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Abstract
The MultiSCED web application has been developed to assist applied researchers in behavioral sciences to apply multilevel
modeling to quantitatively summarize single-case experimental design (SCED) studies through a user-friendly point-and-
click interface embedded within R. In this paper, we offer a brief introduction to the application, explaining how to define
and estimate the relevant multilevel models and how to interpret the results numerically and graphically. The use of the
application is illustrated through a re-analysis of an existing meta-analytic dataset. By guiding applied researchers through
MultiSCED, we aim to make use of the multilevel modeling technique for combining SCED data across cases and across
studies more comprehensible and accessible.
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In a single-case experimental design (SCED), a dependent
outcome variable is manipulated and repeatedly measured
within a single case, subject or unit, in order to verify the
effect of the manipulations (‘treatments’) on the outcome
(Onghena & Edgington, 2005). In the context of SCED data,
there is a variety of different ways to quantify the effective-
ness of a treatment. Depending on the specific SCED data
characteristics and the research question under investiga-
tion, some techniques are more appropriate than others.
A strong tradition of visual analysis exists and still
predominates in the field (Manolov & Moeyaert, 2017).
Over the years, researchers’ questioning of the reliability
and consistency of visual analysis (Parsonson & Baer, 1992)
and their advocating for complementing visual analysis
with statistical analysis techniques (Fisch, 2001; Manolov
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& Solanas, 2013) have led to methodological work on
developing effect sizes quantifying the effectiveness of an
intervention.

One of the proposed methods that has gained more atten-
tion throughout the years is multilevel modeling (Jamshidi
et al. 2018). Multilevel modeling (also referred to as hier-
archical linear or linear mixed modeling) is a very flexible
approach for combining and summarizing SCED data
across cases and across studies, taking into account the hier-
archical nature of SCED data. The application of multilevel
modeling for meta-analyzing SCED data was first proposed
by Van den Noortgate and Onghena (2003a) and since
then this approach has been explored and extended in
multiple methodological works, e.g., Ferron, Farmer, &
Owens, (2010), Owens and Ferron (2012), Moeyaert et al.
(2017), Baek and Ferron (2013), Rindskopf and Ferron
(2014), Joo et al. (2017) and Ugille et al. (2012). However,
despite these efforts, it has been shown that the approach
is only slowly gaining attention among SCED data analysts
and meta-analysts. There exists a gap between statistical
advances and the actual practices applied by behavioral
researchers (Manolov & Moeyaert, 2017). This seems to
be especially true for multilevel modeling (Jamshidi et al.
2018), which requires a good understanding of regression
model building, the associated parametric assumptions, and
the interpretation of the resulting estimates.

To bridge this gap between methodological and applied
research, free and easy-to-use software tools and tutorials
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are crucial (Manolov & Moeyaert, 2017; Shadish, 2014).
Specifically for multilevel modeling, applied researchers
can already rely on dedicated software such as MLwiN
(Rasbash et al., 2009) and HLM (Raudenbush, Bryk,
& Congdon, 2013). Common general statistical software
packages also offer multilevel modeling functionality: SPSS
provides the MIXED command (Peugh & Enders, 2005),
SAS has the MIXED procedure (Littell et al., 2007) and for R
there are packages such as lme4 (Bates et al., 2015) or nlme
(Pinheiro et al., 2018). However, even though the existing
software for multilevel modeling is suitable to respond to
the needs of applied SCED researchers searching for data
analysis tools, applying multilevel modeling to summarize
SCED data may often not be straightforward given the
specific SCED data characteristics. Correctly implementing
a multilevel model, obtaining parameter estimates, testing
hypotheses, interpreting the results and creating meaningful
graphs of them can be quite complex.

MultiSCED (available at http://www.single-case.com/
MultiSCED) is a web application developed to address these
issues by guiding researchers through the steps of perform-
ing a multilevel analysis of their SCED data. MultiSCED
is built with Shiny (Chang et al., 2017), a framework to
create interactive web applications that provide an interface
to R functionality (R Core Team, 2013). The application
offers a point-and-click user interface, allowing practition-
ers to use the freely available R software environment
without having to know or hard code the R syntax. The
goal of MultiSCED is to help users understand how to
use multilevel modeling for their SCED data analysis. The
application tries to do this in three ways. First, Multi-
SCED is designed to perform data analysis step by step
by starting with a simple and familiar (single level) linear
regression model. After exploring the data and the single-
level regression results case by case, multiple cases’ data
can be combined using a multilevel model. Second, Mul-
tiSCED provides the results not only numerically but also
provides a graphical presentation, and this very much facil-
itates interpretation. The obtained graphs can be saved
as figures to use in data analysis reports. Finally, Mul-
tiSCED automatically displays the multilevel modeling
equations, providing the user immediately with the cor-
rect mathematical representation of the model he/she has
built. The underlying R code formula required to fit the
model is also displayed. This code provides a starting
point to users who are interested in extending the analyses
within R.

The aim of this paper is to introduce MultiSCED and
to give a brief overview of the options embedded in the
application. For a more detailed description on how to
navigate through the point-and-click user interface, we
refer to the MultiSCED user guide, which is available

at https://kuleuven.box.com/v/MultiSCEDUserGuide. This
user guide illustrates all features of MultiSCED through a
real data example based on a dataset by Shogren, Faggella-
Luby, Bae and Wehmeyer (2004). This example is also
included in this paper in a more summarized version,
along with screenshots of the results as displayed within
the MultiSCED environment. The illustration is at an
introductory level aimed at applied SCED data analysts
and meta-analysts without prior experience with multilevel
modeling. Starting with a single-level analysis per case,
we work our way up to a two-level model combining
SCED data across cases within one study and finally
to a full three-level model combining SCED data across
cases and across studies using one statistical analysis
technique. In conclusion, we highlight the application’s
strengths and argue how MultiSCED can help to bridge the
aforementioned gap between methodological and applied
SCED research.

Empirical demonstration of MultiSCED

Illustrative dataset

For illustrating the use of MultiSCED, we chose a meta-
analytic dataset collected by Shogren et al. (2004). In their
paper, the authors collect and summarize 13 single-case
studies with a total of 30 participants in a meta-analysis.
They were interested in summarizing empirical evidence to
evaluate the effectiveness of choice-making interventions on
problem behavior for people with disabilities. In the original
study, the authors used two non-overlap indices to analyze
the effect of the treatment. Van den Noortgate and Onghena
(2008) retrieved the raw data from graphs in the primary
studies identified by Shogren et al. (2004) and re-analyzed
this dataset using multilevel modeling. The same dataset is
used in this paper and is available at https://kuleuven.app.
box.com/v/Shogren2004.

Data preparation

MultiSCED has several prerequisites that should be met
before uploading a dataset into the application. In this para-
graph, we list these prerequisites and verify them for the
Shogren et al. (2004) illustrative dataset. First, the data
should be collected by means of AB-phase designs, with
multiple measurements per case during a baseline and a
treatment phase. Several primary studies in the Shogren
et al. (2004) meta-analysis used reversal designs. For these
studies, only data from the first baseline and immediately
following intervention phase are included. Although more
complex SCED models are beyond the scope of Multi-

Behav Res (2020) 52:177–192178

http://www.single-case.com/MultiSCED
http://www.single-case.com/MultiSCED
https://kuleuven.box.com/v/MultiSCEDUserGuide
https://kuleuven.app.box.com/v/Shogren2004
https://kuleuven.app.box.com/v/Shogren2004


SCED, we want to encourage more advanced users to
implement multilevel models for extended designs (e.g.,
reversal or alternating treatment designs) directly in R with
lme4, using for example the work byMoeyaert et al. (2015),
Shadish, Kyse, and Rindskopf (2013) or Van den Noortgate
and Onghena (2003b) as a guideline.

For analysis in MultiSCED, the data should include
at least the following variables: a variable indicating the
measurement occasion (e.g., time, day or session), a variable
indicating the phase (whether the measurement occasion
is part of the baseline or the treatment phase), a variable
indicating the case, subject, or participant, and finally the
outcome variable (the value of the dependent variable of
interest for a particular measurement occasion). An excerpt
of the data file is shown in Fig. 1. The data file is stored
in .txt format, the only supported format for upload in
MulitSCED. Each row represents an observation for a case
and each column represents a variable.

The outcome of interest (i.e., the dependent variable,
denoted as Y in Fig. 1) is problem behavior. To avoid depen-
dency due to multiple outcomes per participant, only one
outcome indicating (overall) problem behavior was selected
when multiple outcomes per participant (e.g., problem
behavior and aggressive behavior) were reported. Multi-
level analysis of SCED data with multiple outcomes is
beyond the scope of MultiSCED because this involves either
a multivariate multilevel model (rather than the univari-
ate models illustrated in MultiSCED and in this paper) or
a nested or cross-classified model with a fourth level for
the outcome. For users interested in taking the dependency
between multiple outcomes into account, we refer to Van

den Noortgate et al. (2014) as a starting point. Furthermore,
data for one participant from the study by Romaniuk et al.
(2002) was excluded because for this participant, two dif-
ferent conditions were alternated within the reversal design.
Finally, data for one participant from the study by Kern
et al. (2001) were also excluded because for this par-
ticipant the only measured outcome was one of positive
behavior. Some of the outcomes measured in the primary
studies of the Shogren et al. (2004) meta-analysis were
not measured on a continuous scale (e.g., in the study by
Dibley and Lim, 1999), violating the normality assumption
underlying the linear multilevel models provided in Mul-
tiSCED. An alternative to account for discrete data is to
use a generalized linear mixed model instead, for which we
refer to Declercq et al. (2018).

Additional variables in the dataset and their coding
protocol are listed in Table 1. In the original meta-analysis
by Shogren et al. (2004), more independent variables
are included, but these are omitted here, as an extensive
moderator analysis is beyond the scope of this paper.

One-level analysis

SCEDs have been introduced as a way to closely study
whether individual cases respond to a treatment or not
(Shadish, Rindskopf, & Hedges, 2008). An ordinary least
squares (OLS) regression analysis on a particular case’s
data is a way to quantify the effect of the treatment for
the individual of interest. In MultiSCED, this is referred
to as a ‘one-level analysis’ and it yields case-specific
treatment effect estimates. Including Phase and Time and

Fig. 1 Shogren et al. (2004) input data file. The meta-analytic data are stored in a tab-delimited text (.txt) file with each row representing an
observation and each column representing a variable
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Table 1 Variables in the illustrative dataset based on the meta-analysis
by Shogren et al. (2004)

Variable Type Description

Author Text First author and year

Name Text Participant name

Time Numeric Measurement occasion

Phase Factor 0 - baseline

1 - treatment

Y Numeric Problem behavior outcome

Gender Factor 0 - male

1 - male

Age Numeric Participant age

their interaction as independent variables, we define a one-
level model for each individual case in the Shogren et al.
(2004) dataset as

Yi =β0+β1Timei +β2Phasei +β3 (Timei × Phasei )+ei (1)

The subscript i denotes the measurement nested within
the case. The variable Timei denotes the time at which
measurement i was observed. This can be real time (e.g.,
days or minutes) or a time indication (e.g., session number).
The residuals ei are assumed to be independent, following a
normal distribution with zero mean and standard deviation
σe. In this one-level model, the only source of variation is
the sampling errors ei : this is the random variation of the
sample measurements around the expected value. When a
measurement Yi is part of the baseline phase, the dummy
variable score Phasei equals 0. Equation 1 then simplifies to

Yi = β0 + β1Timei + ei (2)

for the baseline phase data’s model. Thus the baseline model
is a straight line with respect to Time, with an intercept β0

and a slope β1. For measurements Yi in the treatment phase,
we have that Phasei equals 1 and then Equation 1 can be
written as

Yi = β0 + β1Timei + β2 + β3Timei + ei

= (β0 + β2) + (β1 + β3)Timei + ei (3)

The intercept in the treatment phase (i.e., the predicted
outcome score at the start of the treatment phase) is β0 + β2

and the slope for the treatment phase is β1 + β3. Thus
β2 is the effect of the treatment on the intercept, and β3

is the effect of the treatment on the slope. To facilitate
the interpretation of β0 and β2 in particular, MultiSCED
offers an option to center the time variable around the time
at the first measurement occasion in the treatment phase
(Fig. 2). When the data are centered, β0 refers to the score
at the first measurement occasion after the baseline phase as

predicted if the baseline trend is projected into the treatment
phase, whereas β0 + β2 refers to the score at the same
measurement occasion but predicted by the treatment phase
data’s trajectory. In other words, β2 refers to the immediate
effect of the intervention when the treatment phase starts.

An important issue when combining data across studies
is that different studies may use different metrics to
measure the outcomes. This might result in different
measuring scales used for the dependent variable. To make
outcomes from different studies comparable, it is required
to standardize the outcome variable before combining the
outcomes in a multilevel analysis. MultiSCED offers the
option to standardize the data according to the method
proposed by Van den Noortgate and Onghena (2008). In this
method, an OLS regression is performed on each individual
case, according to the model defined above (1). Next, the
individual scores Yi are standardized by dividing them by
the estimated residual within-subject standard deviation σ̂e

of case j from study k:

Y ST
i(jk) = Yi(jk)

σ̂e(jk)

(4)

This procedure is applied to the choice-making intervention
dataset and all results discussed in the remainder of this
paper have been obtained based on standardized problem
behavior scores.

The results of the one-level OLS regression are shown
as a table in Fig. 3 and are displayed graphically in Fig. 4
using screenshots of the MultiSCED environment. Each
row of the output table represents a case-specific regression
coefficient estimate together with its standard error, t value
and p value. For instance for Brooke (Fig. 3), a case
from the study by Romaniuk et al. (2002), we see that the
estimated intercept (β̂0 = 5.09) and the Time and Phase

coefficients (β̂1 = 0.37 and β̂2 = −3.93) are statistically
significant (p < 0.01 for the intercept and Phase, and p <

0.05 for Time, based on two-tailed significance testing),
while the estimated interaction of Time and Phase (β̂3 =
−0.60) is not statistically significant (p = .11 based on two-
tailed significance testing). The one-level regression results
imply that if the baseline continued, Brooke would have
had a (standardized) score of 5.09 on problem behavior at
the start of the treatment phase, and this score increases
by 0.37 with each additional time unit. The choice-making
intervention has a statistically significant immediate effect
on Brooke’s problem behavior, which is decreased by 3.93
on the standardized problem behavior scale. The time trend
in the treatment phase is estimated to be 0.37 − 0.60 =
−0.23. However, because of the non-significant p value
associated with the interaction between Time and Phase,
we cannot conclude that the treatment effect on the time
trend is statistically significantly different from zero.
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Fig. 2 Graphical interpretation of the one-level model parameters from Eq. 1 after centering the time variable. The immediate treatment effect is
expressed by β2 and the effect of the treatment on the time trend is expressed by β3

We repeated the one-level analysis with unstandardized
data to be able to interpret the fixed effects estimations
within the context of the specific study, i.e., on the original
scale. For Brooke, the estimated unstandardized intercept
was β̂0 = 89.67% [t = 7.001, p < 0.001], indicating
that at the time of the beginning of the intervention, Brooke
showed problem behavior for 89.67% of the 5-min total
session time. Without the treatment, Brooke’s percentage
of session time in which she displayed problem behavior
increased by β̂1 = 6.53% [t = 2.87, p = 0.02] every
session. The immediate effect of the treatment was a β̂2 =
69.27% [t = −3.70, p < 0.01] drop in problem behavior
within sessions and this continued to decrease by β̂3 =
10.63% [t = −1.77, p = 0.11] every session.

The regression lines based on the standardized data for
Brooke are shown as a MultiSCED screenshot in Fig. 4.
Recall that we chose to center the data (i.e., transform the
time variable so that Time = 0 for the first observation
in the treatment phase). This was done deliberately so that
the β2 coefficient of the Phase variable from the model
in Eq. 1 represents the jump between the intercept based
on the baseline data’s trajectory and the intercept based
on the treatment data’s trajectory in Fig. 2. For Brooke,
a substantial drop in problem behavior at the start of the
treatment phase is clearly visible in Fig. 4, and this drop is

statistically significant according to the p value in Fig. 3.
The upward slope in the baseline phase (0.37) changes to
the slightly downward slope (−0.23) in the treatment phase.
This effect was non-significant, meaning that true slope in
Brooke’s treatment phase could actually still be identical to
the upward slope in her baseline phase.

Also shown in Fig. 4 are a 95% confidence band (in dark
grey) and a 95% prediction band (in light grey). Both bands
are centered around the regression line. At a given time
point, we have a 95% probability that the regression line
will pass between the two values of the confidence interval,
whereas we have a 95% probability that a hypothetical, non-
observed score would be situated between the two values
of the prediction interval. The confidence band is less wide,
because it only addresses uncertainty about the expected
mean score given the time and phase, whereas the prediction
band addresses uncertainty about individual observations.

Effect size predictions

Based on the estimates of the one-level regression coeffi-
cients, we can estimate the effect for a given time point.
Assuming the relation as estimated would be persistent in
time, we can even make predictions for future time points
beyond the time of the last measurement. For Brooke, the

Fig. 3 One-level regression results table and effect size prediction for Brooke from the study by Romaniuk et al. (2002). The one-level model was
estimated based on standardized scores. Note that the p value for the intercept indicates that p < 0.01 (rather than p = 0)
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Fig. 4 One-level regression results plot for Brooke from the study by Romaniuk et al. (2002). The one-level model was estimated based on
standardized scores. Prediction bands (light grey) and confidence bands (dark grey) were calculated for α = .05

last measurement is at Time = 5 (remember that earlier
we chose to center all observations so that Time = 0
occurs at the first measurement in the treatment phase). The
estimated standardized score at that time is 5.09 + 0.37 × 5
−3.93 − 0.60 × 5 = 0.01. If the intervention had not taken
place, the standardized score is estimated to be 5.09+0.37×
5 = 6.94. By taking the difference between these two, we
can get an idea of the estimated overall effect at Time = 5
or, by extension, at any time point beyond that. For Brooke,

this effect size at Time = 5 equals 0.01 − 6.94 = −6.93.
Note that this is negative because there is a drop in prob-
lem behavior due to the intervention (as expected). Going
back to the regression equations (Eqs. 2 and 3) and tak-
ing the difference between them, we get the following
equation expressing the size of the effect at any point
in time:

β2 + β3Timei (5)

Fig. 5 Effect size prediction plot based on the one-level regression analysis for Brooke from the study by Romaniuk et al. (2002). The trajectory
is given by Eq. 5. The associated confidence band was calculated for α = .05
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Note that for the Shogren et al. (2004) dataset, a time
trend model is used rather than the intercept-only model
(without a slope) used by Van den Noortgate and Onghena
(2008). In their paper, Van den Noortgate and Onghena
(2008) illustrate how the coefficient for the treatment effect
on the intercept can be interpreted as the standardized differ-
ence between the average response in the baseline and in the
treatment phase (i.e., a standardized mean difference). For
the time trend model illustrated in this paper, the treatment
effect is expressed by two regression coefficients instead
of one, and the mean difference between the baseline and
treatment phase depends on the time point (see Eq. 5). The
fixed effect expressing the treatment effect on the inter-
cept alone can therefore not be interpreted as a standardized
mean difference.

In MultiSCED, the effect size predictions and their
corresponding confidence interval can be shown in table
format for a specific time point after the treatment, or in a
plot for a series of time points after the treatment (Fig. 5).
Note in Fig. 5 that for predictions further in the future the
confidence band is getting wider, reflecting the increasing
uncertainty about the size of the effect.

Two-level analysis

In addition to the case-specific results, we may want to syn-
thesize the data at hand to investigate whether the treatment
effects can be generalized across multiple cases within a
study (Moeyaert et al., 2014). Building further on Eq. 1, we
add an index j to denote case j within the study:

Yij = β0j + β1jTimeij + β2jPhaseij

+β3j
(
Timeij × Phaseij

) + eij (6)

The standard deviation σe of the residuals eij (again
assumed to be independent and normally distributed) is
assumed to be identical for all cases. Each of the regression
coefficients in Eq. 6 is split up into a fixed effect γ plus a
random case-specific deviation u, called a random effect:

⎧
⎪⎪⎨

⎪⎪⎩

β0j = γ00 + u0j
β1j = γ10 + u1j
β2j = γ20 + u2j
β3j = γ30 + u3j⎛
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u3j

⎞

⎟
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⎡
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⎜
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⎞

⎟
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⎥
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⎦

(7)

The random effects are assumed to be multivariate normally
distributed. In the two-level model (6 and 7), researchers
are often interested in γ20 and γ30, which express the
average effect of the treatment on respectively the intercept
and the slope of the regression line in the baseline phase.

Furthermore, they are interested in the variance components
σ 2

u2
and σ 2

u3
, because these express the extent to which

these effects vary between cases within the study. Note
that although in this case we include random effects for
all regression parameters, MultiSCED allows to choose for
which specific parameters to include a random effect and as
such the covariance structure can be manipulated.

For the study by Romaniuk et al. (2002) the numerical
results of the two-level analysis are shown in Fig. 6. Across
cases, the expected standardized score increases on average
by 0.44 per time unit [t (62.99) = 8.11, p < 0.001] if there
is no intervention, up until 6.48 points [t (5.40) = 15.41,
p < .001] at the start of the treatment phase (Fig. 6).
The intervention has an average immediate effect of −2.63
points [t (4.07) = −2.55, p = 0.06] and it decreases the
time trend by−0.50 points [t (31.52) = −3.80, p < 0.001].
Standard errors for the intercept and the time trend during
the baseline are relatively small, resulting in quite high t

values (the ratios of the estimates over the corresponding
standard errors). The baseline intercept, baseline trend, and
effect of the treatment on the trend are significant at a
α = 5% level, indicating that the treatment might not have
had a significant immediate effect (although it is significant
at the α = 10% level), but that it did have an impact on the
slope in the treatment phase.

Hypothesis testing for the fixed effects of multilevel
models inMultiSCED is based on a t test with the Kenward–
Roger approximation for the degrees of freedom (Kenward
& Roger, 1997). Although this is the recommended method
for Wald-type tests on multilevel modeling (Ferron, Farmer,
& Owens, 2010; Luke, 2017), the assumptions related to the
asymptotic distribution of the test statistic in a multilevel
model are often not met (Bates, 2006; Bolker et al., 2018;
Luke, 2017). Alternative testing approaches (currently not
implemented in MultiSCED) include likelihood ratio tests
(Welham & Thompson, 1997), likelihood profile tests,
Markov-chain Monte Carlo (MCMC) sampling (Baayen,
Davidson, & Bates, 2008) or bootstrapping methods.

Again, we repeat the analysis for the unstandardized
Romaniuk et al. (2002) data to facilitate interpretationwithin
the context of the study. Overall, if the seven study partic-
ipants’ baselines had been extended to the time of the first
treatment phase observation, they would have on average
been expected to showproblembehavior during β̂0=88.80%
[t (11.89) = 18.70, p < 0.001] of the 5-min total session
time on average at the end of the baseline phase. Without the
treatment, the percentage of time the participants showed
problem behavior increased by β̂1 = 6.10% across ses-
sions [t (8.27) = 6.92, p < 0.001]. After the introduction
of choice-making interventions, the percentage of problem
behavior dropped to β̂0+β̂2 = 88.80%−39.71% = 49.09%
[t (4.00) = −2.54, p = .06 for β̂2] and continued to
decrease by β̂3 = 6.94% [t (4.03) = −3.06, p = 0.04].
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Fig. 6 Two-level regression results tables for the study by (Romaniuk et al. 2002). The two-level model was estimated based on standardized scores

Figure 7 gives a graphical presentation of the two-level
regression results for each of the cases of the study by
Romaniuk et al. (2002): the green line represents the average
study trajectory and is identical across cases, while the yel-
low lines represent each individual participant’s trajectory.
Using prior empirical information from the other partici-
pants, these individual participant’s trajectories are drawn
based on the empirical Bayes’ estimates of the participant-
specific coefficients. In the baseline phase, there is not much
variation across cases around the study mean: all yellow
lines are very close to the green line. The slopes are nearly
identical and the intercepts vary only slightly. This reflects
the small variance estimates for these two random effects
in Fig. 7, compared to the size of the corresponding fixed
effects: σ 2

u0
= 0.642 for the intercept (where γ00 = 6.48)

and σ 2
u1

= 0.00032 for Time (where γ10 = 0.44). The
two-level analysis trajectories for each individual case, as
estimated by the empirical Bayes method, are closer to the
observed values, while the study’s overall mean trajectory
incorporates information from all cases and is therefore
sometimes further away from the observed values. This dif-
ference is clearly illustrated in Brooke’s treatment phase. In
case the empirical Bayes trajectories (i.e., the dark yellow
lines on Fig. 7) are far from the observed data, this might
indicate a model misspecification. In Baek et al. (2016)
for example, a similar two-level model including a trend is
fit. Upon inspection of the individual Bayes trajectories (p.
21, Figure 2), the authors state that ‘because, overall, the
visual result of the first model appeared to be poor,’ they

are motivated to ‘consider an alternative model that may
represent the data better.’ (p. 22)

From Fig. 7 we can deduce that there is slightly more
variation in regression lines across cases in the treatment
phase than there is in the baseline phase. The immediate
decrease in problem behavior is quite large for Brooke,
Gary, and Maggie, but not so much for Christy and Rick.
The average immediate drop in problem behavior of −2.63
points has a relatively large associated standard deviation of
2.09 (Fig. 6) for the Phase random effects, which reflects
this between-case variation. The slopes in the treatment
phase are more similar and show a slightly decreasing trend,
which does not vary much across cases. The correspond-
ing random effects’ standard deviation is 0.04. Finally the
residual or within-case standard deviation of 0.96 approx-
imates 1 because we standardized the data by dividing each
participant’s scores by the root mean squared error.

The correlations between the random effects are typically
hard to estimate for single-case design data. The estimates
all equal 1 or −1 in our example (see Fig. 6). Results
like these often reflect that there might have been a model
misspecification or that there simply might have been too
little information to estimate the parameters. Still, the signs
of the correlations correspond to what we see in the graphs
(see Fig. 7). For example, the positive correlation between
the intercept and Phase residuals indicates that when a case
has a baseline intercept that is large (resp. small) compared
to the study’s average baseline intercept, its treatment
intercept will generally be also large (resp. small) compared
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Fig. 7 Two-level regression results plot for the study by Romaniuk et al. (2002). The two-level model was estimated based on standardized scores

to the study’s average treatment intercept. This is also
reflected in Fig. 7: participants whose case-specific baseline
trajectory (i.e., the yellow line) is above (resp. below) the
study baseline trajectory (i.e., the green line) all have a case-
specific treatment trajectory that is also above (resp. below)
the study treatment trajectory.

Comparison to one-level analysis results

The case-specific means of the two-level analysis can be
compared with the means obtained for each case in the one-
level analysis. Recall from the one-level model in Eq. 1 that
the regression line obtained through the one-level analysis
is given by

β̂0 + β̂1Timei + β̂2Phasei + β̂3 (Phasei × Timei ) (8)

for case j . For the cases from the study by Romaniuk
et al. (2002), these regression lines are plotted in Fig. 8 in

red for the one-level case-specific mean and in yellow for
the two-level case-specific mean. In the two-level model,
the case-specific regression lines are considered as varying
randomly around the study regression line, plotted as the
green line in Fig. 8. This line’s equation is given by

γ̂00 + γ̂10Timei + γ̂20Phasei + γ̂30 (Phasei × Timei ) . (9)

The one-level model estimates a particular case’s regres-
sion line (in red) by only using data from that particu-
lar case, which is why the red lines follow the observed
scores more closely. The two-level model however com-
bines information from all cases within the study. The
particular case’s regression line is considered as varying ran-
domly around a study mean. Hence the yellow lines deviate
slightly more from the underlying case’s observed scores,
because they are drawn towards the green line, i.e., the study
mean. This is precisely how empirical Bayes estimation
of the participant-specific coefficients works: the two-level
case regression lines (in green) are a weighted combination
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Fig. 8 Comparison of one- and two-level regression analyses for the study by Romaniuk et al. (2002). Both models were estimated based on
standardized scores. MultiSCED has options to plot any combination of the displayed mean trajectories

of the one-level OLS regression lines (in red) and the overall
study mean regression line (in green).

Three-level analysis

To conduct a meta-analysis of the Shogren et al. (2004)
dataset, we now combine all 30 cases across all 13 studies
in order to further generalize the treatment effect estimates.
The two-level model is extended to a three-level model, with
measurements at the first level, cases at the second level,
and studies at the third level. The regression equation for the
two-level model (Eq. 6) is extended by adding an index k to
denote the study:

Yijk = β0jk + β1jkTimeijk + β2jkPhaseijk

+β3jk

(
Timeijk × Phaseijk

) + eijk (10)

Again the residuals eijk are assumed to be independent
and normally distributed with the standard deviation σe,
which is assumed to be identical for all cases. At the
second level, the coefficients from the first level vary across
cases around a study-specific mean θ..k by a random case
effect u.jk:

⎧
⎪⎪⎨

⎪⎪⎩

β0jk =θ00k + u0jk

β1jk =θ10k + u1jk

β2jk =θ20k + u2jk

β3jk =θ30k + u3jk⎛

⎜⎜
⎝

u0jk

u1jk

u2jk

u3jk

⎞

⎟⎟
⎠∼N

⎡

⎢⎢
⎣

⎛
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⎝

0
0
0
0

⎞
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⎛
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⎝

σ 2
u0

σu0u1 σ 2
u1

σu0u2 σu1u2 σ 2
u2

σu0u3 σu1u3 σu2u3 σ 2
u3

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦

(11)
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At the third level, the coefficients from the second level vary
across studies around an overall mean γ... (i.e., the fixed
effect) by a random study effect v..k:

⎧
⎪⎪⎨

⎪⎪⎩

θ00k = γ000 + v00k
θ10k = γ100 + v10k
θ20k = γ200 + v20k
θ30k = γ300 + v30k⎛

⎜
⎜
⎝

v00k
v10k
v20k
v30k

⎞

⎟
⎟
⎠∼N

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

σ 2
v0

σv0v1 σ 2
v1

σv0v2 σv1v2 σ 2
v2

σv0v3 σv1v3 σv2v3 σ 2
v3

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

(12)

Again, we are mainly interested in the overall averages
for the treatment effect on the intercept and the slope,
as expressed by the fixed effects γ200 and γ300, in their
between-case variances σ 2

u2
and σ 2

u3
, and in their between-

study variances σ 2
v2

and σ 2
v3
.

The output table for the three-level analysis of the
Shogren et al. (2004) data as obtained with MultiSCED is
presented in Fig. 9. The results are presented graphically
in Fig. 10. From Fig. 9, we see that the overall average
baseline intercept is 4.74 [t (12.44) = 5.75, p < 0.001]
and the average baseline slope is 0.21 [t (10.59) = 3.36,
p = 0.007]. The overall immediate treatment effect is

−3.60 [t (14.23) = −4.16, p < 0.001] and the overall
effect on the slope is −0.25 [t (8.20) = −3.97, p =
0.004]. Based on the evidence from the 13 studies, it seems
that providing choice-making opportunities might reduce
problem behavior in people with disabilities as much as four
times (4.74/(4.74 − 3.60) = 4.16) in a very short amount
of time. Overall, evidence suggested that the participants in
the 13 studies showed a gradual increase of 0.21 points in
problem behavior in the baseline phase. The choice-making
intervention seems to halt this increase and even sets in
motion a slightly decreasing trend in problem behavior of
0.21 − 0.25 = −0.04 points afterwards.

The standard deviations of the random effects are also
given in Fig. 9. They are grouped per level: Author:Name
refers to case-specific randomeffects (the case variableName
is nested in the study variable Author, see also Table 1 and
Fig. 1) and Author refers to the study-specific random
effects. We see that for all regression coefficients, the
between-case variability (level 2) is higher than the between-
study variability (level 3). Note again that the residual vari-
ance at the first level is close to 1 due to the analysis being
performed on standardized scores. The negative correlations
between the baseline intercept and the coefficients related
to the effect of the treatment (Phase and Time:Phase)
suggest that the more problem behavior is observed in the

Fig. 9 Three-level regression results tables. The three-level model was estimated based on standardized scores
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Fig. 10 Three-level regression results plot. The three-level model was estimated based on standardized scores. Brooke and Gary are participants
belonging to the study by (Romaniuk et al. 2002). Carl and Chuck belong to the study by (Moes, 1998)

baseline phase, the more negative the immediate effect and
the effect on the time trend and hence the more favorable
the effect of the choice-making intervention is.

The results of the three-level analysis are plotted in
Fig. 10 for four participants (although MultiSCED allows
for creating the graphs for any number of cases and/or
studies). Brooke and Gary belong to the study by Romaniuk
et al. (2002), while Carl and Chuck belong to the study by
Moes (1998). The blue lines represent the overall average
regression lines across studies and are identical in each of
the cases’ graphs. The trajectory of the averages is based
on the fixed effects’ estimates from the table in Fig. 9:
Y = 4.74 + 0.21 · Time in the baseline phase and Y =
(4.74−3.60)+(0.21−0.25)·Time = 1.14−0.04·Time in the
treatment phase. The pink lines represent the study-specific
averages. They are identical for Brooke and Gary on the
one hand and for Carl and Chuck on the other hand because
these cases belong to the same study. Note how in the
treatment phase of Brooke and Gary, the trajectory of the
Romaniuk et al. (2002) study is quite different from the
overall trajectory. The blue line lies considerably higher
than the pink line, indicating that in this specific study,
the participants showed on average more problem behavior
at the start of the treatment phase than in other studies.
The case-specific averages obtained from the three-level
analysis are not shown in Fig. 10, but MultiSCED provides

options to plot these in the same figure, as well as the case-
specific averages from the one-level analysis and the case-
and study-specific averages from the two-level analysis.
This allows for a thorough visual comparison of the results
from all three types of analyses.

Addingmoderator variables

We can extend our basic linear time trend model to verify
whether other variables moderate the problem behavior
outcomes. To include Gender and Age as moderator
variables, we update our three-level model by modeling
both variables and their interaction with Phase as fixed
effects:

Yijk = β0jk + β1jkTimeijk + β2jkPhaseijk + β3jk

× (
Timeijk × Phaseijk

)

+β4jkGenderijk + β5jkAgeijk

+β6jk

(
Genderijk × Phaseijk

) + β7jk

× (
Ageijk × Phaseijk

) + eijk (13)

The coefficients β0jk , β1jk , β2jk and β3jk are again
decomposed into a fixed and two random effects like in
Eqs. 11 and 12. The other coefficients related to age and
gender are considered fixed. Because standardization of the
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Fig. 11 Three-level regression including moderator variables Age and Gender results table. The three-level model was estimated based on
standardized scores

data is done based on the one-level model, whereas Gender
and Age are characteristics of the units at the second
level (i.e., the cases), MultiSCED still uses an adjusted
model without moderators when the standardization option
is checked.

The gender variable codes males as 0 and females as 1
(as described in Table 1). The coefficient named Gender1

in the output (Fig. 11) refers to the effect of belonging
to the group coded with ‘1’ (i.e., the female participants)
rather than the other group (i.e., the male participants). The
Gender1 coefficient estimate indicates that females score
on average 0.55 [t (12.78) = 1.01, p = .33] points higher
on problem behavior than males in the baseline phase, but
this gender effect is not statistically significant. The Phase1
estimate indicates that the choice intervention decreases
problem behavior by −3.49 [t (22.85) = −3.34, p < 0.01]
points. For female participants, the decrease in problem
behavior is on average −3.49 − 0.72 = −4.21 [t (18.38) =
−0.87, p = 0.39] points, although this effect is again not
statistically significant. The estimates for the effect of Age
and its impact on the treatment effect (Phase × Age) are
small and appear to be non-significant.

Discussion

Relevance and implications

In their review, Manolov and Moeyaert (2017) synthesize
several action points in order to decrease the gap between
methodological advances and actual research practice when
it comes to data-analysis of SCED data. MultiSCED
provides an answer to many of those when it comes to
multilevel modeling of SCED data.

First of all, the application is freely available and
easy to use because of its point-and-click user interface.
Using MulitSCED does not even require installing R. The
application comes with an in-depth user guide (available
at https://kuleuven.app.box.com/v/MultiSCEDUserGuide),
featuring the same illustration as in this article using
the Shogren et al. (2004) dataset, but described in much
more extensive detail. The user guide is meant to be a
complete tutorial, describing step by step how to prepare
SCED datasets, how to upload them in MultiSCED, how
to go through the application and how to interpret the
results. It references the relevant methodological research
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on multilevel modeling of SCED data and the underlying R
packages used.

For applied researchers wanting to use multilevel
modeling to analyze their SCED data, hands-on tutorials on
how to get started with software tools are emerging rather
slowly. Nagler, Rindskopf, and Shadish (2008) published
a handbook on how to use HLM to fit multilevel models
specifically for SCED data. Other works provide some
pieces of code, like Baek and Ferron (2013), Ferron et al.
(2009) and Moeyaert et al. (2014) for SAS. (Valentine
et al., 2016) provide a tutorial for the scdhlm package
Pustejovsky (2016) in R, and some R code and illustrations
are found in the review of Manolov and Moeyaert (2017),
as well as in the conference proceedings of Rodabaugh and
Moeyaert (2017) and in the Rindskopf and Ferron (2014)
book chapter. We believe that MultiSCED, through this
article and the MultiSCED user guide, complements these
works by illustrating the R functionality without the barrier
that comes with getting to know the R syntax. Furthermore,
the user guide in particular is a stand-alone document and
thoroughly describes each step taken, from preparing and
uploading the data file to interpreting and comparing results
across models.

Another asset of MultiSCED that helps to bridge the gap
is the fact that it relies heavily on graphs and visuals
to represent the results. The graphs in MultiSCED are
built combining tools from the popular plotting package
ggplot2 (Wickham, 2009), the multilevel modeling pack-
age lme4 (Bates et al., 2015), and the data manipulation
package plyr (Wickham, 2011), all made available with-
out the need for advanced R programming expertise. Results
from the one-, two-, and three-level analyses can easily be
combined in one plot by using the MultiSCED customiza-
tion options. Users can download and use their customized
plots for reporting their results in their works.

An important option embedded within MultiSCED is
the possibility to standardize the data, which is particularly
useful in the three-level analysis when summarizing across
studies using different measuring instruments or scales. The
corresponding regression coefficients serve as standardized
effect sizes for single-case data and are easily interpretable
without the context of the specific SCED study they were
obtained from. With the standardization option, we aim
to familiarize users with standardized SCED effect sizes
and criteria for standardized effect sizes for SCEDs similar
to Cohen’s guidelines (Cohen, 1988) for effect sizes in
group-comparison designs.

Limitations and future research

MultiSCED does not offer complicated functionality in
terms of modeling options (e.g., specific covariance
structures other than the unstructured type or generalized

linear mixed models) nor does it support complex data
and design structures (e.g., ABAB designs or datasets with
multiple outcomes). Applied researchers more familiar with
multilevel modeling and wanting to explore such more
advanced features and models further will undoubtedly find
their way directly to R or to any of the dedicated software
packages and tools mentioned in the introduction, guided by
the references we provided throughout this paper. In order
to facilitate the transition to command-line R, MultiSCED
provides the R formula syntax when building regression
models in the user interface.

We have deliberately not given much attention to the
underlying R code on the server side of MultiSCED,
because with this article and with the user guide, we first of
all want to address novices who prefer to avoid the R syntax.
However, it could be useful to follow-up on this article and
the user guide with a more technical tutorial on how to use
the lme4 package to model SCED data and how to obtain
the plots shown in MultiSCED.

We are not presenting any new techniques with Mul-
tiSCED, nor is multilevel modeling the one-size-fits-all
solution when it comes to quantitative data analysis of
SCEDs, but precisely because of the myriad of techniques
proposed, it is important that we provide tools for applied
researchers so that they are able to choose the appropri-
ate method for their data and apply it in a correct way.
Specifically for R, a challenge for the future is to com-
bine the individual pieces of software that already exist
into one comprehensible tool or package. Merging Multi-
SCED with the R code provided by Manolov and Moeyaert
(2017), the functionality from the SCDA plug-in for R
commander (Bulté & Onghena, 2013), the SSDforR pack-
age (Auerbach & Schudrich, 2013), the scdhlm pack-
age (Pustejovsky, 2016) and other existing Shiny applica-
tions like the application at https://manolov.shinyapps.io/
SeveralAB (Manolov & Rochat, 2015; Manolov & Solanas,
2018), and streamlining the end result might be very use-
ful to bring applied researchers to R for analyzing their
SCED data. For an overview of tools in R and other
software options, we refer to the list of single-case data
analysis software tools at https://osf.io/sdv4m/.

The meta-analytic dataset by Shogren et al. (2004) is
used in this paper as a representative example of a meta-
analysis of SCEDs. According to the review by Shadish and
Sullivan (2011), the primary studies in this meta-analytic
dataset are slightly smaller than average with 2.31 cases
per study and 13.27 measurements per case on average.
With 13 studies, the number of included studies is also
rather low (Moeyaert et al. 2013). When applying the
multilevel techniques as we did with MultiSCED, sample
size recommendations based on simulation studies are
usually not strict when it comes to the validity of the
overall fixed effects. However, variance estimations are
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often biased for small sample sizes (Moeyaert et al., 2014;
Ferron et al., 2009; Owens & Ferron, 2012). Moeyaert et al.
(2013) have empirically validated a two-level model for
standardized SCED data and recommend to have at least
20 measurements per case, and even more (at least 40) in
order to obtain reliable variance estimations. We therefore
repeat the warnings found in previous simulation studies to
interpret the variance estimations based on the Shogren et al.
(2004) data with caution.

Conclusions

In this article, we presented MultiSCED, a free R
Shiny application available at http://www.single-case.com/
MultiSCED and aimed at applied SCED researchers
wanting to get started with multilevel modeling to analyze
their SCED data obtained from multiple cases or multiple
studies. The application provides R functionality within a
point-and-click user interface, thus lowering the threshold
that inexperienced R users might face. Through a re-
analysis of a real meta-analytical dataset, we illustrated the
use of MultiSCED step by step and we showed how to
interpret the numerical multilevel results graphically. With
this tutorial we try to contribute to bridging the gap between
methodological research and applied research practices
and to make advanced SCED data analysis methods more
accessible for a wider, applied audience.
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The opinions expressed are those of the authors and do not represent
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