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Abstract
Nonparametric multiple comparisons are a powerful statistical inference tool in psychological studies. In this paper, we
review a rank-based nonparametric multiple contrast test procedure (MCTP) and propose an improvement by allowing
the procedure to accommodate various effect sizes. In the review, we describe relative effects and show how utilizing the
unweighted reference distribution in defining the relative effects in multiple samples may avoid the nontransitive paradoxes.
Next, to improve the procedure, we allow the relative effects to be transformed by using the multivariate delta method and
suggest a log odds-type transformation, which leads to effect sizes similar to Cohen’s d for easier interpretation. Then, we
provide theoretical justifications for an asymptotic strong control of the family-wise error rate (FWER) of the proposed
method. Finally, we illustrate its use with a simulation study and an example from a neuropsychological study. The proposed
method is implemented in the ‘nparcomp’ R package via the ‘mctp’ function.
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Introduction

Rank-based nonparametric statistical tests are developed
based on the idea of how often a randomly chosen
observation from one distribution results in a smaller
value than another randomly chosen observation from
another distribution. To measure such effects, the original
observations are converted to ranks to extract information
about their empirical distribution functions of different
treatments/groups/samples. Unlike the popular parametric
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Berlin, Germany

4 Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2,
10178 Berlin, Germany

tests which compare means, rank-based nonparametric tests
require virtually no distributional assumptions on the data,
making them particularly suitable for studies with non-
normal distributions (e.g., reaction times data) and/or small
sample sizes. However, despite their clear advantages,
overall, nonparametric methods are largely underused in
psychological studies (Field & Wilcox, 2017).

One possible reason for the unpopularity may come
from the misconception that converting the actual observed
values into ranks leads to a loss of information; however, a
loss of efficiency occurs only when data are exactly or are
close to being normally distributed for comparing locations.
For instance, Lehmann (2009) studied the asymptotic
relative efficiency (ARE) of the Mann–Whitney U test
compared to the two-sample t test. Here, the ARE is the
limit of the ratio of sample sizes required by the two tests
being compared to achieve the same results in terms of level
and power. On normal distributions, the Mann–Whitney U

test is about 95% as efficient as the t test. As the underlying
distribution of the data becomes less similar to a normal
distribution (e.g., skewed, light-tailed, or heavy-tailed), the
ARE of the Mann–Whitney U test compared to the t test
may increase without bound, generally exceeding 100%.
That is, in the large-sample case, the Mann–Whitney U test
is typically more powerful than the t test.

Another reason why the nonparametric tests are less pop-
ular may be due to the difficulty of performing multiple
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comparisons. Traditionally, nonparametric multiple com-
parisons of independent samples have been performed in
two steps. In the first step, the Kruskal–Wallis test is
performed to evaluate the equality of distributions among
different treatment groups. When a statistically significant
difference is detected, the Mann–Whitney U tests are used
for post hoc comparisons. However, interestingly, this two-
step procedure can result in paradoxical results; i.e., it is
possible to obtain results where, between three or more
treatment groups, the pairwise differences are all statisti-
cally significant, yet none of them is stochastically domi-
nant. In other words, there is no treatment group from which
a random observation tends to be larger than a random
observation from any of the other treatment groups. Math-
ematically speaking, this phenomenon is a consequence of
the widely known nontransitive paradoxes. In this paper, we
review the above-mentioned situation more clearly using a
set of modified dice as an example with a more detailed
explanation of stochastic differences. Then, we describe
a method which eliminates the paradoxes by defining a
reference distribution and comparing each sample to that
distribution.

Lack of research in calculating an easily interpretable
effect size for nonparametric multiple comparisons may
be yet another reason why they are underused. In
the normal-based parametric tests, Cohen’s d , which
divides the difference of two means by their pooled
standard deviation, is often used as an effect size
to understand the practical significance of the results.
Supplying effect sizes in addition to (adjusted) p-values
is highly recommended as, for example, Cohen (1994)
famously described that using p-values with large sample
sizes can show statistically significant results when no
difference of practical importance is present. Similarly, even
when a statistically significant result is found, p-values
give little information about how different samples are.
Thus, in this paper, we propose a new multiple comparison
procedure that can accommodate various effect sizes
to supplement p-values by generalizing the work of
Konietschke et al. (2012), providing practical measures
of the stochastic differences between samples. The idea
resonates well with the statement released by the American
Statistical Association (Wasserstein & Lazar, 2016), which
strongly encourages practitioners to make decisions using
various measures of significance. Furthermore, we suggest
a log odds-type effect size similar to Cohen’s d for
nonparametric multiple comparisons, allowing the users to
easily interpret the results.

Even though the importance of effect sizes has been
emphasized above, p-values (or some measure of statistical
significance) are also likely to remain prevalent. In
psychological studies, there are many situations where one

hypothesis contains several sub-hypotheses for different
contrasts, requiring many tests to be performed. To ensure
that research findings are replicable with a high probability,
a nonparametric multiple comparison procedure for these
contrasts (which shall be referred to as a nonparametric
multiple contrast testing procedure (MCTP)) proposed in
this paper is designed to provide a strong control the family-
wise error rate (FWER) asymptotically at some prespecified
α ∈ (0, 1). That is, for any configuration of true and
false null hypotheses, the probability of making at least
one type I error is at most α (Pesarin & Salmaso, 2010).
An appropriate FWER control provides a safeguard against
type I errors at the expense of failing to detect some effects
that are true (Cramer et al., 2016). We give theoretical
justifications of the asymptotic strong control of the FWER
of the proposed nonparametric MCTP by utilizing the idea
of simultaneous test procedure (STP) proposed by Gabriel
(1969).

The contributions made in this paper can be summarized
as follows. Firstly, we provide a concise review of key
ideas and issues that occur in nonparametric multiple
comparisons, including the nontransitive paradoxes and
reference distribution, by expanding the brief explanations
given in Konietschke et al. (2012). Then, we propose a
new nonparametric MCTP that provides a strong control
of the FWER and accommodates various nonparametric
effect sizes and contrasts. In particular, we discuss the idea
of relative effects, effect sizes for the relative effects in
multiple comparisons, how to generalize the nonparametric
MCTP of Konietschke et al. (2012) to accommodate
various effect sizes, theoretical justifications of the strong
FWER control, and small-sample approximations. Then,
the newly proposed nonparametric MCTP is evaluated
through a simulation study and a real-life application.
Lastly, conclusions and future work are summarized, and
technical details are provided in Appendix A–D. In addition,
the proposed method is implemented in the R package
‘nparcomp’ via the function ‘mctp’.

Nontransitive paradoxes

Many nonparametric tests, including the Mann–Whitney
U test, measure the so-called relative effect, to compare
different samples. As a result of that, nontransitive para-
doxes can occur, making the results less interpretable.
In this section, we review the relative effect and non-
transitive paradoxes, and discuss a way to avoid the
paradoxes.

To understand the paradox, let Xi be a random variable
from the i-th sample. To measure the stochastic superiority
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of the i-th sample compared to the j -th sample in the
two-sample case, the relative effect, which is defined as

pij =
∫

FidFj = Pr(Xi < Xj ) + 0.5 Pr(Xi = Xj),

is used (see Munzel and Hothorn 2001; Reiczigel et al.
2005; Wolfsegger & Jaki 2006; Ryu 2009; Umlauft et al.
2017). Specifically, if pij > 0.5, the j -th sample is
stochastically larger than the i-th sample. Similarly, if
pij < 0.5, the j -th sample is stochastically smaller than the
i-th sample. If pij = 0.5, the two samples are stochastically
equal. In other words, the relative effect pij tells us how
likely it is that a random observation from the j -th sample
be larger than a random observation from the i-th sample. It
is also straightforward to see that pji = 1 − pij . Note that
these relative effects have been used as ways of measuring
stochastic differences (see Cliff 1993 and Vargha & Delaney
2000 for more details).

In the classical parametric setting where the means are
being compared (e.g., the t test), transitivity is preserved.
That is, in the case of three samples, if their means μi ,
i = 1, 2, 3, are such that μ1 < μ2 and μ2 < μ3, then it
must be the case that μ1 < μ3. However, surprisingly, when
the relative effects are compared, there could be a situation
where p21 > 0.5 (the first sample is stochastically larger
than the second sample) and p13 > 0.5 (the third sample is
stochastically larger than the first sample) do not necessarily
imply p23 > 0.5 (the third sample is stochastically larger
than the second sample). This paradox, often referred to as
nontransitive paradox, can be better understood by way of
an example.

Suppose that there are three fair dice, whose faces have
been modified as follows:

• Die 1 has faces 3,3,4,4,8,8;
• Die 2 has faces 2,2,6,6,7,7;
• Die 3 has faces 1,1,5,5,9,9.

Now, suppose that we are trying to find the best of these
dice, or the one which rolls a higher value most often. A
quick calculation shows that Die 1 rolls a higher value than
Die 2 5/9 times. Similarly, Die 3 beats Die 1 5/9 times.
Finally, Die 2 beats Die 3 5/9 times (see Appendix A). That
is, p21 = p13 = p32 = 5/9, which implies that p21 > 0.5,
p13 > 0.5 and yet p23 = 4/9 < 0.5. The rock-paper-
scissors-like effect causes problems when deciding which
die is the best (in the sense of finding the stochastically
largest die). Unless it is apparent which die must be rolled
against, there is no way of choosing the best die.

Obviously, the above situation is undesirable when
performing pairwise comparisons of multiple samples using
relative effects. Specifically, the above example implies that
nonparametric tests, such as the Mann–Whitney U test that
utilizes relative effects, should not be used for (post hoc)

pairwise comparisons. To understand the problem better,
by viewing the faces of the three dice as observations
from three samples, their estimated relative effects (p̂ij )
are given by p̂21 = p̂13 = p̂32 = 5/9. Now, suppose
that statistically significant stochastic superiority is declared
when p̂ij > 0.55. Then, because 5/9 > 0.55, each pairwise
comparison tells us that the latter die is significantly larger
stochastically, yet they result in contradictory statements
because of the paradox.

However, we can solve the problem by defining relative
effects using a reference distribution. To understand how the
reference distribution works, suppose that we have a second
set of the same three dice in a black box. Now, let us draw
a die at random from the black box and denote its face by
Y . In other words, in this case, Y can be thought of as a
random variable representing the face of an 18-faced fair die
containing all the faces from the three dice. We call this new
die a reference die.

Let us define the relative effect of each die by pi =
Pr(Y < Xi) + 0.5 Pr(Y = Xi), i = 1, 2, 3, where the
comparisons are made to the common reference die. It can
be shown that p1 = p2 = p3 = 1/2, from which it can
be concluded that all the three dice are stochastically equal
to the reference die (see Appendix A). In this situation, the
non-transitivity paradox cannot occur because all the three
dice are compared to the same reference die. That implies
that we can define which die is “larger” decisively by
comparing the values of pi . In addition, the distribution of
the reference die is called the reference distribution, which
will be defined more rigorously in the next section.

The reference distribution

We define the reference distribution by closely following the
notation used in Konietschke et al. (2012). Let Xik indicate
the k-th random variable in the i-th independent sample,
which has ni observations, i = 1, . . . , a, k = 1, . . . , ni , and
let N = ∑a

i=1 ni denote the total number of observations.
Moreover, let Fi(x) = Pr(Xik < x) + 0.5 Pr(Xik = x),
−∞ < x < ∞, be the normalized distribution function for
the i-th sample. In general, we only require that

Xik ∼ Fi, k = 1, . . . , ni,

where Fi are non-degenerate distribution functions. Specif-
ically, we do not require any relationship between the
distributions; that is, some could be exponentially dis-
tributed while others may be normally or even binomially
distributed, for example. Note that this allows us to con-
sider samples which are heteroscedastic, from discrete data,
and/or samples without finite means or variances (e.g.,
Cauchy distribution). We denote the vector of all distribu-
tion functions by F = (F1, . . . , Fa)

′.
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These Fi on their own cannot easily describe differences
among distributions. To describe differences, let G(x) =
1
a

∑a
i=1 Fi(x) be an unweighted mean distribution. By

viewing G as a distribution function, we call the composite
distribution the reference distribution and use it to define
treatment effects,

pi =
∫

GdFi =Pr(Y <Xik)+0.5 Pr(Y =Xik), i =1, . . . , a,

where Xik ∼ Fi and Y ∼ G. If pi < pj , the values from Fi

tend to be smaller than those from Fj . On the other hand,
if pi = pj , neither distribution tends to be smaller or larger
(Noguchi et al., 2012).

As we saw in the previous section, the reference distribu-
tion has many advantages. Most importantly, because every
treatment effect pi refers to the same fixed reference dis-
tribution, there is no risk of paradoxical conclusions of the
kind described in the example above. Furthermore, although
the weighted mean distribution having the distribution func-
tion G̃(x) = 1

N

∑a
i=1 niFi(x) has been used in the past,

use of the unweighted mean distribution is recommended
because it is independent of sample sizes and their alloca-
tions. Thus, the effects pi can be used in the formulation of
null hypotheses because they are model constants (Brunner
et al., 2018; Gao et al., 2008; Konietschke et al., 2012).

Contrast vectors and null hypotheses

Multiple comparisons are made by specifying q contrasts of
interest. A contrast is an a-dimensional vector representing
the coefficients of the parameters to be used for making
comparisons. In general, the contrast vector for the �-th
comparison can be written as c� = (c�1, . . . , c�a)

′, a non-
zero vector such that

∑a
i=1 c�i = 0. Without loss of

generality, we add one more constraint
∑a

i=1 |c�i | = 2 and
describe its advantage in the next section.

To specify the parameters to be used for making
comparisons, let

p :=(p1, . . . , pa)
′ =

(∫
GdF1, . . . ,

∫
GdFa

)′
=
∫

GdF

be a vector of a relative effects. The vector p is then used to
formulate the family of q null hypotheses:

� = {H�
0 : c′

�p = 0, � = 1, . . . , q},
tested against their respective two-tailed alternatives.

In general, the family of hypotheses can be specified
with any set of contrast vectors although, in practice, the
choice of which contrasts to use is tremendously important.
For example, a standard method of comparing multiple
samples is that of all-pairwise comparisons, attributed to

Tukey (Gabriel, 1969). This method includes all the null
hypotheses of the form pi − pj = 0 for all i < j . In
our notation, this is tested using the contrast vectors with
c�i = 1, c�j = −1, and c�u = 0 for u /∈ {i, j}. For
example, if we let i = 1, j = 2, and a = 4 for the �-th
comparison, we have c� = (1, −1, 0, 0)′. Another method,
attributed to Dunnett, compares every treatment to a single,
fixed treatment, usually the control group. Assuming that
the fixed treatment is the first sample, this type of contrast
contains all the null hypotheses of the form p1 − pj = 0
for all j > 1. That is, the corresponding contrast vector for
the �-th comparison have elements whose values are given
by c�1 = 1, c�j = −1 for j = � + 1, and 0 otherwise.

Careful attention should be paid to which contrasts are
chosen. Tukey’s all-pairwise comparisons, while certainly
thorough, can greatly decrease the power of a test as they
may include comparisons not directly of research interest.
On the other hand, Dunnett’s many-to-one comparisons can
result in a far more powerful test; however, they may not
answer every hypothesis of interest. Also, there are many
other ways of defining contrasts depending on specific
research questions. We therefore favor flexible methods
that allow for the use of arbitrary contrast vectors. An
application section at the end of this paper includes an
example of a nontrivial contrast.

It should be noted that the null hypotheses considered
here are valid in the case of heteroscedasticity. This can be
easily seen by exemplifying normally distributed random
variables Xik ∼ N(μi, σ

2
i ), i = 1, . . . , a; k = 1, . . . , ni .

Here, the relative effects can be computed using the
parameters μi , σ 2

i , and the cumulative distribution function
of N(0, 1), �(·), by

pj = 1

a

a∑
i=1

∫
FidFj = 1

a

a∑
i=1

�

⎛
⎜⎝ μj −μi√

σ 2
i +σ 2

j

⎞
⎟⎠, j =1, . . . , a.

Thus, pj = 0.5 and pi = pj hold even under
heteroscedasticity, i.e., σ 2

i �= σ 2
j . Therefore, testing the null

hypotheses H0 : pij = 0.5 or H0 : p1 = · · · = pa are
also known as the nonparametric Behrens–Fisher problem
(Brunner et al., 2018; Konietschke et al., 2012; Brunner
et al., 2002). In general nonparametric models, pi = pj

neither implies that variances or shapes of the underlying
distributions are identical. Statistical methods that do not
rely on the assumption of equal variances are especially
important when the distribution of a statistic under the
alternative hypothesis is important, i.e., for the computation
of confidence intervals. For a general discussion about
heteroscedastic methods and their importance, we refer to
the comprehensive textbook by Wilcox (2017).

Finally, we note that the general definition of a “treatment
effect” depends on the actual research question. Again, the
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effects of interest considered in this paper are formulated in
the sense that different variances (or even higher moments)
across the groups are not considered as a treatment effect. If
no treatment effect is defined in a way that treatments have
no effect on the data, exchangeability of the data may be a
more appropriate definition of a treatment effect (Pesarin,
2001; Calian et al., 2008; Westfall & Troendle, 2008).

Comparing relative effects

When comparing two samples, it is perhaps most intuitive
to consider the difference between their relative effects.
That is, the i-th sample is compared to the j -th sample
by considering pi − pj . However, this simple effect size
may be difficult to interpret because its magnitude is not
directly comparable to the most popular effect size known
as Cohen’s d , which is typically given by dij = (x̄i−x̄j )/sp,
where sp is the pooled standard deviation.

On the other hand, by letting g(x) = k log[x/(1−x)] for
some k > 0, we obtain

glog(pi, pj ) = g(pi) − g(pj ) = k log

[
pi/(1 − pi)

pj /(1 − pj )

]
,

a constant multiple of the log odds (or log odds ratio). As for
the choice of k to make the distribution of glog closest to that
of standard normal, Haley (1952) suggested k = 1/1.702,
which is the most optimal choice in the minimax sense
(Camilli, 1994). Thus, we adopt Haley’s suggestion in this
paper.

The log odds-type effect size is a favorable effect size
as it resembles Cohen’s d . Hasselblad and Hedges (1995)
and Chinn (2000) have noted (with a slightly different
choice of k) that the distribution of dij and glog(pi, pj )

are comparable under the assumption of normality with
homogeneous variances. Therefore, the interpretation of
glog(pi, pj ) in terms of its magnitude may be made by
referring to how it would be interpreted in terms of Cohen’s
d . In fact, an extensive simulation study by Sánchez-Meca
et al. (2003) indicates that the proposed effect size, which is
in fact close to the one suggested in Cox (1970), seems to
perform well under various situations.

Even though the discussion so far has been based
on measuring the difference in the two-sample case, its
generalization is required for the multi-sample case. For
example, when comparing four samples, some may be
interested in making an average comparison of the first
two samples to the last two. That is, the corresponding
null hypothesis assuming the additive effect is given by
H�

0 : (p1+p2)/2−(p3+p4)/2 = 0. To accommodate these
nontrivial cases, we need to define a useful way of obtaining
the effect size expressed in a form of comparing two effects,
as illustrated in Tukey (1991).

To achieve its generalization, firstly, we consider
separating each of the q contrast vectors c�, � = 1, . . . , q,
into the positive and negative parts. Specifically, let c�,1

be a vector such that its i-th element is given by c�,1,i =
max{c�,i , 0}. Similarly, let c�,2 be a vector such that its
i-th element is given by c�,2,i = max{−c�,i , 0}. That
implies that c� = c�,1 − c�,2. Also,

∑a
i=1 c�i = 0 and∑a

i=1 |c�i | = 2 imply that
∑a

i=1 c�,1,i = ∑a
i=1 c�,2,i = 1.

For example, using the average comparison above, for the
contrast vector c� = (1/2, 1/2, −1/2, −1/2)′, we have
c�,1 = (1/2, 1/2, 0, 0)′ and c�,2 = (0, 0, 1/2, 1/2)′.

Let us recall the null hypothesis H�
0 : c′

�p = 0. Using the
notation above, it can be rewritten as H�

0 : c′
�,1p−c′

�,2p = 0.
Moreover, because g is assumed to be strictly increasing,
it is also mathematically equivalent to H�

0 : g(c′
�,1p) −

g(c′
�,2p) = 0, although the latter representation is clearly

preferred as it explicitly specifies the effect g to be
considered. Here, we have obtained a generalization of the
effect size to the multi-sample case given by g�(p) =
g(c′

�,1p) − g(c′
�,2p). As a consequence, the family of

hypotheses we are considering can be more appropriately
written as

�g = {H�
0 : g�(p) = 0, � = 1, . . . , q}.

At the same time, it becomes clear why setting the
constraint

∑a
i=1 |c�i | = 2 is effective. Because that

constraint implies that
∑a

i=1 c�,1,i = ∑a
i=1 c�,2,i = 1,

both c′
�,1p and c′

�,2p can be interpreted as weighted averages
of p1, . . . , pa . That also ensures c′

�,1p ∈ (0, 1) and
c′
�,2p ∈ (0, 1), implying that the generalization works for

any strictly increasing and continuously differentiable g

whose domain is (0, 1).
As an example, let us apply the transformation glog(x) =

k log[x/(1 − x)] to the generalized effect size. Then, we
obtain

glog,�(p) = glog(c′
�,1p) − glog(c′

�,2p) = k log

[
c′
�,1p/(1 − c′

�,1p)

c′
�,2p/(1 − c′

�,2p)

]
.

In real-life situations, because pi are unknown, they are
replaced by their estimators p̂i (see Konietschke et al. 2012
for details). Let the vector of relative effect estimators be
denoted by p̂ = (p̂1, . . . , p̂a)

′. Then, the generalized effect
size estimator is given by g�(p̂).

We note that the effects pi = ∫
GdFi involve all

of the distributions. Thus, the contrast g(pi) − g(pj )

does not only involve the distributions Fi and Fj , but
also all other distributions involved in the experiment.
Therefore, it should always be interpreted as a relative
measure compared to the overall experiment. When the
comparison of specific distributions is strictly of interest,
pairwise defined effects pij = ∫

FidFj may be a better
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choice. These effects, however, may result in nontransitive
conclusions as described above.

Test statistics

Ultimately, we are interested in finding a testing procedure
that addresses each of the q individual null hypotheses
H�

0 : g�(p) = 0, � = 1, . . . , q, where the prespecified error
rate is properly controlled. This type of testing procedure is
called the multiple contrast testing procedure (MCTP). In
this paper, we consider controlling the most common error
rate known as the FWER. The FWER is defined as the
probability of rejecting at least one true null hypothesis.

Even though the Bonferroni adjustment is the most
common method for controlling the FWER, it is known
to be highly conservative, leading to possibly many false
non-rejections (Bender & Lange, 1999). Therefore, we
firstly construct q t-type test statistics which are jointly
approximately multivariate t-distributed, from which we
suggest a much less conservative nonparametric MCTP that
takes the correlation among the test statistics into account.

The construction of the t-type test statistics is done
by an appropriate standardization of the generalized effect
size estimators g�(p̂), � = 1, . . . , q. Let us define a
vector of generalized effect size estimators by g(p̂) =
(g1(p̂), . . . , gq(p̂))′. Then, its standardization can be derived
by applying the multivariate delta method to the statistic√

N(p̂ − p), which is asymptotically multivariate normal
under some mild regularity conditions. In particular, it
can be shown that the statistic

√
N[g(p̂) − g(p)] is

asymptotically multivariate normal with expectation 0 and
some covariance matrix denoted by Vg

N (see Appendix B
for details). In other words, the large-sample distribution of
g(p̂) is approximately multivariate normal with expectation
g(p) and covariance matrix Vg

N/N . Hence, by considering
its marginals, the large-sample distribution of g�(p̂) is
approximately normal with expectation g�(p) and variance
v

g

��/N , where v
g

�� = (Vg
N)��. By standardization, the

asymptotic distribution of
√

N[g�(p̂) − g�(p)]/
√

v
g
�� is

standard normal.
The argument above shows that an appropriate t-type test

statistic for H�
0 is given by

T
g

� =
√

N [g�(p̂)−g�(p)]√
v̂

g
��

,

where we replaced the unknown v
g

�� with its sample
estimator v̂

g
�� in the denominator. Under H�

0 , noting that
g�(p) = 0 and g�(p̂) = g(c′

�,1p̂) − g(c′
�,2p̂),

T
g
� =

√
N [g(c′�,1p̂)−g(c′�,2p̂)]√

v̂
g
��

.

To obtain the critical values and adjusted p-values,
it is necessary to understand the joint distribution of
Tg = (T

g

1 , . . . , T
g
q )′ under the global null hypothesis

H0 : ⋂q

�=1{g�(p) = 0}. In the first step, we consider the
asymptotic joint distribution of Tg . By applying Slutsky’s
theorem, Tg asymptotically follows a multivariate normal
distribution with expectation 0 and correlation matrix Rg ,

where (Rg)�m = v
g
�m/

√
v

g
��v

g
mm. That is, the critical values

and adjusted p-values can be obtained by referring to
such multivariate normal distribution. However, in practice,
because Rg is unknown, it is replaced by its estimator R̂

g
,

where (R̂
g
)�m = v̂

g
�m/

√
v̂

g
��v̂

g
mm.

In reality, the asymptotic results are relevant only when
large samples are available. Therefore, the results from the
previous paragraph are mainly of theoretical interests. At the
same time, because small sample sizes frequently occur in
psychological studies (Szucs & Ioannidis, 2017), it is highly
desirable to have an accurate small-sample approximation
of the joint test statistics Tg , which will be explored in the
next section.

Small-sample approximation, adjusted
p-values values, and simultaneous
confidence intervals

An accurate small-sample approximation of the joint
distribution of the test statistics Tg is essential to obtain
reliable statistical results. Even though the asymptotic
distribution of Tg under H0 is multivariate normal, it is
known that the multivariate normal approximation tends to
produce liberal results, leading to possibly inflated false
rejections. Also, psychological and behavioral data are often
heteroscedastic, as emphasized in Wilcox (2017). Moreover,
it is well known that the rank-transformed observations are
in general heteroscedastic even if the original observations
are homoscedastic (Brunner et al., 1997). Thus, we present
a better approximation which is robust to heteroscedasticity
using the multivariate t-distribution with appropriately
modified degrees of freedom. Using the multivariate t-based
approximation, we discuss how to obtain a critical value
corresponding to a given FWER α, adjusted p-values, and
100(1 − α)% simultaneous confidence intervals (SCIs).

Konietschke et al. (2012) suggested a Box-type approx-
imation (see Box 1954; Brunner et al. 1997; Gao et al.
2008) for accurate small-sample results. Specifically, fol-
lowing their notation, let ω̂2

�i denote the empirical vari-
ances of the variables A�ik = c�i(Ĝ(Xik) − 1

a
F̂i(Xik)) −∑

s �=i c�s
1
a
F̂s(Xik), where Ĝ and F̂ denote the empirically

estimated G and F , respectively (for more details, we refer
to p. 750 of Konietschke et al., 2012). Then, an approxi-
mate small-sample distribution of Tg with g(x) = x under
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Fig. 1 Size of the test by sample size combinations. The dashed line indicates the significance level of 0.05

H0 is given by the q-dimensional t-distribution with expec-
tation 0, the correlation matrix R̂

g
, and degrees of freedom

ν = max{1, min{ν1, . . . , νq}}, where

ν� =
(∑a

i=1 ω̂2
�i/ni

)2

∑a
i=1 ω̂4

�i/[n2
i (ni − 1)] .

For convenience, we denote this distribution t(ν, 0, R̂
g
).

In our case, a slight modification is necessary to
accommodate the cases where g(x) �= x. To do
so, following the idea of Noguchi and Marmolejo-
Ramos (2016), we suggest to replace ν with νg =
max{1, min{νg

1 , . . . , ν
g
q }}, where

ν
g
� =

(∑a
i=1[

∑2
t=1{g′(c′

�,t p̂)}2I (c�,t,i >0)]ω̂2
�i/ni

)2

∑a
i=1[

∑2
t=1{g′(c′

�,t p̂)}4I (c�,t,i >0)]ω̂4
�i/[n2

i (ni −1)] .

Here, I (c�,t,i > 0) = 1 if c�,t,i > 0 and 0 otherwise. As a
remark, when g(x) = x, ν

g
� = ν� because g′(x) = 1.

Using νg , an accurate critical value corresponding to
FWER = α and adjusted p-values can be computed.
Let t1−α,2,νg,R̂

g denote the two-sided equicoordinate (i.e.,
the quantiles in each dimension coincide) 100(1 − α)-
th percentile of t(νg, 0, R̂

g
), which serves as the critical

value. That is, H�
0 is rejected if and only if |T g

� | >

t1−α,2,νg,R̂
g . Moreover, H0 is rejected if and only if

max{|T g

1 |, . . . , |T g
q |} > t1−α,2,νg,R̂

g .
Multiple comparison procedures having above properties

are known as single-step procedures. In other words,
the results for the overall comparison (H0) and specific
contrasts (H�

0 ) can be obtained simultaneously without any
contradiction, unlike the popular procedures done in two
steps. That is, rejection of at least one of H�

0 , � = 1, . . . , q,
automatically implies rejection of H0 (a property known
as coherent), and similarly, rejection of H0 automatically
implies that at least one of H�

0 , � = 1, . . . , q, is rejected (a
property known as consonant) (Gabriel, 1969). Coherence
and consonance are not necessarily guaranteed in the
popular procedures done in two steps, making the proposed
single-step nonparametric MCTP much more interpretable
and practical.

In addition, the adjusted p-values can be computed
directly without relying on the Bonferroni adjustment. In
particular, the adjusted p-value corresponding to H�

0 can
be calculated by finding p� for which t1−p�,2,νg,R̂

g is equal

to the observed value of |T g

� |. The overall adjusted p-
value corresponding to H0 can be calculated by p =
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min{p1, . . . , pq}. Similar to the critical value, H�
0 and H0,

respectively, are rejected if and only if p� < α and p < α.
As a remark, computations of p� and t1−α,2,νg,R̂

g can be
easily done by using the R package mvtnorm (Hothorn
et al., 2008).

We can also use t1−α,2,νg,R̂
g to obtain approximate

100(1 − α)% SCIs for the treatment effects (effect sizes)
g�(p) (see Appendix D for a derivation). Note that,
whereas a traditional 100(1-α)% confidence interval for a
specific g�(p) includes g�(p) 100(1-α)% of the time if the
experiment is performed repeatedly, SCIs must contain the
vector of true population parameters g(p) 100(1-α)% of the
time.

In general, approximate 100(1 − α)% SCIs for the
treatment effects g�(p), � = 1, . . . , q, are given by[
g�(p̂)−t1−α,2,νg,R̂

g

√
v̂

g

��/N, g�(p̂)+t1−α,2,νg,R̂
g

√
v̂

g

��/N

]
.

Simulation study

A simulation study was conducted to compare the sizes and
powers of the nonparametric MCTP with the suggested log
odds-type effect sizes (referred to as “Log Odds” in this
section) to the ones suggested in Konietschke et al. (2012).
These competing methods use g(x) = x without any
additional transformation (referred to as “Student’s t” in this
section) and with Fisher’s z-transformation on c′

�p̂ (referred
to as “Fisher” in this section). All the sizes and powers are
calculated using 10,000 Monte Carlo simulations.

To ensure that the simulation study covers typical cases
frequently encountered in real-life situations, we have a set
of different sample size combinations, distributions, and
four contrasts (i.e., a = 4). The sample size combinations
(n1, n2, n3, n4) are (10, 10, 10, 10), (7, 10, 13, 16), and
(25, 20, 15, 10), covering both equal, increasing, and
decreasing sample size cases. The distributions used were
the normal, (scaled and shifted) Student’s t with 8 degrees of
freedom, lognormal, and scaled beta with a scaling factor of
20, hence covering both symmetric and asymmetric, light-
and heavy-tailed distributions. The means were chosen
in such a way that (μ1, μ2, μ3, μ4) = (10, 10, 10, x)

where x varies from 10 to 13 with an increment of 0.5
while the variances are all set equal to 9. The contrasts
were performed via Tukey’s all-pairwise comparisons and
Dunnett’s many-to-one comparisons with the first sample
being the control group. The FWER is set at α = 0.05.

The results are summarized in graphs for easier
comparisons. Figure 1 shows, via boxplots, the sizes of the
tests corresponding to the cases with (μ1, μ2, μ3, μ4) =
(10, 10, 10, 10). Here, size refers to the probability of
falsely rejecting the global null hypothesis (H0). Based on
the simulations, the Student’s t method tends to be liberal

10.0 10.5 11.0 11.5 12.0 12.5 13.0

Dist:Normal, Means:(10,10,10,x), SDs:(3,3,3,3)
Sample Sizes:(10,10,10,10), Contrast:Tukey

Mean

P
ow

er
 o

f t
he

 T
es

t

0

0.2

0.4

0.6

0.8

1 Fisher
Student’s t
Log Odds

Fig. 2 Power of the test with Tukey’s all-pairwise comparisons

in the equal and increasing sample size combinations while
the Fisher and log odds method seem slightly conservative
for the decreasing sample size combinations. Overall, the
Fisher and log odds methods seem more robust to various
sample size combinations than the Student’s t method.

For the powers of the test, each of the 3 × 4 × 2 = 24
cases is compared using the power curves. Here, power
refers to the probability of correctly rejecting the global
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Fig. 3 Power of the test with Dunnett’s many-to-one comparisons
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Fig. 4 Distribution of PPT scores in the four groups studied in Bocanegra et al. (2015)

null hypothesis (H0). Figures 2 and 3 represent typical
situations. That is, the Fisher and log odds methods have
very similar power curves while Student’s t method appears
to be more powerful. However, the results need to be
interpreted carefully because of the liberal nature of the
Student’s t method. In other words, this phenomenon can be
explained by the contribution of the inflated FWER of the
Student’s t method. All the other results are displayed in the
supplementary material.

Based on the observations above, we may summarize that
the Fisher and log odds methods seem equally reliable and
powerful while the Student’s t method tends to be liberal. As

Table 1 Hypotheses tested for data from Bocanegra et al. (2015)

Comparison Explicit hypothesis and contrast vector

1 H 1
0 : k log

[ {0.5(p1+p2)}/{1−0.5(p1+p2)}
{0.5(p3+p4)}/{1−0.5(p3+p4)}

]
= 0

c1 = (0.5, 0.5, −0.5, −0.5)′

2 H 2
0 : k log

[
p1/(1−p1)
p3/(1−p3)

]
= 0

c2 = (1, 0, −1, 0)′

3 H 3
0 : k log

[
p2/(1−p2)
p4/(1−p4)

]
= 0

c3 = (0, 1, 0, −1)′

4 H 4
0 : k log

[
p1/(1−p1)
p2/(1−p2)

]
= 0

c4 = (1, −1, 0, 0)′

5 H 5
0 : k log

[
p3/(1−p3)
p4/(1−p4)

]
= 0

c5 = (0, 0, 1, −1)′

Note that k = 1/1.702

the log odds method directly calculates easily interpretable
effect sizes, this method may be preferred in practice.

Even though the above simulations were run for
homoscedastic samples, additional simulations were run
for heteroscedastic samples to ensure that the above
observations still hold. The results showed that, indeed, the
Fisher and log odds methods seem equally reliable and
powerful while the Student’s t method tends to be liberal.
All the details can be found in the supplementary material.

As a remark, Marozzi (2016) considered quantifying
the computation error of the sizes and powers calculated
via Monte Carlo simulations of permutation tests. Here,
assuming that the p-values are computed exactly from the
distribution under the null hypothesis, the upper bound
of the root mean squared error (RMSE) of the estimated
power is 0.5/

√
MC, where MC is the number of Monte

Carlo simulations. However, noting that the permutation
tests provide estimated p-values, the actual upper bound is
close to 0.6/

√
MC, i.e., a 20% increase approximately.

In this paper, because the p-values are estimated
via an approximate multivariate t-distribution, we also
expect that the upper bound of the RMSE to be higher
than 0.5/

√
MC. However, because the multivariate t-

distribution is considered quite accurate in approximating
the distribution of Tg under H0 (Brunner et al., 1997;
Konietschke et al., 2012), we postulate that the upper bound
of the RMSE to remain closer to 0.5/

√
MC than 0.6/

√
MC.

A more accurate assessment of the computation error will
be considered in a future study.
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Table 2 Results of the nonparametric MCTP analyses using data from Bocanegra et al. (2015)

Comparison Effect Size Effect Size SCIs Adjusted p-Value

1 −0.851 [−1.122, −0.581] < 0.001

2 −0.819 [−1.251, −0.387] < 0.001

3 −0.948 [−1.377, −0.520] < 0.001

4 0.525 [0.053, 0.997] 0.024

5 0.396 [−0.079, 0.870] 0.126

Real-life application

To illustrate the use of the modified nonparametric
MCTP, we reanalyzed data from a neuropsychological
study. Bocanegra et al. (2015) examined 40 patients with
Parkinson’s disease (PD) to determine whether cognitive
deficits are language- or semantics-specific. Among them,
23 of those participants were diagnosed as not suffering
from any mild cognitive impairment (PD-nMCI) and
17 were diagnosed as suffering some sort of cognitive
impairment (PD-MCI). Each subgroup was matched with
a control group (Control-nMCI and Control-MCI) of equal
sample size, similar average age, average years of education,
and proportional gender ratio (see Table 1 in Bocanegra
et al. 2015). Thus, there were 40 PD patients and 40 control
participants. For our purposes, we label the relative effects
of PD-nMCI, PD-MCI, Control-nMCI, and Control-MCI as
p1, p2, p3, and p4, respectively.

The tests the researchers used to evaluate the semantic
representation of actions and objects were the Kissing and
Dancing Test (KDT) and the Pyramids and Palm trees Test
(PPT). We focus on the data related to the PPT, which
consists of 52 cards showing triplets of images depicting
a cue object-picture (the top image in each card), e.g.,
a pyramid, and two semantically related distractors (two
side-by-side images below the cue object-picture), e.g., a
palm tree and a pine tree. The participants’ task is to
select the picture most related to the cue object-picture
(in the examples above, the correct choice is the palm
tree). Normal cognitive functioning is indicated by correctly
choosing 47 or more of the 52 cards (i.e., 90% of the trials),
while cognitive impairment is reflected in scores lower than
471.

Figure 4 shows the distribution of PPT scores in each of
the four groups. Note that the control groups are highly left-
skewed, and that there are outliers present in the PD groups

1According to a correspondence with one of the authors of the original
study, the PPT was not the key test leading to the conclusions in this
study. However, it is instrumental in assessing semantic representation
of objects and is generally used for evaluating cases of aphasia and
dementia that directly affect language.

at the lower end. Thus, the nonparametric MCTP can be
used to obtain reliable conclusions.

Bocanegra et al. (2015) used the two-tailed Mann–
Whitney U test with a significance level of 0.05 to evaluate
differences between the groups’ adjusted PPT scores. They
performed the following comparisons: 1. PD vs. Control,
2. PD-nMCI vs. Control-nMCI, 3. PD-MCI vs. Control-
MCI, and 4. PD-nMCI vs. PD-MCI. For the first three tests,
they found significant differences with Cohen’s d effect
sizes higher than 1. For the fourth test, they did not find
significant differences.

We applied the nonparametric MCTP with the suggested
log odds-type effect sizes described in this paper to the
same data, and added a fifth comparison not considered
in Bocanegra et al. (2015): 5. Control-nMCI vs. Control-
MCI. Table 1 shows the explicit hypotheses being tested as
well as the contrast vectors used to test the hypotheses. The
statistical results with effect sizes, 95% SCIs, and adjusted
p-values are displayed in Table 2.

For three of the comparisons considered in Bocanegra
et al. (2015) (PD vs. Control, PD-nMCI vs. Control-nMCI,
and PD-MCI vs. Control-MCI), our nonparametric MCTP
also found significant differences at α = 0.05, supporting
their results. We also found a significant difference between
PD-nMCI and PD-MCI, which their analysis did not find,
suggesting a mild effect of MCI when PD patients are
compared. Our fifth comparison did not yield a significant
result, which strengthens the findings of Bocanegra et al.
(2015), in that no difference between control groups would
be expected if no neurological damage is present. In other
words, if this comparison had been significant, then three
of the pairwise comparisons carried out by them (those
involving control groups) could have been influenced by an
unknown factor underlying the control groups.

The effect sizes seen in Table 2 are slightly smaller than
those found in Bocanegra et al. (2015), but this can be
explained by the type of effect size used. Because Cohen’s
d is found using a difference of means, it can be inflated
by outliers, such as those found in the PD groups. On the
other hand, log odds of relative effects are less affected
by these outliers. Still, the effect sizes we found are large
enough to show medium-large effects for all tests which had
statistically significant differences.
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Conclusions

In this paper, we have provided a comprehensive review of
the nonparametric MCTP of Konietschke et al. (2012) and
illustrated the advantages it has over traditional hypothesis
testing procedures. In particular, the nonparametric MCTP
uses an unweighted reference distribution to eliminate the
rock-paper-scissors-like possibility of obtaining paradoxi-
cal, nontransitive results in multiple comparisons. Also, it
provides a strong control of the FWER, allowing researchers
to control the likelihood of type I errors appropriately.
These advantages make the nonparametric MCTP a practi-
cal option for performing multiple comparisons without a
need to make restrictive assumptions on the data.

Another important novel contribution discussed in this
paper is a generalization of the nonparametric MCTP
of Konietschke et al. (2012) to accommodate various
effect size measures. In particular, the log odds-type effect
size can be easily interpreted due to its similarity to
Cohen’s d . We have also derived a reliable small-sample
approximation of the generalized nonparametric MCTP,
which is effective in real-life situations when larger samples
are unavailable. Using that, the calculations of adjusted p-
values and SCIs of effect size measures were discussed.
Furthermore, the generalized nonparametric MCTP also
possesses important theoretical properties of the original
nonparametric MCTP including the strong control of the
FWER, and our simulation study indicates that the power
and robustness of the two are comparable. Finally, our
reanalysis of the neuropsychological study in Bocanegra
et al. (2015) illustrates that the suggested nonparametric
MCTP facilitates a rigorous understanding of multiple
treatment effects. The generalized nonparametric MCTP
with the log odds-type effect sizes is implemented in the
mctp function of the R package nparcomp Version 3.0.

Lastly, recall that the nonparametric MCTPs discussed
in this paper are single-step procedures that take the
correlation among the test statistics into account. Instead of
the single-step procedures, step-down procedures such as
Bonferroni–Holm (Holm, 1979; Pesarin & Salmaso, 2010),
can be considered using the unadjusted p-values. On the
other hand, step-up procedures, e.g., Hochberg (1988), are
often valid only if the joint distribution of the test statistics
is of a certain multivariate order, known as multivariate of
totally positive order two (MTP2). For general contrasts,
the joint distribution of the test statistics does not fulfill
this requirement in general. Nevertheless, the investigation
of step-up procedures and their validity in the general
nonparametric Behrens–Fisher situation will be part of
future research.

Appendix A: Calculation of the relative
effects

The three modified fair dice have the following faces:

• Die 1 has faces 3,3,4,4,8,8;
• Die 2 has faces 2,2,6,6,7,7;
• Die 3 has faces 1,1,5,5,9,9.

To calculate the probability that Die 1 rolls a higher value
than Die 2, it is possible to use the conditional probability
argument. Let Di denote the random variable for the face of
Die i. Then,

p21 = Pr(D2 < D1) + 0.5 Pr(D2 = D1)

=
∑

i∈{2,6,7}
Pr(D2 < D1 | D2 = i) Pr(D2 = i)

= Pr(D1 > 2) Pr(D2 = 2) + Pr(D1 > 6) Pr(D2 = 6)

+ Pr(D1 > 7) Pr(D2 = 7)

= 1

3
+ 1

9
+ 1

9
= 5

9
.

Similar calculations also show that p13 = p32 = 5
9 .

To calculate the relative effect of each die, let us define Die
4 (a “super die”) that has 18 faces. These 18 faces are simply
the faces of the three modified fair dice. Then,

p1 = Pr(D4 < D1) + 0.5 Pr(D4 = D1)

=
9∑

i=1

[Pr(D4 < D1 | D4 = i) Pr(D4 = i)

+0.5 Pr(D4 = D1 | D4 = i) Pr(D4 = i)]

= 1

9

9∑
i=1

Pr(D1 > i) + 1

18

9∑
i=1

Pr(D1 = i)

= 1

9

(
2 × 1 + 2

3
+ 4 × 1

3

)
+ 1

18

(
1

3
+ 1

3
+ 1

3

)

= 12

27
+ 1

18
= 1

2
.

Similar calculations also show that p2 = p3 = 1
2 .

Appendix B: Construction of the covariance
matrix

Konietschke et al. (2012) constructed a nonparametric
MCTP starting from the test statistic

√
N(p̂ − p) whose

corresponding asymptotic covariance matrix is denoted
by VN . We describe how to derive the asymptotic
covariance matrix of

√
N [g(p̂) − g(p)], where g(p̂) =

(g1(p̂), . . . , gq(p̂))′.
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Let gij = ∂gi(p)/∂pj be the entry in the i-th row and j -th
column of ∇g(p), the matrix of gradients. Then, by applying
the multivariate delta method, the asymptotic covariance
matrix of

√
N[g(p̂) − g(p)] is given by

V
g
N = ∇g(p)VN∇g(p)′.

Konietschke et al. (2012) also derived a consistent
estimator for the matrix VN and calls it V̂N . We follow that
convention and say a consistent estimator for V

g
N is

V̂
g

N = ∇g(p̂)V̂N∇g(p̂)′.

A special case we are particularly interested in is when
gi(p) = g(c′

i,1p)−g(c′
i,2p), where g(x) = k log[x/(1−x)].

In that case, the matrix of gradients is given elementwise as
follows:

gij = ∂gi(p)/∂pj

= ∂[g(c′
i,1p) − g(c′

i,2p)]/∂pj

= k

(c′
i,1p)(1 − c′

i,1p)
− k

(c′
i,2p)(1 − c′

i,2p)
.

Appendix C: Asymptotic strong control
of the FWER

The testing family used here is carefully chosen to give an
asymptotic control of the FWER. We start with a lemma by
following Gabriel (1969).

Lemma 1 {�g,Tg} is a joint testing family asymptotically.

Proof As N → ∞, Tg is asymptotically multivariate
normal with mean 0 and correlation matrix Rg as a
consequence of the multivariate delta method with Slutsky’s
theorem. Therefore, the asymptotic joint distribution of Tg

is completely specified under the null hypothesis H0 : ∩q

�=1{g�(p) = 0}. The individual test statistics, T
g

� , each
converge in distribution to a standard normal random
variable, so that the distribution of T

g

� is independent of T
g
m

when � �= m. Thus, given a non-empty J ⊂ I , Tg(J ) =
{T g

� , � ∈ J } is asymptotically completely specified under
the intersection hypothesis H̃ J

0 : ∩�∈J {g�(p) = 0}. This is
exactly the definition of a joint family (Gabriel, 1969) and
completes the proof.

The two-sided equicoordinate 100(1 − α)-th percentile
of the q-dimensional multivariate normal distribution,
Nq(0,Rg), is the value z1−α,2,Rg such that

Pr

(
q⋂

�=1

{−z1−α,2,Rg ≤ X� ≤ z1−α,2,Rg }
)

= 1 − α

for X = (X1, . . . , Xq)′ ∼ Nq(0,Rg). Here, the second sub-
script (‘2’) in z1−α,2,Rg indicates that we are interested in
the two-sided equicoordinate percentile. The computation
of z1−α,2,Rg can be found in Bretz et al. (2001) and Genz
and Bretz (2009).

In general, we do not know the asymptotic correlation
matrix Rg , so we replace it with its estimator R̂

g
. Using that,

we can compute z1−α,2,R̂
g . The triple {�g,Tg, z1−α,2,R̂

g }
now forms what is called an asymptotic STP. We can
formulate the following theorem.

Theorem 1 As N → ∞, the STP {�g,Tg, z1−α,2,R̂
g }

controls the FWER asymptotically in the strong sense.
Moreover, the asymptotic control is exact.

Proof Firstly, the STP {�g,Tg, z1−α,2,Rg } is coherent by
the construction of Tg . Moreover, by the lemma above,
the STP comes from the asymptotically joint testing family
{�g,Tg}. These two conditions suffice the requirements of
Theorem 2 of Gabriel (1969) to show the asymptotic strong
control of the FWER for {�g,Tg, z1−α,2,Rg }. However, we
wish to show that the conditions still hold asymptotically
if we replace the critical value z1−α,2,Rg with z1−α,2,R̂

g .
In other words, now we consider a more realistic STP
{�g,Tg, z1−α,2,R̂

g }.
Since R̂

g
is a consistent estimator of Rg , we have that

(R̂
g − Rg)�m

p−→ 0 for any (�, m). Now, let us consider the
continuous map f (Rg) = z1−α,2,Rg . By continuity of f , we

must also have that f (R̂
g
) − f (Rg)

p−→ 0 as N → ∞. Thus,
z1−α,2,R̂

g is a consistent estimator for z1−α,2,Rg . Therefore,
as N → ∞, the STP {�g,Tg, z1−α,2,R̂

g } asymptotically
controls the FWER in the strong sense by Theorem 2 of
Gabriel (1969). That is, given any non-empty J ⊂ I ,

lim
N→∞ Pr

(⋃
�∈J

{
|T g

� | > z1−α,2,R̂
g

} ∣∣∣ H̃ J
0

)
≤ α.

Also, because

lim
N→∞ Pr

(
q⋃

�=1

{
|T g

� | > z1−α,2,R̂
g

} ∣∣∣∣∣ H0

)
= α,

the asymptotic FWER control is exact.

Appendix D: Computing SCIs
for the treatment effects

As before, we write g�(p) = g(c′
�,1p) − g(c′

�,2p) to denote
the treatment effects, and g�(p̂) = g(c′

�,1p̂) − g(c′
�,2p̂) to

denote the sample treatment effects. In this computation,
we rewrite the statistics T

g

� , � = 1, . . . , q, using their
definition and then solve for the treatment effect. Note that
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the probability is in fact an approximation because we are
using the multivariate t-based approximation.

1−α ≈ Pr

(
q⋂

�=1

{
|T g

� | ≤ t1−α,2,νg,R̂
g

})

= Pr

⎛
⎜⎝

q⋂
�=1

⎧⎪⎨
⎪⎩

√
N |g�(p̂) − g�(p)|√

v̂
g

��

≤ t1−α,2,νg,R̂
g

⎫⎪⎬
⎪⎭

⎞
⎟⎠

= Pr

(
q⋂

�=1

{
|g�(p̂)−g�(p)|≤ t1−α,2,νg,R̂

g

√
v̂

g
��/N

})

= Pr

(
q⋂

�=1

{
g�(p)∈

[
g�(p̂)±t1−α,2,νg,R̂

g

√
v̂

g

��/N

]})
.

Therefore, approximate 100(1 − α)% SCIs for g�(p), � =
1, . . . , q, are given by[
g�(p̂)−t1−α,2,νg,R̂

g

√
v̂

g
��/N, g�(p̂)+t1−α,2,νg,R̂

g

√
v̂

g
��/N

]
.
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