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Abstract
Most common analysis tools for the detection of differential item functioning (DIF) in item response theory are restricted
to the use of single covariates. If several variables have to be considered, the respective method is repeated independently
for each variable. We propose a regularization approach based on the lasso principle for the detection of uniform DIF. It is
applicable to a broad range of polytomous item response models with the generalized partial credit model as the most general
case. A joint model is specified where the possible DIF effects for all items and all covariates are explicitly parameterized.
The model is estimated using a penalized likelihood approach that automatically detects DIF effects and provides trait
estimates that correct for the detected DIF effects from different covariates simultaneously. The approach is evaluated by
means of several simulation studies. An application is presented using data from the children’s depression inventory.
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Introduction

Whenever items are found that show different endorsement
probabilities with respect to certain characteristics of
participants with the same ability, this phenomenon
is termed differential item functioning (DIF). Several
procedures exist to detect DIF in dichotomous and
polytomous items with respect to a single, categorical
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covariate.1 Among the most frequently used procedures for
dichotomous items are the Mantel–Haenszel test (Mantel &
Haenszel, 1959; Mantel, 1963; Holland & Thayer, 1988),
the likelihood-ratio test (Thissen et al., 1993), and logistic
regression (Swaminathan & Rogers, 1990; Zumbo, 1999).
For polytomous items, Choi et al. (2011) proposed a hybrid
approach that combines models from item response theory
(IRT) and the method of logistic regression to identify DIF.
Welch and Hoover (1993) and Chang et al. (1996) published
earlier approaches on DIF in polytomous items.

The approach presented in this article overcomes several
limitations of the DIF methods proposed in the literature.
First, it works for dichotomous as well as polytomous items.
Second, it allows researchers to include several covariates of
potentially mixed scale levels simultaneously. Technically,
it extends the idea proposed by Tutz and Schauberger (2015)
where DIF detection in Rasch models is translated into a
parameter selection problem. In their model, DIF effects
are represented by parameters and L1 penalties are used
for variable selection. Such a model-based approach has the
advantages that the number of DIF-inducing covariates is
not limited and that both metric and categorical covariates

1Many approaches restrict the covariate to be binary.
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can be used simultaneously. A simultaneous treatment
of several covariates becomes important in multicollinear
situations, where applying a method repeatedly to different
variables is not appropriate. Also, if one is interested
in latent trait estimates that are corrected for possible
DIF effects, simultaneous treatment of several variables is
necessary. Current methods are only able to correct for DIF
induced by one single variable. At the end of the manuscript,
we present an application to data from the Children’s
Depression Inventory (Kovacs, 2004) as an example for
possible cases where corrected trait estimates might replace
sum scores when applying established scales in clinical
psychology.

While the approach of Tutz and Schauberger (2015)
is restricted to DIF detection based on the Rasch model
for dichotomous items, the current work aims at the more
general generalized partial credit model (GPCM) proposed
by Muraki (1992). Therefore, their approach is generalized
both to polytomous items and to the incorporation of
different item discrimination parameters.

In addition, as Penfield (2007) and Penfield et al. (2009)
pointed out, DIF analysis in polytomous settings can also
suffer from the phenomenon of differential step functioning
(DSF). DSF implies differences at the level of each step of a
polytomous item with respect to different covariate values.

Komboz et al. (2018) proposed an alternative to
conventional test procedures using recursive partitioning
to detect DIF and DSF for polytomous items. The big
advantage of recursive partitioning is that it allows to
include metric covariates without the need to discretize
them beforehand. Instead, the splits in the variables are
found to be data-driven. Also, the method allows to include
several covariates simultaneously. After all, the focus of
the approach is somewhat different because it attempts
to find groups of persons where DIF is present while
our approach will focus on the detection of DIF items.
Bollmann et al. (2018) also proposed a tree-based approach,
but here for each item where DIF is detected a separate
tree is built. In both cases, no differing discrimination
parameters across items are allowed.

The paper is structured as follows. In Section “The
generalized partial credit model and its special cases”
we introduce IRT models which fit into the GPCM
class. In Section “A DIF model for generalized partial
credit models” we develop our regularization-based DIF
approach for this general model class, which we call
GPCMlasso. Subsequently, we give details on the penalized
likelihood approach for parameter estimation, including the
determination of the optimal tuning parameter and posterior
trait estimation. Section “Simulation study” compares the
GPCMlasso to alternative DIF methods by means of several
simulation studies. Finally, in Section “Application to youth
depression data”, the method is applied to data from the

Children’s Depression Inventory (CDI). The GPCMlasso
approach is implemented in an R package (R Core Team,
2018) of the same name, available from the CRAN
repository.

The generalized partial credit model
and its special cases

Let us formally introduce the GPCM as the most general
model to be considered in our DIF approach. Let Ypi ∈
{0, 1, . . . , ki} denote the response of person p, p ∈
{1, . . . , P }, to item i, i ∈ {1, . . . , I }. Each item i can differ
with respect to the number of response categories ki . Then,
the GPCM can be denoted by

log

(
P(Ypi = r)

P (Ypi = r − 1)

)
=βi(θp − δir ), r =1, . . . , ki . (1)

The model consists of three different types of parameters:
the trait parameters θp, the item step parameters δir , and
the item discrimination parameters βi . The trait parameters
θp measure the latent trait one wants to capture with the
items and scales the persons with respect to that trait. In
contrast, δir and βi characterize the different items: δir

(r = 1, . . . , ki) is the location of step r in item i, whereas
βi denotes the discrimination of item i.

The model needs two restrictions to be identifiable,
one for location and one for scale. Commonly, for the
person/trait parameters θp the assumption of a normal
distribution is made. This assumption will later be used
to estimate the model via marginal maximum likelihood
(MML) estimation. To ensure identifiability, for the sequel
of the paper we will assume θp ∼ N(0, 1).

All further models considered in this paper can be seen
as special cases of the GPCM. For example, the GPCM
simplifies to the partial credit model (PCM) as proposed
by Masters (1982) if all discrimination parameters are
restricted to be equal, β1 = . . . = βI = β. Here, one
assumes that all items share an exactly equal discriminatory
power.

For polytomous items, alternatively the rating scale
model (RSM; Andrich 1978) and, in case of item-specific
discrimination parameters, the generalized rating scale
model (GRSM; Muraki 1990) can be chosen. Both RSM
and GRSM are restricted to the case of equal numbers of
response categories across all items where k1, = . . . = kI =
k. In addition, as opposed to the (G)PCM, the differences
between coefficients for adjacent steps in the items are
restricted to be equal. Therefore, the restriction δir − δis =
δi∗r − δi∗s for i, i∗ ∈ {1, . . . , I } and r, s ∈ {1, . . . , k}
holds. In particular, one typically uses the parameterization
δir = δi + αr to formulate the RSM. Analogously to the
GPCM, the GRSM evolves from the RSM if one allows for
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item-specific discrimination parameters. It can be denoted
by

log

(
P(Ypi = r)

P (Ypi = r − 1)

)
=βi(θp − δi − αr), r =1, . . . , k.

For the GRSM, another identifiability issue arises because
the item location parameters δi and the step parameters αr

are only identified up to a constant. Therefore, the additional
restriction α1 = 0 is imposed.

In the most simple case of dichotomous items (k =
1), both the RSM and the PCM automatically simplify to
the Rasch model (RM). Again, the generalized RSM/PCM
versions with item-specific discrimination parameters lead
to the two-parameter logistic model (2-PL; Birnbaum
1968).

log

(
P(Ypi = 1)

P (Ypi = 0)

)
= βi(θp − δi)

What follows is the introduction of a general method for
DIF detection in GPCMs. For notation, we will always use
this most general model class. Nevertheless, by applying
any of the restrictions described above, the method is
applicable to all models we presented in this section.

ADIFmodel for generalized partial credit
models

The starting point of our elaborations is the model proposed
in Tutz and Schauberger (2015) that parameterizes DIF
effects in Rasch models. Applying the notation of this work
and considering our restriction θp ∼ N(0, 1), the model can
be written as

log

(
P(Ypi = 1)

P (Ypi = 0)

)
= β(θp − δi − xT

pγ i ), (2)

where xp is an m-dimensional covariate vector of person p,
and γ i an m-dimensional (item-specific) parameter vector.
The idea of the model is to have parameters representing
DIF instead of examining DIF with various testing
approaches. The corresponding parameters γ i represent
DIF if they are unequal to zero after lasso regularization. For
example, if for gender the respective γ parameter is unequal
to zero for a specific item, this represents different item
difficulties for males and females (assuming equal abilities).
In total, m× I additional parameters are introduced, each of
them representing DIF for a specific item-covariate pair.

The idea of parameterizing DIF can be generalized to
the GPCM. We will call this model GPCMlasso, it can be
denoted by

log

(
P(Ypi = r)

P (Ypi = r − 1)

)
= βi

(
θp − δir − xT

pγ i(r)

)
, (3)

where r = 1, . . . , ki . The base model (1) is extended
by (possibly) m × ∑I

i=1ki additional parameters. The
additional parameters γ i(r) represent DIF or, potentially,
DSF if there are different steps in relation to a covariate for
an item. If the analysis of DSF is not of interest, (3) can be
reduced to

log

(
P(Ypi = r)

P (Ypi = r − 1)

)
= βi

(
θp − δir − xT

pγ i

)
. (4)

By restricting γ i(r) = γ i , only regular DIF is parameterized
(with m × I additional parameters).

In both cases, the basic interpretation of the additional
parameters is similar to the simpler Rasch case by Tutz
and Schauberger (2015). The parameters in γ i(r) represent
changing item step parameters for different values of the
respective covariates xp and, therefore, indicate uniform
DIF. The new person-specific item step parameters can be
denoted by δirp = δir + xT

pγ i(r).
Furthermore, we propose to use additional main effect

parameters α for all covariates in xp. The main effects
have the purpose to capture the possible effect that all γ

parameters referring to the same variable could be unequal
to zero. If we include main effects for all variables, this
automatically captures these effects (which are no DIF
effects because they are not item-specific). For example,
such a main effect for the variable gender can capture
possible gender differences between the overall trait levels
of males and females and clearly separates these effects both
from the trait parameters θp and the item-specific effects
γ i(r). By including main effects into models (3) and (4) we
assume the models

log

(
P(Ypi =r)

P (Ypi =r−1)

)
=βi

(
θp+xT

pα−δir −xT
pγ i(r)

)
, (5)

or

log

(
P(Ypi = r)

P (Ypi = r − 1)

)
= βi

(
θp + xT

pα − δir − xT
pγ i

)
,

(6)

respectively.
It should be noted that model (5) has additional identifi-

ability issues compared to the base model (1). It would not
make sense if, for one covariate, all corresponding γ param-
eters would be unequal to zero. Then, at least the average
of these effects could also be included in the main effect
parameters α. In general, this identifiability problem could
be resolved by restricting all γ -parameters from one item
to be zero, e.g., γ I (r) = 0. After all, as for the estima-
tion a penalized likelihood approach is chosen, this is not
necessary. The penalized likelihood guarantees for unique
estimates because the penalty can be seen as a restriction
on the DIF parameters. Therefore, as long as the respec-
tive penalty term corresponds to a restriction that is strong
enough, this identifiability issue can be ignored.
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An attractive feature of model-based DIF detection is
the fact that (assuming, among other assumptions, that
the model is correctly specified) it that can provide trait
estimates that are DIF-free with respect to the covariates
used in the model. Certainly, assuming that a model is
correctly specified will always be wrong, or as Box put
it: “All models are wrong, but some are useful”. In the
same sense, the DIF effects detected by the proposed
model can also be very useful if one wants to come
closer to good estimates of an underlying latent trait
despite the presence of DIF. Following Reise et al. (1993),
even if DIF between groups is discovered in specific
items the items after all measure the same latent trait
for the respective groups. The additional DIF parameters
account for group-specific (or rather covariate-adjusted)
item difficulties and, therefore, the resulting trait estimates
are corrected for possible DIF bias. Hence, purification
approaches are not necessary. In a similar way, Crane
et al. (2006) developed group-specific parameter estimates
that account for DIF effects within the context of DIF
detection using (ordinal) logistic regression. While this is
performed in an iterative manner due to the fact that DIF
detection and estimation of ability estimates are separated,
GPCMlasso automatically provides corrected estimates
when calculating posterior estimates of the trait parameters.
Additionally, in contrast to Crane et al. (2006), GPCMlasso
is not restricted to single covariates but can account for DIF
effects across several variables simultaneously. Although
the method to detect DIF proposed by Crane et al. (2006)
could be applied repeatedly to different variables, for
each variable different corrected estimates of the trait
estimates would be calculated. In contrast, GPCMlasso
allows to integrate DIF effects from different variables
and, therefore, allows for correction of all DIF effects
simultaneously.

Model estimation

The GPCMlasso is estimated using a marginal penalized
likelihood approach, which will be elaborated on in this
section. The starting point is the marginal maximum
likelihood (MML) expression where the person parameters
are treated as random effects and are integrated out of the
likelihood. By collecting all parameters frommodel formula
(5) as vectors θT = (θ1, . . . , θP ), αT = (α1, . . . , αm),
βT = (β1, . . . , βI ), δT = (δ11, . . . , δIkI

), and γ T =
(γ T

1(1), . . . , γ
T
I (kI )), the marginal likelihood can be denoted

by

L(θ , α, δ, β, γ ) =
P∏

p=1

∫
P(Yp1, . . . , YpI )f (θp)dθp,

with the typical assumption of θp ∼ N(0, 1). After
integrating out the person parameters, only the item step
parameters, the main effect parameters, the discrimination
parameters, and the DIF parameters have to be estimated.

Penalized likelihood estimation

An unrestricted MML solution is of no practical interest.
This is due to the fact that it has to be assumed that the
majority of all pairs between items and covariates will not
be affected by DIF. Therefore, the majority of the additional
DIF parameters collected in γ should be equal to zero. Also,
as mentioned in the previous section, the model would not
be identified.

The goal of the estimation procedure elaborated on in
this section is to obtain a model that is as sparse as
possible with respect to the DIF parameters γ . This can
be achieved by applying a penalized likelihood principle.
Let ξ = (θ , α, δ, β, γ ), that is, a vector containing all
GPCMlasso model parameters. Instead of maximizing the
regular version of the log-likelihood l(ξ), we use the
following penalized version:

lp(ξ) = l(ξ) − λJ (ξ)

Here, J (ξ) represents a specific penalty term on the
parameters of the respective model, and λ is the tuning
parameter. A popular penalty is the so-called lasso penalty
J (ξ) = ∑

i |ξi | proposed by Tibshirani (1996). Lasso
penalizes the sum of the absolute values of all parameters
of a linear regressions model. By using the absolute values
instead of the squared values as in the ridge penalty
(Hoerl & Kennard, 1970), the penalty term not only
shrinks the penalized parameters but is also able to set
certain parameters equal to zero. Therefore, lasso allows
for automatic variable selection. The amount of penalty
is driven by the tuning parameter λ. For λ = 0, the
penalty term vanishes and regular (unpenalized) maximum
likelihood estimation is performed. For λ → ∞, the
influence of the penalty parameter increases and (in case of
lasso) more and more parameters are set equal to zero.

Let us adapt the general principle of the lasso penalty to
the estimation of our model to detect either DIF or DSF.
We start with the simplified GPCMlasso from (6) (i.e., DIF
only). We propose to use the penalty term

J (θ, α, δ, β, γ ) =
I∑

i=1

m∑
j=1

wij |γij |, (7)

where wij is a weight parameter. In contrast to the
lasso penalty introduced above, here only a subset of the
parameters is penalized. The penalty is solely applied to
the additional DIF parameters γij because only some of
them are expected to be unequal to zero and, therefore,
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to represent DIF. None of the parameters collected in
θ , α, δ and β are penalized or eliminated from the model.
Therefore, if the tuning parameter λ is chosen as very large,
one ends up with the chosen base model, but without any
DIF effects (and possibly extended by the main effects
contained in α).

We recommend to specify the weight parameter wij

according to the principle of adaptive lasso as proposed by
Zou and Hastie (2005) and Zou (2006). They use weights
corresponding to the inverse absolute values of the parameter
estimates from maximum likelihood (ML) estimation (or
ridge estimation, as in our case). Therefore, parameters
with small ML (or ridge) estimates will be penalized more
severely than parameters with large estimates.

Figure 1 shows the parameter paths of the DIF
parameters for an exemplary item along the tuning
parameter when the penalty term (7) is used. Three DIF
parameters are associated to the item, one per covariate.
With decreasing tuning parameter λ (from left to right),
sequentially all three variables show DIF and the shrinkage
of the respective parameter diminishes. If, for example,
the final model would be chosen at log(λ + 1) = 5.5
(symbolized by grey dashed line), this item would be found
to suffer from DIF with respect to variable Var1.

If instead of model (6), the more general GPCMlasso
model as given in (5) (i.e., DIF and DSF detection) is
assumed, the penalty can be extended to detect DSF. In this
case, the penalty term can be denoted by

J (θ , α, δ, β, γ ) =
I∑

i=1

m∑
j=1

ki∑
r=1

wij (r)|γij (r)|

+
I∑

i=1

m∑
j=1

∑
r<s

wij (r,s)|γij (r)−γij (s)|. (8)
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Fig. 1 Parameter paths of DIF parameters along log(λ + 1) for an
exemplary item to illustrate penalty term (7). The dashed grey line
represents an exemplary model where the item suffers from DIF with
respect to variable Var1

It consists of two parts, which serve different purposes.
The first part corresponds to the penalty term (7) and
simply penalizes the absolute values of all (possible) DIF
parameters and possibly sets them to zero. The second
part is able to fuse the groups of all k − 1 parameters
corresponding to the same pair between item i and covariate
j . In total, I × m of these groups exist. Fusing is done by
penalizing all absolute differences between the respective
parameters. For λ large enough, this penalty can (within
such a group of parameters) produce parameters that are
exactly equal. If this is the case, the effect of the respective
covariate on the item is not varying across the different
categories and DIF instead of DSF is present.

Figure 2 illustrates how the penalty works. For an
exemplary item, the plot depicts the parameter paths of all
DIF parameters corresponding to this item. In the example,
three potential DIF-inducing variables are used and the
response is measured on a five-point scale. Accordingly, for
the specific item m×(k−1) = 3×(5−1) = 12 parameters
are used to parameterize all possible DIF (or DSF) effects.
With λ decreasing (from left to right), the model becomes
more complex as the restrictions induced by the penalty
term are relaxed. Clearly, the fusion property of the penalty
can be seen, for large values of λ all parameters referring
to the same variable are equal. Therefore, penalty (8) can
be referred to as fusion penalty. The grey dashed line in
Fig. 2 indicates the model corresponding to log(λ + 1) =
3. If this model would be chosen, the model would have
detected DIF induced by variable 1. Because all parameters
corresponding to variable 1 are unequal to zero but equal
among themselves, there is no DSF but only DIF. All
other variables cause neither DSF nor DIF. As the penalty
is further decreased, the parameter clusters of the single
variables dissolve and one would detect DSF. Similar to
penalty (7), the following weight parameters are used, here
denoted by wij (r) and wij (r,s). Again, wij (r) represents the
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Fig. 2 Parameter paths of DIF/DSF parameters along log(λ+1) for an
exemplary item to illustrate penalty term (8). This penalty is applied if
also DSF is investigated
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inverse of the absolute values of ML or ridge estimates
of the respective parameters γij (r). Accordingly, wij (r,s)

consists of the inverse absolute difference between γij (r)

and γij (s). Therefore, differences are penalized stronger if
the ML or ridge estimates are very different.

Note that in order to apply the proposed penalties in
a sensible way, all variables need to be transformed to
equal scales. Only then the respective DIF parameters are of
comparable size and the penalty terms can work properly.

Finding the optimal tuning parameter

An important issue in penalized likelihood approaches is
to determine the optimal value of the tuning parameter λ.
Typically, either model selection criteria or cross-validation
(CV) can be used to determine the best value for λ out
of a pre-specified grid of possible values. Classical model
selection criteria include the AIC (Akaike, 1974) and the
BIC (Schwarz, 1978). To enforce a more conservative
parameter selection and because the BIC is consistent with
respect to parameter selection, we will in the following use
the BIC. For our model, it is defined as

BIC(λ) = −2lλ(·) + df (λ) log(n)

where lλ(·) denotes the likelihood for the parameters
estimated with tuning parameter λ and df (λ) denotes the
total number of parameters estimated (uniquely) unequal to
zero.

Alternatively, also k–fold CV could be used to select the
final model. In CV, the data set is divided into k subsets
containing one k-th of all persons from the whole data set.
Iteratively, each subset is eliminated once from the data
and used as test data set. The remaining subsets are used
as training data. The model is fitted to the training data
using a pre-defined grid of λ values. Afterwards, the fitted
model is evaluated on the test data using a specific loss
function, separately for each value of the tuning parameter.
This procedure allows one to evaluate the out-of sample
performance of the model along the tuning parameter λ

and can, therefore, be used to detect the optimal value
of the tuning parameter. As loss function, we propose to
use the deviance of the test data based on the marginal
log-likelihood.

Both alternatives are implemented in the package
GPCMlasso. In the remainder of the paper, we will use
the BIC, however. This has both technical and theoretical
reasons. First, CV is more time-consuming because the
procedure has to be executed repeatedly for several different
training data. Second, CV is designed to choose the optimal
model with respect to prediction. However, in the case of
DIF detection optimality in parameter selection is much
more important than prediction. Third, CV is known to be

a rather unstable method that can produce highly different
results in rather similar situations.

Posterior trait estimation

The trait parameters, corrected for the DIF effects, can be
estimated by taking the mean of the posterior distribution
of the trait parameters. Here, the estimates obtained in the
previous section are treated as known quantities.

θ̂p = E(θp|Yp) =
∫

θpf (θp|Yp, β̂, δ̂, γ̂ )dθp,

where Yp = {Yp1, . . . , YpI } and β̂, α̂, δ̂ and γ̂ contain all
estimated βi , αj , δir and γij (r) parameters, respectively.

Mainly, GPCMlasso is designed as a method for DIF
detection in GPCMs. After all, in some applications it
may be the case that estimates for the trait parameters are
of central interest. Then, the posterior estimates described
here can provide trait estimates for the participants that
already account for possible DIF effects. In contrast to
other DIF-detection methods, GPCMlasso can take into
account several variables simultaneously. Therefore, the
traits estimated are corrected for possible DIF effects from
several different variables.

Simulation study

To compare the method to existing approaches, several
different simulation studies were performed. For simplicity,
we focus on the detection of DIF ignoring the more general
case of DSF. We will only consider the case where no
main effects of the covariates are present in the data-
generating process. However, the models we estimate refer
to the more general case described in model formula (6)
where main effects are estimated for all variables. We also
conducted equivalent simulations as described below where
main effects are present in the data-generating process. As
the results are extremely similar to the results presented
here, we abstain from including them in this manuscript.

Mainly, we will compare GPCMlasso using the
GPCMlasso package (Schauberger, 2018) to the method
proposed in Choi et al. (2011), which combines the logis-
tic regression method for DIF detection (Swaminathan &
Rogers, 1990) with IRT models for trait score estimation.
A preliminary version of lordif can be found in Crane
et al. (2006). It is implemented in the R package lordif
(Choi et al., 2016). It has the feature to be applicable both
to dichotomous and polytomous items. In the case of sev-
eral covariates as considered in settings 2–5, the procedure
has to be executed separately for each variable. In lordif,
the user can choose between the GRM and the GPCM as
the underlying IRT model. We will only focus on GPCM for
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the simulation study. In general, with lordif no continu-
ous covariates can be used. Therefore, continuous covariates
will be split into two groups using the median as split point.

The first setting treats the easiest possible case of DIF in
Rasch models (RM) with a single binary covariate. In this
case, we also compare our method to the classical Mantel–
Haenszel method (Holland & Thayer, 1988) as implemented
in the R package difR (Magis et al., 2010) (using the built-
in iterative item purification algorithm). In all remaining
settings, polytomous items are used with either the PCM or
the GPCM as the base model. Here, binary and continuous
variables are alternated (i.e., in the case of five variables
three of them are binary and two are continuous). All
simulations use I = 20 items and P = 500 persons and
are based on 100 replications. Both for Mantel–Haenszel
and for lordif the significance level α = 0.01 is used,
which is the default in the R-package lordif. Besides the
true underlying model, also the maximal response category
k and the number of (possibly) DIF-inducing variablesm are
varied. For simplicity, we restrict the simulations to cases
with equal numbers of response categories across all items.
In the case of several variables, we also consider cases
with high correlations between these variables. Table 1
summarizes the settings of the five different simulations that
were performed.

Parameter estimation

As a first step, we empirically evaluate the ability of the
method to reproduce the true underlying parameters of the
simulation. For that purpose, we focus on setting 4 (strong)
because it is the most general one. Exemplarily for the
first ten items, Fig. 3 shows boxplots for the estimates
of all (fixed) model parameters, separately for item step
parameters (3a), discrimination parameters (3b), main effect
parameters (3c), and DIF parameters (3d). True values are
indicated by red crosses.

While the item step parameters and the main effect
parameters are estimated very accurately, the discrimination
parameters are minimally overestimated. In contrast to item
step parameters, main effect parameters, and discrimination
parameters, the DIF parameters are penalized. As we use
20 items and five variables, in total there are 100 possible
DIF effects. Four of these effects actually cause DIF in our
simulation (compare Table 1). With only two exceptions,
the parameters corresponding to the true DIF effects are
estimated to be unequal to zero and therefore correctly
identify these DIF effects. Nevertheless, as expected, the
penalty shrinks them toward zero, and on average the
size of the DIF effects is underestimated. The remaining
parameters are correctly set to zero most of the time with
only a few false positives.

Additionally, we also inspect the estimation accuracy of
the posterior mean estimates of the latent trait as sketched
in Section “Posterior trait estimation”. Figure 4 depicts the
scatterplot of the true and the estimated trait parameters for
an exemplary data set from simulation setting 4 (strong). It
can be seen that most of the points are very close to the angle
bisector and therefore the accuracy of the posterior mean
estimates is very high. Overall, both Figs. 3 and 4 show very
satisfying results regarding the estimation accuracy of the
method.

DIF detection

The performance of the methods in terms of DIF detection
is compared with respect to true-positive rates (TPR) and
false-positive rates (FPR). For TPR, we take the ratio of
correctly detected DIF effects among all true DIF effects.
For FPR, we take the ratio of all incorrectly detected DIF
effects among all DIF parameters that are simulated to be
exactly zero.

Although the main focus of the method is to handle
problems where multiple variables are to be considered

Table 1 Summary of parameter variations for all simulation settings

Setting Model k m Corr. DIF parameters

1 strong RM 1 1 γ1 = −γ5 = 0.9

weak RM 1 1 γ1 = −γ5 = 0.3

2 strong PCM 5 3 0 γ11 = γ22 = −γ33 = 0.3

weak PCM 5 3 0 γ11 = γ22 = −γ33 = 0.15

3 strong PCM 5 3 0.7 γ11 = γ22 = −γ33 = 0.3

weak PCM 5 3 0.7 γ11 = γ22 = −γ33 = 0.15

4 strong GPCM 5 5 0 γ11 = γ22 = −γ33 = −γ44 = 0.3

weak GPCM 5 5 0 γ11 = γ22 = −γ33 = −γ44 = 0.15

5 strong GPCM 5 5 0.7 γ11 = γ22 = −γ33 = −γ44 = 0.3

weak GPCM 5 5 0.7 γ11 = γ22 = −γ33 = −γ44 = 0.15
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Fig. 3 Boxplots displaying parameter estimates from method GPCMlasso for 100 simulated data sets according to simulation setting 4 (strong).
Boxplots are separated for a item step parameter, b discrimination parameters, c main effect parameters, and d DIF parameters. Only items 1-10
are shown. True values are indicated by crosses
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Fig. 4 Scatterplot for true vs. estimated trait parameters θp for an exemplary data set from simulation setting 4 (strong). The solid line represents
exact accordance between true and estimated values

for DIF, we first want to demonstrate its applicability and
performance in the most simple case of DIF detection.
Table 2 collects the TPR and FPR for setting 1 for all three
compared methods.

It can be seen that GPCMlasso performs similar or
slightly worse than lordif and MH. After all, it seems
not to be reasonable to use GPCMlasso in simple situations
like this because the classical methods are much less
computationally demanding. The strength of GPCMlasso
lies in much more complex data situations, especially in the
case of several (possibly correlated) covariates. Therefore,
we focus on the simulation results of setting 2–5.

Table 3 shows the results of DIF detection in setting 2–5
in terms of TPR and FPR.

There are several general trends that can be seen from
Table 3. First, the TPR for strong DIF is very similar
for both methods. For weak DIF, lordif has a slightly
increased TPR compared to GPCMlasso except for setting
2. Second, GPCMlasso has lower (better) values for the FPR
than lordif. In particular, in settings 3 and 5 with the
presence of correlation between the variables we observe

Table 2 Selection results in terms of TPR and FPR for simulation
setting 1

GPCMlasso lordif MH

(a) Strong DIF

TPR 0.975 0.975 0.965

FPR 0.019 0.014 0.008

(b) Weak DIF

TPR 0.125 0.165 0.125

FPR 0.006 0.014 0.008

highly increased FPR values for lordif compared to the
intended size 0.01 according to the α-level. For example, in
setting 5 (strong), the FPR is 0.105, which is about ten times
as high as intended. In contrast, GPCMlasso deals much
better with correlations with constantly low values for FPR
across all settings.

Certainly, the comparison of TPR and FPR in Table 3
is flawed in some sense because lordif (as it is a
test-based method) explicitly restricts the FPR by the choice

Table 3 Results of DIF detection in terms of TPR and FPR for
simulation settings 2–5

Setting GPCMlasso lordif

(a) Strong DIF

2 TPR 1.000 1.000

FPR 0.006 0.013

3 TPR 1.000 0.997

FPR 0.012 0.060

4 TPR 0.995 0.975

FPR 0.007 0.013

5 TPR 0.965 0.968

FPR 0.013 0.105

(b) Weak DIF

2 TPR 0.650 0.580

FPR 0.006 0.010

3 TPR 0.593 0.600

FPR 0.012 0.034

4 TPR 0.360 0.378

FPR 0.006 0.011

5 TPR 0.335 0.482

FPR 0.009 0.032
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Fig. 5 ROC curves (lines) and realized results (crosses) for DIF detection for setting 2 (a), setting 3 (b), setting 4 (c), and setting 5 (d)
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Table 4 Results for DIF detection in terms of FDR for simulation
settings 2–5

Setting GPCMlasso lordif

(a) Strong DIF

2 0.102 0.202

3 0.187 0.534

4 0.150 0.241

5 0.250 0.722

(b) Weak DIF

2 0.148 0.243

3 0.273 0.521

4 0.298 0.401

5 0.385 0.616

of the α-level while this is not the case for GPCMlasso,
which is controlled by the tuning parameter λ. Therefore,
we additionally try to compare the TPR and FPR of both
methods with the help of ROC curves as depicted in Fig. 5.

For both methods, the TPR and the FPR are plotted along
a dense grid of the respective parameters that control the
selection rates, i.e., the α-level for lordif and the tuning
parameter λ for GPCMlasso. Crosses indicate the actual
values of TPR and FPR as summarized in Table 3. Each
ROC curve starts from the point (0,0) because both for
λ = ∞ and α = 0 no DIF can be detected. Subsequently, λ
is decreased and α is increased, respectively. In the optimal
case, the ROC curve has a very steep ascent and is as close
as possible to the point (0,1), which represents a perfect
selection of DIF effects. The ROC curves for GPCMlasso
dominate the curves of lordif in all settings. In particular,
this is the case for correlated variables (settings 3 and 5).

As a final measure of the performance in DIF detection,
we want to consider the false discovery rates (FDR) of

both methods. The FDR represents the probability (or rather
relative frequency) that effects that were detected as DIF
effects are true DIF effects. When looking at TPR and
FPR values, it is obvious that higher values of TPR will
generally lead to higher values of FPR. In contrast, FDR
takes into account both true and false positives and therefore
gives interesting further insights into the performance
of both methods. Table 4 collects the FDR values for
settings 2–5.

The FDR values for GPCMlasso outperform the FDR
of lordif for all settings. In contrast to lordif,
GPCMlasso does not have highly increased values of FDR
in the case of correlated variables. For lordif, in all cases
with correlations, the FDR is greater than 50%, which (for
a single found DIF effect) means that most likely it is a
false positive. Overall, we see from the simulation studies
that GPCMlasso performs slightly better than lordif in
case the variables are not correlated but clearly outperforms
lordif otherwise.

Application to youth depression data

For illustration, we will apply the proposed model to data
from a study by Vaughn-Coaxum et al. (2016) on the
Children’s Depression Inventory (CDI; see Kovacs 2004).
While the original study solely focused on racial/ethnic
differences, we will include several different potential DIF-
inducing covariates simultaneously. The following variables
will be treated as possibly DIF-inducing covariates.

Age Age of the child
Gender 0: female; 1: male
Race 1: white; 2: black; 3: asian; 4: hispanic
Educ Parents 1: both parents graduated from college; 0:

otherwise

0.00

0.25

0.50

0.75

1.00

White Black Asian Hispanic

Educ_Parents low high

Fig. 6 Mosaic plot for relative frequencies of variable Educ Parents conditional on variable race
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Fig. 7 Coefficient paths of all DIF parameters (from model A) for GPCMlasso applied to CDI data, separately for each item. Dashed vertical
lines represent the optimal model according to BIC
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Fig. 8 Coefficient paths of all DIF parameters (left plots) and DSF parameters (right plots) for GPCMlasso applied to CDI data, exemplarily for
the items 1, 4, and 5. Separately for the left and right plots, the dashed vertical lines represent the optimal model according to BIC
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Table 5 Comparison of detected DIF items (model A) and DSF items (model B) of GPCMlasso (black) to DIF items detected by lordif (gray) for
CDI data

The variable race is encoded by dummy coding with white
as the reference category because the CDI was developed in
a sample of youths that was predominantly white (similar to
our sample at hand).

An interesting feature of the data is the rather high
correlation between the variables race and education of
parents, which is illustrated in Fig. 6. It shows a mosaic
plot of the relative frequencies of education of parents
while conditioning on the different values of race. For the
majority of the white and Asian children, both parents
have graduated from college while this is not the case for
the majority of the black and Hispanic children. The data
set contains data from 1471 participants on 26 of the 27
items of the CDI. Analogous to the original study by
Vaughn-Coaxum et al. (2016), item nine about suicidal
ideation was removed.

A main focus of this section is to illustrate the differences
we find between DIF detection and DSF detection of the
CDI data using GPCMlasso. Therefore, we will apply two
different models to the data. In the remainder of this section,
we will refer to the model for DIF detection as model A
and to the model for DSF detection as model B. We start by
fitting model A. Figure 7 shows the coefficient paths for all
variables and all items along (a transformation of) the tuning
parameter λ. The paths are plotted separately for each item.
The red dashed lines represent the optimal model according
to BIC.

Overall, in model A, only items 3, 4, 8, 20, and 22
are diagnosed to be completely DIF-free. Besides the DIF
parameters, item step parameters, main effect parameters,
and item discrimination parameters are also estimated,
which are not presented here.
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Due to the relatively high number of items, the single
paths are rather hard to detect in Fig. 7. For model B,
the number of parameters is even higher and paths would
be even harder to distinguish. Therefore, we abstain from
showing the paths of all items for model B. Instead, in
Fig. 8 we exemplarily show the parameter paths (for DSF
detection) for items 1, 4, and 5 and compare them to the
parameters paths for model A. The paths on the left side
refer to model A while the paths of the right side refer to
model B. Therefore, all paths from one column in Fig. 8
refer to the same model (but different items) and paths from
the same row refer to the same item (but different models).

While in model A both in items 1 and 5, DIF is detected,
model B only detects DSF for item 1, and both models
find no DIF or DSF effects for item 4. Within item 1 we
see several differences between models A and B. In model
A, DIF is found for gender and the race groups Hispanic
and black. In model B, DSF is found for gender and race
group Hispanic only for step 1, respectively. The effect of
race group black is very similar for both models, the fusion
penalty in model B fuses the parameters for both steps to
be equal. Overall, the paths of the DSF parameters again
illustrate the fusion property of the penalty we apply in
model B. In many cases (for example for every variable
in item 5), the two parameters corresponding to the same
variable are equal at least for certain ranges of the tuning
parameter λ.

Besides the comparison of the GPCMlasso models A
and B, we also want to compare these models to the DIF-
detection results we would get by applying the method
of Choi et al. (2011) called lordif. Analogous to the
simulation study, lordif is separately applied to each
of the four variables as otherwise it cannot handle several
variables simultaneously. Table 5 summarizes all variables
whether DIF was detected in the single items by model
A and lordif. Additionally, it shows whether model B
detected DSF for at least one of the two corresponding steps.

The three models agree for the majority of the cases.
However, there are also several differences between the
results. Overall, model B detected the lowest number of
items. However, that does not necessarily imply that model
B is sparser than model A because by definition model B has
much more (possible) parameters than model A. For age,
model B found no DSF effect at all while model A found
DIF in five items.

A remarkable result is that lordif identifies much
more DIF items with respect to the variable education of
parents than GPCMlasso. One reason for this result may
be the fact that GPCMlasso is able to account for the
high correlation between race and education of parents. By
considering race and education simultaneously, GPCMlasso
is supposed to be able to avoid duplicated DIF effects from
race and education.

Conclusions

This work introduced the GPCMlasso approach for polyto-
mous DIF detection in the presence of multiple, potentially
correlated covariates of mixed scale levels. DIF is param-
eterized in a joint model that can be seen as an extension
of a base IRT model, with the GPCM as the most general
base model. The model is estimated using a penalized like-
lihood approach. Based on the detected DIF effects, one can
also estimate trait estimates that are automatically corrected
for DIF effects in different items and caused by different
variables.

In general, the method could also be extended to cover
both uniform and non-uniform DIF. This would require
a second set of possible DIF effects. While the DIF
effects for uniform DIF change the location of certain
items, DIF effects for non-uniform DIF would change the
discriminatory power of items. Therefore, the second set of
DIF effects would have to be included as an extension of
the item discrimination parameters βi . Then, a new person-
specific discrimination parameter could be parameterized as
βip = βi + xT

pψ i . Again, one would have one additional
parameter for each pair between items and covariates.
However, penalized likelihood estimation would become
more complicated because the selection of the additional
parameters ψ i requires the introduction of a second tuning
parameter. It cannot be assumed that, even if variables are
scaled, the parameters for uniform and non-uniform DIF
are on comparable scales. Accordingly, a two-dimensional
grid search for the optimal tuning parameters becomes
necessary.

In addition, it could be interesting for future research
to intensively study the best criterion to select the optimal
value of the tuning parameter and to develop alternatives to
the BIC that is currently used. One alternative that is already
discussed in the paper is CV. It has the disadvantage that
it is not focused on optimal variable selection and tends
to have higher numbers of false-positive effects than BIC.
Another possible alternative could be stability selection
as proposed by Meinshausen and Bühlmann (2010) and
Shah and Samworth (2013). Here, the method would be
applied repeatedly to new data sets that are generated
by sub-sampling and only variables that are selected for
almost all data sets would be used for the final model.
However, this method would increase the running time
disproportionately.
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