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Abstract
In psychology, many studies measure the same variables in different groups. In the case of a large number of variables when a
strong a priori idea about the underlying latent construct is lacking, researchers often start by reducing the variables to a few
principal components in an exploratory way. Herewith, one often wants to evaluate whether the components represent the same
construct in the different groups. To this end, it makes sense to remove outlying variables that have significantly different
loadings on the extracted components across the groups, hampering equivalent interpretations of the components. Moreover,
identifying such outlying variables is important when testing theories about which variables behave similarly or differently across
groups. In this article, we first scrutinize the lower bound congruence method (LBCM; De Roover, Timmerman, & Ceulemans in
Behavior Research Methods, 49, 216–229, 2017), which was recently proposed for solving the outlying-variable detection
problem. LBCM investigates how Tucker’s congruence between the loadings of the obtained cluster-loading matrices
improves when specific variables are discarded. We show that LBCM has the tendency to output outlying variables that
either are false positives or concern very small, and thus practically insignificant, loading differences. To address this
issue, we present a new heuristic: the lower and resampled upper bound congruence method (LRUBCM). This method
uses a resampling technique to obtain a sampling distribution for the congruence coefficient, under the hypothesis that no
outlying variable is present. In a simulation study, we show that LRUBCM outperforms LBCM. Finally, we illustrate the
use of the method by means of empirical data.

Keywords Multigroup data . Principal component analysis . Resampling . Permutation test . Tucker′s congruence . Measurment
invariance

Introduction

Inmany behavioral studies, a relatively large number of variables
(say ten ormore) aremeasured in different groups of participants.
The International College Study (ICS; e.g., Diener et al., 2001;
Kuppens, Ceulemans, Timmerman,Diener,&Kim-Prieto, 2006)
is a good example. In this study, 10,018 students from 48 differ-
ent countries indicated, among other things, how much they
endorse 11 different values (happiness, intelligence, material
wealth, etc.) on a 9-point Likert scale (Diener et al., 2001).

Given such data, researchers are often not directly interested in
the measured variables themselves, but in underlying constructs
or dimensions that summarize the covariance structure of the
variables, and in how these constructs are similar or different
across groups. The previous analysis of the ICS value data by
De Roover, Timmerman, and Ceulemans (2017) suggested that
the covariances of the values can be summarized by means of
two dimensions. The first dimension, BShowing success &
benevolence,^ pertains to material wealth, physical
attractiveness, physical comforts, excitement/arousal,
competition, heaven/afterlife, and self-sacrifice. The second di-
mension, BFun, happiness, & achievement,^ refers to intelli-
gence/knowledge, happiness, success, and fun. Yet, in line with
the known distinctions between, for instance, collectivistic and
individualistic countries, some of the values had different covari-
ance structures across the countries. For instance, self-sacrifice
covaried less with the other values in the Bshowing success and
benevolence^ construct in more collectivistic countries.
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Following De Roover, Timmerman, and Ceulemans (2017), we
will call the latter variable Boutlying.^ Detecting such outlying
variables is important, as pinpointing such differences across
groups is the main focus of comparative research (Triandis,
1988). Relatedly, if one aims to further compare the scores on
measured constructs across groups (e.g., by computing means
and variances), measurement invariance should be ensured first
(Asparouhov & Muthén, 2014; Chan, Ho, Leung, Chan, &
Yung, 1999; Meredith & Teresi, 2006; Sočan, 2016), which will
fail in the presence of outlying variables.

To extract the underlying constructs, dimension reduction
methods such as factor analysis (Yong & Pearce, 2013) and
component analysis (Abdi & Williams, 2010; Jolliffe, 2005)
are popular. Herewith, a further distinction can be made between
exploratory and confirmatory approaches (Hurley et al., 1997;
Schmitt, 2011; Tukey, 1980), depending on whether or not one
has a preliminary idea about the positions of the variables on the
constructs. In this article, we will focus on the exploratory case,
in which no such a priori knowledge is available. In this respect,
we focus on component analysis rather than exploratory factor
analysis (EFA), because it is more computationally efficient than
EFA, is applicable when the assumption of underlying constructs
causing the covariances does not hold (Borsboom, Mellenbergh,
& Van Heerden, 2003), and often leads to results that are very
similar to those of EFA (Ogasawara, 2000; Velicer, Peacock, &
Jackson, 1982). When the number of groups is larger than one,
useful component analysis approaches are simultaneous compo-
nent analysis (Kiers & ten Berge, 1994; Timmerman & Kiers,
2003; Van Deun, Wilderjans, Van den Berg, Antoniadis, & Van
Mechelen, 2011) and its cluster-wise variants (De Roover,
Ceulemans, Timmerman, Nezlek, & Onghena, 2013; De
Roover, Ceulemans, Timmerman, & Onghena, 2013; De
Roover et al., 2012). As multigroup extensions of standard prin-
cipal component analysis (Jolliffe, 2002), these methods reduce
the observed variables to a few components. Both approaches
represent the relations between the variables and the components
in the so-called loading matrix; these loadings are used to inter-
pret the obtained components. The difference between simulta-
neous component analysis (SCA) and its cluster-wise extensions
is that SCA imposes the loadings to be the same across groups,
whereas cluster-wise SCA clusters the groups in a few clusters
and yields a separate loading matrix for each cluster.

The loading matrices of cluster-wise SCA are a good
starting point for detecting outlying variables, as the clustering
of the groups is driven by the strongest loading differences
(De Roover, Timmerman, De Leersnyder, Mesquita, &
Ceulemans, 2014), while small loading differences are aver-
aged out within clusters. When no outlying variables are pres-
ent, we expect all the variables to have similar loading patterns
across the (clusters of) groups. It is worth noting that we de-
liberately use the term Bsimilar loading patterns^ rather than
Bsame loading patterns,^ because we are only interested in
larger loading differences that alter the interpretation of the

underlying constructs. Visually detecting outlying variables
in the cluster-specific loading matrices is difficult and subjec-
tive, however: When are the loading patterns of a variable
different enough across clusters to consider the variable out-
lying? To avoid making subjective and nonconsistent deci-
sions, objective and replicable procedures are needed.

Therefore, De Roover, Timmerman, and Ceulemans (2017)
recently proposed a detection heuristic to screen the cluster-
wise SCA loading matrices for outlying variables. This ap-
proach is called the lower bound congruence method
(LBCM), because it assesses the similarity of loadings by
computing the Tucker’s congruence (Tucker, 1951) of the
corresponding components in the cluster-specific loading ma-
trices and uses a congruence value of .95 (Lorenzo-Seva & ten
Berge, 2006) as a lower bound (i.e., a congruence lower than
.95 implies that the data contain at least one outlying variable).
We will show that LBCM is not without problems, however,
in that it is prone to output false positives for empirical data:
Aside from the targeted larger loading differences, LBCM
also detects small differences that sometimes are not practical-
ly important because they do not hamper the underlying con-
structs being interpreted the same across the clusters and may
be due to error fitting.

The aim of this article is to overcome this sensitivity to
differences that are either false positives and/or practically
insignificant. To this end, we present and evaluate a new
approach to detecting outlying variables: the lower and
resampled upper bound congruence method (LRUBCM).
This method detects outlying variables by comparing the
loading matrices of two clusters. Thus, in the case that data
are modeled using more than two clusters, the LRUBCM
procedure is applied in a pair-wise manner (see
BIllustrative applications^ section). LRUBCM extends
LBCM by adding two new features. First, in addition to
the lower bound, an upper threshold is imposed, as well, to
discard solutions with too many outlying variables (false
positives). This upper threshold is dynamically derived
from the sampling distribution of the Tucker’s congruence
coefficient under the null hypothesis that the data contain
no outlying variables. This allows the user to take data
characteristics into account that influence the size of the
Tucker’s congruence value—for instance, the numbers of
observations, variables, groups, and components, as well
as the size and structure of the loadings (Abdi, 2010;
Lorenzo-Seva & ten Berge, 2006)—when setting the upper
bound of the detection heuristic. Second, while building
this sampling distribution, LRUBCM does not require that
the loadings be identical across the two clusters, but checks
for similarity instead, to avoid detecting practically insig-
nificant differences. This is achieved by slightly perturbing
the loadings when generating the sampling distribution.
The amount of perturbing can be adjusted by users, giving
them flexibility to decide which loading differences are
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practically important when interpreting dimensions in their
field. We will show through simulations and analyses of
real data that the LRUBCM approach outperforms LBCM.

The remainder of the article is organized in five sections.
After recapitulating the data structure and preprocessing in
section 2.1, sections 2.2 and 2.3 give overviews of SCA-P
and its cluster-wise extension, respectively. Section 3 dis-
cusses outlying-variable detection heuristics. First we review
the recently developed LBCM (section 3.1), and in section 3.2
we show its drawbacks. To overcome these drawbacks, we
propose the new method in section 3.3. Section 4 presents
an extensive simulation study, showing that LRUBCM out-
performs LBCM. In section 5, we apply LRUBCM to emo-
tional acculturation data. In section 6 we discuss our findings
and directions for future work.

Methodology

In this section, we first discuss the data structure and prepro-
cessing. Next, we recapitulate both SCA-P and its cluster-wise
extension.

Data structure and preprocessing

In this article, we assume that the data are composed of I
data blocks, in which each data block Xi (i = 1… I) corre-
sponds to the data of group i and consists of the scores of
Ni subjects on the same J variables. For example, in the
ICS value data, each data block contains the scores of a
sample of students from a specific country on the 11 vari-
ables under study. The number of subjects in each block Ni

is allowed to vary from block to block. The full data set X
is obtained by vertically concatenating the Xi blocks, and

thus it counts N ¼ ∑I
i¼1Ni rows. In the ICS value data, one

student corresponds to one row, and the overall data set con-
sists of 10,018 rows. Following De Roover, Timmerman, and
Ceulemans (2017), the data are preprocessed before the anal-
ysis. Since we are interested in between-block differences in
covariance structure, the variables are centered in each block,
discarding between-block differences inmeans that might oth-
erwise distort the obtained loadings (see Ceulemans,
Wilderjans, Kiers, & Timmerman, 2016). Moreover, to give
the variables the same weight in the analysis, each variable is
rescaled so that its variance across the groups equals 1
(Ceulemans et al., 2016).

SCA-P

Model SCA-P (Kiers & ten Berge, 1994; Timmerman &
Kiers, 2003) stands for simultaneous component analysis
while imposing an equal pattern matrix. It extracts one set

of Q components from the I data blocks. More specifically,
SCA-P models each data block Xi (i = 1… I) as follows:

Xi ¼ FiB
0 þ Ei ð1Þ

The matrix Fi(Ni ×Q) holds the scores of the Ni subjects in
the ith data block on theQ components. To identify the model,
the variance of the component scores across all the groups is
fixed to one. Due to the centering of the data blocks, the means
of the component scores equal zero for each data block. Given
the preprocessing, the loadings in B(J ×Q) represent the cor-
relations between the original variables and the components.
The matrix Ei(Ni × J) denotes the residual matrix.

Deciding on the number of components Q In exploratory
SCA-P analyses, the optimal number of components that pro-
vide a good summary of the data without yielding an overly
complex solution, is often not known beforehand. To assess
this optimal number, a scree test can be conducted on a plot of
the percentage of variance accounted for (VAF%) by solutions
with increasing numbers of components. Next to visually in-
vestigating whether an elbow can be detected in the scree plot,
the CHull procedure can be used (Ceulemans & Kiers, 2006;
Wilderjans, Ceulemans, & Meers, 2013). This procedure first
finds the upper boundary of the convex hull (CHull) of the
considered solutions and retains the solutions located on this
boundary. Next, from these CHull solutions, it picks the one
after which the increase in VAF% levels off. The scree plot for
the ICS value data (Fig. 1a) suggests that the optimal number
of components amounts to two.

RotationOnce the decision is made on howmany components
to retain, one usually rotates the obtained components so that
the loading matrixB has a simple structure, meaning that most
variables load strongly on one component only. Following De
Roover, Timmerman, and Ceulemans (2017), we will use the
VARIMAX rotation in this article, which is an orthogonal
rotation (Kaiser, 1958). Table 1 shows the VARIMAX-
rotated SCA-P loading matrix for the ICS value data, reveal-
ing the two constructs mentioned in the introduction:
BShowing success & benevolence^ and BFun, happiness, &
achievement.^

Cluster-wise SCA-P

Model For some data sets, restricting the loadings to be iden-
tical across the groups is an oversimplification. Therefore, De
Roover, Ceulemans, Timmerman, and Onghena (2013) pre-
sented cluster-wise SCA-P, which clusters the data blocks inK
clusters based on the between-block similarities and differ-
ences in loading structure and assigns each of the I data blocks
to one of the K clusters. As a result, the groups with similar
loading patterns will belong to the same cluster. Each cluster is
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separately modeled with SCA-P, yielding a cluster-specific
loading matrix. Mathematically, cluster-wise SCA-P models
each data block Xi (i = 1… I) as follows:

Xi ¼ ∑K
k¼1ρik FiB

kð Þ0 þ Ei: ð2Þ

The ρik scores are the entries of the partition matrix P(I ×
K); they are equal to one when data block i is assigned to
cluster k and zero otherwise. The cluster-specific loading
mat r ices are deno ted as B ( k ) . L ike De Roover,
Ceulemans, Timmerman, and Onghena (2013), we restrict

the number of components to be the same across the clus-
ters in this article (for a more general cluster-wise SCA
model, allowing the number of components to vary across
the clusters, see De Roover, Ceulemans, Timmerman,
Nezlek, & Onghena, 2013).

Deciding on the optimal numbers of components and clusters
In this article, we set the number of components for the
cluster-wise extension equal to the number of components
found in the SCA-P analysis of the data, as we expect to have
the same number of components in each cluster. Otherwise, it

Table 1 Cluster-specific loadings of the cluster-wise SCA-Pmodel with two clusters and two components for the ICS value data, after oblique rotation
toward the orthogonally rotated SCA-P loadings

Cluster I Cluster II SCA-P

Showing success
& benevolence

Fun, happiness,
& achievement

Showing success
& benevolence

Fun, happiness,
& achievement

Showing success
& benevolence

Fun, happiness,
& achievement

Material wealth .74 .03 .71 .13 .72 .07

Physical attractiveness .80 .05 .76 .12 .77 .09

Physical comforts .75 .09 .74 .10 .75 .08

Excitement arousal .80 .04 .60 .09 .66 .09

Competition .71 .01 .73 .11 .72 .05

Heaven/afterlife .28 .21 .74 – .16 .60 – .05

Self-sacrifice .35 .24 .63 .00 .54 .08

Success .31 .59 .35 .74 .30 .66

Fun .14 .48 – .21 .77 – .15 .72

Happiness .28 .73 .30 .42 .30 .53

Intelligence knowledge – .10 .85 – .03 .68 – .08 .75

The full SCA-P loadings are also included in the table. Loadings with an absolute value higher than .40 are printed in bold

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number of components

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
VA

F%
Cluster 1 Cluster 2

Bangladesh, 

Cameroon, Chile, 

Croatia, Egypt, 

Georgia, Ghana, India, 

Indonesia, Iran, 

Kuwait, Malaysia, 

Nigeria, Philippines, 

Poland, South Africa, 

Thailand, Turkey, 

Uganda, Zimbabwe

Australia, Austria, 

Belgium, Brazil, 

Bulgaria, Canada, China, 

Columbia, Cyprus, 

Germany, Greece, Hong 

Kong, Hungary, Italy, 

Japan, Mexico, Nepal, 

Netherlands, Portugal, 

Russia, Singapore, 

Slovakia, Slovenia, South 

Korea, Spain, 

Switzerland, United 

States, Venezuela

a) b)
Fig. 1 (a) Scree plot for the ICS value data, to aid in the selection of the adequate number of components, and (b) cluster memberships of the countries in
the cluster-wise SCA-P solution with two clusters and two components for the ICS value data
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would not make sense to look for outlying variables. Once the
number of components is fixed, the CHull procedure (for de-
tails, see BLower bound congruence method^ section) men-
tioned above is applied to the VAF% values for models with
different numbers of clusters. For the ICS value data, the
CHull indicates that the optimal number of clusters is two
(see Fig. 1a). Panel b of Fig. 1 shows the associated clustering
of the countries. Following De Roover, Timmerman, and
Ceulemans (2017), the clusters can be labeled as preindustrial
and postindustrial countries. Note that when more than two
clusters are retained, LRUBCMwill be applied to each pair of
clusters, as we will demonstrate in BIllustrative applications^
section.

Rotation Since cluster-wise SCA-P conducts a separate SCA-
P analysis for each cluster, the cluster-specific component sets
can be rotated independently of one another to improve inter-
pretability. This article focuses on comparing the components
across each pair of clusters, however. Therefore, we will rotate
the component sets of both clusters in such a way that the
corresponding components are maximally similar. To this
end, we run an SCA-P analysis on the complete data, with
the same number of components, to obtain one common load-
ing structure and obliquely rotate the cluster-wise SCA-P
components per cluster toward the VARIMAX-rotated SCA-
P components. The resulting cluster-specific loading matrices
for the ICS value data are shown in Table 1. We see, for
example, that physical comfort loads similarly across the clus-
ters, while self-sacrifice behaves differently in the two
clusters.

Outlying-variable detection heuristics

The starting point of this article is that the cluster-specific
loading patterns differ across two clusters for a few, un-
known variables, while all the other variables have similar
loadings. Our aim is to pinpoint the former set of variables,
since they are outlying. To detect them, two things are
needed. First, we have to specify some objective criterion
for measuring the extent to which the cluster-specific load-
ing matrices are similar. Second, we have to set a threshold
for deciding that the matrices are similar enough, implying
that the presence of outlying variables is unlikely.

Regarding the similarity criterion, De Roover,
Timmerman, and Ceulemans (2017) used Tucker’s congru-
ence coefficient (Tucker, 1951), which is a well-established
index of component and factor similarity (Chan et al., 1999;
Lorenzo-Seva & ten Berge, 2006; Sočan, 2016). This coeffi-
cient measures the proportional similarity of the loadings on
two components. For our problem, we compute it consecu-
tively for each of the corresponding cluster-specific compo-
nents—so, first for both first components, next for the second

components, and so forth. Specifically, Tucker’s congruence
φq between the qth components of the two clusters is calcu-
lated as follows:

φq ¼
∑ jb

1
jqb

2
jqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑ j b1jq
� �2

∑ j b2jq
� �2

r : ð3Þ

The obtained value varies from −1 to 1. A value close to
zero means that the components are very dissimilar, whereas
absolute values close to one indicate strong similarity.

Regarding the threshold value, below which we would
conclude that the data still contain outlying variables, De
Roover, Timmerman, and Ceulemans (2017) initially built
on the results of Lorenzo-Seva and ten Berge (2006). These
authors demonstrated that congruence values higher than .95
point toward virtual identity of the compared components in
terms of their interpretation. Applied to our problem, this
finding suggests that if the lowest congruence value across
the components is lower than .95, the data probably would
contain at least one more outlying variable, and thus that
the .95 threshold can be used as a lower bound. This does
not imply, however, that we are sure that no more outlying
variables are present, if the congruence scores exceed .95.
This makes sense, because the value of Tucker’s congru-
ence has been shown to depend on multiple data charac-
teristics, such as the number of variables and components,
the loading structure, and the amount of error in the data
(Abdi, 2010; Lorenzo-Seva & ten Berge, 2006). This sug-
gests that the congruence value that indicates sufficient
similarity should be adapted to the data characteristics at
hand. De Roover, Timmerman, and Ceulemans (2017) pro-
posed to handle this issue by applying a scree-test-like
procedure and put forward the LBCM.

In BLower bound congruence method^ section, we recapit-
ulate the LBCM approach. In BThe problem with LBCM and
how to resolve it^ section, we show its main weakness—that
is, a tendency to yield false positives—which questions its
applicability to real data. To overcome this weakness, in
BLower and resampled upper bound congruence method^ sec-
tion we propose to also impose an upper bound, based on the
characteristics of the data. The new method is called the lower
and resampled upper bound congruence method.

Lower bound congruence method

LBCM is a stepwise approach, consisting of J −Q steps.1 In
each of these steps the most outlying variable is removed and

1 After removing a variable, LBCM re-estimates the SCA-P solutions in each
cluster. Therefore, we cannot remove more than J −Q variables, because at
leastQ variables are needed to extractQ components. As a result, the substeps
are executed J −Q times, each time removing one variable.
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the resulting increase in the Tucker’s congruence is recorded.
To this end, in each step the following three substeps are
performed:

1. Compute the minimum and mean component congru-
ences φmin and φmean across the Q components, for the
remaining variables.2 The congruence coefficients are
computed after the cluster-specific SCA-P loadings are
obliquely rotated toward (i.e., target rotation) the orthog-
onally rotated overall SCA-P loadings. For example, the
initial component-specific congruences for the ICS value
data amount to .9346 and .8801, implying that the first
recorded values are φmin = .8801 and φmean = .9074 (Fig.
2a). φmean and φmin are used for different purposes. The
minimum congruence is compared to the lower bound, as
will be explained below, to safeguard that the final set of
retained variables will behave sufficiently similarly across
the two clusters. The mean congruence is used for decid-
ing on the number of outlying variables, as will be de-
scribed below. Also, the assessment of which variable is
the most outlying is based on φmean (Substep 2). One
might wonder why De Roover, Timmerman, and
Ceulemans (2017) used mean rather than minimum con-
gruence in order to detect the number of outlying vari-
ables. The authors indicated that pilot simulations had
shown that applying the minimum congruence yields
even more false positives and is less robust than the mean
congruence, when used for selecting the most outlying
variable.

2. To decide which of the remaining variables is the most
outlying, compute variable-specific congruence-after-
exclusion scores, quantifying the mean congruence ob-
tained by excluding each variable one by one. The vari-
able with the highest congruence after-exclusion score is
declared to be the most outlying variable. For the ICS
value data, when considering all 11 variables, removing
the variable Heaven/afterlife yields the highest
congruence-after-exclusion score, and this variable is thus
the most outlying.

3. Remove the most outlying variable and update the SCA-P
solutions in each cluster and across all data blocks.
Afterward, perform the target rotation described in
Substep 1. Record the number of removed variables
(which equals the step number minus one), the most out-
lying variable from Substep 2, and the φmin and φmean

values from Substep 1. In the first step, the recorded
values are 0 (since no variables are removed yet),
Heaven/afterlife, φmin = .8801 and φmean = .9074 (see
Fig. 2a).

Afterward, the φmean values are plotted against the number
of removed variables. Next, the CHull procedure is performed
on the plot in order to find the number of outlying variables.
Therefore, this procedure finds the number of outlying vari-
ables after which the increase in φmean due to additional re-
movals levels off. Specifically, CHull first selects the solutions
on the upper boundary of the convex hull of this plot and orders
them according to the number of variables removed. Next, the
following st criterion is computed on the S selected solutions.

sts ¼
φmean
s −φmean

s−1
ls−ls−1

� �

φmean
sþ1 −φmean

s

lsþ1−ls

� � ð4Þ

Here, ls denotes the number of variables removed in the sth
CHull solution (s = 1… S). The solution with the highest sts
value will yield the final set of outlying variables, if its φmin

value exceeds .95. The latter restriction is imposed to make
sure that the retained variables have sufficiently similar load-
ings. For the ICS value data, the solutions with zero, one, and
two removed variables are excluded for this reason. This does
not change the final conclusion, however, which indicates that
eight variables should be removed.

The problem with LBCM and how to resolve it

When applied to the ICS value data, LBCM indicates that eight
variables should be removed, leaving us with three variables
only. This is not very helpful: If we think of outlying-variable
detection and removal as a prestep to prepare the data for fur-
ther analysis and comparison, no applied researcher would be
pleased with the suggestion to permanently remove eight out of
11 variables from the data and conduct the analysis with the
remaining three variables only. Moreover, visually inspecting
the solid line in the plot (Fig. 2b) would rather point toward four
outlying variables, since the congruence scores are very high
from that solution onward and hardly improve anymore. This
result immediately demonstrates the main weakness of the
LBCM approach: Although the method performs generally
well on simulated data, it often removes a lot of, and probably
too many, variables when applied to real data (see also the other
applications in BIllustrative applications^ section). In fact, the
selected number of outlying variables is the maximum number
that the method could have picked. We have observed the same
selection behavior when the LBCM was applied to more chal-
lenging simulated data. Thus, for difficult settings, LBCM is
prone to yield false positives.

This tendency to yield false positives is probably caused by
a weakness of the CHull procedure. Analyzing Eq. 4 shows
the following: The more variables are removed, the more
φmean
s approximates φmean

sþ1 and the smaller the denominator
of the ratio becomes, implying that a very small gain in

2 As we assume two clusters in this paper, we will get one congruence value
per component and φmin and φmean are the minimum and average thereof.
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Tucker’s congruence due to removing a variable will yield a
very high st value. This weakness of CHull has been pointed
out before, when it was used to solve model selection prob-
lems (i.e., to find the solution with the best goodness of fit vs.
model complexity balance). In this context, Wilderjans et al.
(2013) proposed to handle the issue by discarding a model if it
does not imply a fit increase of at least 1% in comparison with
the preceding model in the CHull plot. Although this 1% rule
might be appropriate for the model selection problem, it is less
applicable when using Tucker’s congruence measure, as it is
not clear what the minimal similarity gain should be, as this
will probably depend on the data at hand.

Therefore, we propose a different way of discarding solu-
tions, which explicitly takes the data characteristics into ac-
count. Specifically, we propose introducing an upper bound
that is derived in each step of the method by building a sam-
pling distribution of the Tucker’s congruence measure, under
the null hypothesis that the data do not contain outlying var-
iables. If the observed mean congruence in a specific step is
extremely low in comparison to this distribution (i.e., a low
one-sided p value), this suggests that the data still contain
outliers. Nonextreme congruencemeasures, on the other hand,
indicate that all outlying variables have already been re-
moved.3 Therefore, we propose to discard all but the first

solution that yields a nonextreme congruence, because
selecting one of the previous solutions would imply finding
false positives.

Lower and resampled upper bound congruence
method

The new LRUBCM performs the same steps as the original
LBCM procedure.4 There are two modifications, however: In
Substep 1, not only φmin and φmean are computed, but also the
sampling distribution of φmean, under the null hypothesis that
no outlying variables are present. Each time, the upper thresh-
old is saved, which is set to the fifth percentile of this sampling
distribution.5 The CHull step is also refined further, to incor-
porate this upper threshold. In particular, LRUBCM picks the
solution that has the highest st value, after removing the solu-
tions for whichφmin is lower than .95, or for which holds that a
solution with less outlying variables has already crossed the
upper bound.

Computing the sampling distribution of φmean (See the
Appendix for the associated Matlab code; the full code of
LRUBCM can be requested from the first author.) To be able
to compute the sampling distribution of φmean under the null
hypothesis that the data contain no outlying variables, we have
to define what this hypothesis exactly entails. Thus, we revisit

3 Onemight wonderwhywe do not simply use the sampling distribution of the
Tucker’s congruence measure under the null hypothesis to perform a statistical
significance test. The presimulations showed that this type of test was not
robust and produced false positives. This is due to the ambiguity of Tucker’s
congruence, implying that the measured congruence might still be extremely
low in comparison to this distribution, while the data do not contain any more
outlying variables. Using the distribution to construct an upper bound for the
CHull procedure results in lower chances of picking a solution that includes
false positives. Indeed, such solutions will probably result in a relatively small
increase of the congruence.

4 The LRUBCM is equally applicable when there are only two data blocks
present (i.e. each cluster consists of one data block). In this case, during the
third substep of the original procedure, the cluster-specific solutions can be
obtained by performing ordinary principal component analysis.
5 For the pilot simulations, we have tried significance levels equal to .01 and
.05. Afterward, we retained the .05 significance level as it yielded more robust
results across the Bbetween^ factors of the simulation design.

The 

number of 

removed

variables

The most outlying 

variable

Upper 

threshold

= .05

St  

values

0 .9074 Heaven/afterlife .8801 .9959 -

1 .9433 Fun .9225 .9962 -

2 .9666 Success .9472 .9959 1.6783

3 .9743 Self-sacrifice .9625 .9951 -

4 .9942 Excitement/arousal .9942 .9964 4.8069

5 .9971 Physical comforts .9949 .9972 2.6853

6 .9981 Happiness .9969 .9974 -

7 .9993 Competition .9992 .9958 1.7230

8 .9999 Material wealth .9998 .9979 5.4001

9 .9999 Intelligence/knowledge .9999 .9999 -

a) b)
Fig. 2 (a) Outlyingness ranking matrix for the ICS value data using pmax

of .05. The two highest st values are marked in bold and correspond to the
arrows in panel b. LBCM yields eight outlying variables. This solution is
discarded by the LRUBCM method using pmax of .05, because of the
upper threshold; therefore, LRUBCM returns four outlying variables.

(b) CHull/LRUBCM: The dashed lines from top to bottom represent
the upper bounds using a pmax of .00, .05, .10, and .15, respectively.
The solutions that are discarded because of the lower bound are marked
as B+.^ Using a pmax of .00, LRUBCM yields eight outlying variables,
and the other three pmax values result in four outlying variables
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the introduction where we stated that we are only interested in
larger loading differences, which alter the interpretation of the
underlying constructs. To operationalize this notion of larger
loading differences in a flexible way, we put forward that
loading differences between variables do not alter the inter-
pretation of the components as long as their absolute value
does not exceed a user-specified threshold. For instance, it
makes sense to assume that researchers will not be too alarmed
about absolute differences that amount to .05 or .10 only. We
will refer to this user-specified threshold as the maximally
allowed perturbing value pmax. Note that users can obviously
decide to be really strict and set pmax to zero. After
prespecifying pmax, the sampling distribution is constructed
by generating M resampled data sets that—in the case that p-
max is nonzero—are simulated on the basis of two loading
matrices with up to pmax absolute differences between the
corresponding loadings. The number of resampled data sets,
M, is set to 1,000 by default. Specifically, for each resampled
data set, the matrices B(k), Fi, and Ei are obtained as follows,
respectively:

& To obtain the two cluster-specific loading matrices
B(1) and B(2), the observed data X, minus the variables
removed so far, are modeled with SCA-P, using the same
number of components as in the original analysis. The
SCA-P loading matrix B is VARIMAX-rotated toward
simple structure, yielding B(1). Next, to acquire B(2), B(1)

is perturbed using pmax. Specifically, each of the loadings
has 50% chance of being altered. If a loading is to be
altered, the applied amount of perturbing is drawn ran-
domly from the interval [pmax/2, pmax]. In 50%of the
cases, the sampled value is added to the original loading,
in the other cases, it is subtracted. We call B(2) the
Bperturbed^ loading matrix. Table 2 shows the
VARIMAX-rotated SCA-P loadings for the ICS data and
one example of a perturbed loading matrix, using
pmax = .10.

& The Fi matrices of the groups are obtained by counter-
rotating the corresponding original Fi matrices of the
SCA-P solution, to compensate for the VARIMAX rota-
tion. The counter-rotation boils down to postmultiplying
FiwithT, where T denotes the orthogonal rotation matrix.
Indeed, FiT(BT)

′ = Fi TT
′B′ = Fi B

′. Since we have
perturbed the loading matrix of the second cluster, we
reestimate the associated Fi matrices conditional upon
the Xi matrices and B(2), and subject to the SCA-P con-
straints on the Fi matrices.

& The error matrices Ei differ across the resampled data sets.
They all are based on the residual matrices that can be
computed for the original data, making use of the Fi and
B(k)matrices obtained above: Xi − FiB

(k)′, where B(k) indi-
cates the cluster-specific loading matrix of the cluster to
which Xi belongs. For each resampled data set, we

generate new Ei matrices, by first computing residual ma-
trices and then randomly permuting the entries within each
column. The resulting reshuffled matrices, Ei, are com-
bined with the Fi and B(k) matrices yielding the final
resampled data set.

Refining the CHull step As before, the CHull step first selects
the solutions on the upper boundary of the convex hull of
φmean versus the plot of the number of removed variables.
These Bhull^ solutions are ordered according to the number
of variables removed and the st values are calculated.
Afterward, the solutions that do not satisfy the threshold
criteria are discarded. In particular, CHull solutions with
φmin lower than .95 are set aside (lower bound), as well as
all but the first solution for which φmean is higher than the
upper resampled threshold (upper bound). From the retained
solutions, the one with the highest st value is selected, and the
associated set of variables is considered to be outlying.

For example, Fig. 2b shows the LRUBCM plot for the ICS
value data for four different pmax values: .00, .05, .10, and .15.
There are five CHull solutions, with two, four, five, seven, and
eight associated sets of removed variables, before discarding
any of them on the basis of the threshold criteria. The solution
with two removed variables is discarded on the basis of the
lower threshold restriction, as itsφmin is lower than .95.Which
solutions are removed on the basis of the upper bound restric-
tion depends on the pmax value used. For pmax equal to .00, .05,
.10, and .15, the final sets of solutions to choose from are {4,
5, 7, 8}, {4, 5}, {4}, and {4}, respectively. The solution with
the highest st value pertains to eight outlying variables, and
the second highest to four. As a result, applying the LRUBCM
with pmax equal to .00 indicates that the data contain eight
outlying variables, while using any of the other pmax values
points toward four outlying variables.

Table 2 Illustration of the perturbing step in the computation of the
sampling distribution, using the ICS value data and pmax = .10

B(1) B(2)

.30 – .53 .30 – .59

– .08 – .75 – .14 – .83

.72 – .07 .72 – .14

.77 – .09 .67 – .02

.75 – .08 .75 – .14

.66 – .09 .66 – .03

.72 – .05 .72 – .05

.60 .05 .60 .15

.54 – .08 .49 – .13

.30 – .66 .39 – .66

– .15 – .72 – .15 – .81

Behav Res (2020) 52:236–263 243



Simulation study

Problem

To compare the overall performance of the LBCM and
LRUBCM approaches, we conducted a simulation study, based
on the one by De Roover, Timmerman, and Ceulemans (2017).
From the latter simulation study, we retained the two factors that
affected performance most: the degree of outlyingness and the
amount of error in the data. As we have already discussed
above, we are not interested in small differences across the
cluster-specific loadings. Thus, in order to evaluate performance
in this regard, we have added one more factor: the maximum
size of absolute differences in the loadings of nonoutlying var-
iables. We hypothesize that a lower degree of outlyingness, a
larger amount of error, larger absolute differences in the load-
ings of nonoutlying variables and fewer number of observations
will complicate outlying-variable detection.

Design and procedure

Following De Roover, Timmerman, and Ceulemans (2017), the
number of data blocks Iwas fixed at ten. Each simulated data set
consisted of two equally sized clusters, with nine nonoutlying
and four outlying variables. The number of underlying compo-
nents Q was set to three per cluster. Four Bbetween^ factors
were systematically varied in a complete factorial design:

1. The degree of outlyingness, at four levels: very high,
high, medium, and low;

2. The error level, which is the expected proportion of
error variance, v, in the data blocks, at two levels: .20
and .40;

3. The maximal amount of absolute differences, dmax, in
the loadings of nonoutlying variables, at three levels:
.00 .05, and .10;

4. The number of observations per data block: 25 and
75.

The factorial design thus contains 4 × 2 × 3 × 2 = 48 cells.
For each cell of this design, 300 data matricesXwere generated,
yielding 14,400 datasets. Each data matrix consists of 10Xi data
blocks and, for each data block, a component score matrix Fi
was randomly sampled from a multivariate normal distribution.
To this end, the component variances and correlations were
sampled between 0.25 and 1.75 and between −.5 and .5, respec-
tively. To generate the partition matrix P, half of the blocks were
randomly selected and assigned to one of the clusters, and the
rest were assigned to the other cluster.

To generate the cluster-specific loading matrices B(k), the
following steps were performed. To each of the three compo-
nents, three different nonoutlying variables were assigned. If a
nonoutlying variable is assigned to a component, it has a loading
equal to 1; otherwise, the loading equals 0. In Cluster 1, outlying

variables had a loading of 1 on a single component, whereas in
the other cluster they received a loading boutl1 on the same com-
ponent, but also a loading boutl2 on another component. Since
there are four outlying variables and three components, one
component contains two outlying variables, and the other two
components only one. The loadings boutl2 were assigned in the
same manner. The values of boutl1 and boutl2 depend on the
degree of outlyingness. For very high, high, medium, and low
degrees of outlyingness, the combinations of boutl1 and boutl2 areffiffiffiffiffiffi
:25

p
and

ffiffiffiffiffiffi
:75

p
,

ffiffiffiffiffiffi
:50

p
and

ffiffiffiffiffiffi
:50

p
,

ffiffiffiffiffiffi
:75

p
and

ffiffiffiffiffiffi
:25

p
, and

ffiffiffiffiffiffi
:85

p

and
ffiffiffiffiffi
15

p
, respectively.

In line with how we perturb when generating the sampling
distribution, the perturbing of nonoutlying variables was imple-
mented as follows: First, the loading matrices are rescaled by

multiplying them by
ffiffiffiffiffiffiffiffi
1−v

p
. Next, the loadings of the

nonoutlying variables in the second cluster are perturbed, where
the perturbing probability equals .5. If the loading is perturbed,
then the perturbing amount is sampled randomly from the fol-
lowing interval [dmax/2, dmax]. In 50% of the cases, the sampled
value is subtracted from the original loading; in the other 50%,
it is added.

For the first cluster, the error matrix Ei was randomly sam-
pled from amultivariate normal distribution with zeromean and
identity covariance matrix and rescaled by multiplying it withffiffiffi
v

p
. For the second cluster, the columns of Ei corresponding to

outlying and nonoutlying variables are scaled differently as the
sum of the squared loadings of the nonoutlying variables in the
second cluster is slightly different due to the perturbing (i.e., it is

distributed around
ffiffiffiffiffiffiffiffi
1−v

p
, rather than exactly equal to it, for each

variable). These changes are accounted for when rescaling the
errors, to make sure that the variance of each variable equals
one, once the error is added. Outlying variables are rescaled
with v as they were not altered by the perturbing. Finally, each

Xi is computed as FiB kð Þ0 þ Ei. When analyzing the simulated
data, the number of clusters was fixed to two and the number of
components to three. Both the LBCM and the LRUBCM pro-
cedures were applied. For the LRUBCM, we selected the fol-
lowing three pmax values: .00, .05, and .10.

Results

Table 3 shows the percentages of datasets for which LBCM and
LRUBCM correctly detected all outlying variables. By correct
detection, we imply that the method identified exactly the four
outlying variables that were present in the simulated data, neither
less nor more. On average, the rounded percentages of correct
detection equaled 71%, 76%, 78%, and 72% ,for LBCM and
LRUBCM with pmax values of .00, .05, and .10, respectively;
LRUBCM thus performs better than LBCM overall. To test
whether the performance differences between LBCM and
LRUBCM with different pmax values are significant, we con-
ducted three paired t tests comparing the results obtained with
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LBCM in the 48 cells of the design with the corresponding
results for the three LRUBCMvariants. These tests revealed that
LRUBCM with pmax of .00 [t(47) = 7.86, p < .0001] or .05
[t(47) = 8.35, p < .0001] clearly outperformed LBCM, whereas
this did not hold for the differences between LBCM and
LRUBCM with a pmax value of .10 [t(47) = 0.64, p = .5248].

The performance of the methods was not constant across
the design, however. The general trend was for the perfor-
mance of both LRUBCM and LBCM to decrease with a larg-
er amount of error, a lower degree of outlyingness, and higher
dmax values, and to be impacted even more by combinations
thereof. One might wonder whether LRUBCM can outper-
form LBCM in the settings of the original simulation study
(De Roover, Timmerman, & Ceulemans, 2017), implying a
dmax of .00. To be as strict as possible, we compared the
performance of LBCM with that of LRUBCM with p-
max = .00. As one can see, LRUBCM not only performed
better on average [t(15) = 3.72, p = 0.0020], but it also yielded
better results for each of the corresponding cells of Table 3.

To gain insight into the tendency of both methods to output
false positives, we inspected the difference between the ob-
served and the true numbers of outlying variables. The mean
values of these differences are shown in the Table 4. Positive
numbers indicate that a method is inclined toward false posi-
tives, and negative numbers indicate that methods produce false
negatives. From Table 4, we conclude that LRUBCM performs
generally better than LBCM, except when LRUBCM is applied
with a value of pmax that exceeds the value of dmax that was used
to generate the data. In this case the comparison is not so
straightforward, in that LBCM produces false positives, while
LRUBCM generates false negatives.

To investigate whether incorrect detection results were due
to incorrectly ranking the variables, we checked the ranking.
Specifically, the ranking was considered to be incorrect if the
first four most outlying variables in the outlyingness ranking
were not the Btrue^ outlying variables, regardless of the order.
The order did not matter, since the level of outlyingness did
not vary within the data sets. Table 5 shows the numbers of
data sets with incorrect rankings across different dmax values
and different numbers of observations per data block, er-
ror%s, and levels of outlyingness. The number of incorrect
rankings drastically decreased when we increased the number
of observations per data block. However, incorrect rankings
often occur for the data sets with 25 observations per block
and/or a low or medium degree of outlyingness. When the
data sets contain 75 observations per block, incorrect rankings
are only encountered when a low degree of outlyingness is
combined with 40% error. Thus, for the rest of the cases we
can conclude that when the outlying variables are detected
incorrectly, this is mostly due to selecting the wrong number
of outlying variables, rather than to an incorrect ranking.

For LRUBCM, one might expect that the performance
using different pmax values would align to some extent withTa
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the dmax value used to generate the data. This hypothesis
would imply that for the data sets generated with a dmax value
of .00, the best-performing LRUBCM variation would use a
pmax value of .00; for the data sets generated with a dmax value
of .05, LRUBCM with a pmax value of .05 would be best; and
so forth. This was generally true for the data sets generated
with dmax values of .05 and .10, whereas for the data sets
generated with a dmax value of .00, pmax of .05 yielded slightly
better performance than pmax of .00 (Table 3), since adding
error to the data yielded small loading differences. LRUBCM
performed notably worse when pmax exceeded dmax (Table 3),
because it yielded too few outlying variables, and thus was
prone to false negatives (Table 4). This tendency was also
influenced by the degree of outlyingness of the outlying var-
iables and the error level on the data. A lower degree of
outlyingness and a higher error level led to a higher number
of false negatives. In such cases, the congruence value for the
observed data, even before removing all the outlying vari-
ables, was rather high. On the other hand, the congruence
values for the resampled data sets would be relatively low,
because during resampling a relatively high pmax is used.
Therefore, the original congruence value would be higher than
most of the resampled congruence values, implying that too
few outlying variables would be detected.

To conclude, LRUBCM showed better performance than
LBCM, not only in terms of correctly identifying all the out-
lying variables, but also in terms of false positives or negatives
(Table 4). This pattern did not hold, however, for the data sets
with dmax = .00 when LRUBCMwas applied with a pmax = .10
value.

Illustrative applications

In this section, we will reanalyze another data set that was al-
ready screened for the presence of outlying variables (De
Roover, Timmerman, De Leersnyder, et al., 2014). The data
come from a study on emotional acculturation that was carried
out by De Leersnyder, Mesquita, and Kim (2011). The starting
point from this study was that, aside from many similarities,
emotional experience also differs across cultures. Thus, the
question is whether and how emotional experiences change
when people move from one culture to another. The concept
of emotional acculturation implies that immigrants start
experiencing emotions in ways similar to those of their host
culture (De Leersnyder et al., 2011). De Leersnyder et al. inves-
tigated two different host cultures (USA and Belgium) and in-
cluded minority groups from different heritage cultures (the cul-
tures fromwhich the immigrants stemmed), yielding 13 samples
of participants (see Table 6). Participants rated on 7-point Likert
scales the degrees to which they had experienced 17 emotions
(displayed in Table 7) in one to four different situations (for
more details, see De Leersnyder et al., 2011). Similar to De

Roover, Timmerman, De Leersnyder, et al. (2014), we consid-
ered each situation–participant combination as an individual ob-
servation. Note that observations with missing values were re-
moved from the data set. The 17 variables were centered within
each block and standardized across the blocks.

Analyzing these data with cluster-wise SCA-P, De
Roover, Timmerman, De Leersnyder, et al. (2014) decided
to retain a solution with three clusters and two components.
The clustering of the participant samples is shown in
Table 6. The first cluster consisted of the different cultural
groups living in the USA as well as the Koreans. The sec-
ond cluster consisted of the indigenous Belgian groups and
second-generation Turkish immigrants living in Belgium,
whereas the first-generation Turkish immigrants were clus-
tered together with Turkish students living in Turkey in the
third cluster. The assignment difference for the first- and
second-generation Turkish immigrants is interesting, in
that it shows that second-generation immigrants showed
evidence of emotional acculturation.

De Roover, Timmerman, De Leersnyder, et al. (2014)
used a precursor of the LBCM procedure to detect possibly
outlying variables. This precursor procedure would proba-
bly output a different outlyingness ranking, as its ranking
is based on φmin instead of φmean. Another difference be-
tween this procedure and LBCM pertains to the stopping
criterion, in that the former procedure did not rely on
CHull, but rather went on until the minimum congruence
between the clusters exceeded .96. The analysis with the
precursor procedure indicated that seven variables could be
considered outlying: strong , proud about myself ,
surprised, relying, resigned, bored, and indebted. Beyond

Table 6 Numbers of observations and cluster membership of the
samples of the acculturation data, according to the clusterwise SCA-P
solution with three clusters and two components

Samples Retained
observations

Cluster
membership

European Americans 1 (USA) 120 1

Korean immigrants (USA) 126 1

Mexican immigrants (USA) 188 1

East-Asian immigrants (USA) 159 1

Latino immigrants (USA) 142 1

European Americans2 (USA) 122 1

Koreans (Korea) 298 1

Flemish students1 (Belgium) 183 2

Flemish students2 (Belgium) 516 2

Belgian community (Belgium) 166 2

Turkish 2nd generation
immigrants (Belgium)

157 2

Turkish 1st generation
immigrants (Belgium)

143 3

Turkish students (Turkey) 699 3
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these seven variables, LBCM indicated that irritated,
close, and ill feelings are outlying as well.

Because LRUBCM is tailored to comparing two clusters, we
applied LBCM and LRUBCM to each pair of clusters
(Belgium–Turkey, USA & Korea–Turkey, USA & Korea–
Belgium) separately. Below we discuss the results for each pair.

Belgium–Turkey

The orthogonally rotated SCA-P loadings structure for the
Belgian and Turkish clusters in Table 7 show that the positive
emotions mainly load on the second component, whereas the
negative emotions load on the first component. The emotion
proud about myself has a strong negative loading on the neg-
ative component, which implies that when the participants of
these samples experience negative emotions, they do not feel
proud about themselves.

Implementing LBCM led to six outlying variables:
irritated, resigned, surprised, proud about myself, strong,
and bored, based on the elbow in the CHull plot in Fig. 3b.
We used four perturbing values when building the LRUBCM
sampling distribution of the congruence coefficient: .00, .05,
.10, and .15. The CHull plot in Fig. 3b shows that applying the
lowest three perturbing values led to the same six outlying
variables. In contrast, the .15 perturbing value yielded only
one outlying variable—irritated.

USA & Korea–Turkey

The loadings in Table 7 point toward the same component in-
terpretation in terms of positive and negative emotions, but again
with some subtle differences in whether and how strongly cer-
tain emotions are (inversely) related to a component. As is visu-
alized in Fig. 4b, applying LBCM to these data indicates that 14
out of the 17 emotions are outlying, retaining only guilty, strong,
and ashamed. Yet, visually investigating the CHull plot suggests
that the data contain four outlying variables only. Once these
four variables are removed, the mean congruenceφmean exceeds
.99. Thus, this cluster pair clearly showcases the tendency of
LBCM to yield false positives. No applied researcher would like
to remove 14 out of 17 variables from the data permanently in
order to conduct cross-cultural comparative analysis.

LRUBCM performed better for these data, since using any
of the four considered perturbing values successfully eliminat-
ed the solution with 14 variables from the pool of possible
solutions. Specifically, LRUBCM always suggested removing
resigned, surprised, bored, and relying.

USA & Korea–Belgium

When comparing the USA & Korea cluster to the Belgian one,
LBCM indicated that ten variables were outlying and should be
removed (Fig. 5b). This is again probably too high a number.
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0 5 10 15
Number of removed outlying variables

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

C
on

gr
ue

nc
e

a) b)

Fig. 3 (a) The outlyingness ranking matrix for Belgium and Turkey data
using pmax of .15. The two relevant highest st values are marked in bold
and correspond with the arrows in panel b. LBCM yields six outlying
variables. This solution is discarded by LRUBCM using pmax of .15,
because of the upper threshold; therefore, LRUBCM returns one

outlying variable. (b) CHull/LRUBCM: The dashed lines from top to
bottom represent the upper bounds using pmax of .00, .05, .10, and .15,
respectively. Using a pmax of .15, LRUBCM yields one outlying variable,
and the other three pmax values result in six outlying variables
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The recommendations resulting from applying LRUBCM
depended on the pmax value used. This is because the CHull plot
shows two elbows: one associated with four outlying variables,
and another with ten. The last elbow has a higher st value, so
when both solutions are in the pool of considered elbows, it will
be picked. The first elbow, with four associated outlying vari-
ables, is picked when using pmaxvalues of .10 or.15, as this
eliminates the last elbow. The latter choices of pmax make sense
from a practical perspective, in that lower absolute loading dif-
ferences probably do not change the interpretation of the com-
ponents at all, so we recommend discarding the following four
variables: surprised, relying, bored, and resigned.

Summary

This application showed again that LBCM tends to return a high
number of outlying variables. Applying LRUBCM with a pmax
value of .15 effectively handles this overextraction and yields
the strongest outlying variables only. If we focus on the results
obtained with .10 and .15 pmax values, the variables surprised,
bored, resigned, and relying were declared outlying when com-
paring the USA & Korea cluster to each of the other two clus-
ters. Although relying seems to be a positive emotion in the
Belgian and Turkish clusters, it has a negative undertone as well
for Americans and Koreans. Surprised loaded similarly high on

the positive and negative emotion components in the USA &
Korea cluster, whereas for the Belgian and Turkish clusters, it
loaded more strongly on the positive emotion component.
Resigned loaded primarily on the positive emotion component
in the Turkish cluster, whereas for the USA & Korean and
Belgian clusters it loaded mainly on the negative emotion com-
ponent. The variable bored had a small positive loading on the
positive emotion component for the USA & Korea cluster,
whereas it has stronger negative loadings on this component
in the other two clusters. Finally, irritated had a different load-
ing pattern in the Belgian and Turkish clusters, in that it was
more clearly a negative emotion in the Belgian cluster.

Discussion

There is a clear need for methods to detect outlying variables
when performing exploratory dimension reduction in psycholo-
gy. Outlying variable detection can be applied as a pre-step when
measurement invariance (Meredith, 1993) is a concern and one
has no strong a priori hypothesis about the underlying dimen-
sions. It allows to have a first look at which variables may be
causing noninvariance or to identify the least outlying variables
that are suitable as anchor items for a subsequent multigroup
EFA or CFA. Finding outlying variables is also of great interest
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Fig. 4 (a) The outlyingness rankingmatrix for USA&Korea and Turkey
data using pmax of .15. The two highest st values are marked in bold and
correspond with the arrows in panel b. LBCM yields 14 outlying
variables. This solution is discarded by LRUBCM using pmax of .15
because of the upper threshold; therefore, LRUBCM returns four

outlying variables. (b) CHull/LRUBCM: The dashed lines from top to
bottom represent the upper bounds using pmax of .00, .05, .10, and .15,
respectively. The solutions that are discarded because of the lower bound
are marked as B+.^ Using pmax of .00, .05, .10, or .15, LRUBCM yields
four outlying variables
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for comparative research (Triandis, 1988; Esser & Hanitzsch,
2013), well beyond the measurement invariance issue, as it can
help distinguish between culture-specific and universal features.

In this article, we started from an existing heuristic, LBCM,
because of its many strengths and advantages. LBCM yields
objective, computation-based information and is therefore
perfectly reproducible. Interestingly, it also ranks the variables
in term of outlyingness and sheds light on how the cluster-
specific component structures converge toward a common
structure when removing one variable after the other.
Finally, it accounts for the influence of outlying variables on
component extraction and rotation, as the components are re-
estimated and rotated after every removal, which avoids false
positives and negatives. Nevertheless, we showed that LBCM
is not without issues, in that it is still prone to pick up small
loading differences that may be false positives. This hampers
applying the method in practice, because users are left with
too few variables. For example, for the ICS value data, eight
out of 11 variables were detected as outlying, which is the
maximum number that the method could have picked.

To overcome this false-positive issue, we have presented
the new LRUBCM approach. LRUBCM extends LBCM by
adding two new features. First, next to the lower bound, an
upper threshold is imposed as well, to discard solutions with
too many outlying variables. This upper threshold is derived

from the sampling distribution of the Tucker’s congruence
coefficient under the null hypothesis that the data contain no
outlying variables. Second, while building this sampling dis-
tribution, LRUBCM does not impose the loadings to be ex-
actly the same across the two clusters, but checks for similarity
instead by tolerating small loading differences, which are
quantified by the selected pmax value.

In comparison with LBCM, LRUBCM shows better per-
formance on simulated data, not only in terms of the number
of data sets for which outlying variables are correctly identi-
fied, but also in terms of the number of false positives.
LRUBCM yields a fair amount of false negatives, however,
when pmax is much higher than the dmax value that the data was
simulated with. This means that it is fairly important that re-
searchers have a good idea about which size of loading differ-
ences are irrelevant and choose the value of pmax accordingly.
Furthermore, the most appropriate pmax value depends,
amongst others, on the amount of observations and the
amount of noise in the data as both aspects impact the reliabil-
ity of the loadings. In this regard, one might argue that we
have replaced one arbitrary choice (when is Tucker’s congru-
ence high enough to be reasonably sure that the data contain
nooutlyingvariables anymore)with another (whichpmax value
should be used). However, we think that while, from an inter-
pretation point of view, the meaning of a congruence
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Fig. 5 (a) The outlyingness ranking matrix for USA &Korea and Belgium
data using pmax of .15. The two relevant st values are marked in bold and
correspond with the arrows in panel b. LBCM yields ten outlying variables.
This solution is discarded by LRUBCM using pmax of .15, because of the
upper threshold; therefore, LRUBCM returns four outlying variables. (b)

CHull/LRUBCM: The dashed lines from top to bottom represent the
upper bounds using pmax of .00, .05, .10, and .15 respectively. The
solutions that are discarded because of the lower bound are marked as
B+.^ Using pmax of .00 and .05, LRUBCM yields ten outlying variables,
and the other two pmax values result in four outlying variables
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coefficient is sometimes hard to grasp as it is influenced by
many factors, choosing the maximum absolute loading differ-
ence that one is willing to tolerate is more intuitive and more-
over adds to the flexibility of the method.

One may wonder in which respects our procedure differs
from the bootstrap-based approach for outlying variable de-
tection that was proposed by Chan et al. (1999). Indeed, Chan
also uses the congruence coefficient as a similarity measure
and applies it in three different ways: to compare the loadings
of a specific variable or a specific factor or to evaluate the
complete loading matrix. As these authors suggest, the overall
and factor similarity could be used to assess the overall and
factor-specific invariance, while variable congruence
(computing the congruence row-wise) can be used to detect
outlying variables. This method also differs from LRUBCM.
The first difference pertains to the strictness of the invariance
assumption. Chan’s method evaluates exact equality of the
rotated loadings of nonoutlying variables, while LRUBCM
tests for similarity, tolerating small differences according to
user preferences. The second difference between Chan’s boot-
strap on the one hand and LRUBCM and LBCM on the other
hand is that the first method assesses the invariance of all
variables simultaneously, while LRUBCM and LBCM are
stepwise approaches and remove one outlying variable only
in each step. We argue that the stepwise approach is justified
by the influence that the outlying variables may have on the
loadings of the nonoutlying variables, where they affect both
which components are extracted and how they are rotated.
This can be observed in the results of the Chan and colleagues
simulation study, as well: Nonoutlying variables had a higher
chance to be declared as significantly different across the data
sets as the overall number of outlying variables increased.

An attentive reader might argue that when building the
sampling distribution under the null hypothesis of no outlying
variable, we treat the error matrix E as purely random, which
actually does not hold in component analysis models, in con-
trast to common factor models. Indeed, it is very likely that we
cannot always explain all of the systematic variance in the data
by means of the retained components. As a result E will con-
tain some systematic structure also and this structure will be
broken after randomly permuting the entries of the matrix E
within each column. Also, whereas the original E matrix is of
rank J −Q, the rank of the permuted version equals J. Given
our simulations results, we do not think that this is a major
issue, however. Yet, it might be an interesting direction for
future research to replace the component analysis approach
with a factor analysis one, to avoid this issue.

The choice of the number of components and how it affects
detection results deserves further investigation as well in the
future. For now, we hypothesize that we might end up with
different sets of outlying variables if we analyze the same data
with different number of components. Indeed, due to the rota-
tion, different sets of retained components will have different

loading patterns and therefore different interpretations; conse-
quently, which variables are the most outlying ones in terms of
these components might differ as well. Moreover, when one
overextracts and retains components that are noise driven, we
expect the noise components to be very different across the two
clusters, even before rotation, implying that many variables
should be removed. In case of underextraction, on the other
hand, some of the components might be merged or averaged
in some way, and this merging or averaging might again differ
between clusters. This difference would lower the similarity of
the components and thus affect outlying-variable detection.

As a final note, in this article we applied LRUBCM in a
specific setting, pertaining to exploratory component analysis
of many data blocks. However, the method is not limited to this
setting, as it can be used to compare any two loading structures
for the same variables, which may result from various types of
component or factor analysis. As examples, LRUBCM can be
used to detect which variables hamper the similarity of loading
matrices obtained in a mixtures of factor analyzers (De Roover,
Vermunt, Timmerman, & Ceulemans, 2017; McLachlan &
Peel, 2000; Yung, 1997), a subspace k-means analysis
(Timmerman, Ceulemans, De Roover, & Van Leeuwen, 2013)
or a switching principal component analysis (De Roover,
Timmerman, Van Diest, Onghena, & Ceulemans, 2014).

Author note The research leading to the results reported in this article
was supported in part by the Research Fund of KU Leuven (GOA/15/
003) and by the Interuniversity and Attraction Poles program financed by
the Belgian government (IAP/P7/06). For the simulations, we used the
infrastructure of the Flemish Supercomputer Center (VSC), funded by the
Hercules foundation and the Flemish Government, department EWI. The
data and materials can be requested from the first author, and the study
was not preregistered.

Appendix: Matlab code for producing
a the sampling distribution of φmean

For the future, for LRUBCM we plan to develop a Matlab
standalone package, which can be used without having a
Matlab environment installed on the computer. Meanwhile,
the code, used in this paper, can be requested from the first
author. As we think that technical details of the algorithm
might be better conceptualized when accompanied with an
actual implementation, we decided to deliver the main func-
tions. Some functions—Bmakecongruencedistribution.m,^
Bmakeresampledperturbeddata.m,^ Bperturbperloading.m,^
Breshufflematrixcolumnwise.m,^ and BclusterwiseSCAP-
withpartition.m^—were developed specifically for this arti-
cle/project, while the rest of the functions used—
Bnormvari.m,^ Bnrm.m,^ BOblProcrRot.m,^ Bphi.m,^
Bprocr.m,^ Bcent.m,^ Bssq.m,^ and Bvarim.m^—are a part of
an available software package by De Roover, Ceulemans, and
Timmerman (2012).
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