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This study proposes and evaluates a general diagnostic classification model (DCM) for rating scales. We applied the proposed
model to a dataset to compare its performance with traditional DCMs for polytomous items. We also conducted a simulation
study based on the applied study condition in order to evaluate the parameter recovery of the proposed model. The findings
suggest that the proposed model shows promise for (1) accommodating much smaller sample sizes by reducing a large number of
parameters for estimation; (2) obtaining item category response probabilities and individual scores very similar to those from a
traditional saturated model; and (3) providing general item information that is not available in traditional DCMs for polytomous

items.
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Understanding whether an individual possesses certain char-
acteristics or has developed certain behaviors is a common
objective in psychological testing. Recently, the diagnostic
classification model (DCM), a newer type of model that aims
to group individuals according to their possession/
nonpossession of multiple latent traits, has been proposed in
the literature (Rupp, Templin, & Henson, 2010). DCMs have
been mostly discussed and used in the context of dichotomous
items. Example dichotomous DCMs include the deterministic
inputs, noisy “AND” gate (DINA; Haertel, 1989) model, the
generalized DINA model (G-DINA; de la Torre, 2011), and
the log-linear cognitive diagnosis model (LCDM; Henson,
Templin, & Willse, 2009). Only a few DCMs that have been
developed for scoring polytomous items. Examples include
the nominal response diagnostic model (NRDM; Templin,
Henson, Rupp, Jang, & Ahmed, 2008) and its special case:
the partial-credit DINA (PC-DINA; de la Torre, 2010) model.
These polytomous DCMs can score Likert-scale items on a
personality test, constructed-response items on a writing ex-
am, or a multiple-step item on a math test. However, one
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major limitation of the current polytomous DCMs is that those
models usually contain a large number of parameters, and
thus require a large sample size in order to provide stable esti-
mates. For example, the NRDM was recommended to fit with
at least 5,000 individuals in Templin et al. (2008). This type of
sample size is often hard to achieve for a classroom test and
small-scale psychological assessments. If polytomous models
cannot provide stable estimates with smaller sample sizes, a
common compromise is to recode the polytomous item re-
sponses into multiple dichotomous responses (e.g., Drasgow,
1995; Thorpe & Favia, 2012). The results of such recoding
include loss of information and violation of the original score
interpretation in the principled assessment framework.

The purpose of this study was to introduce a new
polytomous DCM, called the rating scale diagnostic model
(RSDM), that contains fewer parameters and thus can accom-
modate smaller sample sizes. Traditional polytomous DCMs
require free estimation of the parameters associated with each
response category of each item. In contrast, the most important
feature of the RSDM is that it allows category threshold param-
eters to be shared across items that measure the same set of
attributes. In this article, we first explain the concept of shared
category threshold parameters and the development of the
RSDM. We then fit the model to an operational dataset, to
compare the parameter estimates and examinee classifications
to those of the NRDM. Next, we conduct a small simulation
study based on the operational study condition, to assess the
parameter recovery of the model. Finally, we discuss the appli-
cation of the model and future research recommendations.
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Background and model development

The model introduced in this study was developed on the basis
of (1) the concept of shared category threshold parameters,
demonstrated in earlier item response theory (IRT) models
(Andrich, 1978; Muraki, 1990), and (2) the approach of
representing multidimensionality through latent classes in
DCMs (Rupp & Templin, 2008; Templin & Hoffman, 2013).

Shared category threshold parameters

Among polytomous IRT models, the modified graded re-
sponse model (MGRM; Muraki, 1990) is an example in which
the category threshold parameters are shared across items. The
MGRM is a special case of the graded response model (GRM;
Samejima, 1969). This study was inspired by the relationship
between these two models.

The GRM is defined as

expld;i(0e=bin))

P(Xizm|0e) =1 expldi(Oc—bin)]” N

with P(X;>0|6,)=1, where i=1, ..., [ index items, m=1,
..., M—1 index category thresholds for M response options,
d;1s a discrimination parameter for item 7, and b;,, is a category
threshold parameter for option m of item i. The MGRM is
defined as

y B exp[di(ee_bi + tm)]
P(X,-_m|9e) T 1+ exp[di(ee—bi + [m)] 7 (2)

where 7, is a category threshold parameter for option m across
all items. Comparing Eq. 1 to Eq. 2, the category threshold
parameter b;,, is decomposed into two components: b; (the
item general location parameter) and ¢, (the threshold param-
eter for category m common to all items). In other words,
instead of freely estimating one parameter at the intersection
of each item and each threshold, the MGRM has only one
parameter for each threshold, and that set of threshold param-
eters is applied to all items. This assumes that the relative
difficulty between steps is held constant across items. For
example, Likert scales with the same response categories
across items (e.g., strongly disagree, disagree, agree, strongly
agree) may naturally have this feature, while other item types
may not.

One benefit of using models with shared threshold param-
eters is the requirement for smaller sample sizes, because such
models require estimation of fewer parameters than their
equivalent models with freely estimated threshold parameters.
For a 20-item test with five response options, the GRM re-
quires the free estimation of 20 x 4 = 80 threshold parameters,
whereas the MGRM requires only 20 + 4 =24 threshold
parameters.

In addition to the MGRM, other polytomous IRT models
have the feature of shared threshold parameters. For example,
the relationship between the partial-credit model (PCM;
Masters, 1982) and the rating scale model (RSM; Andrich,
1978) is similar to that between the GRM and the MGRM.
With the PCM, the threshold parameters may vary across
items. In contrast, the threshold parameters in the RSM are
shared across all items.

Model development

Here we will first introduce the current polytomous DCMs,
and then we will present how we apply constraints of the
shared thresholds in the NRDM.

The NRDM, PC-DINA, and the SG-DINA can accommo-
date both nominal and ordered response items. All three
models can be equivalent when certain constraints apply
(Ma & de la Torre, 2016). The PC-DINA builds on the binary
DINA model, whereas both the NRDM and SG-DINA build
on the binary LCDM. SG-DINA adds a processing function to
the NRDM, so that each step category within an item can
measure different latent traits, whereas the NRDM cannot.
We developed the RSDM, in which parameter constraints
are applied to the NRDM, although the processing function
in SG-DINA can also easily be applied to the RSDM, if
desired.

Let k=1, ..., K index latent traits, commonly called
attributes in DCM studies. The individuals in latent class ¢
have an attribute profile a.={«;, ..., ag}. The NRDM is

defined as
exp |:)\0,i,m + )\th(ac, qi)}
POY; = mla) = —— - G
m:Oexp |:A0«,1'-,m + )‘i.mh(ac‘v ql):|
where )‘iT,mh(ac,qz‘) = ZIIS:IAU-,/C,W! (Oéc.,qu‘,k) +Z/IZ}

K .
k/:K+1)\2.,i‘k.,k’Jn (acﬁkac‘k/qi,kqi‘kl) +.... InEq. 3, A, i m 18

the intercept for category m in item i; A; ,, is a vector of
coefficients representing the attribute effects on responding
to category m in item #; and h(c,, q,) is a set of linear combi-
nation of . and q; defined by the Q-matrix (Tatsuoka, 1983).
The Q-matrix is an item-by-attribute incidence matrix in
which an entry ¢; , equals 1 if item i measures attribute £,
and 0 otherwise. Note that each parameter has a subscript “7,
m,” meaning that the parameter is freely estimated at the in-
tersection of each item and each category threshold, for the
intercept, main effects, and higher order effects.

We propose the RSDM, which can be expressed as a
constrained version of the NRDM, analogous to the descrip-
tion of the MRGM as a constrained version of the GRM.
However, because the NRDM is a multidimensional model,
we cannot assume that one set of shared category parameters
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can be applied to all the items. Instead, we propose to fix the
category threshold parameter (also known as the step param-
eter) for each dimension. The dimensions in DCMs are repre-
sented by latent classes (i.e., different attribute combinations).
In other words, we propose to constrain the step parameters of
items measuring the same set of attributes.

Table 1 presents an example Q-matrix capturing the rela-
tionship between 12 items and three attributes. In this exam-
ple, Items 1 and 2 are both measuring «;, and Items 7 and 8
are measuring the same set of attributes «; and «,. In the
RSDM, the step parameters for Items 1 and 2 are constrained
to be the same, and the step parameters for Items 7 and 8 are
constrained to be the same. Let v=1, ..., Vindex attribute
combinations. We can capture the information of which items
measure which attribute combinations in an item-by-attribute-
set matrix, called a W-matrix. Table 2 is a W-matrix obtained
from Table 1. In a W-matrix, w;, equals 1 if item i measures
attribute combination v, and 0 otherwise. By definition, there
is only one entry of “1” in each row for each item i. The
benefit of utilizing the W-matrix is that we can assign step
parameters to each attribute set (v) instead of each item (7).
Utilizing the W-matrix, the RSDM is defined as

P(X; = m|o) = (4)
exp {/\O,i + ZX:] )\O.m,vwiv + ()\1 + Z\‘//zl }‘i,m,vwiv) Th(acs qz)}

Z,}:téexp |:A0J' + z\‘//:l)‘().m.vwiv + (A, + Z“;/:]Ai‘m‘vwiv) Th(acv qz)] ’

where (A, + Z“)/:l)\i,m,vwiv) Th(aw qi) = Zle ()‘U, k+

ZX:I)‘IMVWZ'V) (ac,k‘]i,k) + ZII;} f:KH (Az,,‘yk,k’ +ZX:1
A2 mWiv) (O Jha ql-_kql,‘k«).... In the RSDM, we set four

constraints for identifiability purposes. First, we avoid an in-
finite number of solutions by adopting Thissen’s (1991) ap-
proach, in which the parameters for the first category in an
item are fixed to 0, such that

AOJ + Z\‘;/:lAOm:O,vWiv = OVZ;

)\17i,k + Zrzl)\l,m:O,vWiv = OVI, k>

Mk F I Xm0 Wiy = OV K, K

and for all higher-order interactions. Second, the possession of
more attributes monotonically increases the log-odds of the
probability of a higher response category. In the RSDM, we

constrain the main and interaction effect parameters to be
greater than 0, such that

AlJ,k + Z\‘;/:])\l,m,vinEOVka m,v,
Mk F I A Wi =0k, K m, v,
and for all higher-order interactions. Third, individuals with-

out associated attributes have a higher or at least an equal log-
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Table 1 An example Q-matrix
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odds of the probability selecting a lower rather than a higher
response category. We achieve this by constraining the inter-
cept parameters of a lower category larger than its adjacent
higher category for a given attribute set v, such that

Vv Vv
Zv:l >\0‘m,vwiv > Zv:l )\0,m+1 ,vWivvv~

Fourth, when an individual possesses the associated attri-
butes, selecting a higher response category on the items
should increase or at least be equal to the log-odds of the
probability of selecting its adjacent lower response category,
such that

Vv %
Zv:l )\z,mjvwiv szzl Az,m*l,vwlvvva z>1.

where z indicates the level of effect (i.e., 0 for an intercept, 1

for a main effect, 2 for two-way interactions, etc.).
Comparing the RSDM in Eq. 4 to the NRDM in Eq. 3, we

can see that the intercept parameter \g_; ,, is decomposed into

Table 2 The W-matrix developed from the Q-matrix in Table 1
Item Vi V2 V3 V12 V2.3 V13
1 1 0 0 0 0 0
2 1 0 0 0 0 0
3 0 1 0 0 0 0
4 0 1 0 0 0 0
5 0 0 1 0 0 0
6 0 0 1 0 0 0
7 0 0 0 1 0 0
8 0 0 0 1 0 0
9 0 0 0 0 1 0
10 0 0 0 0 1 0
11 0 0 0 0 0 1
12 0 0 0 0 0 1




Behav Res (2020) 52:422-439

425

Ao, ; (an item general location parameter for the intercept) and
21‘;/:1 Ao,myWiv (a threshold parameter for category m common
to the items measuring attribute set v). The parameters for the
main effects and the interaction effects are also similarly
decomposed into those two parts.

Let us discuss the parameter more closely by supposing
that each item has five response options (e.g., never, rarely,
sometimes, often, and always). The NRDM requires the esti-
mation of a total of 180 parameters, although some constraints
are applied to the model estimation. The breakdown of each
type of parameter (i.e., the intercept, main effect, and interac-
tion effect) is shown in Table 3. In contrast, The RSDM re-
quires the estimation of a total of 108 parameters, whose
breakdown is shown in Table 4. Comparing Table 4 to
Table 3, the major difference is that even-numbered items
share the category threshold parameters with the odd-
numbered items that measure the same attribute set. For ex-
ample, Items 1 and 2 share eight parameters: four threshold
parameters for the intercept, and four for the main effect.
Similarly, Items 7 and 8 share 16 parameters: four threshold
parameters for the intercept, eight for the main effect, and four
for the interaction effect. This approach reduces the total num-
ber of parameters by 40%. In this example, the same attribute
set is only measured by two items. Therefore, each set of
category threshold parameters is only shared between two
items. If more items are added, a set of category threshold
parameters can be shared across more than two items, which
saves even more parameters as compared to the NRDM.

In practice, the RSDM is most useful when the sample size
is limited, because it is a simpler model than the NRDM, while
containing all the possible attribute effects. One could also
replace its binary core (the LCDM) with other models, such
as the compensatory reparametrized unified model (Hartz,
2002; by removing all the interactions) or the DINA model

Table 3 Number of parameters in the NRDM: Assigning step
parameters to each item

Item Intercept Main Effect Interaction Total
1 5 5 0 10

2 5 5 0 10

3 5 5 0 10

4 5 5 0 10

5 5 5 0 10

6 5 5 0 10

7 5 10 5 20

8 5 10 5 20

9 5 10 5 20
10 5 10 5 20
11 5 10 5 20
12 5 10 5 20
Total 60 90 30 180

Table 4 Number of parameters in the RSDM: Assigning step
parameters to each attribute set

Item Intercept Main Effect Interaction Total
G T G T G T

1 1 4 1 4 0 0 12

2 1 * 1 * 0 0

3 1 4 1 4 0 0 12

4 1 * 1 * 0 0

5 1 4 1 4 0 0 12

6 1 * 1 * 0 0

7 1 4 2 8 1 4 24

9 1 4 2 8 1 4 24

10 1 * 2 * 1 &

11 1 4 2 8 1 4 24

12 1 * 2 * 1 *

Total 36 54 18 108

“G” represents general item location parameters, and “T” represents cat-
egory threshold parameters. “*” indicates that the cell shares the same set
of parameters with the cell in the row above

(by keeping only higher-order interactions). However, like
earlier IRT models with similar shared category parameter
constraints, the RSDM is only applicable when the response
categories are identical across items (e.g., Likert scales).

Operational study

The purpose of this operational study was to compare the
calibrations of the same dataset under the RSDM and the
NRDM. We compared parameter estimates, attribute-level
and profile-level individual classifications, and the marginal
probability of possession of each attribute between the two
models.

Data

The dataset used in this study came from the International
Critical Thinking and International Communication
Attitudes and Beliefs Survey, accessed via the Learning
Without Borders project at the University of Florida. In the
questionnaire, four items were intended to measure intercul-
tural critical-thinking competence (referred to hereafter as crit-
ical thinking), and four items were intended to measure inter-
cultural communication competence (referred to hereafter as
communication). The item stems asked about the degree to
which the respondent believed that he or she could perform
certain critical thinking or communication tasks, allowing re-
sponses of Strongly disagree, Disagree, Neutral, Agree, and
Strongly agree. We obtained 318 individuals’ responses to the
eight items, and display the frequencies associated with each
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response option on each item in Table 5. The sample size and
test length in this study were limited and not perfect, because
we purposefully utilized this opportunity to test the boundaries
of'the data used in DCM modeling. As is discussed in Templin
and Bradshaw (2013), DCM models trade the precision of
locating individuals on one continuum with binary classifica-
tions of multiple traits, which could lead to higher reliability
estimates. Similar test length can be seen in studies such as
Jurich and Bradshaw (2014) in which four or fewer items were
used to measure each attribute.

Analysis

We used Markov chain Monte Carlo (MCMC) algorithms to
estimate the RSDM and NRDM parameters. The algorithms
were implemented in Stan (Carpenter et al., 2016). For each
model, we ran two Markov chains with 6,000 iterations in
total. The first 1,000 in each chain were used for the burn-in
and discarded from the analysis, leaving us with 4,000 draws
from the assumed stationary distribution for model parameter
inference. To assess the convergence of parameters, we used
the multivariate version of the Gelman—Rubin convergence
statistic R (Brooks & Gelman, 1998; Gelman & Rubin,
1992). A commonly used benchmark is to declare conver-
gence if R< 1.1 (Junker, Patz, & VanHoudnos, 2016). In
both models, all the R values were smaller than 1.02, suggest-
ing convergence to the stationary distribution.

For the estimation of the RSDM, we used priors of N(0, 20)
for each item parameter and Dirichlet(2) for each attribute
profile, similar to Liu and Jiang (2018). These priors are con-
sidered less informative and have been recommended in
similar DCM studies, such as Chen, Culpepper, Chen, and
Douglas (2018) and Jiang and Carter (2018). For the model
constraints, we successfully implemented the first constraint
as described in the model. For the second constraint, we

constrained both the item general location parameter and the
category threshold parameter to be positive, such that

Ak =>0VE,

v
zvzl >‘1 myWiy Z Ovmv V.

Note that this is more restrictive than the original second
constraint, but we applied this constraint in the present form
due to the limitations of the Stan syntax. For the third and
fourth constraints, we used pseudo-step parameters in the syn-
tax, such that

Aem=1Vz,m =1

!

A = { Nemct + Xops oo A Ay Ve > 1 b
with the constraints /\;)7,,1 <0Vm and )\;_m >0Vz>1, m. For esti-
mation of the NRDM, we planned to implement the same set
of constraints and succeeded in implementing the first, third,
and fourth constraints. However, we failed to apply the second
constraint to the NRDM with this dataset. Although the model
was able to converge with the second constraint, the parame-
ters were not interpretable and label switching problems were
prevalent in the results [e.g., 90% of individuals were classi-
fied into the (0, 0) group]. We hypothesized that the estimation
problem with the NRDM was associated with the sample size,
because the NRDM was recommended for a much larger sam-
ple size in Templin et al. (2008). As a result, we fitted the
NRDM without the second constraint. Fortunately, the main
effects the parameters remained positive. To confirm our re-
sults, we obtained parameter estimates of the NRDM in the
“CDM” (Robitzsch, Kiefer, George, & Uenlue, 2018) and
“GDINA” (Ma & de la Torre, 2018) R packages. The results
from the two packages were aligned with our estimation of the
NRDM without the second constraint.

For evaluation of the model fit, we used the leave-one-out
cross-validation (LOO) method, which is designed for

Table 5 Item data used for the operational study
Item Dimension Strongly Disagree Disagree Neutral Agree Strongly Agree
1. I am able to think critically to interpret Critical Thinking 25 (7.86%) 25(7.86%) 40 (12.58%) 162 (50.94%) 66 (20.75%)

global and intercultural issues

2. T actively learn about different
cultural norms

3. I can recognize how different cultures
solve problems

4.1 am able to recognize how members of
other cultures make decisions

Critical Thinking 18 (5.66%)
Critical Thinking 20 (6.29%)

Critical Thinking 23 (7.23%)

59 (18.55%) 67 (21.07%) 96 (30.19%) 78 (24.53%)

44 (13.84%) 68 (21.38%) 161 (50.63%) 25 (7.86%)

30 (9.43%) 51(16.04%) 99 (31.13%) 115 (36.16%)

5. T am able to interact effectively with Communication 12 (3.77%) 50 (15.72%) 118 (37.11%) 121 (38.05%) 17 (5.35%)
members of other cultures

6. 1 can adapt to different cultural environments Communication 18 (5.66%) 82 (25.79%) 90 (28.30%) 89 (27.99%) 39 (12.26%)

7.1 am able to communicate effectively Communication 19 (5.97%) 57 (17.92%) 77 (24.21%) 131 (41.19%) 34 (10.69%)
with members of other cultures

8. I can clearly articulate my point of view Communication 16 (5.03%) 70 (22.01%) 122 (38.36%) 86 (27.04%) 24 (7.55%)

to members of other cultures
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evaluating the predictive accuracy of a Bayesian model with
simulated parameter values (Gelman, Hwang, & Vehtari,
2014; Vehtari, Gelman, & Gabry, 2017; Yao, Vehtari,
Simpson, & Gelman, 2018). As was pointed out in Vehtari
et al., the LOO has many advantages over traditional simpler
indices, such as the Akaike information criterion (AIC),
Bayesian information criterion (BIC), and deviance informa-
tion criterion (DIC). In this study, we implemented the Pareto-
smoothed importance-sampling algorithm (Vehtari et al.,
2017) to compute the LOO, and report the expected log pre-
dictive density (ELPD) and LOO information criterion
(LOOIC) for both the RSDM and the NRDM. The ELPD is
computed as

EPLD = Y°¥ | logp(y,|y-,), (6)

where p(y| v—) = | (] )p(6] y_)d8 is the leave-one-out pre-
dictive density given the dataset without data point x (Vehtari
et al., 2017). The LOOIC is =2 = EPLD.

Results

Model fit We estimated 32 item parameters for the RSDM and
64 item parameters for the NRDM. The RSDM displayed a fit
with ELPD = — 117.7, LOOIC = 235.5, and the NRDM
displayed a fit with ELPD = — 86.3, LOOIC = 172.5. The
estimated difference of the expected LOOs between the two
models was 31.5, with a standard error of 36.4, indicating that
the NRDM did not fit the data significantly better than the
RSDM. In practice, applied researchers would most likely
consider moving forward with the RSDM, because it is much
more parsimonious. For this study, we will continue compar-
ing other aspects between the two models.

Item parameters Table 6 lists the parameter estimates and
associated standard errors for the RSDM. Note that the step
parameters associated with the same dimension were shared
across items. Specifically, Items 1 to 4 shared one set of step
parameters; Items 5 to 8 share another set of step parameters.
Table 7 lists the parameter estimates and associated standard
errors for the NRDM. In both tables, we report pseudo-step
parameters, indicated as \'. One could simply add the pseudo-
step parameters in order to obtain the real parameters. For
example, the )Xo ,-3 in the RSDM equals to
Aom=1 + /\;)7,,,:2 + Agese and the Aoim—z = Aoimoi+
)‘:),i,m:2 + )‘;),i‘m:?a' A notable difference between the two
models is that we were able to obtain a general intercept
parameter )\, ; and a general main effect parameter A, ;
for each item under the RSDM. A larger )\, ; indicates
that, at large, a person without associated attributes is
more likely to select a higher response category on an
item. For example, Item 2 is easier to endorse than Item
1 when an individual does not possess the attribute critical

Table 6 RSDM: Item parameter estimates and standard errors for the operational study

=4

)‘l,m

3

>‘I m

=2

)‘l‘m

)\l,m

W

=4

3

2

)‘O.m

1

)‘0, m

Ao, i

>\0,m

/\O,m

1.897 (0.009)  3.239 (0.026) 10.630 (0.301)

16.589 (0.278)

*

16.180 (0.263)
16.117 (0.277)
15.936 (0.262)
15.715 (0.260)
15.885 (0.266)
16.015 (0.276)
15.548 (0.258)
16.131 (0.274)

~0.759 (0.006)  —2.186(0.025)  — 11.222 (0.301)

—6.767 (0.416)

k

6.660 (0.415)
7.190 (0.417)
7.033 (0.418)
6.819 (0.413)
7.771 (0.296)
7.244 (0.297)
7.174 (0.298)
7.417 (0.297)

Item 1
Item 2
Ttem 3
Ttem 4
Item 5
Item 6
Item 7
Item 8

x

*

%

%k

—1.712(0.012)  —2.810(0.041) 16.197 (0.264) 1.710 (0.006) 1.898 (0.012) 1.506 (0.041)
3k

—0.728 (0.005)

—6.692 (0.298)

*

*

*

*

*

“#> indicates that the values in this cell are equivalent to those in the cell in the row above
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NRDM: Item parameter estimates and standard errors for the operational study

Table 7

1,im=4

1,i,m=3

2

)\l,i,m

1

)\l, i,m

—4

0,i,m

3

0,i,m=

=2

0,i,m

1

)‘0, im

11.852 (0.357)
6.204 (0.402)
10.779 (0.261)
5.767 (0.355)

3.452 (0.075)
14.422 (0.294)
1.437 (0.020)
15.783 (0.259)
0.738 (0.017)

4.000 (0.029)
2.787 (0.013)

16.422 (0.265)
17.623 (0.267)
18.281 (0.262)
16.490 (0.262)
17.654 (0.253)
18.391 (0.248)
17.491 (0.262)
17.353 (0.254)

—12.724 (0.357)
— 6413 (0.402)
~ 12597 (0.261)
—5.611 (0.355)
~ 12.865 (0.347)
~ 6.452 (0.350)
— 6.081 (0.346)
—6.773 (0.272)

— 1.634 (0.075)
~13.922 (0.293)
~0.395 (0.018)
— 14.694 (0.259)
~0.633 (0.016)
~14.925 (0.268)
~13.173 (0.289)
~9.752 (0.274)

—0.540 (0.008)
—1.621 (0.013)
—0.466 (0.010)
~0.456 (0.007)
~0.462 (0.011)
~0.703 (0.010)
~ 1.167 (0.011)
~0.732 (0.009)

~0.062 (0.006)
0.815 (0.007)
0.115 (0.007)
0.148 (0.007)
0.823 (0.008)
0.567 (0.007)
0.620 (0.006)
0.717 (0.008)

Item 1

Item 2
Item 3
Item 4
Item 5

1.393 (0.013)
7.171 (0.439)

10.952 (0.346)
5621 (0.351)
4.724 (0.346)
8.117 (0.272)

1.945 (0.014)
1.087 (0.014)
2.256 (0.014)

15.113 (0.268)
13.867 (0.289)
9.536 (0.273)

Item 6
Item 7
Item 8

1.766 (0.011)

thinking. A larger \; ; indicates that possessing the re-
quired attributes for an item has a larger effect on selecting
a higher response category on that item. In the NRDM,
instead, we were only able to obtain parameters for each
response category.

Category response probabilities It may be difficult to eyeball
the probabilities of responding to each category from
Tables 6 and 7 and tell the differences between the two
models. Therefore, we plotted the category response
curves for all the eight items in Fig. 1. In each plot, the
response categories are on the x-axis, and the probability
of selecting a response option is on the y-axis. The results
from the RSDM are displayed with dashed lines, and
those from the NRDM are displayed with solid lines.
Each line with circles represents the probability of
selecting a response option for an attribute possessor.
Each line with triangles represents the probability of
selecting a response option for an attribute nonpossessor.
The plots from the RSDM and NRDM look similar over-
all, meaning that they would produce similar individual
classification results.

Profile and attribute possession agreement Table 8 displays
estimates of the attribute prevalence of the two models.
Each value represents the probability of an individual
having an attribute profile at large (Templin & Hoffman,
2013). From Table 8, we can see that the probabilities of
having each attribute profile were very similar between
the two models. Therefore, we moved on to investigate
the actual individual classification agreement between the
two models. Table 9 shows a cross-classification count of
individuals in each profile assigned by the two models. In
all, 93.4% of individuals (i.e., 297 out of 318) were
assigned the same attribute profile by both models, with
a Cohen’s kappa of .87. Table 10 shows the cross-
classification agreement between the two models at the
attribute level. The agreement was 98.1% (with a
Cohen’s kappa of .94) and 95.3% (with a Cohen’s kappa
of .87) for critical thinking and communication, respec-
tively. According to Landis and Koch (1977), Cohen’s
kappa values higher than .81 suggest almost perfect agree-
ment. For those 21 disagreements, we also examined the
individual response patterns and found that most of the
classifications provided by the RSDM probably make
more sense intuitively. For example, on Items 5-8, which
all measure communication, two individuals’ response
patterns were (2,2,2,4) and (2,2,4,2), respectively. The
NRDM assigned both individuals with possession of com-
munication, and the RSDM assigned both individuals a
nonpossession status. Considering that this is a five-
option scale, the RSDM results are probably intuitively
easier to understand.
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Px=m|a

Item 1

RSDM NRDM
Px=m|a=0) Y, . -
) Q- -0

SD: Strongly Disagree
D: Disagree

N: Neutral

A: Agree

SA: Strongly Agree

Item 2

Fig. 1 Category response curves under the RSDM and NRDM

We also examined individuals’ marginal probabilities
of possession for each attribute between the two models.
Those probabilities, known as continuous scores (Liu,
Qian, Luo, & Woo, 2017), are displayed in Fig. 2. We
computed the root-mean-square deviation between the
continuous scores from two models and found that the
differences were very small: .098 for critical thinking,
and .118 for communication.

Table 8  Attribute prevalence estimates under the RSDM and NRDM
for the operational study

Profile RSDM NRDM
(0, 0) 137 135
1,0) 076 072
0, 1) 052 077
1,1 734 717

Simulation study

The preceding operational study informed us that the RSDM
performed similarly to the NRDM in terms of model fit, cate-
gory response probabilities, attribute and profile classifications,

Table 9  Profile possession agreement between the RSDM and NRDM
for the operational study

NRDM RSDM
0, 0) (1,0) 0, 1) (1, 1)
0, 0) 42 (13.2%) 0 1(0.3%) 0
(1, 0) 0 28 (8.8%) 0 5 (1.6%)
0, 1) 1 (0.3%) 0 21 (6.6%) 6 (1.9%)
(L1 0 8 (2.5%) 0 206 (64.8%)

Note: The total number of profile agreement between the two models was
297 (93.4%)
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Table 10  Attribute possession agreement between the RSDM and
NRDM for the operational study

NRDM RSDM
a;=0 a; =1
a;=0 65 (20.4%) 6 (1.9%)
ar=1 0 247 (77.7%)
ar,=0 ar=1
;=0 70 (22.0%) 6 (1.9%)
ar=1 9 (2.8%) 233 (73.3%)

The total agreement scores between the two models for «v; and o, were
312 (98.1%) and 303 (95.3%), respectively

and continuous scores. However, the RSDM is much
more parsimonious than the NRDM and offers additional
information about the overall item properties. The pur-
pose of the simulation study was to investigate whether
the RSDM can produce unbiased parameter estimates
and correctly classify individuals under the applied study
condition.

Method

We generated 100 datasets in R (R Core Team, 2018) using
the parameter values obtained from the applied study.
Specifically, the data-generating item parameters are listed
in Table 6. A total of 500 individuals were generated for
each dataset from a multinomial distribution with proba-
bilities of (.137, .076, .052, .734) for the four attribute
profiles (0, 0), (1, 0), (0, 1), and (1, 1), respectively. This
distribution was obtained from the attribute prevalence in
the applied study. The item and person parameters were
submitted to the RSDM in order to compute the probability
of scoring each response category on each item for each
individual. We then drew a random number from the mul-
tinomial distribution of the response category probabilities
for each item and individual to serve as the individual’s
item response. Then we examined the average proportion
of individuals in each response category across the 100

1.00
= ° @
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z
2
$0.75
3 8
= (-
<
%50.50
e
§ @
] (-]
0
30.25
2
"g (-] o (-]
o (-]
0.00 ‘oo 8

0.00 1.00

0.25 0.50 0.75
Continuous Scores of A1 under the RSDM
Fig. 2 Continuous scores under the RSDM and NRDM
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Continuous Scores of A2 under the NRDM

datasets and ensured that our simulated datasets mirror
the applied dataset.

We then fit the RSDM to each dataset using the same Stan
code and MCMC specifications as for the applied study. To
assess parameter recovery, we computed the bias and root-
mean square error (RMSE) for each item parameter and attri-
bute prevalence estimate. The formulas for computing bias and
RMSE are presented as follows, where x is a parameter, e(x) is
the true (simulated) value of parameter x, and é,(x) is the rth
replicate estimate of parameter x among R = 100 replications:

R

> [er(x)-e)]
Bias(x) =~ = R ) (7)
RMSE (x) = \/ﬁ él {ér(x)—ebc)r. (8)

To assess classification accuracy, we computed the percent-
age of agreement between the true and estimated classifica-
tions on each attribute in each dataset.

Results

Table 11 displays the bias and RMSE of each item parameter.
The majority of the parameters displayed bias around 0 and
RMSE below .9. However, we found larger bias and RMSE
on the intercept and main effect parameters of the m =3 and
m =4 categories of the first attribute and of the m =4 category
of the second attribute. We hypothesized that two things might
relate to the larger bias and RMSE of the step parameters at
extreme locations. First, the way we specified the pseudo-step
parameters could have added uncertainty to the estimation of
parameters at a higher threshold. For
/\l,m:4,v = /\l,m:l,v + Xl’mzzﬁv + )\,17,,,:3"‘, + /\/1,,,,:47VVV-

Unlike scoring m = 1, where the logit is a direct function of A;,

m=1. the logit of scoring m =4 is a function of the four com-
ponents listed above. We would expect that estimation of

example,
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8 .
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Table 11 Bias and RMSE of estimated item parameters for the RSDM in the simulation study

Item-Specific General Intercept Parameters

Ao, 1 Ao, 2 Ao, 3 Ao, 4 Ao, 5 Ao, 6 Ao, 7 Ao, 8
Bias —0.040 -0.072 —0.062 —-0.076 0.098 0.038 0.056 0.029
RMSE  0.632 0.778 0.726 0.772 0.541 0.360 0.471 0.221

Item-Specific General Main Effect Parameters

AL A1 2 AL s At 4 ALs Al s AL 7 A1 g
Bias 0.024 —0.115 -0.077 0.086 0.065 —-0.052 0.077 -0.114
RMSE 0.179 0.705 0.777 0.716 0.611 0.430 0.681 0.807

Category Threshold Intercept Parameters

>\07m=14v] /\O.m:Z,\q )\O,m:lvl /\O.m:4,v1 >\0,m=17v2 )\O,m:Z.vg )\O,m:lvz )‘O.m:4.vz
Bias —0.041 —0.004 0.553 0.834 0.195 0.014 0.028 0.837
RMSE 0.775 0.175 1.144 1.129 0.920 0.151 0.334 1.603

Category Threshold Main Effect Parameters

Al‘m:l i /\l ,m=2,v; >\l‘m:3.v| /\l ,m=4v; )\l‘m:l.vz /\l m=2,v >\]‘m:3.v2 /\l m=4
Bias -0.015 0.024 0.551 0.836 —0.168 0.021 0.024 0.841
RMSE 0.442 0.231 1.139 1.129 0.412 0.194 0.351 1.602
parameters at a higher threshold might have less precision. Discussion

Second, estimation of the step parameters of extreme categories
might also be less precise, similar to the “outward bias” issue
documented with estimations of unidimensional rating scale
models (Huggins-Manley, Algina, & Zhou, 2018; Samejima,
1973). Both of these studies showed that “outward bias” direct-
ly relates to the free estimations of item discrimination param-
eters associated with the unidimensional models. In the RSDM,
the main effect parameters, which are conceptually similar to
discrimination parameters, are freely estimated. Therefore, we
hypothesized that this might also be a contributing factor to the
larger bias and RMSE for the step parameters of extreme
categories.

Table 12 shows the bias and RMSE of estimated attribute
prevalence. The bias and RMSE were both .01 or smaller. This
means that the estimated distribution of the individual attribute
profiles was almost identical to the true distribution. Table 13
presents the classification accuracy results at the attribute and
profile levels. The means for the rows are all around .99,
meaning that the RSDM was able to accurately recover indi-
viduals’ attributes under the conditions in this study.

Table 12  Bias and RMSE of estimated attribute prevalence for the
RSDM in the simulation study

0,0) 1,0) 0, 1) a,n
Bias —-.002 .001 .008 —-.007
RMSE .006 .009 .010 .010

DCMs can be very useful in psychological rating scales. For
example, responses on a Myers—Briggs type indicator (MBTI;
Myers & Myers, 1980) questionnaire could be scored using a
DCM with four dichotomous attributes through which indi-
viduals are assigned with one of the 16 possible attribute pro-
files (e.g., ENTJ: extraversion, intuition, thinking, and judg-
ing) through a retrofitting process (Liu, Huggins-Manley, &
Bulut, 2018). However, traditional DCMs for polytomous
item responses require a very large sample size that is hardly
attainable for either research or assessment practice in daily
life. The RSDM proposed in this study requires a much small-
er sample size, making the application of DCMs to rating
scales in commonplace tests possible.

The RSDM was developed as a constrained version of the
NRDM, built on the practices of sharing category threshold
parameters (Andrich, 1978; Muraki, 1990) and representing
dimensions with latent classes in DCMs (Rupp & Templin,
2008; Templin & Hoffiman, 2013). The simulation study dem-
onstrated that the RSDM was able to recover parameters and

Table 13 Descriptive statistics of attribute and profile classification
accuracy for the RSDM in the simulation study

Min Mean Max SD
Attribute 1 .983 .996 1.000 .003
Attribute 2 973 .990 1.000 .005
Profile .970 .987 1.000 .006
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Table 14  Relationship between current DCMs for polytomous item data

Polytomous Features

Type of item data
Model extension method

Both nominal and ordinal
Divide-by-total approach

Ordinal only

Cumulative approach Divide-by-total approach

Corresponding reduced DCM The LCDM NRDM P-LCDM ORDM
for binary item data GDM GPDM MORDM
SG-DINA RSDM
The DINA model (a special PC-DINA DINA-GD N/A

case of the LCDM)

correctly classify individuals under an applied condition.
Although we witnessed larger bias and RMSE for category
threshold parameters at extreme locations, the estimated attri-
bute profile distribution and attribute classifications were al-
most ideal. The applied study showed that the RSDM produced
very similar item category response probabilities and individual
scores with the NRDM. In addition to its 50% smaller model
size, the RSDM also offered general item information through
an overall intercept and an overall main effect for each item,
which is not available in traditional DCMs for polytomous
items. Practitioners may find this information useful for item
revision, reporting, and score interpretation.

Through the positive results of both the simulation and
applied studies, we believe that the RSDM holds promise
for scoring rating scale data in psychological tests. A major
limitation of the present study is that the findings are couched
within the applied study condition; therefore, we encourage
future research to investigate conditions that may impact the
performance of the RSDM. The following topics may be of
particular interest to the applicability of the RSDM. First, in-
vestigating the parameter recovery of the RSDM under vari-
ous sample size conditions. We fitted the RSDM to an opera-
tional dataset with 500 individuals and obtained acceptable
parameter recovery and excellent classification accuracy. It
would be helpful to know the performance of the RSDM with
other smaller and bigger sample sizes. Second, examining the
impact of the Q-matrix complexity on the RSDM. We fitted
the RSDM to a two-dimensional single-structured dataset.
However, it is not uncommon to have a complex-structured
dataset especially under the educational assessment setting.
We hypothesize that if the number of dimensions increases
while other things remain equal, the performance of the
RSDM is likely to be even closer to the NRDM. This is be-
cause increasing the number of dimensions essentially in-
creases the number of v. If each item has its own v, the
RSDM will be equivalent to the NRDM in which the category
threshold parameters of each item are freely estimated. Third,
examining the identifiability of the RSDM. Comparing to
scoring dichotomous item responses, scoring polytomous
item responses requires an increase in the number of parame-
ters in the models. Although the RSDM reduces the total
number of parameters, it would be helpful to investigate the

@ Springer

necessary conditions for identifiability, similar to Gu and Xu
(2018) and Xu and Zhang (2016). Fourth, incorporating attri-
bute structure (i.e., the possession sequence of attributes) into
the RSDM could further simplify the structural part of the
model (see Liu, 2018; Liu & Huggins-Manley, 2016; Liu,
Huggins-Manley, & Bradshaw, 2017). Fifth, exploring the
impact of the agreement/disagreement of the category thresh-
old distances among items that measure the same set of attri-
butes could assist practitioners with future applications of the
RSDM. As we described in the Model Development section ,
the RSDM is built on the concept that the relative distances
between steps are held constant across all items within the
same dimension. Although we acknowledge that the relative
distances cannot be perfectly identical, it is helpful to explore
the robustness of the model against the distance discrepancy.

This final recommendation, for future research on the effect
of constant category threshold distances, a unique feature of the
RSDM, brings up a final point of discussion for this study. We
will briefly compare ten DCMs that are currently capable of
handling polytomous item responses, to point out where the
RSDM sits in the big picture. These models are (1) the
NRDM, (2) the PC-DINA, (3) the general diagnostic model
(GDM,; von Davier, 2005), (4) the polytomous log-linear cog-
nitive diagnosis model (P-LCDM; Hansen, 2013), (5) the se-
quential G-DINA model (SG-DINA; Ma & de la Torre, 2016),
(6) the DINA model for graded data (DINA-GD; Tu et al.,
2017), (7) the general polytomous diagnosis model (GPDM,;
Chen & de la Torre, 2018), (8) the ordinal response diagnostic
model (ORDM; Liu & Jiang, 2018), (9) the modified ordinal
response diagnostic model (MORDM,; Liu & Jiang, 2018), and
(10) the RSDM. We categorize the ten models in Table 14, on
the basis of their reduced binary models and polytomous exten-
sion features. Eight of the models can be reduced to the LCDM
if there are only two response options, whereas PC-DINA and
DINA-GD can be reduced to the DINA model. Since the DINA
model is a special case of the LCDM, all eight of the LCDM-
based models can be easily reduced to DINA-based models.
Four models (i.e., the NRDM, the GDM, the SG-DINA, and
the PC-DINA) can handle both nominal and ordinal item data,
whereas the other six models, including the RSDM, incorporate
the ordinal feature of item responses into the models, and thus
can only handle ordinal item data. Among the six ordinal
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. PI 1,1,11=0;
DCMs, three of them (i.e., the P-LCDM, the GPDM, and the PI$2E {2 11 % —0:
DINA-GD) utilize the cumulative approach in which we mod- PTmat[3,1,1]=0;
el the probability of selecting a particular response option and PImat[4,1,1]1=0;
all higher ones, given respondents’ attribute profile. The other i imai {‘2' 1' % % :8"
. ma r Ly =Uy
three models (i.c., the ORDM, the MORDM, and the RSDM) PImat[7,1,1]=0;
utilize the divide-by-total approach, in which we model the PImat[8,1,11=0;
ratio of selecting a particular response option divided by the
sum of these values across all response options. gimai E’ 3' ﬂ :8"
ma rér =U;
To conclude, although polytomous DCMs have been de- PImat[3,2,1]=0;
veloped and applied to psychological tests (e.g., Templin & PImat[4,2,1]1=0;
Henson, 2006), the majority of model development and appli- PImat[5,2,1]=0;
cations of DCMs are thriving in educational testing scenarios. Eiﬁzz {S’ 3’ 1 % 28
We hope that the RSDM can be useful for classifying individ- PImat[8 : 2 : 11=0
uals on psychological rating scales such as personality tests
and diagnostics of behavioral/mental disorders. PImat[1l,3,1]=0;
PImat[2,3,1]=0;
PImat[3,3,11=0;
.. PImat[4,3,1]1=0;
Appendix: Stan code for the RSDM PTmat[5. 3, 1]=0s
PImat[6,3,1]1=0;
data{ PImat[7,3,1]1=0;
int Np; PImat[8,3,1]1=0;
int Ni;
int Nc; PImat[1l,4,1]1=0;
int Ns; PImat([2,4,1]1=0;
int Y[Np, Nil; PImat([3,4,1]=0;
} PImat[4,4,1]1=0;
parameters{ PImat[5,4,1]=0;
simplex[Nc] Vc; PImat[6,4,1]=0;
real<lower=0> 11 1 ; PImat([7,4,1]=0;
real<lower=0> 12 1 ; PImat[8,4,1]1=0;
real<lower=0> 13 1 ;
real<lower=0> 14 1 ; PImat[1,1,2]=(11 0)-steplDlI;
real<lower=0> 15 1 ; PImat[2,1,2]=(12 0)-steplDlI;
real<lower=0> 16 1 ; PImat[3,1,2]=(13 0)-steplDlI;
real<lower=0> 17 1 ; PImat([4,1,2]=(14 0)-steplDlI;
real<lower=0> 18 1 ; PImat([5,1,2]=(15 0)-steplD2I;
real 11 0 ; PImat[6,1,2]=(16_0)-steplD2I;
real 12 0 ; PImat([7,1,2]=(17 _0)-steplD2I;
real 13_0 ; PImat[8,1,2]=(18 0)-steplD2I;
real 14 0 ;
real 15 0 ; PImat[1,1,3]=(11 0)-steplDlI-step2DlI;
real 16 0 ; PImat[2,1,3]=(12 0)-steplDlI-step2DlI;
real 17 0 ; -
real 18 0 ;

real<loaer:0> steplDl1I;

real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>
real<lower=0>

}

step2Dl1I;
step3D1I;
step4DlI;
steplD2I;
step2D2I;
step3D2I;
stepd4D2I;
steplD1M;
step2D1M;
step3D1M;
stepd4D1M;
steplD2M;
step2D2M;
step3D2M;
step4D2M;

transformed parameters{
vector[Ns] PImat[Ni, Nc];
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PImat([3,1,3]=(13 0)-steplDlI-step2DlI;

PImat([4,1,3]=(14 0)-steplDlI-step2DlI;

PImat[5,1,3]=(15 0)-steplD2I-step2D2I;

PImat[6,1,3]=(16 0)-steplD2I-step2D2I;

PImat([7,1,3]=(17 0)-steplD2I-step2D2I;

PImat([8,1,3]=(18 0)-steplD2I-step2D2I;

PImat[1l,1,4]=(11 0)-steplDlI-step2DlI-step3D1I;
PImat([2,1,4]=(12 0)-steplDlI-step2DlI-step3DlI;
PImat([3,1,4]=(13 0)-steplDlI-step2DlI-step3DlI;
PImat([4,1,4]=(14 0)-steplDlI-step2DlI-step3DlI;
PImat([5,1,4]=(15 0)-steplD2I-step2D2I-step3D2I;
PImat[6,1,4]=(16_0)-steplD2I-step2D2I-step3D2I;
PImat([7,1,4]=(17 0)-steplD2I-step2D2I-step3D2I;
PImat([8,1,4]=(18 0)-steplD2I-step2D2I-step3D2I;
PImat([1,1,5]=(11 0)-steplDlI-step2DlI-step3DlI-step4DlI;
PImat([2,1,5]=(12 0)-steplDlI-step2DlI-step3DlI-step4DlI;
PImat([3,1,5]=(13 0)-steplDlI-step2DlI-step3DlI-step4DlI;
PImat([4,1,5]=(14 0)-steplDlI-step2DlI-step3DlI-step4DlI;
PImat([5,1,5]=(15 0)-steplD2I-step2D2I-step3D2I-stepdD2I;
PImat[6,1,5]=(16 0)-steplD2I-step2D2I-step3D2I-stepdD2I;
PImat([7,1,5]=(17 0)-steplD2I-step2D2I-step3D2I-step4D2I;
PImat([8,1,5]=(18 0)-steplD2I-step2D2I-step3D2I-stepdD2I;
PImat([1,2,2]=(11 0+11 1)-steplDlI+steplDlM;
PImat([2,2,2]=(12 0+12 1)-steplDlI+steplDl1M;
PImat([3,2,2]=(13 0+13 1)-steplDlI+steplDlM;
PImat([4,2,2]=(14 0+14 1)-steplDlI+steplDlM;
PImat([5,2,2]=(15 0)-steplD2I;
PImat([6,2,2]=(16_0)-steplD2I;
PImat([7,2,2]=(17_0)-steplD2I;

PImat([8,2,2]=(18 0)-steplD2I;

PImat([1,2,3]=(11 0+11 1)-steplDlI-step2DlI+steplDlM+step2DlM;
PImat[2,2,3]=(12 0+12 1)-steplDlI-step2DlI+steplDIM+step2DlM;
PImat[3,2,3]=(13 0+13 1)-steplDlI-step2DlI+steplDlM+step2D1M;
PImat

=(16 0)-steplD2I-step2D2I;
17 0)-steplD2I-step2D2I;
)

18 0)-steplD2I-step2D2I;

31=(

31=(

31=(13_ _

3]=(14 _0+14 1)-steplDlI-step2DlI+steplDIM+step2Dl1M;
3]=(15 0)-steplD2I-step2D2I;

31=(

31=(

31=(

PImat([1,2,4]=(11 0+11 1)-steplDlI-step2DlI-
step3DlI+steplDIM+step2D1M+step3DIM;
PImat([2,2,4]=(12 0+12 1)-steplDlI-step2DlI-
step3D1lI+steplDlM+step2D1lM+step3D1M;
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PImat[3,2,4]=(13 0+13 1)-steplDlI-step2DlI-
step3D1lI+steplDlM+step2D1lM+step3D1M;
PImat[4,2,4]=(14 0+14 1)-steplDlI-step2DlI-
step3DlI+steplDIM+step2D1M+step3D1M;
PImat([5,2,4]=(15 0)-steplD2I-step2D2I-step3D2I;
PImat[6,2,4]=(16_0)-steplD2I-step2D2I-step3D2I;
PImat([7,2,4]=(17 _0)-steplD2I-step2D2I-step3D2I;
PImat([8,2,4]=(18 0)-steplD2I-step2D2I-step3D2I;

PImat[1l,2,5]=(11 0+11 1)-steplDlI-step2DlI-
step3DlI+steplDIM+step2D1M+step3DIM-step4DlI+step4D1M;
PImat[2,2,5]=(12 0+12 1)-steplDlI-step2DlI-
step3DlI+steplDlM+step2D1M+step3DIM-step4D1lI+step4D1M;
PImat([3,2,5]=(13 0+13 1)-steplDlI-step2DlI-
step3D1lI+steplDIM+step2D1M+step3DIM-step4D1lI+step4D1M;
PImat[4,2,5]=(14 0+14 1)-steplDlI-step2DlI-
step3DlI+steplDIM+step2D1lM+step3DIM-step4DlI+step4D1M;
PImat([5,2,5]=(15 0)-steplD2I-step2D2I-step3D2I-stepdD2I;
PImat([6,2,5]=(16_0)-steplD2I-step2D2I-step3D2I-stepdD2I;
PImat([7,2,5]=(17_0)-steplD2I-step2D2I-step3D2I-stepdD2I;
PImat([8,2,5]=(18 0)-steplD2I-step2D2I-step3D2I-stepdD2I;

PImat([1l,3,2]=(11 0)-steplDlI;

PImat([2,3,2]=(12 0)-steplDlI;

PImat[3,3,2]=(13_0)-steplDlI;

PImat([4,3,2]=(14 0)-steplDlI;
PImat[5,3,2]=(15 0+15 1)-steplD2I+steplD2M;
PImat([6,3,2]=(16 _0+16 1)-steplD2I+steplD2M;
PImat[7,3,2]=(17 0+17 1)-steplD2I+steplD2M;
PImat([8,3,2]=(18 0+18 1)-steplD2I+steplD2M;

PImat([1,3,3]=(11 0)-steplDlI-step2DlI;

PImat([2,3,3]=(12 0)-steplDlI-step2DlI;

PImat[3,3,3]=(13 0)-steplDlI-step2DlI;

PImat([4,3,3]=(14 0)-steplDlI-step2DlI;
PImat[5,3,3]=(15 0+15 1)-steplD2I+steplD2M-step2D2I+step2D2M;
PImat([6,3,3]=(16 0+16 1)-steplD2I+steplD2M-step2D2I+step2D2M;
PImat([7,3,3]=(17 0+17 1)-steplD2I+steplD2M-step2D2I+step2D2M;
PImat[8,3,3]=(18 0+18 1)-steplD2I+steplD2M-step2D2I+step2D2M;
PImat([1,3,4]=(11 0)-steplDlI-step2DlI-step3DlI;
PImat([2,3,4]=(12 0)-steplDlI-step2DlI-step3DlI;
PImat[3,3,4]=(13 0)-steplDlI-step2DlI-step3D1I;
PImat([4,3,4]=(14 0)-steplDlI-step2DlI-step3DlI;

PImat[S,3,4]:(15:O+15_1)—step1D2I+Step1D2M—step2D2I+step2D2M—
step3D2I+step3D2M;
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PImat([6,3,4]=(16 0+16 1)-steplD2I+steplD2M-step2D2I+step2D2M-
step3D2I+step3D2M;
PImat[7,3,4]=(17 0+17 1)-steplD2I+steplD2M-step2D2I+step2D2M-
step3D2I+step3D2M;
PImat([8,3,4]=(18 0+18 1)-steplD2I+steplD2M-step2D2I+step2D2M-
step3D2I+step3D2M;

PImat[1l,3,5]=(11 0)-steplDlI-step2DlI-step3DlI-stepdDlI;
PImat([2,3,5]=(12 0)-steplDlI-step2DlI-step3DlI-step4DlI;
PImat([3,3,5]=(13 0)-steplDlI-step2DlI-step3DlI-step4DlI;
PImat([4,3,5]=(14 0)-steplDlI-step2DlI-step3DlI-step4DlI;

PImat([5,3,5]=(15 0+15 1)-steplD2I+steplD2M-step2D2I+step2D2M-
step3D2I+step3D2M-step4D2I+step4D2M;
PImat[6,3,5]=(16 _0+16 1)-steplD2I+steplD2M-step2D2I+step2D2M-
step3D2I+step3D2M-step4D2I+step4D2M;
PImat([7,3,5]=(17 0+17 1)-steplD2I+steplD2M-step2D2I+step2D2M-
step3D2I+step3D2M-stepdD2I+stepdD2M;
PImat[8,3,5]=(18 0+18 1)-steplD2I+steplD2M-step2D2I+step2D2M-
step3D2I+step3D2M-stepd4D2I+step4D2M;

PImat([1,4,2]=(11 0+11 1)-steplDlI+steplDlM;
PImat[2,4,2]=(12 0+12 1)-steplDlI+steplDIM;
PImat([3,4,2]=(13 0+13 1)-steplDlI+steplDlM;
PImat([4,4,2]=(14 0+14 1)-steplDlI+steplDlM;
PImat([5,4,2]=(15 0+15 1)-steplD2I+steplD2M;
PImat([6,4,2]=(16 _0+16 1)-steplD2I+steplD2M;
PImat([7,4,2]=(17 _0+17 1)-steplD2I+steplD2M;
PImat([8,4,2]=(18 0+18 1)-steplD2I+steplD2M;
PImat([1,4,3]=(11 0+11 1)-steplDlI+steplDlM-step2DlI+step2DlM;
PImat([2,4,3]=(12 0+12 1)-steplDlI+steplDlM-step2DlI+step2D1M;
PImat([3,4,3]=(13 0+13 1)-steplDlI+steplDlM-step2DlI+step2D1M;
PImat([4,4,3]=(14 0+14 1)-steplDlI+steplDlM-step2DlI+step2DlM;
PImat([5,4,3]=(15 0+15 1)-steplD2I+steplD2M-step2D2I+step2D2M;
PImat[6,4,3]=(16 0+16 1)-steplD2I+steplD2M-step2D2I+step2D2M;
PImat([7,4,3]=(17 0+17 1)-steplD2I+steplD2M-step2D2I+step2D2M;
[8,4,3]=( )

18 0+18 1)-steplD2I+steplD2M-step2D2I+step2D2M;

PImat([1,4,4]=(11 0+11 1)-steplDlI+steplDlM-step2DlI+step2DlM-
step3D1I+step3D1M;
PImat[2,4,4]=(12 0+12 1)-steplDlI+steplDIM-step2DlI+step2DI1M-
step3D1lI+step3D1M;
PImat([3,4,4]=(13 0+13 1)-steplDlI+steplDlM-step2DlI+step2Dl1M-
step3D1lI+step3DlM;
PImat([4,4,4]=(14 0+14 1)-steplDlI+steplDlM-step2DlI+step2DlM-
step3D1lI+step3D1M;
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PImat[5,4,4]=(15 0+15 1)-steplD2I+steplD2M-step2D2I+step2D2M-
step3D2I+step3D2M;
PImat([6,4,4]=(16_0+16 1)-steplD2I+steplD2M-step2D2I+step2D2M-
step3D2I+step3D2M;
PImat([7,4,4]=(17 0+17 1)-steplD2I+steplD2M-step2D2I+step2D2M-
step3D2I+step3D2M;
PImat([8,4,4]=(18 0+18 1)-steplD2I+steplD2M-step2D2I+step2D2M-
step3D2I+step3D2M;

PImat[1,4,5]=(11 0+11 1)-steplDlI+steplDIM-step2DlI+step2DI1M-

step3DlI+step3DIM-step4DlI+step4D1M;

PImat([2,4,5]=(12 0+12 1)-steplDlI+steplDlM-step2DlI+step2DlM-

step3D1lI+step3DlM-step4DlI+step4D1M;

PImat([3,4,5]=(13 0+13 1)-steplDlI+steplDlM-step2DlI+step2DlM-

step3D1lI+step3DIM-step4DlI+step4DIM;

PImat([4,4,5]=(14 0+14 1)-steplDlI+steplDlM-step2DlI+step2DlM-

step3DlI+step3DIlM-step4DlI+step4D1M;

PImat([5,4,5]=(15 0+15 1)-steplD2I+steplD2M-step2D2I+step2D2M-

step3D2I+step3D2M-stepdD2I+stepdD2M;

PImat[6,4,5]=(16_0+16 1)-steplD2I+steplD2M-step2D2I+step2D2M-

step3D2I+step3D2M-step4D2I+step4D2M;

PImat([7,4,5]=(17 0+17 1)-steplD2I+steplD2M-step2D2I+step2D2M-

step3D2I+step3D2M-stepdD2I+stepdD2M;

PImat([8,4,5]=(18 0+18 1)-steplD2I+steplD2M-step2D2I+step2D2M-

step3D2I+step3D2M-stepd4D2I+step4D2M;

}

model {

vector [Nc] contributionsC;

vector [Ni] contributionsI;

//Prior

11 1~normal (0, 20)

12 1~normal (0, 20)

13 1~normal (0,20);

14 1~normal (0,20);
( )
( )
( )
( )

’

’

’

15:1~normal 0,20
16 _1~normal (0,20
17 1~normal (0,20
18 1~normal (0,20

’

’

’

0,20)
0,20)
0720);
0120);

)

)

)

)

11 O~normal ;
12 O~normal ;
13 O~normal
14 O~normal
15 O~normal
16 _0O~normal
17 O~normal

18 O~normal

’

’

0,20
0,20
0,20
0,20

’

’

’
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steplDlI~normal (0,20)
step2DlI~normal (0,20)
step3DlI~normal (0, 20)
step4DlI~normal (0,20)
steplD2I~normal (0, 20)
step2D2I~normal (0,20)
step3D2I~normal (0,20);
step4D2I~normal (0,20);
( )
( )
( )
( )
( )
( )
( )

’

’

’

’

’

’

’

steplD1lM~normal (0,20
step2D1lM~normal (0,20
step3D1M~normal (0,20
step4D1M~normal (0,20
steplD2M~normal (0,20
step2D2M~normal (0,20
step3D2M~normal (0,20
step4D2M~normal (0, 20) ;

’

’

’

’

7

’

Vc~dirichlet (rep vector (2.0, Nc));

//Likelihood

for (iterp in 1:Np) {
for (iterc in 1:Nc) {
for (iteri in 1:Ni) {

contributionsI[iteri]= categorical lpmf(Y[iterp,iteri]+1]
softmax (((PImat[iteri,iterc]))));

}

contributionsC[iterc]=log(Vc[iterc])+sum(contributionsI);

}

target+=log sum exp (contributionsC);

}
}
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