valid, the data would have to be

missing at random and the (imputation) model should be cor-
rectly specified. For the second condition, Levin et al. (2018)
recommended the restricted Marascuilo–Busk randomization
procedure because, unlike other common randomization pro-
cedures for MBDs, it is based solely on within-series
randomization.

In any case, if there are missing data or incomplete
series, we should acknowledge that no statistical proce-
dure exists that would magically make missing data reap-
pear or make incomplete series complete again. Data anal-
ysis in practical research settings involving missingness or
incompleteness should proceed cautiously and should
combine information from multiple sources using
multiple techniques. A sensible strategy might be to deal
with the missing or incomplete data in different ways and
to look for convergence or divergence in the resulting
analyses. For example, in the Franco et al. (2013) data,
besides truncation to the smallest series length, a simple
alternative analysis could be based on the “last observa-
tion carried forward” procedure (White, Horton,
Carpenter, & Pocock, 2011). Other simple procedures
for dealing with missing data include mean imputation,
linear inter- or extrapolation, or worst-case scenario im-
putation, although each of these procedures used separate-
ly is considered suboptimal (Schafer & Graham, 2002).
Future research on missingness and unequal phase lengths
in SCEDs should focus not only on the performance of
the statistical techniques, but also on practical recommen-
dations and interpretational caveats in empirical research
with missing or incomplete data.

In the present article, we presented the MLM-RT only in
the context of single-case research. In this respect, an interest-
ing avenue for further research would be to apply MLM-RT to
domains outside of single-case research (e.g., group-
comparison research) in which different types of randomized
experimental designs are used. Finally, we would emphasize
that, although the results from the present simulation study
indicate the merits of MLM-RT as compared to MLM in spe-
cific data-analytical situations, more research will be needed
to validate the performance of MLM-RT with empirical data.

Software availability

The illustrations in this article can be reproduced using the R
script “example-data.R” provided in the Appendix. The
Appendix also contains R code for performing the simulation
study. The randomization test wrapper proposed in this article
is freely available via the following webpage: https://ppw.
kuleuven.be/mesrg/software-and-apps/mlm-rt. Here,
interested readers can download a .zip file that contains the
relevant R code, along with a set of instructions on how to use
the software and an example data file.
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