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Abstract
Due to some widely known critiques of traditional hypothesis testing, Bayesian hypothesis testing using the Bayes factor has
been considered as a better alternative. Previous research about the influence of the prior focuses on the prior for the effect
size and there is a debate about how to specify the prior. Thus, the focus of this paper is to explore the impact of different
priors on the population mean and variance separately (separate priors) on the Bayes factor, and compare the separate priors
with the priors on the effect size. Our simulation results show that both the prior distributions on mean and variance have
a considerable influence on the Bayes factor, and different types of priors (different separate priors and priors on the effect
size) have different influence patterns. We also find that regardless of separate priors or priors on the effect size, and shapes
and centers of the priors, different priors could yield similar Bayes factors. Because noninformative prior distributions bias
the Bayes factor in support of the null hypothesis, and very informative priors could be risky, we suggest that researchers
use weakly informative priors as reasonable priors and they are expected to provide similar conclusions across different
shapes and centers of prior distributions. Conducting sensitivity analysis is helpful in examining the influence of prior
distributions and specifying reasonable prior distributions for the Bayes factor. A real data example is used to illustrate how
to choose reasonable priors by a sensitivity analysis. We hope our results will help researchers choose prior distributions
when conducting Bayesian hypothesis testing.

Keywords Bayes factor · Bayesian hypothesis testing

Traditional hypothesis testing in the frequentist framework
is based on the p-value, and the conclusion is whether the
evidence is strong enough to reject the null hypothesis. No
conclusion can be made in terms of whether the evidence
favors the null hypothesis and how much it favors the null
hypothesis. This is consistent with Fisher’s view that the
null hypothesis is a proposition only to be rejected but not
accepted (Christensen, 2005). As a consequence, frequentist
hypothesis testing could overstate the evidence of rejecting
the null hypothesis, because the null hypothesis may be
more plausible compared to the alternative hypothesis,
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which cannot be captured by the p-value (see Rouder,
Speckman, Sun, Morey, & Iverson, 2009 for more details).
Additionally, the feature that the p-value depends on the
sample size is desirable when the null hypothesis is false,
but increasing the sample size cannot strengthen the support
of the null hypothesis, since the p-value is uniformly
distributed between 0 and 1 regardless of the sample size
when the null hypothesis is true (Hung, O’Neill, Bauer,
& Kohne, 1997). Moreover, frequentist hypothesis testing
is based on long-run frequency. That is, in conducting
frequentist hypothesis testing, we not only need to consider
the data that we actually have but also the data we do not
have. However, this long-run property leads to problems
such as violation of the likelihood principle (Berger &
Wolpert, 1984; Dienes, 2011).

Given the many critiques of the frequentist approach,
there is a call for Bayesian hypothesis testing using the
Bayes factor (e.g., Rouder et al., 2009; Wagenmakers,
2007). Bayesian hypothesis testing using the Bayes factor
can be viewed as a model selection process. That is,
two competing hypotheses (sometimes more than two
hypotheses) are compared by their marginal likelihoods or
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probability densities (e.g., Gelman et al., 2014; Rouder
et al., 2009). The ratio of the marginal likelihoods is
the Bayes factor. A larger marginal likelihood towards
one hypothesis indicates stronger evidence supporting that
hypothesis. Since Bayesian hypothesis testing is based on
competing hypotheses, it solves many of the issues in
frequentist hypothesis testing naturally. First, researchers
could assess the plausibility of the two different hypotheses
and the null hypothesis does not only act as a reference level
(e.g., Kass & Raftery, 1995; Raftery, 1995). Specifically,
the Bayes factor evaluates the “relative evidence in the data
for the null and alternative hypotheses” (Jeon & De Boeck,
2017, p. 341). Furthermore, Bayes’ theorem provides a
way to investigate the probability of the null/alternative
hypothesis given the data (i.e., the posterior probability
of a hypothesis; e.g., Jeon & De Boeck, 2017; Masson,
2011). Second, the sample size will have an impact on the
Bayes factor when the null hypothesis is true. The Bayes
factor, unlike the p-value, assesses the evidence for the null
hypothesis; thus if more data support the null hypothesis, the
Bayes factor favors the null hypothesis more strongly. Third,
the Bayes factor usually obeys the likelihood principle
unless the prior depends on sample size (refer to Dienes,
2011 for more details).

In applying the Bayes factor, the common issue faced by
researchers is how to choose prior distributions. Dating back
several decades, it was found that in the one-dimensional
case (e.g., a normal distribution with unknown mean and
known variance), when the variance of the prior distribution
of the parameter is very large (a noninformative prior),
the Bayes factor supports the null hypothesis regardless
of the true effect size. Thus the result of the Bayesian
hypothesis testing can be different from that of frequentist
hypothesis testing. This issue is referred to as Lindley’s
paradox (e.g., Shafer, 1982), Jeffreys–Lindley paradox
(e.g., Robert, 2014), or Jeffreys–Lindley–Bartlett’s paradox
(e.g., Ly, Verhagen, & Wagenmakers, 2016; Wetzels &
Wagenmakers, 2012), named after the contributions of
Jeffreys (1935), Lindley (1957), and Bartlett (1957). In
addition, Edwards, Lindman, and Savage (1963) and Rouder
et al. (2009) also illustrated and explained this issue, which
will be presented later. Since noninformative priors bias the
Bayes factor in support of the null hypothesis, we should
consider informative prior or weakly informative prior that
has a reasonable range/variance.

There is no easy answer for choosing a reasonable
prior. When there is a pre-existing belief of the param-
eters/hypotheses before collecting the data (e.g., Liu and
Aitkin, 2008), when information can be extracted from his-
torical data in the literature (e.g., Chen, Dey, & Shao, 1999),
or when the prior should capture specific reasonable theo-
ries (e.g., Vanpaemel, 2010), we could translate the specific
information about the examined parameters and hypotheses

into the prior and then use an informative prior. However,
when researchers have no prior beliefs or knowledge, how
do we choose a reasonable prior? In this case, a widely
used prior is the so-called default prior, which provides the
default Bayes factor (e.g., Gu, Hoijtink, & Mulder, 2016;
Hoijtink, van Kooten, & Hulsker, 2016; Morey, Wagen-
makers, & Rouder, 2016; Mulder, Hoijtink, & Klugkist,
2010; Rouder et al., 2009; Wetzels & Wagenmakers, 2012).
The most ideal case is that if we use default priors, we do
not need to worry about the influence of the prior on the
Bayes factor. But there is a debate about how to specify the
default prior. Morey et al. (2016) regarded the default prior
as a family of priors, therefore we still need to specify the
hyperparameter(s).

In addition, the discussion in the literature about
the impact of prior distributions on the Bayes factor
including the default Bayes factor mainly focuses on
the prior distributions on the effect size, such as the
standardized group mean difference in two-sample t-test
or the standardized mean in one-sample t-test (e.g., Rouder
et al., 2009), which has the advantage to avoid the
measurement scale problem. Although depending on the
research interests, prior can be specified on the effect
size in parameter estimation, a separate specification
of prior distributions on the population mean (μ) and
population variance (σ 2) is widely used in Bayesian
modeling and illustrated in various of books (e.g., Gelman
et al., 2014; Lynch, 2007). But this specification is not
discussed when calculating Bayes factor, to the best of
our knowledge. We refer to the latter type of priors as
separate priors. As illustrated later, only specific separate
priors on the population mean and population variance are
mathematically equivalent to the prior on the effect size.
Therefore, the influence of the separate priors on the Bayes
factor is unclear. It is needed to explore the impact of the
separate priors and examine how the impact varies across
different choices of separate priors. We do not propose to
only use the separate prior or only use the prior on the effect
size. The choice should depend on each specific research
question: whether the effect size or the raw parameter is
the focus of interest. If the effect size is the main focus,
we should use the prior on the effect size in both parameter
estimation (e.g., via BUGS) and Bayes factor (e.g., via JASP
or R package BayesFactor); if the raw parameter is
the main focus, we should use the separate prior in both
parameter estimation and Bayes factor. Then the use of
prior in parameter estimation and hypothesis is consistent.
Furthermore, it has been mentioned in the literature that the
prior distribution for variance should barely influence the
Bayes factor, because the variance enters into the models
under both hypotheses (e.g., Hoijtink et al., 2016; Jeon
and De Boeck, 2017; Rouder et al., 2009), and Kass and
Vaidyanathan (1992) also showed that when two parameters
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are orthogonal under the null hypothesis, the prior on the
nuisance parameter (i.e., variance) has little effect on the
approximated Bayes factor. However, the Bayes factor in
Kass and Vaidyanathan (1992) is an approximation, and
Kass and Vaidyanathan (1992) emphasized, “this does not
mean that π0 (the prior on the nuisance parameter) is
irrelevant” (page 142). In their Figs. 1 and 2, different
priors on the standard deviation altered Bayes factor to some
degree, and only informative priors were considered in their
study.

In terms of how to specify reasonable priors, we suggest
conducting a sensitivity analysis with different priors
including the default prior families. A sensitivity analysis
can be helpful in exploring the impact of different priors that
are from noninformative to informative on the Bayes factor
and shedding light on the possible priors that are not too
noninformative or too informative. In addition, because of
different shapes, it is impossible to equate the information
from different types of priors, but how informative
different priors are and whether different types of priors

Fig. 1 Different prior distributions on μ and σ 2
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Fig. 2 The Bayes factors when N = 30, μ = 0.5, and σ 2 = 1 with different prior distributions. Note: Condition 1 is μ ∼ N(cμ, a2) and
log(σ 2) ∼ U(−b, b); Condition 2 is μ ∼ N(cμ, a2) and σ 2 ∼ IG(b, b); Condition 3 is μ ∼ N(cμ, a2) and σ ∼ U(cσ − b

2 , cσ + b
2 );

Condition 4 is μ ∼ U(cμ − a, cμ + a) and log(σ 2) ∼ U(−b, b); Condition 5 is μ ∼ U(cμ − a, cμ + a) and σ 2 ∼ IG(b, b); Condition 6 is
μ ∼ U(cμ−a, cμ+a) and σ ∼ U(cσ − b

2 , cσ + b
2 ); Condition 7 is δ ∼ N(0, a2); Condition 8 is δ ∼ Cauchy(0, a). The hollow circles represent

the Bayes factors from the prior distributions on μ with cμ = 0 and the prior distributions on σ with cσ = b
2 . The solid squares represent the Bayes

factors from the prior distributions on μ with cμ = 0.5 and the prior distributions on σ with cσ = 1. When cσ − b
2 is smaller than 0, cσ is set at b

2

are similarly informative can be gauged by the Bayes
factor.

The aims of this study are to: (1) explore the impact of
different separate priors on the Bayes factor, (2) compare
the separate priors with the priors on the effect size, and

(3) explore how to specify reasonable prior distributions
for the Bayes factor by a sensitivity analysis. The scope
of exploration is within one-sample tests of means. The
sensitivity analysis considers both the separate priors on the
population mean and population variance, and the default
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priors on the effect size. In the remainder of the paper,
we first present the statistical model that is used for our
study. Next, we review the related research on the Bayes
factor. Then, we discuss different prior distributions on the
population mean (μ) and population variance (σ 2). After
that, we investigate how different priors impact the Bayes
factor with different sample size and effect size and when
different priors provide similar Bayes factors. In the real
data example, we conduct a sensitivity analysis, in which
the Bayes factor is calculated with different separate priors
and priors on the effect size. Finally, we end with some
concluding remarks.

One-sample tests of means

This paper focuses on the one-sample test of means (i.e.,
one-sample t-test). Although the one-sample test of means
is a very simple model, this simplicity is a benefit for our
purposes of exploring the impact of separate priors and
exploring how to specify prior distributions for the Bayes
factor by a sensitivity analysis. An extension of the one-
sample test of means is the test for paired means. When
participants in two groups are matched in some way such as
twins and couples, or are matched by experimental designs
utilizing pre-test and post-test, the test for paired means
is equivalent to a one-sample test of means on difference
scores.

Assume a set of continuous data x = (x1, x2, ..., xN)

with a sample size of N are independently and normally
distributed with a population mean of μ and a variance of
σ 2. In general, there are three types of hypothesis testing,
which all can accommodate the one-sample test of means:
simple hypothesis versus simple hypothesis (H0 : μ =
μ0 vs. H1 : μ = μ1), simple hypothesis versus composite
hypothesis (H0 : μ = μ0 vs. H1 : μ �= μ0), and
composite hypothesis versus composite hypothesis (H0 :
μ ∈ �0 vs. H1 : μ ∈ �1). Among them, the simple
hypothesis versus composite hypothesis testing probably is
the most widely used test in psychological research, and
the research question is whether the population mean (μ) is
different from μ0.

Bayes factor

Bayes factor for hypothesis testing

In 1961, Jeffreys (1961) proposed a way to evaluate the
evidence in favor of a hypothesis, which is the so-called
Bayes factor. This paper laid the foundation for the research
on Bayesian hypothesis testing. Kass and Raftery (1995)
developed and summarized several key points regarding

the Bayes factor from both conceptual and mathematical
perspectives. For example, the interpretation of the Bayes
factor and techniques for approximating the Bayes factor
were discussed. For a more detailed and systematical review
of the historical development of the Bayes factor, we refer
to Etz and Wagenmakers (2017) and Ly et al. (2016).

Default prior and default Bayes factor Default priors are
proposed to avoid a large variance/range and carry some
subjective information. As previously mentioned, a prior
with a large variance/range leads to the Jeffreys–Lindley
paradox. Rouder et al. (2009) explained the Jeffreys–
Lindley paradox using a normal distribution with an
unknown mean (μ) and a known variance (σ 2). For
example, when testing whether μ is 0 (i.e., H0 : μ = 0,
H1 : μ �= 0), we assume that μ has a prior distribution
N(0, a2), and μ = 0.5. When the prior distribution has a
large variance, it is possible to draw extreme values that are
unlikely to be true. That is, with a = 104, the prior density
of an extreme μ is not very different from the one of the
true μ (e.g., p

(
μ = 104

) = 2.42×10−5 and p (μ = 0.5) =
3.99 × 10−5). When a further goes to infinity, the prior
distribution becomes a flat line that gives all values equal
weights to contribute to the marginal likelihood. But an
extreme μ leads to a very small likelihood, because it does
not fit the data. The extremely small likelihoods drag the
marginal likelihood down. Then the marginal likelihood
under the alternative hypothesis will be decreased greatly
when using a prior distribution with a large variance,
whereas the marginal likelihood under the null hypothesis is
not influenced. As a consequence, the Bayes factor always
supports the null hypothesis when a prior distribution with
a large variance is used.

Gönen, Johnson, Lu, and Westfall (2005) found that there
was a lack of formulation of the Bayes factor even in
the two-sample t-test. They reparameterized the model in
terms of the standardized group mean difference, placed a
normal prior distribution on the standardized group mean
difference and a Jeffrey prior on the common variance, and
provided an analytical closed solution for the Bayes factor
in the two-sample t-test. This set of prior is called the
scaled-information prior in Rouder et al. (2009), and when
the variance of the normal prior is 1, the prior is called
the unit-information prior. Using the scaled-information
prior, Hoijtink et al. (2016) suggested that the choice of
default prior can be calibrated based on some criteria, and
they illustrated two: one is based on the true effect size
(p (Bayes factor support H0|H0: effect size = 0) = p

(Bayes factor support H1|H1: effect size = nonzero true
effect size)), and another is based on error rates (1−
p (Bayes factor support H0|H0: effect size = 0) = 0.05).
However, Morey et al. (2016) illustrated their concerns
of the calibrated prior given that the resulting statistical
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conclusions could not be interpretable. For example, when
the null hypothesis is true, a larger sample size could
provide less evidence of supporting the null. In addition, the
true effect size is always unknown. Specifying the observed
effect size as the true effect size or arbitrarily specifying the
true effect size may lead to misleading calibrated priors.

Rouder et al. (2009) extended the derivation by Gönen
et al. (2005) and considered a Cauchy prior distribution on
the standardized group mean difference in a two-sample
t-test or the standardized mean in a one-sample t-test. Rouder
et al. (2009) referred to this type of prior as the JZS prior
to acknowledge the contributions of Jeffreys, Zellner, and
Siow, and recommend it as the default prior for Bayesian
t-test. An R package BayesFactor was developed by
Morey and Rouder (2015) to compute the Bayes factor in
one-sample and two-sample tests, ANOVA, and regression
with the discussed priors in Rouder et al. (2009). As briefly
mentioned above, the default prior implies that “the test is
suitable for situations in which the researcher is unable or
unwilling to use substantive information about the problem
at hand” (Wetzels and Wagenmakers, 2012, p.1058). The
scale parameter of the default Cauchy prior is set at 1 in
Rouder et al. (2009). Thus the prior belief is that 50% of
the effect size values are inside the interval (−1, 1) and
50% of the effect size values are outside the interval. But
some researchers doubt that the default prior, Cauchy(0,1),
is realistic since large weight is assigned to large effect size
values, which is implausible in social science (e.g., Bem,
Utts, & Johnson, 2011). After realizing this issue, Morey
et al. (2016) suggested that the default prior is a family of
prior, and different scale parameter values can be specified.
Specifically, the scale parameter is specified at

√
2/2, 1, and√

2 in Morey and Rouder (2015) to present medium, wide,
and ultra-wide ranges, respectively. Wagenmakers, Wetzels,
Borsboom, and van der Maas (2011) and Wetzels et al.
(2011) suggested that Cauchy(0,1) could serve as a starting
point followed by a sensitivity analysis with different scale
parameter values. Overall, a default prior should not be very
informative (Wetzels & Wagenmakers, 2012), but there is
no unified conclusion on how informative a prior should be.

By extending the default prior of Rouder et al. (2009),
Gronau, Ly, and Wagenmakers (2017) proposed to use a
flexible t prior that can incorporate expert knowledge about
standardized effect size to construct informed Bayes factors.
The default prior by Rouder et al. (2009) is a special case of
the t prior. When specifying the hyperparameters, Gronau
et al. (2017) suggested an expert prior elicitation method.

Besides the default prior in t-test, default priors have
been explored in other tests. Liang, Paulo, Molina, Clyde,
and Berger (2008) and Wetzels and Wagenmakers (2012)
discussed the JZS prior in linear regression. Johnson
and Rossell (2010) recommended a default multivariate
normal prior and a default multivariate t prior on a set of

regression coefficients, and different goals were illustrated
for default prior specification. In analysis of variance
(ANOVA), Rouder, Morey, Speckman, and Province (2012)
presented default priors on standardized effects, which are
based on multivariate generalizations of Cauchy distribution
and are invariant with respect to linear transformations of
measurement units. In logistic regression, Gelman, Jakulin,
Pittau, and Su (2008) recommended a Cauchy distribution
on the coefficients with the center of 0 and the scale
of 2.5.

Separate priors Previous Bayes factor literature mainly
focused on the dimensionless effect size (e.g., Johnson
& Rossell, 2010; Rouder et al., 2009) and had important
findings. For example, in simple hypothesis (H0 :
Effect size = 0) versus composite hypothesis (H1 :
Effect size �= 0) testing, when the population effect size is
0.2, the Bayes factor with the unit-information prior favors
the null hypothesis with small (e.g., 20) to large sample
sizes (e.g., 5,000), and in the large-sample limit with an
extremely large sample sizes (e.g., ≥50,000), the Bayes
factor eventually favors the alternative hypothesis (Rouder
et al., 2009, p. 233). And with the same sample size and
effect size, the Bayes factor is more conservative compared
with the frequentist hypothesis testing using the p-value
(α = 0.05) in both the t-test and ANOVA (Jeon & De
Boeck, 2017; Sellke, Bayarri, & Berger, 2001; Wetzels
et al., 2011). Although the influence of sample size and
effect size on the Bayes factor with the prior on the
effect size has been discussed, the impact of separate prior
distributions has not been explored.1 Even though separate
prior specification is not a general setting in Bayes factor
calculation, it is a general option in posterior distribution
inference, such as posterior mean and credible interval. It
is common that researchers would like to use the same
priors to draw posterior distribution inference and calculate
the Bayes factor. In this way, researchers could make a
coherent statistical conclusion based on the same set of
priors. Otherwise, researchers need to justify why they
choose one set of priors in parameter estimation but move
to another set of priors in hypothesis testing, when both the
parameter estimation and Bayes factor are provided in the
same paper. This argument can be very difficult, because the
prior distribution is not invariant under reparameterization
(i.e., Jeffreys’ invariance principle). That is, the information
provided by the two sets of priors might not be consistent.
Only under some special cases, the prior on the effect size
is mathematically equivalent to the separate prior, which we
will illustrate later.

1Dienes and Mclatchie (2018) specified a half-normal distribution or a
t distribution on the raw mean, but the standard error of the t statistic
was specified. Thus, the variance is not treated as unknown.
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Bayes factor in one-sample tests of means

The Bayes factor can be viewed as the ratio of marginal
likelihoods which are the weighted average likelihoods over
the parameter spaces under the null hypothesis and the
alternative hypothesis, respectively (Rouder et al., 2009).
The prior density determines the weights in the weighted
average likelihood. Therefore, calculating the marginal
likelihood is equivalent to a process where we repeatedly
draw a parameter from its prior distribution, calculate the
likelihoods given the drawn values of the parameter, and
calculate the average of the likelihoods. The Bayes factor
can be interpreted as the ratio of the evidence supporting
one hypothesis against the evidence supporting another
hypothesis. For example, a Bayes factor of 5 means that the
data are five times more likely to have occurred under one
hypothesis than under the other hypothesis.

In Bayesian statistics, prior distributions are specified for
the unknown parameters. Thus when both the population
mean (μ) and population variance (σ 2) are unknown, we
specify prior distributions, p(μ) and p(σ 2). Take simple
hypothesis (H0 : μ = μ0) versus composite hypothesis
(H1 : μ �= μ0) testing as an example. The Bayes factor in a
one-sample test of means with unknown variance is

B01 = p(x|μ0, H0)∫
μ�=μ0

p(x|μ,H1)p(μ)dμ

=
∫
σ 2 p(x|μ0, σ

2, H0)p(σ 2)dσ 2
∫
μ�=μ0

∫
σ 2 p(x|μ, σ 2, H1)p(μ)p(σ 2)dσ 2dμ

, (1)

where p(x|μ0, σ
2, H0) and p(x|μ, σ 2, H1) are probability

density of data under the null hypothesis and alternative
hypothesis, respectively. The probability density of data is
proportional to the likelihood function, which is regarded
as a function of parameters and conditional on fixed data;
and usually in practice, the likelihood function and the
density function are assumed to be equal (Casella & Berger,
2002). Therefore, the Bayes factor is the ratio of marginal
likelihoods.

Besides calculating the marginal likelihoods directly, the
Bayes factor can be calculated by the ratio of the posterior
odds to the prior odds. The posterior odds are p(H0|x)

p(H1|x)
, where

p(H0|x) and p(H1|x) are the posterior probabilities of
the null hypothesis and alternative hypothesis, respectively,
conditionally on the observed data. When the variance
is unknown, the marginal posterior distribution of the
mean conditional on the observed data is calculated
by integrating out the unknown variance, p(μ|x) =
∫
σ 2

p(x|μ,σ 2)p(μ)p(σ 2)
p(x)

dσ 2. Then the posterior probability of

the composite hypothesis is computed by
∫
μ∈�

p(μ|x)dμ.

On the other hand, the prior odds are p(H0)
p(H1)

, where p(H0)

and p(H1) are the prior probabilities of the null hypothesis

and alternative hypothesis (respectively) based on the prior
information. In composite hypothesis (H0 : μ ∈ �0)
versus composite hypothesis (H1 : μ ∈ �1) testing,
the prior probability of a composite hypothesis can be
specified as an integral of the prior distribution, and the prior
probabilities of two competing hypotheses sum up to 1,∫
μ∈�0

p(μ)dμ + ∫
μ∈�1

p(μ)dμ = 1. The prior probability
of a hypothesis also can be specified directly based on
prior beliefs, given which the prior distribution is specified
and the posterior distribution is calculated. Therefore, in
composite hypothesis (H0 : μ ∈ �0) versus composite
hypothesis (H1 : μ ∈ �1) testing with known variance, the
Bayes factor for a one-sample test of means is

B01 =
∫
μ∈�0

p(μ|x)dμ
∫
μ∈�1

p(μ|x)dμ
/

∫
μ∈�0

p(μ)dμ
∫
μ∈�1

p(μ)dμ
. (2)

Then the Bayes factor represents how the evidence from
the data changes the prior belief (Rouder et al., 2012). For
example, when B01 = 5, the posterior odds are five times
more favorable to the alternative than the prior odds; when
the posterior odds are equal to the prior odds, B01 = 1.

From the calculation, we can see that the Bayes factor
not only depends on the data but also depends on the
priors. When the prior distributions fail to cover the true
parameter space (e.g., the ranges are too narrow and the
centers of prior distributions severely deviate from the true
values), the integration would fail to provide the “true”
marginal likelihoods. In this case, the resulting Bayes factor
can be misleading. In practice, the true parameter space is
unknown, but the existing empirical studies could shed light
on the possible parameter space. Only when we calculate
the Bayes factor using reasonable prior distributions can the
Bayes factor provide useful evidence for supporting the null
or alternative hypothesis.

B01 is used to describe the strength of evidence in
supporting the null hypothesis (H0). On the other hand,
we can calculate B10 by 1/B01, which can be used
to interpret the strength of evidence in supporting the
alternative hypothesis (H1). There are different guidelines
for interpreting the Bayes factor, such as Jeffreys (1961),
Kass and Raftery (1995), and Raftery (1995). Among them,
Jeffreys’ benchmark probably is the most widely used,
which suggests interpreting the Bayes factor in half units on
the log10 scale. Table 1 lists the Jeffreys’ guideline using
B01 as an example. When B01 < 1, B10 is calculated and
interpreted using the same cut-off values as in Table 1 for
assessing the strength of evidence in favor of the alternative
hypothesis. Although we adopt Jeffreys’ guideline as a
criterion to explore the change of the Bayes factor in this
paper, it does not mean that the cut-off value is the “golden
rule” but rather a widely accepted criterion.
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Table 1 Interpretation of the Bayes factor

B01 10 × log10 B01 Strength of evidence to support H0

<1 <0 Support H1

1 to 3.2 0 to 5 Barely worth mentioning

3.2 to 10 5 to 10 Substantial

10 to 32 10 to 15 Strong

32 to 100 15 to 20 Very strong

>100 >20 Decisive

Overview of different prior distributions

In this section, we review some relatively widely used
prior distributions on μ and σ 2. The informative prior
that usually shows our great confidence about where the
true parameter is will be illustrated for each type of prior
distribution. Although the true parameter is unknown in
real data, in simulation studies we can denote the well-
specified informative prior that covers the specified true
parameter as confident true prior, and denote the mis-
specified informative prior that fails to cover or barely
covers the specified true parameter as confident wrong
prior.

Prior distributions onμ

(1) Normal prior on μ, μ ∼ N(cμ, a2) The normal prior is
the commonly used prior on μ. Usually, a is set at a large
value (e.g., 104) for a noninformative prior. The purpose of
a noninformative prior is that it should be “guaranteed to
play a minimal role in the posterior distribution” (Gelman
et al., 2014, p. 51). As shown in Fig. 1a, with prior
distribution N(0, 0.12), the prior density of μ = 0.5 is
much smaller than the prior density of μ that is close to 0.
Thus, when the true μ is 0.5, we call N(0, 0.12) confident
wrong prior and call N(0.5, 0.12) confident true prior.
When the variance of the prior distribution becomes large
enough (e.g., a = 10), the prior distribution is nearly flat
with almost equal density across a wide parameter space.
Additionally, when the variance of the prior distribution is
large enough, the confident true prior distribution, which
centers around the true value, and the confident wrong prior
distribution, which does not center around the true value,
do not obviously differ, since the densities of the true value
in both distributions are similar. Confident wrong prior or
confident true prior is defined relative to the true parameter.
If the true μ is 0, N(0, 0.12) is the confident true prior in
this case.

(2) Uniform prior on μ, μ ∼ U(cμ − a, cμ + a) The
uniform prior with a given range is not often used on μ

except in a few cases (e.g., Lunn, Jackson, Best, Thomas, &
Spiegelhalter, 2012), but the uniform prior over the whole
real line is commonly used as a noninformative prior (i.e.,
p(μ) ∝ 1). Similar to the normal prior, a larger range
indicates a less informative prior. When the center of an
informative prior distribution severely deviates from the true
value, the prior distribution fails to cover the true parameter
space. For example, as shown in Fig. 1b, when the true
μ is 0.5, the informative prior μ ∼ U(−0.1, 0.1) fails to
cover the true μ. We denote this kind of informative prior
distributions as confident wrong prior. On the other hand,
with true μ equals 0.5, the informative prior U(0.4, 0.6)

is closely distributed around the true value, and we denote
this kind of informative prior distributions as confident
true prior. Although the uniform prior is not widely used,
we considered it as an option in the following sensitivity
analysis.

Prior distributions on σ 2

For constrained variance estimation, only nonnegative
variances are allowed, therefore the parameter space of σ 2

cannot have negative values.

(1) Uniform prior on log(σ 2), log(σ 2) ∼ U(−b , b ) By
Jacobian transformation, p(σ 2) = 1

2bσ 2 . The transformed

p(σ 2) is displayed in Fig. 1c, and the examined priors
always could cover σ 2 = 1. When b = log(1.1) and
σ 2 = 1, since the range of the prior distribution is narrow,
we define it as confident true prior. When b is large (e.g.,
log(100)), the range of the prior distribution is wide, and
though the prior distribution provides high density close to
0, and the density is similar for other σ 2 values. Thus the
prior distribution is noninformative with large b, as long as
the true σ 2 is not near 0.

(2) Inverse-gamma distribution on σ 2, p(σ 2) ∼
IG (shape = α, scale = β) The uniform prior on log(σ 2)

can be viewed as IG(0, 0). In this paper, we use the
inverse-gamma distribution with the same hyperparameter
values for convenience, IG(b, b). b usually is set to a small
value such as 0.1, 0.01, or 0.001 to construct a noninfor-
mative prior (e.g., Gelman et al., 2014), because it has the
minimal impact on the posterior inferences, and this prior
leads a posterior mean close to the maximum likelihood
estimation, but when the true σ 2 is very close to 0, a small
b will give high prior density to the true σ 2 compared to the
density of other σ 2 values as shown in Fig. 1d. In this case,
even if b remains small, the inverse-gamma distribution has
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an impact on the resulting posterior distribution and is not
a noninformative prior (Gelman, 2006). When the true σ 2

is 1, IG(10, 10) has the mean at 1.1 and the mode at 0.9,
which is around the true σ 2. Thus we call it confident true
prior. When the true σ 2 is 1 and b ≤ 0.01, the prior density
has the peak at almost 0, and density is almost the same for
all the other σ 2 values, thus it is safe for us to treat the prior
distribution as noninformative.

(3) Uniformprior on σ , σ ∼ U(cσ − b
2 , cσ + b

2 ) By Jacobian
transformation, p(σ 2) = 1

2bσ
. The prior distribution of σ

is centered around cσ . When cσ = b
2 , the prior changes

to U(0, b), and the prior distribution with a larger range
provides less prior information. Figure 1e displays the
uniform prior distributions on σ , and the prior distribution
of σ is transformed to p(σ 2) to compare to the other prior
distributions of σ 2. When the prior distribution of σ is
U(0,

√
0.1) and the true σ 2 is 0.1, the prior distribution

could not cover the true σ 2, and it is the confident wrong

prior. On the other hand, U(1 −
√

0.1
2 , 1 +

√
0.1
2 ) is the

confident true prior.
Because of different shapes as shown in Fig. 1, it

is impossible to equate the information from different
types of priors. Because the Bayes factor considers the
information both from data and prior, and the information
of data is fixed, the Bayes factor provides a way to
gauge the information carried by different priors. If the
Bayes factors are similar with different sets of prior,
there are three possibilities. First, different priors carry
different information, but their differences are reasonable
and moderate, therefore compared with the information of
data, different priors only have a modest effect on the Bayes
factors. This situation echoes the conclusion in Rouder
et al. (2009) that reasonable priors should lead to the
same conclusion. That is, we can adopt reasonable priors
that carry some information to avoid the Jeffreys–Lindley
paradox but such prior information will not dominate
the conclusion from the Bayes factor, and we expect
that those reasonable priors provide similar conclusions.
Second, noninformative priors heavily impact the resulting
conclusion and always yield a large B01. This is why

we need to choose weakly informative priors to avoid
the Jeffreys–Lindley paradox. Third, how informative a
prior is could have a non-monotonic influence on the
Bayes factor, therefore it is possible that a same set of
priors with different hyperparameters yield similar Bayes
factors. We will illustrate the third possibility in the
simulation.

Bayes factor for one-sample tests of means

We consider a simple null hypothesis (H0 : μ = 0)
versus a composite alternative hypothesis (H1 : μ �= 0).
We calculate the Bayes factor from the separate priors,
and we mathematically compare the prior on the effect
size with the separate priors. Then we conduct simulation
studies for several reasons: (1) simulation studies explore
how separate priors influence the Bayes factor and moderate
the impact from the population effect size and the sample
size, given the lack of related research in the literature. (2)
It is difficult to equate the information from different types
of priors (e.g., the separate priors and the priors on the
effect size), but how informative different priors are and
whether different types of priors are similarly informative
compared to the data can be gauged by the Bayes factor.
(3) The simulation studies shed light on sensitivity analyses.
One may not be completely sure whether the specified
distribution corresponds exactly to the beliefs. In this case,
we can conduct a sensitivity analysis by varying prior
distribution family and/or varying hyperparameters within
a specific distribution, regardless of the priors on the effect
size or the separate priors. A sensitivity analysis helps
explore the impact of different priors on the Bayes factor
and further find the reasonable priors.

Calculation of the Bayes factor with separate prior
distributions

Taking the prior distributions p(μ) = N(cμ, a2) and
p(σ 2) = IG(α, β) as an example, the Bayes factor based
on Eq. 1 is

B01 =
∫ ∞

0

(
σ 2

)− n
2 −α−1

exp

(
−

∑N
i=1 x2

i

2σ 2 − β

σ 2

)
dσ 2

∫ ∞
−∞

∫ ∞
0

(
σ 2

)− n
2 −α−1 1√

2πa
exp

(
−

∑N
i=1(xi−μ)2

2σ 2 − β

σ 2 − (μ−cμ)
2

2a

)
dσ 2dμ

. (3)

Since it is difficult to calculate the integral analytically,
Monte Carlo integration is used to approximate the integral.

The Bayes factor with the other prior distributions is
presented in Appendix. The algorithm of Monte Carlo
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integration presented in Robert and Casella (2004) is used
here.2

Calculation of the Bayes factor with the prior
on the effect size

Instead of specifying independent separate priors on the
mean and variance, in simple versus composite hypothesis
testing, a widely used specification is to specify a normal
prior on the population effect size, δ = μ

σ
∼ N

(
0, τ 2

)
,

and a Jeffrey prior on the variance, p(σ 2) ∝ 1
σ 2 (Gönen

et al., 2005; Rouder et al., 2009). Although Gönen et al.
(2005) and Rouder et al. (2009) specified the prior on the
effect size, the derivation of the Bayes factor is based on
separate priors. That is, a conditional prior distribution
on μ is constructed based on the prior of the effect size,
μ ∼ N

(
0, σ 2τ 2

)
, to our best of knowledge. As derived

in Gönen, Johnson, and Lu (unpublished manuscript),
under the alternative hypothesis, the marginal likelihood is

computed by integrating out νs2

σ 2 where s2 is the sample
variance and ν = n − 1 is the degrees of freedom, and
marginalizing over the parameter space of μ (�1 : μ �= 0),

∫ ∞

0

∫

�1

p

(
x̄|μ,

σ 2

n

)
p

(
s2|σ 2

)
p

(
μ|0, σ 2τ 2

) 1

σ 2
dμdσ 2

=
∫ ∞

0
p

(
x̄|0,

σ 2

n
+ σ 2τ 2

)
p

(
νs2

σ 2

)
ν

σ 4
dσ 2

= ν

∫ ∞

0
p

(
x̄|0,

σ 2

n
+ σ 2τ 2

)
p

(
νs2

σ 2

)
d

1

σ 2

= ν

∫ ∞

0

1

σ
p

(
x̄

σ
|0,

1

n
+ τ 2

)
p

(
νs2

σ 2

)
d

1

σ 2

=
∫ ∞

0

1

σs2
p

(
x̄

σ
|0,

1

n
+ τ 2

)
p

(
νs2

σ 2

)
d

νs2

σ 2

= √
n

(
s2

)− 3
2
∫ ∞

0

√
νs2

σ 2
/νp

(
x̄
√

n

σ
|0, 1+nτ 2

)
p

(
νs2

σ 2

)
d

νs2

σ 2

= √
n

(
s2

)− 3
2

Γ
(

ν+1
2

)

√
νπ

(
1 + nτ 2

)
Γ

(
ν
2

)

(

1 + t2

ν
(
1 + nτ 2

)

)− ν+1
2

,

where t = x̄
√

n
s

, and the last equality follows the conclusion
from Gönen et al. (unpublished manuscript). Similarly,

2In the Bayes factor calculation, taking priors p(μ) = N(cμ, a2)

and p(σ 2) = IG(α, β) for example, the denominator of Eq. 3 is
estimated by drawing K sets of Monte Carlo samples μk and σ 2

k

from the prior distributions, calculating the corresponding likelihoods
L(μk, σ

2
k |x), and computing the average of the likelihoods. The

numerator can be calculated in the same way. To avoid extremely small
values in the integration that software such as R could not handle
appropriately, we calculate values in the logarithm scale: we use the R
function logMeanExpLogs() (Morey & Rouder, 2015) to compute
the logarithm of the mean of the original values, and transfer the
logarithm of the mean back by exponentiation.

under the null hypothesis (H0 : μ = 0), the marginal
likelihood is

√
n

(
s2

)− 3
2

Γ
(

ν+1
2

)

√
νπΓ

(
ν
2

)
(

1 + t2

ν

)− ν+1
2

.

Thus the Bayes factor is

B01 =
Γ

(
ν+1

2

)

√
νπΓ ( ν

2 )

(
1 + t2

ν

)− ν+1
2

Γ
(

ν+1
2

)

√
νπ(1+nτ 2)Γ ( ν

2 )

(
1 + t2

ν(1+nτ 2)

)− ν+1
2

=
(

1 + nτ 2
)1/2

(
1 + t2

ν

)− ν+1
2

(
1 + t2

ν(1+nτ 2)

)− ν+1
2

. (4)

The aforementioned derivation with a conditional normal
prior on μ and a Jeffrey prior on σ 2 is equivalent to the
process that uses the normal prior on the effect size (μ

σ
∼

N
(
0, τ 2

)
) directly and the property that νs2

σ 2 follows χ2
ν .

Under the alternative hypothesis, μ
σ

∼ N
(
0, τ 2

)
leads to

μ
√

n
σ

∼ N
(
0, nτ 2

)
, and x ∼ N

(
μ, σ 2

)
leads to x̄

√
n

σ
∼

N
(

μ
√

n
σ

, 1
)

. Then the distribution of x̄
√

n
σ

after integrating

out μ is x̄
√

n
σ

∼ N
(
0, 1 + nτ 2

)
. We define the t statistic as

t = Z√
U/ν

, where ν = n − 1, Z = x̄
√

n
σ

, and U = νs2

σ 2 . Thus

t follows a non-standardized t-distribution,

t = x̄
√

n

s
∼ tν

(
0,

√
1 + nτ 2

)
,

where
√

1 + nτ 2 is the scale parameter. The t-distribution is

the marginal distribution of x̄
√

n
s

with the unknown variance
marginalized out. Under the null hypothesis, μ is fixed at 0

and x̄
√

n
σ

∼ N (0, 1), thus t follows a standard t-distribution,
and the resulting Bayes factor is the same as the one in Eq. 4.

Therefore, only the conditional normal prior on the
population mean and the Jeffrey prior on the population
variance (i.e., the first way of calculation) are exactly
equivalent to the normal prior on the effect size (i.e., the
second way of calculation). Though the impact of the prior
on the effect size has been discussed by Rouder et al. (2009),
different sets of independent separate priors that are not
mathematically equivalent to the normal prior on the effect
size have not been evaluated and will be explored through
simulation in the next section.

Simulation design

Six sets of independent separate prior distribu-
tions/conditions are considered:

1) μ ∼ N(cμ, a2) and log(σ 2) ∼ U(−b, b);
2) μ ∼ N(cμ, a2) and σ 2 ∼ IG(b, b);
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3) μ ∼ N(cμ, a2) and σ ∼ U(cσ − b
2 , cσ + b

2 );
4) μ ∼ U(cμ − a, cμ + a) and log(σ 2) ∼ U(−b, b);
5) μ ∼ U(cμ − a, cμ + a) and σ 2 ∼ IG(b, b);
6) μ ∼ U(cμ − a, cμ + a) and σ ∼ U(cσ − b

2 , cσ + b
2 ).

We will compare the Bayes factors from the
independent separate prior distributions with those
from the two sets of prior distributions on the effect
sizes:

7) δ ∼ N(0, a2), the scaled-information prior in Gönen
et al. (2005);

8) δ ∼ Cauchy(0, a), the JZS prior in Rouder et al.
(2009).

For each set of separate prior distributions, the Bayes
factor is calculated via a Monte Carlo simulation with 104

replications. A random sample of x with a sample size of
N was simulated from N

(
μ, σ 2

)
in each replication, and

given such a sample, K = 107 values for each parameter
are drawn from the prior distribution to approximate the
integral. Then we calculate the median of the Bayes factors
for two reasons. First, the distribution of Bayes factors
and even the logarithms of Bayes factors can be highly
skewed. Second, the Bayes factor depends on each specific
sample and an extreme sample would lead to an extreme
Bayes factor. To avoid the influence of extreme samples and
skewness of the distribution, the median of the Bayes factors
was calculated across 104 replications.

Based on the information of the prior distributions,
the values of a are paired with different values of
b in the simulation. The hyperparameter values are
illustrated in Table 2 (see Fig. 1 for the shapes of the
prior distributions). For example, when a is 0.1, 1, 10,
102, or 104 in the normal or uniform prior distribution
on μ, b is log(1.1), log(5), log(10), log(102), or
log(104) in the uniform prior distributions on log(σ 2). We
roughly balance the information across prior distributions
based on their ranges/variances and the densities, but as
mentioned previously, it is impossible to directly equate
the information from different types of priors. Instead, the
Bayes factor can be used to gauge the prior information
across priors. The used prior distributions here can be used
as a starting point based on which sensitivity analyses can
be conducted.

Impact of different prior distributions

We focus on the simple null hypothesis (H0 : μ = 0) versus
composite alternative hypothesis testing (H1 : μ �= 0).
In this section, we consider the case where the data are
simulated from N

(
μ = 0.5, σ 2 = 1

)
with a sample size of

N = 30, therefore the alternative hypothesis is true. The
population effect size is δ = 0.5, which is a medium effect
size based on Cohen’s guideline (Cohen, 1988). The Bayes
factors from separate priors are plotted over different values
of a which are paired with the corresponding values of b

under each condition in Fig. 2 (Conditions 1 to 6). The
hollow circles represent the Bayes factors from the prior
distributions on μ with cμ = 0 and the prior distributions
on σ with cσ = b

2 . When a and b are small (e.g., μ ∼
U(−0.1, 0.1) and σ ∼ U(0,

√
0.1)), the prior distributions

cannot cover or barely cover the true parameters, thus they
are the confident wrong priors. The solid squares represent
the Bayes factors from the prior distributions on μ with
cμ = 0.5 and the prior distributions on σ with cσ = 1.
Therefore when a and b are small (e.g., μ ∼ U(0.4, 0.6)

and σ ∼ U(1 −
√

0.1
2 , 1 +

√
0.1
2 )), the prior distributions

are the confident true priors. Although in real data, whether
the priors are true or wrong is unknown, we can explore
the impact of wrong and true priors in the simulation. We
also consider the Bayes factors from priors on the effect
size, which are plotted over different values of a in Fig. 2
(Conditions 7 and 8).

We find that Conditions 3 and 6 are similar to each other,
and Conditions 1, 2, 4, 5, 7 and 8 are similar to each other.
When priors are centered around the true values (i.e., cμ =
0.5 and cσ = 1), the median Bayes factors in Conditions 1
to 6 are similar. When priors are not closely centered around
the true values but centered around other values (i.e., the
confident wrong priors; a = 0.1 or 1, cμ = 0, and cσ = b

2 ),
the Bayes factors from six sets of separate priors and two
sets of priors on the effect size are different.

When μ has a normal distribution or a uniform
distribution and σ has a uniform distribution (Conditions
3 and 6), no matter whether the priors are around the
true parameters, with wider and less informative prior
distributions, the median Bayes factor changes from

Table 2 Different prior distributions that are used in the simulation

μ ∼ N(cμ, a2) a 0.1 1 10 102 104

μ ∼ U(cμ − a, cμ + a) a 0.1 1 10 102 104

log(σ 2) ∼ U(−b, b) b log(1.1) log(5) log(10) log(102) log(104)

σ 2 ∼ IG(b, b) b 10 1 0.1 0.01 0.001

σ ∼ U(cσ − b
2 , cσ + b

2 ) b
√

0.1
√

1
√

10 10 100

δ ∼ N(0, a2) a 0.1 1 10 102 104

δ ∼ Cauchy(0, a) a 0.1 1 10 102 104
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supporting the alternative hypothesis to supporting the null
hypothesis. More specifically, the median Bayes factor is in
favor of the alternative hypothesis when a = 0.1 or 1 (b
equals the corresponding values), and is in favor of the null
hypothesis when a = 102 or 104. When a is 10 and b is√

10 in the uniform prior on σ , neither of the hypotheses is
supported based on the median Bayes factor. As expected,
when the prior distributions are noninformative, extreme μ

and σ 2 provide likelihoods that are nearly 0 and thus lower
the marginal likelihoods under the alternative hypothesis.
As a result, B10 is very small, and the null hypothesis
always gets supported. On the other hand, when the prior
distributions on μ and σ 2 are near the true parameters
(a = 0.1 or 1, cμ = 0.5, and cσ = 1), the likelihoods
from the drawn μ and σ 2 would be larger than those
from μ = 0, thus it is not surprising to find that the
median Bayes factors support the alternative hypothesis
when the alternative hypothesis is true (see the solid squares
in Conditions 3 and 6 of Fig. 2). It is surprising to find that
the confident wrong priors (a = 0.1, cμ = 0, and cσ = b

2 )
yield even larger median B10 than the confident true priors
(a = 0.1, cμ = 0.5, and cσ = 1). Based on the simulation,
although the confident true priors provide much larger
marginal likelihoods under both the null hypothesis and
alternative hypothesis since the true μ and σ 2 get covered
by the priors, the increase of the marginal likelihoods under
the null hypothesis is larger than that under the alternative
hypothesis. As a result, B10 from the confident true prior is
lower than that from the confident wrong prior. When the
variance of the prior distributions gets larger and the prior
distributions become more noninformative and spread out,
the prior distributions with cμ = 0.5 and cσ = 1 are not
very different from the prior distributions with cμ = 0 and
cσ = b

2 , and the resulting Bayes factors from the “true
priors” and “wrong priors” tend to be the same (i.e., the solid
squares overlapped with the hollow circles).

When log
(
σ 2

)
has a uniform prior distribution or σ 2

has an inverse-gamma prior distribution (Conditions 1, 2,
4, and 5), with the change of information in the prior, the
change of the Bayes factors is not monotonic when using
the priors that are not centered around the true values. With
the confident true priors, the median B10 is large and the
evidence advocates the alternative hypothesis; in contrast,
the confident wrong priors lead to no evidence supporting
either hypothesis. When a is 1, and b is log(5) in the
uniform prior on log

(
σ 2

)
or b is 1 in the inverse-gamma

prior on σ 2, the alternative hypothesis is supported by the
median Bayes factor with substantial evidence. When a is
10, and b is log(10) in the uniform prior on log

(
σ 2

)
or

b is 0.1 in the inverse-gamma prior on σ 2, neither of the
hypotheses is supported. And similar to Conditions 3 and 6,
noninformative prior distributions (a ≥ 100 and b equals the

corresponding values under each condition) make it difficult
to reject the null hypothesis, and as the prior distributions
become more noninformative and flatter, the Bayes factors
from the “true priors” and “wrong priors” become
similar.

When the priors are on the effect size (i.e., the scaled-
information prior and the JZS prior; Conditions 7 and 8),
the Bayes factors are similar to those from Conditions
1, 2, 4, and 5. Although as presented above, only when
the conditional normal prior is on the population mean
and the Jeffrey prior is on the population variance, the
separate prior strategy is mathematically equivalent to the
scaled-information prior, the resulting Bayes factors from
the scaled-information prior could be similar to the ones
from the separate priors when the priors are not very
informative (a �= 0.1). There are two aforementioned
reasons leading to this conclusion. First, when the priors
are weakly informative (0.1 < a < 10), compared with
the information from data, the difference between different
priors has an ignorable impact on the Bayes factors. Second,
when the priors are relatively noninformative (a ≥ 10),
the noninformative priors dominate the resulting conclusion
and the Bayes factors always favor the null hypothesis. We
previously mentioned a third possibility that the influence
pattern of the prior on the Bayes factor is non-monotonic,
but we are conditional on the same hyperparameter values
to discuss the Bayes factors, therefore this possibility is not
discussed here.

Overall, the priors with a ≥ 10 could cause the Jeffreys–
Lindley paradox, thus they are not recommended. The priors
that are very informative are also not recommended (i.e.,
a = 0.1), because in practice we do not know whether the
priors are confident true priors or confident wrong priors,
and as illustrated in the simulation the confident wrong
priors could provide very different Bayes factors from the
confident true priors. When a = 1, the separate priors and
the priors on the effect size have relatively small variance
but not very informative. When a is slightly larger than 1
(i.e., a = 2), based on the change pattern in Fig. 2 and
our extra simulation, the true priors and wrong priors that
center around different values will provide similar Bayes
factors, and the eight types of priors will also provide
similar Bayes factors. That is, the moderately different prior
information barely influences the Bayes factor conclusion,
because the different types of priors and the priors with
different centers yield similar conclusion. Thus, the priors
with a = 2 are reasonable priors that we would suggest. The
Bayes factor provides anecdotal evidence of the alternative
hypothesis. We also calculate the median t statistic, which
is about 2.78 with a p-value of 0.009 for a two-sided test.
Thus in a frequentist framework we would reject the null
hypothesis.
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Impact of prior distribution of the variance

The priors on μ and σ 2 are bounded in Fig. 2. That is, the
more informative the prior on μ is, the more informative the
prior on σ 2 is. We now investigate the impact of the priors
on μ and σ 2 separately by comparing the median Bayes
factors from the same prior on μ but different priors on
σ 2. We find that the type of the prior distributions and the
hyperparameter values for both μ and σ 2 have an impact
on the Bayes factor. Take the normal prior on μ and the
inverse-gamma prior on σ 2 (Condition 2) and the normal
prior on μ and the uniform prior on σ (Condition 3) as
examples, the median Bayes factor with each pair of priors
is summarized in Table 3. Given the same prior distribution
on μ, a less informative prior on σ 2 (larger hyperparameter
in the uniform distribution or smaller hyperparameters in
the inverse-gamma distribution) generally yields a smaller
median B10 and thus a larger median B01. As the prior
on σ 2 becomes more noninformative, the influence of the
prior on σ 2 decreases and Bayes factors reach a stable
value. Thus, noninformative priors on σ 2 still can provide
reasonable Bayes factors as long as the prior on μ is not
noninformative. On the other hand, given the same prior
distribution on σ 2, a less informative prior on μ (larger
hyperparameters in the normal or uniform distribution) also
yields a smaller median B10 and thus a larger median B01,
except that when a increase from 0.1 to 1, there is an
increase in B10. In sum, not only the prior distribution
(different types of the distributions and hyperparameter
values) on μ but also the prior distribution on σ 2 has an
influence on the Bayes factor. And generally, the more
noninformative the prior distribution on μ or σ 2 is, the

smaller B10 is, but the influence of the prior on σ 2 has a
limit.

Impact of effect size

In this section, we investigate how the Bayes factor changes
when the medium effect size (i.e., δ = 0.5) decreases to
a small (i.e., δ = 0.2) or zero effect size (i.e., δ = 0)
with different types of priors and different hyperparameters.
The Bayes factors in Fig. 3 are calculated based on data
that are simulated from N

(
μ = 0.2, σ 2 = 1

)
with a sample

size of N = 30. In this case, the population effect size is
δ = 0.2. In Fig. 4, the Bayes factors are calculated when
the null hypothesis is true and the data are simulated from
N

(
μ = 0, σ 2 = 1

)
with a sample size of N = 30.

When μ decreases from 0.5 to 0.2, with the same priors,
the median B10 decreases and thus the median B01 increases
with stronger evidence supporting the null hypothesis no
matter whether the “true priors” or “wrong priors” are
used (compare Figs. 3 to Fig. 2). The confident true priors
yield no evidence supporting either of the hypotheses. Only
with the uniform prior distribution on σ (Conditions 3
and 6) do the median Bayes factors with the confident
wrong priors support the alternative hypothesis. When the
prior distributions are relatively wide and noninformative
(i.e., a ≥ 10 and b equals the corresponding values), the
median Bayes factors support the null hypothesis. When
a ≥ 1, different sets of priors including the priors on the
effect size provide consistent Bayes factors, which implies
that either the different priors have a limited impact on
the Bayes factors or the noninformative priors dominate
the conclusion. The median likelihood ratio is about 0.51

Table 3 The separate impact of the prior distributions of μ and σ 2 on B10 when μ = 0.5, σ 2 = 1, and N = 30

a b B10 a b B10 a b B10 a b B10 a b B10

Condition 2

0.1 0.001 1.752 1 0.001 5.501 10 0.001 0.600 102 0.001 0.063 104 0.001 2 × 10−5

0.01 1.751 0.01 5.525 0.01 0.605 0.01 0.065 0.01 4.9 × 10−4

0.1 1.755 0.1 5.530 0.1 0.600 0.1 0.064 0.1 6.4 × 10−4

1 1.772 1 5.586 1 0.604 1 0.064 1 6.5 × 10−4

10 1.862 10 5.876 10 0.649 10 0.069 10 6.9 × 10−4

102 2.024 102 6.834 102 0.751 102 0.079 102 8.0 × 10−4

104 2.080 104 7.098 104 0.785 104 0.082 104 8.2 × 10−4

Condition 3

0.1 100 1.690 1 100 5.010 10 100 0.542 102 100 0.058 104 100 3.4 × 10−4

10 1.689 10 4.998 10 0.545 10 0.058 10 5.6 × 10−4
√

10 1.690
√

10 4.996
√

10 0.544
√

10 0.058
√

10 5.8 × 10−4
√

1 2.761
√

1 1.4 × 10
√

1 1.514
√

1 0.160
√

1 1.6 × 10−3
√

0.1 9.4 × 1011
√

0.1 2.2 × 1015
√

0.1 1.7 × 1014
√

0.1 2.6 × 1013
√

0.1 8.0 × 1010

Condition 2: μ ∼ N(0, a2) and σ 2 ∼ IG(b, b). Condition 3: μ ∼ N(0, a2) and σ ∼ U(0, b)
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Fig. 3 The Bayes factors when N = 30, μ = 0.2, and σ 2 = 1 with different prior distributions. Note: Condition 1 is μ ∼ N(cμ, a2) and
log(σ 2) ∼ U(−b, b); Condition 2 is μ ∼ N(cμ, a2) and σ 2 ∼ IG(b, b); Condition 3 is μ ∼ N(cμ, a2) and σ ∼ U(cσ − b

2 , cσ + b
2 );

Condition 4 is μ ∼ U(cμ − a, cμ + a) and log(σ 2) ∼ U(−b, b); Condition 5 is μ ∼ U(cμ − a, cμ + a) and σ 2 ∼ IG(b, b); Condition 6 is
μ ∼ U(cμ−a, cμ+a) and σ ∼ U(cσ − b

2 , cσ + b
2 ); Condition 7 is δ ∼ N(0, a2); Condition 8 is δ ∼ Cauchy(0, a). The hollow circles represent

the Bayes factors from the prior distributions on μ with cμ = 0 and the prior distributions on σ with cσ = b
2 . The solid squares represent the Bayes

factors from the prior distributions on μ with cμ = 0.2 and the prior distributions on σ with cσ = 1. When cσ − b
2 is smaller than 0, cσ is set at b

2

and the median t statistic is about 1.11, regardless of the
conditions, which yields a median p-value of 0.276 for
a two-sided test. The frequentist conclusion is that the
null hypothesis is not rejected, which is consistent with
the Bayesian conclusion that the median Bayes factors do

not support the alternative hypothesis, except when the
confident wrong priors are used.

When μ further decreases to 0 and thus the null
hypothesis is true, B10 decreases and B01 increases
compared with the ones when μ = 0.2 (compare Fig. 4
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Fig. 4 The Bayes factors when N = 30, μ = 0, and σ 2 = 1 with different prior distributions. Note: Condition 1 is μ ∼ N(cμ, a2) and
log(σ 2) ∼ U(−b, b); Condition 2 is μ ∼ N(cμ, a2) and σ 2 ∼ IG(b, b); Condition 3 is μ ∼ N(cμ, a2) and σ ∼ U(cσ − b

2 , cσ + b
2 );

Condition 4 is μ ∼ U(cμ − a, cμ + a) and log(σ 2) ∼ U(−b, b); Condition 5 is μ ∼ U(cμ − a, cμ + a) and σ 2 ∼ IG(b, b); Condition 6 is
μ ∼ U(cμ−a, cμ+a) and σ ∼ U(cσ − b

2 , cσ + b
2 ); Condition 7 is δ ∼ N(0, a2); Condition 8 is δ ∼ Cauchy(0, a). The hollow circles represent

the Bayes factors from the prior distributions on μ with cμ = 0 and the prior distributions on σ with cσ = b
2 . The solid squares represent the Bayes

factors from the prior distributions on μ with cμ = 0 and the prior distributions on σ with cσ = 1. When cσ − b
2 is smaller than 0, cσ is set at b

2

to Fig. 3). No prior distributions examined provide enough
evidence supporting the alternative hypothesis. The median
Bayes factors from the confident true priors are almost 1.
When a ≥ 1 and b equals the corresponding values, the null
hypothesis is supported by the median Bayes factors. And

when a ≥ 1, regardless of where the priors center and what
shapes of priors are, the Bayes factors are consistent due
to the previously mentioned reasons. The median t statistic
is about 0.02 with a p-value of 0.984 for a two-sided test.
The frequentist conclusion is only not to reject the null
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hypothesis; but the Bayesian conclusion is more clear that
the null hypothesis is supported when a ≥ 1.

When N = 30 and δ = 0.2 or 0, the separate priors
and priors on effect size with a = 1 are reasonable
priors based on the simulation, because such priors are
weakly informative and different weakly informative priors
lead to similar Bayes factors, which implies that the prior
information has a limited impact. It may be inconsistent
with the condition of N = 30 and δ = 0.5, where the priors
with a = 2 are suggested. We can also use a = 2 when
N = 30 and δ = 0.2 or 0, and based on the change patterns
in Figs. 3 and 4, the Bayes factors across different priors
will remain the same.

Impact of sample size

In this section, we investigate how the Bayes factor changes
when the sample size increase from 30 to 100 with different
types of priors and different hyperparameters. When μ =
0.5 and σ 2 = 1, we increase the sample size from N = 30
(Fig. 2) to N = 100 (Fig. 5). The priors on the effect size
(Conditions 7 and 8) provide similar Bayes factors to those
from a uniform prior distribution on log

(
σ 2

)
and a normal

prior distribution on μ (Condition 1). When the alternative
hypothesis is true, increasing sample size generally leads to
a larger B10 no matter whether we are using the “true priors”
or “wrong priors”, since there are more data supporting the
alternative hypothesis. But with the noninformative priors
where a is 10000 and b equals the corresponding values,
the median Bayes factors still support the null hypothesis
even with a large sample size and a medium effect size
except when using the uniform prior on log

(
σ 2

)
and the

prior on the effect size (Conditions 1, 4, 7, and 8 in Fig. 5).
In particular, when a = 10000 in Conditions 2 and 5, a
larger sample size even decreases B10 compared with N =
30. In contrast to the discrepant conclusion in Bayesian
hypothesis testing, in frequentist hypothesis testing, the
median t statistic is about 5.02 with a p-value smaller than
0.001 for a two-sided test. Similar to the condition where
N = 30, the priors with a is larger than 1 (i.e., a =2) are
reasonable priors which are weakly informative and provide
similar Bayes factors regardless of the centers and shapes of
the prior distributions based on the change pattern in Fig. 5
and the extra simulation.

When μ = 0 and σ 2 = 1, we increase the sample
size from N = 30 (Fig. 4) to N = 100 (Fig. 6). The
priors on the effect size (Conditions 7 and 8) provide similar
Bayes factors to those from a uniform prior distribution on
log

(
σ 2

)
(Conditions 1 and 4). When the null hypothesis is

true, increasing sample size leads to a larger B01 regardless
of using the “true priors” or “wrong priors”, because
there is stronger evidence from data supporting the null
hypothesis. Across different sets of priors, there is no

condition examined supporting the alternative hypothesis
in this case. Except that the median Bayes factors support
neither of the hypotheses using the informative priors (e.g.,
a is 0.1 and b equals the corresponding values), the median
Bayes factors always support the null hypothesis. In terms
of frequentist hypothesis testing, the median t statistic is
about 0.01 with a p-value of 0.992 for a two-sided test.
As highlighted in the introduction section, when the null
hypothesis is true, increasing sample size cannot provide
stronger evidence from p-values in advocating the null
hypothesis; but as shown in this section, increasing sample
size yields larger B01 and stronger evidence supporting the
null hypothesis from a Bayesian perspective. Similar to the
condition where N = 30, the priors with a = 1 are
reasonable priors which are weakly informative and provide
similar Bayes factors regardless of the centers and shapes of
the prior distributions.

Overall, comparing the separate priors with the priors on
effect size, we find that the change pattern of the Bayes
factor with priors on the effect size (Conditions 7 and 8)
is similar to that with a normal/uniform prior on μ, and a
uniform prior on log

(
σ 2

)
or an inverse-gamma prior on σ 2

(Conditions 1, 2, 4, and 5). Therefore, in many cases, using
the priors on the effect size provides similar Bayes factor
with using separate priors. But using a uniform prior on σ

(Conditions 3 and 6) could lead to different Bayes factors
compared with the priors on effect size. Thus, a uniform
prior on σ should be considered if a sensitivity analysis is
needed.

A real data example

To investigate the impact from different separate priors and
illustrate how to specify reasonable priors by a sensitivity
analysis with real data, we use data from a marital
satisfaction study of 81 couples at the University of Florida.
The participants completed a version of the Semantic
Differential Scale, which has a reliability of 0.90 (Karney
& Bradbury, 1997). We are interested in whether husbands
and wives differ in their evaluations of their relationship.
Considering that the husbands and wives are from the same
families, paired difference data are computed as the wives’
scores minus their husbands’ scores within couples. The
null hypothesis is that the population difference is zero
(H0 : μ = 0), and the alternative hypothesis is that the
population difference is not zero (H1 : μ �= 0).

We conduct a sensitivity analysis in calculating the Bayes
factor. We consider the same six sets of separate priors
on the population mean (μ) and variance (σ 2) and two
sets of priors on the effect size (δ) that are used in our
earlier simulation. We use the notations, a and b, as in the
simulation to indicate the hyperparameters in the priors.
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Fig. 5 The Bayes factors when N = 100, μ = 0.5, and σ 2 = 1 with different prior distributions. Note: Condition 1 is μ ∼ N(cμ, a2) and
log(σ 2) ∼ U(−b, b); Condition 2 is μ ∼ N(cμ, a2) and σ 2 ∼ IG(b, b); Condition 3 is μ ∼ N(cμ, a2) and σ ∼ U(cσ − b

2 , cσ + b
2 );

Condition 4 is μ ∼ U(cμ − a, cμ + a) and log(σ 2) ∼ U(−b, b); Condition 5 is μ ∼ U(cμ − a, cμ + a) and σ 2 ∼ IG(b, b); Condition 6 is
μ ∼ U(cμ−a, cμ+a) and σ ∼ U(cσ − b

2 , cσ + b
2 ); Condition 7 is δ ∼ N(0, a2); Condition 8 is δ ∼ Cauchy(0, a). The hollow circles represent

the Bayes factors from the prior distributions on μ with cμ = 0 and the prior distributions on σ with cσ = b
2 . The solid squares represent the Bayes

factors from the prior distributions on μ with cμ = 0.5 and the prior distributions on σ with cσ = 1. When cσ − b
2 is smaller than 0, cσ is set at b

2

If there are prior beliefs, historical data, and supporting
theories, we can use them to begin the sensitivity analysis.
If there is no prior information, we suggest starting at two
locations, the sample information and null hypothesis, and
move towards less or more informative priors. Starting with

the sample information means that the prior distributions
center around the sample mean and sample variance. If
the sample mean is tremendously large, probably there is
no need for us to conduct hypothesis testing because it
already provides strong evidence favoring the alternative

Behav Res (2019) 51:1998–20212014



Fig. 6 The Bayes factors when N = 100, μ = 0, and σ 2 = 1 with different prior distributions. Note: Condition 1 is μ ∼ N(cμ, a2) and
log(σ 2) ∼ U(−b, b); Condition 2 is μ ∼ N(cμ, a2) and σ 2 ∼ IG(b, b); Condition 3 is μ ∼ N(cμ, a2) and σ ∼ U(cσ − b

2 , cσ + b
2 );

Condition 4 is μ ∼ U(cμ − a, cμ + a) and log(σ 2) ∼ U(−b, b); Condition 5 is μ ∼ U(cμ − a, cμ + a) and σ 2 ∼ IG(b, b); Condition 6 is
μ ∼ U(cμ−a, cμ+a) and σ ∼ U(cσ − b

2 , cσ + b
2 ); Condition 7 is δ ∼ N(0, a2); Condition 8 is δ ∼ Cauchy(0, a). The hollow circles represent

the Bayes factors from the prior distributions on μ with cμ = 0 and the prior distributions on σ with cσ = b
2 . The solid squares represent the Bayes

factors from the prior distributions on μ with cμ = 0 and the prior distributions on σ with cσ = 1. When cσ − b
2 is smaller than 0, cσ is set at b

2

hypothesis. Starting with the null hypothesis means that
the prior distributions center around the effect under the
null hypothesis (e.g., mean is zero), and move towards
less or more noninformative priors. With regarding to how
to vary the hyperparameters, we suggest taking two steps.

First, we vary the hyperparameters from noninformative to
informative across a wide range. At this stage, we exclude
the prior distributions in which the high density concentrates
on a narrow range and the center of the prior distribution
has a large influence on the Bayes factor. For example,
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with the same variance in p(μ), moderately different means
in p(μ) lead to very different conclusions. In this case,
the prior distributions are too informative and have a
tremendous effect on the Bayes factor. We also exclude
the noninformative prior distributions that always leads to
rejection of the alternative hypothesis and acceptance of the
null hypothesis. The trajectory of the Bayes factor is helpful
in exploring the influence from the prior distributions.
Second, we pick a small range of hyperparameters based on
the trajectory in the first step, and vary slowly within the
range to check how robust the Bayes factor is. Although we
consider sample information in this sensitivity analysis, it

only serves as a starting point to specify hyperparameters,
and we still consider priors that are more informative or
less informative than the priors around sample mean and
variance and the priors that are centered around the effect
under the null hypothesis. The Bayes factor will be used to
gauge how informative the priors are.

The data have a sample mean of 1.53 and a sample
standard deviation of 10.55. Therefore, considering the
sample mean and sample variance as a baseline, we specify
a at 0.1, 1, 10, 102, or 104 in the normal or uniform prior
distribution on μ, and specify b at

√
1,

√
10,

√
102,

√
103,

or
√

105 in the uniform prior distributions on σ , at log(5),

Table 4 B01 from different priors in the real data example (first part)

Separate priors on μ and σ 2

Condition 1 Condition 2

cμ = 0 cμ = 2 cμ = 0 cμ = 2

a b B01 B01 a b B01 B01

0.1 log(5) 8.3 × 10−2 2.8 × 10−8 0.1 10 1.13 6.3 × 10−4

1 log(10) 6.1 × 10−4 2.5 × 10−4 1 1 9.1 × 10−1 5.8 × 10−1

10 log(102) 3.39 3.37 10 0.1 3.69 3.66

102 log(103) 3.6 × 10 3.6 × 10 102 0.01 3.5 × 10 3.5 × 10

104 log(105) 3.5 × 103 3.5 × 103 104 0.001 2.6 × 103 2.6 × 103

Condition 3 Condition 4

cμ = 0, cσ = b
2 cμ = 2, cσ = 11 cμ = 0 cμ = 2

a b B01 B01 a b B01 B01

0.1 1 6.3 × 10−14 4.9 × 10−1 0.1 log(5) 4.3 × 10−1 4.3 × 10−1

1
√

10 6.2 × 10−4 5.9 × 10−1 1 log(10) 2.7 × 10−3 2.7 × 10−3

10
√

102 3.39 3.67 10 log(102) 2.64 2.64

102
√

103 3.7 × 10 3.6 × 10 102 log(103) 2.8 × 10 2.8 × 10

104
√

105 2.8 × 103 4.1 × 103 104 log(105) 3.2 × 103 3.2 × 103

Condition 5 Condition 6

cμ = 0 cμ = 2 cμ = 0, cσ = b
2 cμ = 2, cσ = 11

a b B01 B01 a b B01 B01

0.1 10 2.31 3.3 × 10−4 0.1 1 1.4 × 10−4 4.8 × 10−1

1 1 9.3 × 10−1 5.0 × 10−1 1
√

10 2.6 × 10−3 3.2 × 10−1

10 0.1 2.87 2.88 10
√

102 2.66 2.90

102 0.01 3.0 × 10 3.0 × 10 102
√

103 2.9 × 10 3.2 × 10

104 0.001 6.4 × 103 6.4 × 103 104
√

105 3.2 × 103 3.3 × 103

Priors on δ

Condition 7 Condition 8

a B01 a B01

0.1 9.2 × 10−1 0.1 1.17

0.5 2.04 0.5 2.68

1 3.89 1 4.95

10 3.8 × 10 10 4.8 × 10

100 3.8 × 102 100 4.8 × 102

Condition 1 is μ ∼ N(cμ, a2) and log(σ 2) ∼ U(−b, b); Condition 2 is μ ∼ N(cμ, a2) and σ 2 ∼ IG(b, b); Condition 3 is μ ∼ N(cμ, a2)

and σ ∼ U(cσ − b
2 , cσ + b

2 ); Condition 4 is μ ∼ U(cμ − a, cμ + a) and log(σ 2) ∼ U(−b, b); Condition 5 is μ ∼ U(cμ − a, cμ + a) and
σ 2 ∼ IG(b, b); Condition 6 is μ ∼ U(cμ−a, cμ+a) and σ ∼ U(cσ − b

2 , cσ + b
2 ); Condition 7 is δ ∼ N(0, a2); Condition 8 is δ ∼ Cauchy(0, a)
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log(10), log(102), log(103), or log(105) in the uniform
prior distributions on log

(
σ 2

)
, and at 10, 1, 0.1, 0.01, or

0.001 in the inverse-gamma prior distributions on σ 2, to
vary from informative to noninformative. Furthermore, we
consider priors centered at different values: cμ = 0 or 2,
and cσ = b

2 or 11. In terms of the priors on the effect size,
we consider the priors on the standardized scale, and use
the normal prior on the effect size (δ ∼ N

(
0, a2

)
) and the

Cauchy prior on the effect size (δ ∼ Cauchy(0, a)), where
a is 0.1, 0.5, 1, 10, and 102.

B01 from the real data example are presented in Table 4.
When the priors are informative (a ≤ 1 and b equals
the corresponding values in the separate priors, and a =
0.1 in the priors on the effect size), the Bayes factors
reach different conclusions across different centers of prior
distribution (cμ and cσ ) and different families of prior

Table 5 B01 from different priors in the real data example (second part)

Separate priors on μ and σ 2

Condition 1 Condition 2

cμ = 0 cμ = 2 cμ = 0 cμ = 2

a b B01 B01 a b B01 B01

5 log(50) 9.9 × 10−1 9.5 × 10−1 5 0.6 1.93 1.86

8 log(80) 2.42 2.39 8 0.3 2.98 2.94

10 log(102) 3.39 3.37 10 0.1 3.69 3.66

12 log(120) 4.29 4.23 12 0.09 4.41 4.35

15 log(150) 5.45 5.44 15 0.08 5.48 5.41

20 log(200) 7.32 7.20 20 0.07 7.27 7.20

Condition 3 Condition 4

cμ = 0, cσ = b
2 cμ = 2, cσ = 11 cμ = 0 cμ = 2

a b B01 B01 a b B01 B01

5 6 5.6 × 10−1 1.88 5 log(50) 7.5 × 10−1 7.4 × 10−1

8 8 2.03 2.95 8 log(80) 1.90 1.90

10 10 3.39 3.67 10 log(102) 2.64 2.64

12 10.5 4.19 4.39 12 log(120) 3.36 3.37

15 11 5.32 5.47 15 log(150) 4.30 4.34

20 12 7.27 7.26 20 log(200) 5.82 5.81

Condition 5 Condition 6

cμ = 0 cμ = 2 cμ = 0, cσ = b
2 cμ = 2, cσ = 11

a b B01 B01 a b B01 B01

5 0.6 1.44 1.43 5 6 4.2 × 10−1 1.45

8 0.3 2.30 2.31 8 8 1.58 2.32

10 0.1 2.87 2.88 10 10 2.66 2.90

12 0.09 3.45 3.47 12 10.5 3.31 3.48

15 0.08 4.33 4.35 15 11 4.21 4.35

20 0.07 5.77 5.79 20 12 5.77 5.79

Priors on δ

Condition 7 Condition 8

a B01 a B01

0.3 1.36 0.3 1.85

0.5 2.04 0.5 2.68

0.7 2.77 0.7 3.57

0.9 3.52 0.9 4.49

1 3.89 1 4.95

1.5 5.79 1.5 7.30

Condition 1 is μ ∼ N(cμ, a2) and log(σ 2) ∼ U(−b, b); Condition 2 is μ ∼ N(cμ, a2) and σ 2 ∼ IG(b, b); Condition 3 is μ ∼ N(cμ, a2)

and σ ∼ U(cσ − b
2 , cσ + b

2 ); Condition 4 is μ ∼ U(cμ − a, cμ + a) and log(σ 2) ∼ U(−b, b); Condition 5 is μ ∼ U(cμ − a, cμ + a) and
σ 2 ∼ IG(b, b); Condition 6 is μ ∼ U(cμ−a, cμ+a) and σ ∼ U(cσ − b

2 , cσ + b
2 ); Condition 7 is δ ∼ N(0, a2); Condition 8 is δ ∼ Cauchy(0, a)
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distributions: some support the alternative hypothesis and
some support neither of the hypotheses. It implies that it is
risky to use the informative priors in real data since they
can easily be confident wrong priors, which we never know.
Consistent with the simulation results, when the priors are
relatively noninformative, the Bayes factors always support
the null hypothesis. When the priors are weakly informative
(a = 10 in the separate priors, and a = 0.5 or 1 in the priors
on the effect size), regardless of where the priors center
and which type of priors are, the resulting Bayes factors
are consistent, although some are smaller than 3.2 and
some are larger than 3.2, which leads to different statistical
conclusions.

We further vary the hyperparameters around a = 10
in the separate priors and around a = 0.5 and 1 in the
priors on the effect size, the Bayes factors are presented in
Table 5. In the separate prior, with the same a (20 ≥ a ≥
8) and same distribution family of μ, different centers of
prior distributions and different shapes of the distribution
of σ 2 have a limited impact on the Bayes factors B01 and
the obtained Bayes factors are similar to each other. In
both the separate priors and priors on the effect size, the
Bayes factors change from “Barely worth mentioning” to
“Substantial supporting the null hypothesis”, and values of
the Bayes factors do not change dramatically. Thus, the prior
distributions presented in Table 5 (20 ≥ a ≥ 8 in the
separate priors and 1.5 ≥ a ≥ 0.3 in the priors on the effect
size) are all reasonable. Overall, there is no strong evidence
supporting either of the two hypotheses considering all the
Bayes factors in Table 5.

This real data example demonstrates the importance
of sensitivity analysis. Although Rouder et al. (2009)
mentioned that different reasonable priors should provide
similar Bayes factors, in practice, researchers still need to
choose the so-called reasonable priors. Sensitivity analysis
across different types of prior distributions and different
centers of priors shed light on exploring reasonable priors.
That is, the weakly informative priors that will not dominate
the conclusion and provide similar conclusions across
different shapes and centers of priors can be viewed as
reasonable priors. The process of conducting sensitivity
analysis is relatively subjective, as any other sensitivity
analysis. Furthermore, how to specify the hyperparameters
is not a special problem in the separate priors, but also a
problem in priors on the effect size. Sensitivity analysis help
us better understand the influence of prior distributions on
each dataset, regardless which types of priors are used.

Conclusions

Bayesian hypothesis testing using the Bayes factor provides
a way to make statistical inferences about competing

hypotheses. The interpretation of the Bayes factor is
straightforward and does not rely on the unobserved long-
run results that are part of the p-value calculation. Although
there is a growing discussion on why and how researchers
use the Bayes factor, the previous research about the
influence of the prior focuses on the prior on the effect size
(e.g., Gönen et al., 2005; Rouder et al., 2009) and some
default choices are set as reasonable priors. It is unclear
whether the separate priors that are on the population mean
and variance independently have the same influence as
the prior on the effect size and whether there is different
influence with different separate priors. We do not object
to the use of the prior on the effect size, however, using
the separate prior in parameter estimation but turning
overwhelmingly to the prior on the effect size in hypothesis
testing or model selection in the same analysis can lead
to inconsistence. Researchers could use the separate prior
in Bayes factor when the separate prior is also used in
parameter estimation; or researchers could adopt the prior
on the effect size in both parameter estimation and Bayes
factor to avoid considering the measurement scale. To
provide more options to researchers, we explore more about
separate priors. Based on our simulation, we find that
the Bayes factor depends on which type of prior is used
(separate prior or prior on the effect size, and different
family of prior distributions) and what the hyperparameters
are. Thus, it is risky to use one specific prior to calculate the
Bayes factor unless there is a strong belief in using it. Even
if the prior on the effect size (e.g., the scaled-information
prior or the JZS prior) is used to avoid considering the
scale issue, we still need to specify the hyperparameter
as in the real data example. We should not always rely
on the default choice of a specific software program or
R package; instead, a sensitivity analysis with different
hyperparameters and different families of priors is always
preferred. For example, in the R package BayesFactor,
the default prior is Cauchy(0,

√
2/2), but in data analysis

we should also try other options (i.e., 1 and
√

2) provided
by BayesFactor unless there is a strong belief that
Cauchy(0,

√
2/2) provides a fair prior range and density.

Furthermore, we find different weakly informative priors
lead to similar Bayes factors. It implies that compared with
the information from data, the difference between these
priors has a limited impact on the Bayes factors and these
weakly informative priors can be used as reasonable priors.

The simulation results show that the separate prior
distributions on both μ and σ 2 can have a considerable
influence on the Bayes factor, and different types of separate
priors have different influence patterns (Figs. 2, 3, 4, 5
and 6). Although some previous research suggested that the
prior distribution on σ 2 should have the minimal influence
on the Bayes factor (e.g., Hoijtink et al., 2016; Jeon and De
Boeck, 2017; Rouder et al., 2009), the simulations presented
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in this paper show that the prior distribution for σ 2 could
have a substantial influence on the Bayes factor. There
are two reasons. First, Rouder et al. (2009) assumed that
the extreme σ 2 from the prior distribution should have an
equal influence on the marginal likelihoods of both the null
and alternative hypotheses, whose effect will be canceled.
However, with the same prior distribution on μ, different
prior distributions on σ 2 (different types or different
hyperparameters) yield different marginal likelihoods under
both the null hypothesis and alternative hypothesis, and
the changes in the marginal likelihoods under the null and
alternative hypotheses are not the same, which means that
the effect of σ 2 could not cancel in the ratio and the
Bayes factor will change. Second, the discussed prior in the
literature on σ 2 is a Jeffrey prior. The hyperparameter is
kind of fixed in p(σ 2) ∝ 1

σ 2 . Thus, in this case, the Jeffrey

prior of σ 2 barely influences the Bayes factor. Additionally,
the family of separate priors moderates the impact of the
sample size and the population effect size on the Bayes
factor. For example, when the true effect size is medium
(μ = 0.5 and σ 2 = 1), by using a uniform prior on σ ,
the confident true priors could be less supportive of the
alternative hypothesis compared with the confident wrong
priors; but by using other types of priors in the current
simulation, the confident true priors are more supportive
of the alternative hypothesis compared with the confident
wrong priors.

Although the discussed priors on the effect size
and separate priors are not mathematically equivalent,
as illustrated in the simulation and real data, under
some conditions different priors on the effect size and
separate priors with different centers yield similar Bayes
factors. The Bayes factor can gauge the information in
the prior distribution compared to the data information.
Under the first condition, when the priors are relatively
noninformative, Jeffreys–Lindley paradox occurs, and the
resulting Bayes factor almost always supports the null
hypothesis even when the true effect size is nonzero and
the sample size is large. Thus although noninformative
priors have a minor impact on the posterior distributions,
this property does not hold for the Bayes factor and such
priors will dominate resulting conclusion. Under the second
condition, when the priors are weakly informative, no matter
what types of the priors are and where the priors center,
the priors have an ignorable impact on the Bayes factor
and have reasonable variances to avoid the Jeffreys–Lindley
paradox.

Therefore we suggest using weakly informative priors
as reasonable priors and we expect they will not dominate
the obtained conclusions and provide similar Bayes factors
across different shapes and centers of prior distributions.
Given the simulation scenarios in the current study (μ =
0, 0.2, or 0.5, σ 2 = 1 , and N = 30 or 100), the

weakly informative priors that a is equal to 1 or 2, and
b equals the corresponding value under each condition are
reasonable priors for the Bayes factor. These sets of priors
provide very similar median Bayes factors across different
centers of distributions and different types (separate priors
and prior on the effect size), which is consistent with
Rouder’s conclusion that different reasonable priors should
provide the same statistical conclusion (Rouder et al.,
2009). As shown in the real data example, we conducted
sensitivity analyses with the same variance in the μ’s
priors but with different family of priors on σ 2 (or σ ) and
different centers of priors, as well as sensitivity analyses
across different families of priors on μ or effect size and
different hyperparameter values. We investigated how the
Bayes factors varied with different prior distributions, from
noninformative to informative. Similar Bayes factors imply
that the information provided by the prior distributions has a
similar effect. By examining the change trajectory of Bayes
factors, we can find out which set of priors influence the
conclusion significantly, which set of priors always leads to
the acceptance of the null hypothesis, and which set of priors
provide similar conclusions. Because the uniform prior on
σ has a different change pattern as shown in Figs. 2–6, we
suggest considering it in the sensitivity analysis.

We do not suggest using very informative priors or
noninformative priors when calculating the Bayes factor.
First, it is risky to use informative/confident priors, because
the true values are unknown in real data. It is possible that
the confident priors are the confident true priors, but it is
also possible that the confident priors fail to cover the true
values or give the true values very low prior density, and
become the confident wrong priors. The simulation results
show that the confident wrong priors could provide inflated
or deflated Bayes factors compared with the confident
true priors. Second, as discussed above, the noninformative
priors always support the null hypothesis, which fail to
provide useful statistical inferences.

In terms of both separate priors and priors on the effect
size, a larger sample size generally strengths the hypothesis
testing conclusion except when using noninformative priors.
That is, when the null hypothesis is true, with a larger
sample size, B10 generally decreases and yields stronger
evidence towards the null hypothesis; when the alternative
hypothesis is true, except under several conditions with
noninformative priors, a larger sample size generally
provides larger B10. And the influence of the sample size
and effect size depends on the type of prior distributions.

The one-sample test of means and the test for paired
means discussed in the paper are the simplest cases. The
impact of separate prior distributions on inferences and how
to specify reasonable priors from the current study could
be generalized to other widely used tests to some degree,
such as the two-sample test of means, analysis of variance
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(ANOVA), and linear regression. Future studies should
investigate specifying reasonable priors in more complex
models, such as multilevel models.

Appendix

When μ ∼ N(cμ, a2) and log(σ 2) ∼ U(−b, b),
p(log(σ 2)) = 1

2b
leads to p(σ 2) = 1

2bσ 2 , and the
mathematical expression of Bayes factor is

B01 =
∫ exp(b)

exp(−b)
1

σn+2 exp
(
−

∑
x2

2σ 2

)
dσ 2

∫ ∞
−∞

∫ exp(b)

exp(−b)
1√

2πa2σn+2
exp

(
−

∑
(x−μ)2

2σ 2 − (μ−cμ)
2

2a2

)
dσ 2dμ

.

When μ ∼ N(cμ, a2) and σ ∼ U(cσ − b
2 , cσ + b

2 ), the
Bayes factor is

B01 =
∫ σc+ b

2

σc− b
2

1
σn exp

(
−

∑
x2

2σ 2

)
dσ

∫ ∞
−∞

∫ σc+ b
2

σc− b
2

1√
2πa2σn

exp

(
−

∑
(x−μ)2

2σ 2 − (μ−cμ)
2

2a2

)
dσ 2dμ

.

When μ ∼ U(cμ − a, cμ + a) and log(σ 2) ∼ U(−b, b),
the Bayes factor is

B01 =
∫ exp(b)

exp(−b)
1

σn+2 exp
(
−

∑
x2

2σ 2

)
dσ 2

∫ μc+a

μc−a

∫ exp(b)

exp(−b)
1

2aσn+2 exp
(
−

∑
(x−μ)2

2σ 2

)
dσ 2dμ

.

When μ ∼ U(cμ − a, cμ + a) and σ 2 ∼ IG(α, β), and the
Bayes factor is

B01 =
∫ ∞

0

(
σ 2

)− n
2 −α−1

exp
(
−

∑
x2

2σ 2 − β

σ 2

)
dσ 2

∫ μc+a

μc−a

∫ ∞
0

(
σ 2

)− n
2 −α−1 1

2a
exp

(
−

∑
(x−μ)2

2σ 2 − β

σ 2

)
dσ 2dμ

.

When μ ∼ U(cμ −a, cμ +a) and σ ∼ U(cσ − b
2 , cσ + b

2 ),
and the Bayes factor is

B01 =
∫ σc+ b

2

σc− b
2

1
σn exp

(
−

∑
x2

2σ 2

)
dσ

∫ μc+a

μc−a

∫ σc+ b
2

σc− b
2

1
2aσn exp

(
−

∑
(x−μ)2

2σ 2

)
dσdμ

.
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