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Abstract
A common difficulty in the factor analysis of items designed to measure psychological constructs is that the factor structures
obtained using exploratory factor analysis tend to be rejected if they are tested statistically with a confirmatory factor model. An
alternative to confirmatory factor analysis is unrestricted factor analysis based on Procrustes rotation, which minimizes the
distance from a target matrix proposed by the researcher. In the present article, we focus on the situation in which researchers
propose a partially specified target matrix but are prepared to allow their initial target to be refined. Here we discuss RETAM as a
new procedure for objectively refining target matrices. To date, it has been recommended that this kind of refinement be guided
by human judgment. However, our approach is objective, because the threshold value is computed automatically (not decided on
by the researcher) and there is no need to manually compute a number of factor rotations every time. The new procedure was
tested in an extensive simulation study, and the results suggest that it may be a useful procedure in factor analysis applications
based on incomplete measurement theory. Its feasibility in practice is illustrated with an empirical example from the personality
domain. Finally, RETAM is implemented in a well-known noncommercial program for performing unrestricted factor analysis.

Keywords Partially specified target matrices . Orthogonal and oblique Procrustes rotations . Unrestricted factor analysis .

Exploratory factor analysis . Confirmatory factor analysis . Multidimensional test items

Factor analysis (FA) applications designed to assess the struc-
ture of test items are frequently based on the correlated-factor
model, in which item scores are assumed to measure two or
more (related) dimensions. Furthermore, the pattern of the
relations between the items and the factors is typically expect-
ed to approach a simple structure (Thurstone, 1947), but this
expectation is generally based on not too strong or incomplete
substantive measurement theory (e.g., Henson & Roberts,
2006; Myers, Jin, Ahn, Celimli, & Zopluoglu, 2015).

FA assessment of item structures can be handled using
either unrestricted or exploratory factor analysis (EFA) or
the more restrictive confirmatory factor analysis (CFA)model.
A common difficulty in the FA of items designed to measure
psychological constructs (such as personality, attitude, or psy-
chopathology), however, is that the structures obtained using
EFA tend to be rejected if they are statistically tested with a
CFA model. To solve this problem, some practitioners have

proposed models based on very few items, because they seem
more likely to show an acceptable fit. In addition, items are
sometimes discarded ad hoc until the fit is acceptable. These
procedures are likely to capitalize on chance, so they cannot
be recommended (Ferrando & Lorenzo Seva, 2000).

To gain some insight into the source of the problem above,
we shall first consider the unrestricted FA model based r fac-
tors, which for a given item yj is

y j ¼ λ j1θ1 þ λ j2θ2 þ⋯þ λjrθr þ δ j: ð1Þ

In the clearest structure corresponding to this model, each
item will have a salient loading on only one factor, and small
or minor loadings on the remaining factors. The resulting
structure will be a perfect simple structure, a more restrictive
approach than the simple-structure concept advocated by
Thurstone (1947), which corresponds to the idea of factorial
simplicity as stated by Kaiser (1974). Now, when a factor
structure of this type is assessed with CFA, the usual practice
is to set the minor loadings found in the unrestricted solution
(typically those below .20, .30, or even .40) to zero. The cor-
responding CFA model is thus given by (e.g.):

y j ¼ λ j1θ1 þ 0θ2 þ⋯þ 0θr þ δ j: ð2Þ
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This equation corresponds to the maximum simplicity, in
Kaiser’s (1974) sense. In the model based on Eq. 2, it is hy-
pothesized that the minor loadings found in the unrestricted
solutions are consistent with exact zeros in the population:
Each item is supposed to be a factorially pure measure of
one sole trait, in the sense that only this trait contributes to
the variance of the item (Thurstone, 1947).

Although Model 2 is regarded as the ideal model, because
it assigns meaning to the estimated traits in the most unam-
biguous fashion (McDonald, 2005), the assumption that all
the items in a multidimensional questionnaire are pure mea-
sures of a single trait is submitted to be generally unrealistic
(Ferrando & Lorenzo Seva, 2000). Therefore, if Model 1 is
correct for the data, and Model 2 is fitted, a bad fit would be
expected due to errors of specification, which in this case
would be errors of omission (significant loadings incorrectly
omitted or fixed to zero).

A viable alternative for assessing item structures under in-
complete measurement theory or when Model 2 is thought to
be unrealistic (and so too restrictive) is to use unrestricted or
exploratory FA with target or Procrustes rotation (e.g.,
Browne, 2001), a hybrid approach that can be conceptually
situated between EFA and CFA (Asparouhov & Muthén,
2009). This approach provides an unrestricted solution in
which the model parameter values (particularly zeroes) are
not imposed. Rather, the sample factor solution is rotated to
fit the proposed population model as closely as possible, but
the model parameters are not artificially fixed to their expected
values in the population.

Target rotation has been developed over more than seven
decades (e.g., Mosier, 1939; Tucker, 1944), and at present
many versions and approaches are derived from its basic con-
cept. This basic concept is (a) to define a target matrix H in
which the expected values for the loading parameters in the
population are specified, and (b) to rotate the initial loading
matrix A so as to provide a least-squares fit to H. By way of
example, consider an expected factor model with three factors
(r = 3) and nine items (m = 9), in which each factor is expected
to be defined by three items, and the following target matrix is
proposed:

H ¼

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

To assess the fit of sample data to this target matrix, the
unrotated loading matrixA should be rotated using an orthog-
onal Procrustes rotation (Cliff, 1966) or an oblique Procrustes

rotation (Mosier, 1939). MatrixH above is fully specified as it
was proposed in earlier versions of the target procedure (e.g.,
Tucker, 1944).

A less restrictive approach, in which the proposed target is
only partially specified, can also be considered, and it corre-
sponds to latter specifications of the procedure. In this ap-
proach, only the parameter values that are expected to be zero
in the population are specified in the target matrix. The par-
tially specified target for the example above would in this case
be

H* ¼

* 0 0
* 0 0
* 0 0
0 * 0
0 * 0
0 * 0
0 0 *
0 0 *
0 0 *

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

where the asterisks indicate the parameters that are not spec-
ified (i.e., the free parameters in the loading matrix). To assess
the fit of the sample data to this partially specified target ma-
trix, the unrotated loading matrixA should be rotated using an
orthogonal partially specified Procrustes rotation (Browne,
1972b) or an oblique partially specified Procrustes rotation
(Browne, 1972a; Gruvaeus, 1970).

In the context of fully exploratory FA (i.e., situations in
which researchers do not explicitly propose a target matrix
H or H*), some exploratory rotation procedures that aim to
identify the best possible simple structure have also adapted
the Procrustes rotation approach. These exploratory rotation
methods use a two-step procedure: In the first step, a target
matrixH (orH*) that maximizes factor simplicity is identified
by using a simple structure rotation, and in the second step, the
unrotated loading matrix A is rotated using a Procrustes rota-
tion to fit the identifiedH target matrix. For example, Promax
rotation (Hendrickson & White, 1964) uses Varimax rotation
(Kaiser, 1958) in the first step to identify a fully specified
target matrixH, and oblique Procrustes rotation in the second
step. Another example is Promin (Lorenzo-Seva, 1999): In the
first step, Promin uses weighted Varimax rotation (Cureton &
Mulaik, 1975) to identify a partially specified target matrix
H*, and oblique partially specified Procrustes rotation in the
second step.

In the present article, we focus on the situation in which the
researcher is able to tentatively propose a partially specified
target matrixH* but is prepared for it to be refined. For exam-
ple, in cross-cultural studies, a researcher can propose a target
hypothesis for a new cultural population based on the results
obtained in previous different populations. However, he or she
is willing to admit that this hypothesis can be modified or
refined to some extent when the new population is assessed.
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This kind of situation is described by Browne (2001, p. 125),
who suggested that the target might be changed after the first
rotation so that any previously unspecified element in H*

could be specified to be zero, and new rotations could then
be carried out until the researchers were satisfied with the
outcome. Our proposal, however, is not guided by human
judgment (as Browne suggests), but by objective criteria.

In the procedure we propose, the initial target is theoreti-
cally or substantively based, but the subsequent modifications
are empirically driven. So, in the exploratory–confirmatory
continuum, our proposal falls closer to the exploratory pole
than the standard target rotation. This partially data-driven
character means that some problems (mainly capitalization
on chance) might appear, and, as we discussed below, they
must be addressed. Overall, however, the results in this article
suggest that our proposal is expected to be quite useful in
applied research, especially when data have a complex struc-
ture. It can also be regarded as a complement to, or in some
cases even a better alternative than, the analytical rotation
procedures that have existed to date. From a methodological
point of view, finally, the refinement strategies we propose are
adapted from existing two-step rotation procedures (like
Promin) that aim to identify simple structure solutions and
build partially specified target matrices H*.

Recently, Moore, Reise, Depaoli, and Haviland (2015) pro-
posed a procedure (iterated target rotation) in which a partially
specified target rotationH* is iteratively improved on the basis
of an arbitrarily chosen threshold. This procedure, which was
recently adapted to the context of bifactor models by Abad,
Garcia-Garzon, Garrido, and Barrada (2017), bears close re-
semblances to our proposal. The main difference between the
two is that ours starts with a substantively informed target,
whereas in Moore et al.’s proposal the initial target is obtained
from a standard factor rotation (i.e., it is empirically in-
formed). Further relations and differences will be discussed
below in more detail.

A new proposal for objectively refining
a target matrix

In the unrestricted factor analysis of test items, a correlation
matrix R between m items is analyzed in order to extract r
factors, and the corresponding unrotated loading matrix A of
order m × r is rotated so as to approach the proposed popula-
tion model as closely as possible. In more detail, R is
decomposed as

R ¼ PΦP
0 þΨ; ð3Þ

where P is a rotated loading matrix of order m × r, Φ is the
interfactor correlation matrix of order r × r, and Ψ is a diag-
onal matrix of orderm ×m. In the rotated loading matrix P, the

loading values describe the relationship between the m items
and the rmodeled factors. The partially specified target matrix
H* is a hypothetical proposal about how the relationships in P
should be.

Our proposal to obtain an objectively refined target matrix
(RETAM) starts from the unrotated loading matrix A and the
partially specified target matrix H* proposed by the re-
searchers. The RETAM proposal is based on the following
iterative four-step procedure:

Step 1 An initial transformation matrix S0 is obtained as

f S0ð Þ ¼ Procrustes AS0;H
*

� �
; ð4Þ

where S0 is a transformation matrix that minimizes the dis-
tance between the product B =AS0 and the partially specified
target matrix H∗. We propose that the oblique rotation algo-
rithm proposed by Browne (1972a) be used as the Procrustes
rotation. We prefer oblique to orthogonal rotation because the
former tends to produce simpler rotated matrices B.

Step 2 In this step, the partially specified target matrix is
refined. This involves comparing a threshold value with
the obtained rotated loading values in B. Where Moore
et al. (2015) proposed using an arbitrary value chosen by
the researchers (e.g., Moore, 2013, tested the values .05,
.10, and .15), we prefer to use a more objective approach
for determining the thresholds, and in particular the
Promin approach (Lorenzo-Seva, 1999), which is
specifically intended for a partially specified target (the
scenario considered here). In Promin, a threshold value is
obtained for each column of B in a four-step procedure.
First, matrix C is computed as the row-normalization of
B. Second, the mean and the standard deviation of the
squared elements of each column ofC are computed. Let
v (r × 1) be the vector with the means, and let s (r × 1) be
the vector with the standard deviations. Third, the objec-
tive threshold value tj (j = 1 . . . r) for each column is
obtained as

t j ¼ v j þ s j
4
: ð5Þ

Finally, once the threshold values are available, a new par-
tially specified target H*

k is built: Each squared element c2ij is
compared to the corresponding threshold value tj in order to
decide whether the hij element inH*

k is to be specified as a zero
value or set as an unspecified parameter. Later in this article,
we shall discuss the refinement strategies that can be applied

to build the refined target matrix H*
k . When k > 1, if the

Behav Res (2020) 52:116–130118



matricesH*
k andH

*
k−1 are identical (i.e., no changes have been

made to the refined target matrix), then the objective refine-
ment of the target matrix is finished, and the procedure must
move on to the final step. It is acknowledged that other
methods could be used to establish an objective refinement.
For example, Moore (2013) proposed using the standard er-
rors of the rotated loadings to determine whether the zero
value falls within the 95% confidence intervals of the loading:
If so, the loading is set to zero in the target matrix; otherwise,
the element is set as a nonspecified element. Other researchers
might prefer to compute the loading confidence intervals by
using resampling techniques. On some occasions, the iteration
could get stuck in an infinite loop (ifH*

k andH
*
k−2 are identical

butH*
k and H

*
k−1 are not identical): To avoid this, a maximum

of number iterations can be set in advance. We must point out
that in our simulation studies we never found such strange
situations.

Step 3 A new transformation matrix Sk is obtained as

f Skð Þ ¼ Procrustes ASk ;H
*
k

� �
; ð6Þ

where Skminimizes the distance between the product B =ASk
and the partially specified target matrix H*

k . Again, it is based
on oblique Procrustes rotation. Once B is available, go to Step
2.

Final step The final transformation matrix S is obtained
as

f Sð Þ ¼ Procrustes AS;H*
k

� �
; ð7Þ

where the Procrustes rotation can be either orthogonal
(Browne, 1972b) or oblique (Browne, 1972a), depending on
the restrictions that have been imposed on the population
model. The final rotated loading matrix is obtained as

P ¼ AS; ð8Þ
and the interfactor correlation matrix is obtained as

Φ ¼ S−1S−1
0
: ð9Þ

Refinement strategies related to RETAM

As we already pointed out, different refinement models can be
applied in Step 2 to build the refined target matrix H*

k . We
propose three refinement strategies related to RETAM:

Make Complex (MC) The specified elements of the initial
partially specified target matrix H∗ (i.e., the values defined
as zero values in the target matrix) can be changed to
nonspecified values in the refined target matrix H*

k . From
a practical point of view, these would be situations in
which researchers would assume that some of the items
in the analysis that were initially defined as factorially pure
could actually be complex items (i.e., items with cross-
loadings). From a substantive point of view, the refinement
of the target matrix is the least possible refinement, and the
refined target matrix H*

k does not importantly contradict the
substantive model on which the initial partially specified
target matrix H∗ is based.

Make Simple (MS) The nonspecified elements of the initial
partially specified target matrix H∗ can be changed to speci-
fied values in the refined target matrixH*

k (i.e., values defined
as zero values in the target matrix). This is the refinement
proposed by Browne (2001, p. 125). From a practical point
of view, these are the situations in which researchers assume
that the items in the analysis might be incorrectly assigned to a
factor in the initial target matrix (i.e., misspecified items).
From a substantive point of view, the refinement of the target
matrix is more important than in MC, and the refined target
matrixH*

k can importantly contradict the substantivemodel on
which the initial partially specified target matrix H∗is based.
Researchers must carefully study how the refinement proce-
dure has changed the initial proposal of the target matrixH∗ in
order to assess whether the final target matrix H*

k can be ac-
cepted from a substantive point of view.

Complete Refinement (CR)All elements of the initial partial-
ly specified target matrix H∗ can change their role in the
partially specified target matrix. From a practical point of
view, these are situations in which researchers assume that
(1) the items in the analysis can be complex items (i.e.,
items with cross-loadings), and (2) the items in the analysis
can be incorrectly assigned to a factor in the initial target
matrix (i.e., misspecified items). From a substantive point
of view, the refinement of the target matrix is more impor-
tant than in either of the previous strategies, and the refined
target matrix H*

k can strongly contradict the substantive
model on which the initial partially specified target matrix
H∗ is based. Once more, researchers must carefully study
how the refinement procedure has changed the initial pro-
posal of the target matrix H∗ in order to assess whether the
final target matrix H*

k can be accepted from a substantive
point of view. In addition, this strategy can be defined as
the most exploratory refinement model.

The performance of RETAM in different situations will be
assessed below, to determine whether any of the refinement
strategies is superior to the others.
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Some substantive and practical considerations

As we discussed above, when the CFA model is used in an
exploratory way (e.g., Browne, 2001) by modifying and
discarding items ad hoc until the fit is acceptable, the problem
of capitalization on chance is likely to occur. In our view,
modifications of an initial CFA solution can only be accept-
able if the changes are sound and in agreement with the theory,
and if the problem of capitalizing on change is satisfactorily
addressed.

Because RETAM starts from a theoretically derived target
and then uses empirically derived modifications, our proce-
dure can be accused of the same problemsmentioned above in
the CFA context. For this reason, we suggest that researchers
use RETAM in the following way: First, the original sample
must be split into two random halves; second, the RETAM
procedure should be applied to the first subsample to obtain a
refined target matrix; and third, the refined target matrix
should be taken as a fixed target matrix (without further re-
finements) to be used in the second subsample. If the rotated
loading matrix in the second subsample is congruent with the
rotated loading matrix in the first subsample, then researchers
will be more confident that the final solution has not merely
been specifically fitted to the sample data, but that it general-
izes to the population for which the analysis is intended.

The cross-validation study requires that the sample be di-
vided into two subsamples. As a consequence, the sample
may need to be larger than the sample size needed when com-
puting a standard EFA. In the next section, we shall assess
which sample sizes would be advisable when using the MC,
MS, and CR strategies.

A second potential problem when RETAM is used con-
cerns the order and sign indeterminacies of the target and
rotated pattern matrices, in the sense that the order of the factor
columns is interchangeable, and each column is interchange-
able with its negative (e.g., Myers, Ahn, Lu, Celimli, &
Zopluoglu, 2017). In a real application, particularly when
the procedure is based on an initial target specification, like
the one here, this problem is expected to be unimportant.
However, it potentially exists, so we must recommend that
researchers control the process and use appropriate reordering
or sign-change modifications, should they be needed.

Simulation study

The simulation studies reported in this section were intended to
assess the functioning of RETAM under different scenarios. In
general terms, the design attempted to mimic the conditions
expected in empirical applications, and so to provide realistic
choices. The main settings in our simulation study were based
on the simulation studies by Myers, Ahn, and Jin (2013), and
Myers, Jin, Ahn, Celimli, and Zopluoglu (2015). Two main

preliminary hypotheses can be advanced from these simulation
studies when no refinement is applied. First, factorial congru-
ence (to be defined below) is expected to increase with the
number of targets. Second, there is an interactive effect between
the number of targets and communality, so that the increase in
congruence with the number of targets decreases when com-
munality is high. As for the specific performance of the pro-
posed RETAM strategies, we preferred not to advance any
hypothesis and to maintain the study as essentially exploratory.

Method

The design consisted of two simulation studies. Study 1 ex-
plored the capabilities of the MC, MS, and CR strategies as-
sociated with RETAM to recover the population loading ma-
trix. Study 2 explored the sample sizes needed to carry out the
cross-validation analysis.

We specified three population models, each with a different
level of communality (low, wide, or high). The models were
taken from the population loading matrices proposed by
MacCallum, Widaman, Preacher, and Hong (2001), which in-
cluded 20 measured variables (m = 20) and three factors (r =
3). We selected these population matrices because, as Myers
et al. (2015) pointed out, they have characteristics that mimic
realistic situations in the context of EFA and have already
proved to be useful in a number of simulation studies in the
literature. For each of the three population models, we built 12
partially specified target matrices in which the number of spec-
ified elements in the target matrices ranged from 12 to 30. The
specified values in the target matrix were set to zero (i.e., they
were expected to be zero values in the population loading
matrix). In addition to changing the number of specified
values, we also changed the precision of the specification in
the target matrix, in order to introduce some level of error. We
considered that loading values lower than absolute .20 in the
population model should be set as specified values in the target
matrix (i.e., values expected to be zero in the population), and
as unspecified values in the target matrix otherwise. If we
consider this criterion, the numbers of unspecified values in
the target matrices should be 29, 30, and 32, respectively, for
the population models with low, wide, and high communality.
On the other hand, two kinds of error could be produced:

1. If the loading value in the population model is lower than
absolute .20 and is set as an unspecified value in the target
matrix, then an error has been committed. We call this
type of error Free-errors, because the element has been
erroneously set as a free element in the target matrix.

2. If the loading value in the population model is larger than
absolute .20 and is set as a specified value in the target
matrix, then an error has also been committed.We call this
type of error Fixed-errors, because the element has been
erroneously set as a fixed element in the target matrix.

Behav Res (2020) 52:116–130120



Table 1 summarizes the percentages of Free-errors and
Fixed-errors for the partially specified target matrix related
to each population matrix. For example, for the population
model with wide communality, we constructed three target
matrices with 30 unspecified elements (i.e., free elements)
and 30 specified elements (i.e., fixed elements). In the first
target matrix, no error was introduced (i.e., the free and the
fixed elements in the target matrix were all properly defined).
In the second target matrix, 27% of the free elements (i.e., a
total of eight elements out of 30) were Free-errors, and 27% of
the fixed elements (i.e., a total of eight elements out of 30)
were Fixed-errors. In the third target matrix, 50% of the free
elements (i.e., a total of 15 elements out of 30) were Free-
errors, and 50% of the fixed elements (i.e., a total of 15 ele-
ments out of 30) were Fixed-errors. As a second example,
again for the population model with wide communality, we
constructed three target matrices with 36 unspecified elements
(i.e., free elements) and 24 specified elements (i.e., fixed ele-
ments). In the first target matrix, 20% of the free elements (i.e.,
a total of six elements out of 30) were Free-errors, and no error
was introduced in the fixed elements. In the second target
matrix, 40% of the free elements (i.e., a total of 12 elements
out of 30) were Free-errors, and 20% of the fixed elements
(i.e., a total of six elements out of 30) were Fixed-errors. In the
third target matrix, 60% of the free elements (i.e., a total of 18
elements out of 30) were Free-errors, and 40% of the fixed
elements (i.e., a total of 12 elements out of 30) were Fixed-
errors. This procedure was followed to construct the 36 par-
tially specified target matrices (i.e., 12 target matrices for each
population matrix). The 36 partially specified target matrices
were checked to confirm that the rotation identification con-
ditions were met (see Myers et al., 2017; Myers et al., 2015).
To help other researchers replicate our study, we can offer

interested readers the set of target matrices that we produced.
As an independent variable of the simulation studies, we in-
cluded the levels of Free-errors and Fixed-errors in the partial-
ly specified target matrix used to rotate each sample loading
matrix. The number of specified elements in the target matrix
(12, 18, 24, or 30) was also recorded.

Overdetermination (m : r = 20 : 3) and model error (i.e.,
population RMSEA = .065) were kept constant. The level of
model error has been defined in the literature as a fair fit
(Browne & Cudeck, 1992). Interfactor correlations were not
manipulated, either. Moore et al. (2015) carried out a simula-
tion study on target rotations, and they reported that the cor-
relations among the factors in the population had little to no
influence on the relative abilities of the rotations to approxi-
mate the population factor structure. In our simulation study,
we set the interfactor correlations to zero in the population.

Study 1

Manipulated factors

The study was based on a 3 × 3 × 4 design and 500 replicas per
condition. The independent variables were (1) sample size:N =
100, 300, 500; (2) communality: low (item communalities be-
tween .20 and .40, with an average of .32), wide (item com-
munalities between .20 and .80, with an average of .49), and
high (item communalities between .60 and .80, with an aver-
age of .69); and (3) number of specified targets: 12, 18, 24, 30.
Please note that the 36 partially specified target matrices were
used in the study, and that the levels of Free-errors and Fixed-
errors in thematrices used to rotate each sample loadingmatrix
were also recorded as independent variables in the study.

Table 1 Levels of specification error for the 36 targets: 12 targets related to low communality, 12 targets related to wide communality, and 12 targets
related to high communality

Communality Target elements Error in target matrix

Free Fixed to Zero Free Fixed Free Fixed Free Fixed

Low 30 30 3% 0% 29% 28% 52% 52%

36 24 23% 0% 42% 21% 61% 41%

42 18 42% 0% 58% 17% 71% 31%

48 12 61% 0% 71% 10% 81% 21%

Wide 30 30 0% 0% 27% 27% 50% 50%

36 24 20% 0% 40% 20% 60% 40%

42 18 40% 0% 57% 17% 70% 30%

48 12 60% 0% 70% 10% 80% 20%

High 30 30 0% 6% 21% 25% 46% 47%

36 24 14% 0% 36% 19% 57% 38%

42 18 36% 0% 54% 16% 68% 28%

48 12 57% 0% 68% 9% 79% 19%
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Rotation identification

Although the population loading matrices provided by
MacCallum et al. (2001) were not rotated (because the authors
provided them already rotated using direct quartimin rotation),
the sample loading matrices were rotated using oblique par-
tially specified rotation (Browne, 1972a), in which the partial-
ly specified target matrices were the 36 matrices summarized
in Table 1. As in Myers et al. (2015), we checked that the
conditions for factor specification were met for each of the
36 target matrices.

Data generation

The simulated data were generated by a linear common
factor model, which included both major and minor fac-
tors. The minor factors aimed to be a realistic representa-
tion of empirical cases (MacCallum & Tucker, 1991).
Because a common factor model with a limited number
of common factors will never fit exactly at the population
level, each variable is considered to be composed of one
part that is consistent with the common factor model and
another that is not. The latter is called the model error and
is represented by the minor factors (based on the middle
model by Tucker, Koopman, & Linn, 1969). This approach
has been taken in earlier research to assess the performance
of PA (see, e.g., MacCallum & Tucker, 1991). In the sim-
ulation study, the sample correlation matrices were
modeled as

R ¼ ΛΛ
0 þΘ2 þΔME þΔSE; ð10Þ

where Λ is the population loading matrix, Θ is a diagonal
matrix of unique coefficients, ΔME is the model error in
the covariance structure, and ΔSE is the sampling error. As
population loading matrices and unique coefficients, we
used the data offered by MacCallum, Widaman, Zhang,
and Hong (1999) related to 20 observed variables, three
common factors, and the three different levels of commu-
nality. The model error was manipulated so that a popula-
tion RMSEA = .065 was expected. The sample error was
manipulated by using samples of different sizes (100, 300,
500) drawn from a normal random distribution (0, 1). In
the first step, a correlation matrix R* was obtained as
R∗ =ΛΛ′ +Θ2 +ΔME. Then we computed the Cholesky
decomposition of R* = L'L, where L is an upper triangular
matrix. The sample data matrix of continuous variables X
was finally obtained as X = ZL, where Z is a matrix of
random standard normal scores, with rows equal to the
corresponding sample size and a number of columns equal
to the corresponding number of variables.

Dependent variables

The population and the sample loading matrices were com-
pared. Please note that the sample loading matrices were ro-
tated with no target refinement and using MC, MS, and CR
refinement strategies. Congruence and discrepancy indices
were used to assess the degree to which the true generated
structures were recovered. The congruence index was the
Burt–Tucker coefficient of congruence, a measure of profile
similarity (see Lorenzo-Seva & ten Berge, 2006) that is de-
fined as

ϕ x; yð Þ ¼ ∑xiyi
∑x2i ∑y2i

: ð10Þ

Equation 10was used to assess the congruence between the
columns of the population loading matrix and the columns of
the fitted loading matrices. The overall congruence between
two loading matrices is usually reported by calculating the
average of the column congruence. Lorenzo-Seva and ten
Berge (2006) pointed out that a value in the range [.85–.94]
corresponds to a fair similarity, whereas a value higher than
.95 implies that the factor solutions compared can be consid-
ered equal. The discrepancy index was the root-mean squared
residual (RMSR) between the population model and the data-
fitted model, a measure of profile distance that is defined as

RMSR X;Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=mrð Þ∑

m

i
∑
r

j
xij−yij

� �2
s

: ð11Þ

To analyze the size of the effects, analyses of variance were
carried out with the IBM SPSS Statistics version 20 program.
Cohen (1988, pp. 413–414) suggested that for eta-squared (η2)
effect sizes, threshold values of .02 represent small effects, .13
medium effects, and .26 or more large effects.

Study 2

This simulation study explored the sample sizes needed to
perform the cross-validation analysis. Mainly it was a replica-
tion of the previous simulation study, except for the way the
sample size was manipulated. The idea was to generate a
sample of very low size (N = 50), randomly divide the sample
in order to refine the target using the first random sample, and
rotate the loading matrices obtained in both (the first and the
second) samples. If the congruence value between the two
rotated solutions was lower than .96, then a new sample would
be obtained with a sample size of ten extra observations.
When the threshold value of .96 was obtained, we recorded
the sample size of the final sample. The RETAM was applied
with the MC, MS, and CR strategies. For each experimental
condition, 500 replications were computed. To determine an
advisable threshold value for the size of the sample needed
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when each refinement strategy was computed, the distribu-
tions of the sample sizes of the two conditions in the study
(i.e., the Number of targets specified as zero and
Communality) were recorded for the 500 replications, and
the 95th percentile was taken as the advisable threshold.

Results

Study 1 The correlations of the percentages of Free-errors and
Fixed-errors in the target matrices with the congruence and
discrepancy indices are shown in Table 2. When no refine-
ment was applied, as the percentage of both types of error
increased, the congruence index decreased and the discrepan-
cy index increased. This effect was more important for Free-
errors (i.e., when the loading value in the population model
was lower than absolute .20 and was set as an unspecified
value in the target matrix). Furthermore, performance was
observed to depend on the refinement strategy used:

1. When theMC strategy was used, congruence and discrep-
ancy values were independent of the percentage of Free-
errors;

2. When the MS strategy was used, congruence and discrep-
ancy values were independent of the percentage of Fixed-
errors (when the loading value in the population model
was larger than absolute .20 and was set as a specified
value in the target matrix);

3. When the CR strategy was used, congruence and discrep-
ancy values were independent of both percentages of
error.

Tables 3 (congruence results) and 4 (discrepancy results)
summarize the behavior of the RETAM approach. When no
refinement was computed, the population loading matrix was
systematically recovered badly (i.e., congruence values were
lower than .95, and discrepancy indices were larger than .10).
The MC refinement strategy correctly recovered the popula-
tion solution when the sample was large, the communality was
high, and the number of elements in the target fixed as zero
was low. The MS refinement strategy performed similarly,

except for the number of elements fixed to zero: Now themore
elements were fixed, the better the population matrix was
recovered. The CR strategy systematically recovered the pop-
ulation loading matrix. In terms of discrepancy, low sample
sizes and wide communality were the most difficult situations
to manage.

Table 5 summarizes the sizes of the main effects in the
simulation study and shows the interactions that produced
effect sizes larger than .02 in terms of η2. When no refinement
was computed, the main effects of communality and number
of targets specified as zero (and their interaction) were at some
point substantial, a result that agrees with the preliminary hy-
potheses above. When MC refinement was applied, only the
main effect of communality was substantial; this means that
when the communality is low (i.e., low loading values are
observed in the loading matrix), MC refinement may have
trouble recovering the population loading matrix. When MS
refinement was applied, only the main effect of number of
targets specified as zero was substantial; this means that when
just a few elements in the target matrix are fixed to zero, the
MS refinement may help recover the population loading ma-
trix. Finally, when the CR strategy was applied, the main
effects of sample size and communality showed substantial
effects; this means that this approach works better with large
samples and high communality.

Study 2 Table 6 shows the 95th percentiles for each condition
in the study after the 500 replications. When the MC refine-
ment is used, the largest samples are advisable if the number
of elements specified as zero is high and the communality low.
In our study, a sample of 420 observations would be needed in
these conditions. On the other hand, when the number of
elements specified as zero is low and the communality high,
a sample of 80 observations could suffice. When the MS re-
finement is used, the largest samples are advisable if the num-
ber of elements specified as zero and the communality are
both low. In our study, a sample of 460 observations would
be needed in these conditions. Again, when the number of
elements specified as zero and the communality are both high,
a sample of 80 observations could suffice. When the CR strat-
egy is used, the number of elements specified as zero makes

Table 2 Correlations of congruence and discrepancy values with the percentages of error in the target matrices

Refinement strategy Congruence index Discrepancy index

Error in free elements Error in fixed elements Error in free elements Error in fixed elements

No refinement – .472 – .333 .426 .202

Make complex – .093 – .288 .121 .300

Make simple – .415 – .090 .364 .029

Complete refinement – .043 – .064 .047 .046

Correlation values larger than .20 are printed in bold
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no difference, and only communality need be taken into ac-
count. When the communality is low, a sample size of 390
might be advisable, whereas a sample of 80 observations may
be enough when the communality is high.

Finally, as was pointed out by an anonymous reviewer, it
should be noted that the cross-validation procedure is only
useful for analyzing consistency across half samples, but not
necessarily for drawing conclusions about accuracy.

Illustrative examples with real data

A 38-item version of the Overall Personality Assessment
Scale (OPERAS; Vigil-Colet, Morales-Vives, Camps,
Tous, & Lorenzo-Seva, 2013) was administered to a sample
of 4,085 participants. The scales aim to assess six indepen-
dent factors: extraversion (EX; seven items), emotional sta-
bility (ES; seven items), conscientiousness (CO; seven
items), amiability (AM; seven items), openness to experi-
ence (OE; seven items), and social desirability (SD; three
items). All 38 items are positively worded and use a 5-point
Likert response format.

Examination of the item scores showed that the response
distributions were generally skewed. So the item scores were
treated as ordered-categorical variables, and the factor analysis
based on the polychoric interitem correlations was the model
chosen to fit the data. This model is an alternative parameter-
ization of the multidimensional item response theory graded
response model.

Since the interitem polychoric correlation matrix had good
sampling adequacy (KMO = .871), six factors were extracted
by using robust factor analysis based on the diagonally
weighted least squares criterion, as implemented in the
FACTOR program (Ferrando & Lorenzo-Seva, 2017), and
these reached acceptable goodness-of-fit levels: RMSEA =
.036 (values between .010 and .050 are considered to be
close), CFI = .970, GFI = .989, and WRMR = 0.026.

Because each item on the scale was expected to be related
to a single factor, a rotation target might easily be proposed by
a researcher: A partially specified target matrix was proposed
in which each item had a nonspecified value in the factor that
it was expected to assess, and zeros otherwise. This target
matrix indicates that each item was expected to be a good

Table 3 Averages and standard deviations (given in parentheses) of the congruence index

Condition No refinement Make complex Make simple Complete refinement

Overall .894 .948 .942 .970

(.087) (.057) (.067) (.029)

Sample size

N = 100 .884 .934 .928 .956

(.085) (.060) (.069) (.039)

N = 300 .898 .953 .948 .976

(.087) (.054) (.064) (.020)

N = 500 .901 .953 .950 .979

(.087) (.054) (.066) (.017)

Communality

High .907 .985 .966 .992

(.085) (.021) (.057) (.006)

Wide .859 .926 .912 .965

(.100) (.064) (.083) (.017)

Low .916 .934 .948 .953

(.058) (.056) (.044) (.038)

Number of targets specified as zero elements

12 .870 .959 .904 .971

(.107) (.041) (.089) (.026)

18 .873 .950 .937 .971

(.092) (.060) (.067) (.026)

24 .923 .953 .965 .970

(.056) (.050) (.036) (.029)

30 .911 .934 .961 .968

(.071) (.069) (.043) (.035)

Values higher than the threshold of .95 are printed in bold
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indicator of a single factor (i.e., to have a single salient loading
on a factor). However, some researchers believe that this ex-
pectation is not realistic, and that personality items are fre-
quently complex indicators (see, e.g., Woods & Anderson,
2016). The complexity of personality items is defined in the

context of the periodic table of personality. In this context, the
largest salient loading of a personality item informs as to the
factor that this item mainly assesses, whereas secondary sa-
lient loadings (i.e., loading values of the item that are not as
large as the main salient loading but still large enough to be

Table 4 Averages and standard deviations (given in parentheses) of the discrepancy index

Condition No refinement Make complex Make simple Complete refinement

Overall .189 .116 .136 .092

(.129) (.054) (.117) (.032)

Sample size

N = 100 .199 .132 .154 .111

(.119) (.051) (.131) (.034)

N = 300 .185 .110 .129 .086

(.130) (.052) (.112) (.027)

N = 500 .183 .105 .125 .081

(.136) (.053) (.104) (.027)

Communality

High .220 .080 .121 .061

(.179) (.033) (.135) (.011)

Wide .220 .157 .184 .121

(.101) (.054) (.107) (.016)

Low .128 .111 .103 .096

(.042) (.040) (.107) (.030)

Number of targets specified as zero elements

12 .248 .107 .205 .092

(.202) (.058) (.194) (.032)

18 .201 .117 .137 .092

(.101) (.058) (.071) (.032)

24 .150 .111 .099 .094

(.067) (.049) (.047) (.034)

30 .157 .128 .102 .093

(.068) (.058) (.049) (.033)

Values larger than the threshold of .10 are printed in bold

Table 5 Univariate analysis of variance effect sizes η2

Effect No refinement Make complex Make simple Complete refinement

C D C D C D C D

Main effects

Sample size (N) .01 .00 .03 .05 .02 .01 .12 .16

Communality (h) .08 .11 .21 .35 .11 .09 .31 .58

Number of targets specified as zero elements (T) .07 .09 .03 .02 .13 .13 .00 .00

Two-way interactions

N × h .01 .00 .02 .01 .02 .01 .08 .04

h × T .07 .08 .03 .02 .07 .06 .00 .00

Only substantial interactions are printed. C stands for the congruence index, and D stands for the discrepancy index. Values of at least the threshold of .13
are printed in bold.
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meaningfully interpreted) define other factors in which a per-
son’s response to the item also gives some substantial infor-
mation. Although it is easy to propose the main loading of an
item in advance, it is not so easy to propose secondary salient
loadings. In conclusion, although the researcher can easily
propose a partially specified target, he or she might also expect
some items not to be pure indicators of a single factor, and
must be prepared to accept that some items could turn out to
be complex indicators.

In addition to substantive dimensions, OPERAS also aims
to measure SD. Now, because responses to personality items
are frequently expected to be biased by SD (see, e.g.,
Ferrando, Lorenzo-Seva, & Chico, 2009), it is reasonable to
assume that some of the items analyzed here were complex,
with a main salient loading on the corresponding personality
factor and a secondary loading on the SD factor.

In summary, then, this is a research context in which an
initial target hypothesis can be proposed for all of the items
under study. At the same time, however, it is also reasonable to
consider that this hypothesis could be modified or refined to a
certain extent. This midpoint location between exploratory
and confirmatory is a perfect scenario to illustrate how
RETAM can be useful to practitioners, and to this end, three
different approaches will be presented. In each approach, the
researcher adopts a different attitude to the dataset. Finally,
since the five personality factors are typically considered or-
thogonal in the literature, the rotations computed were system-
atically orthogonal rotations. To help other researchers best
understand our results, we can offer interested readers the set
of targets and rotated loading matrices that we obtained in the
three analyses that follow.

First analysis

In the first analysis, the aim was to propose an initial hypoth-
esis that assumed the simplest factor solution (i.e., that each
item was related to a single factor). Although the researcher
feels confident that he has correctly identified which factor is
related to each item, other substantial secondary loadings can
also be expected. As a consequence, the most advisable

RETAM strategy would be to allow the target to becomemore
complex than initially proposed (i.e., the MC refinement
strategy).

RETAMmade eight changes to the target. Items 33 and 34
(which were expected to assess OE) were adjusted so that they
could show a much more complex behavior: They were also
expected to load on the AM personality factor and to the SD
factor. As an example, the content of Item 33 is BI feel curious
about the world around me.^ Three other personality items
were also expected to become complex items and to load on
another personality factor and on the SD factor: Item 18 (CO),
Item 27 (AM), and Item 28 (AM). As an example, the content
of Item 27 is BI am very critical of others.^ Finally, an SD item
(37) was allowed to show a salient loading on a personality
factor (AM). The content of this item is BSometimes I have
taken advantage of someone.^ As can be observed, the items
related to CO and AM are the most susceptible to becoming
biased by SD. At the same time, items related to SD can also
be biased by some personality factor (like AM).

We compared the rotated pattern matrix obtained (1) when
the researcher-defined target matrix was used and (2) when the
RETAM refined target matrix was used. Both rotated pattern
matrices were quite similar: The congruence indices between
the corresponding columns ranged from .985 to .995. These
values were clearly larger than the threshold of .95 (Lorenzo-
Seva, & ten Berge, 2006). Secondary loading values in the
rotated pattern related to the researcher-defined target seemed
to suggest that some of the items were not as simple as the
ones proposed in the target matrix. However, these secondary
loadings were largest in the rotated pattern related to the
RETAM refined target matrix. In this regard, the rotation
based on the refined target helped to better understand the
complexity of some items.

It is also interesting to note that some items, which
seemed simple in the rotation based on the researcher-
defined target matrix, showed their complexity in the rota-
tion based on the RETAM refined target matrix. An exam-
ple is Item 1 (BI make friends easily^). This item was
expected to be related only to the EX factor. However,
the rotation based on the RETAM refined target matrix

Table 6 Sample sizes recommended to compute the cross-validation study

Refinement strategy: Make complex Make simple Complete refinement

Communality: Low Wide High Low Wide High Low Wide High

Number of targets specified as zero elements

12 390 170 80 460 350 140 390 160 80

18 390 170 80 430 200 100 390 160 80

24 400 170 90 410 180 90 390 160 80

30 420 180 90 400 179 80 390 160 80
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suggested that it is actually a complex item that is also
related to the AM factor.

Second analysis

In the second analysis, the simplest initial hypothesis was
again proposed, as above. However, now the researcher does
not feel so confident of correctly identifying which factor is
related to each item, which means that some items could have
a single salient loading on an unexpected factor. In addition,
the researcher could expect to observe some substantial sec-
ondary loadings. As a consequence, the most advisable
RETAM strategy here would be to allow the target to be fully
refined (i.e., the CR strategy).

A total of 13 changes were made to the target: Ten
values specified as zero by the researcher were set to be
nonspecif ied values, and three values set to be
nonspecified values by the researcher were set to be spec-
ified zero values. Overall, the most remarkable change was
that the three items (Items 26, 27, and 28) that the re-
searcher expected to define the AM factor were changed
to become items that were expected to load on the same
factor as the SD items. In addition, seven items were ex-
pected to show secondary salient loadings. The table also
shows the rotated pattern matrix based on the refined tar-
get. In this context, the factor that the researcher expected
to be related to SD turned out to be a mixture of SD and
AM. In addition, the factor that the researcher expected to
be related to AM was a mixture of AM and OE.

Third analysis

In the third analysis, the researcher felt confident enough to
propose six items, each of which was expected to be a good
indicator of a single different factor (i.e., to have a single
salient loading on a factor). At the same time, even if she
expected the items to be simple indicators of a single factor,
she preferred not to propose a hypothesis for the other items in
the analysis. It must be noted that this is a weak target matrix
(since very few values were defined). As a consequence, the
most advisable RETAM strategy would be to allow the target
to become simpler than initially proposed (i.e., the MS refine-
ment strategy).

A total of 156 changes were made to the target. To
summarize these changes, 26 items were defined by the
refined procedure as simple indicators of a single factor,
and six items (Items 6, 7, 20, 32, 33, and 34) were defined
as complex items (with two salient loading values). In
addition, once again the three items (Items 26, 27, and
28) that the researcher expected to define the AM factor
loaded on the same factor as the SD items. Both rotated
pattern matrices were quite similar: the congruence indi-
ces between corresponding columns ranged from .961 to

.995. However, the loading simplicity index (Lorenzo-
Seva, 2003) reported that the simplicity of the rotated
pattern based on the refined target matrix was larger (val-
ue of .417) than the simplicity of the rotated pattern based
on the researcher-defined target (value of .397).

Comparison of the three analyses

To determine whether the three analyses based on the dif-
ferent refinement strategies produced substantially differ-
ent rotated pattern matrices, we computed the congruence
coefficients between the columns of the rotated pattern ma-
trices. As can be observed in Table 7, the outcomes related
to four factors (EX, EE, CO, and OE) remained quite con-
stant, regardless of the refinement strategy. However, the
strategy based on MC produced slight differences in the
outcomes related to the AM factor (congruence values
equal or slightly larger than .95). The differences were
clearer in the SD factor.

It is interesting to point out that two different refinement
strategies (MS and CR) led to quite congruent rotated pattern
solutions. This was due more to the initial target proposed by
the researcher than to the procedure itself. If the MS ap-
proach had been used in this dataset based on the first
researcher-defined target matrix, then the MC and MS strat-
egies would have been much more congruent with each oth-
er. This means that the usefulness of each strategy to a re-
searcher would depend on the researcher-defined target, and
his or her personal position when analyzing each particular
dataset. It must also be noted that if a set of items have a clear
and strong relationship with one another (like the items in EE
in our illustrative example), the same final result is expected
to be attained, regardless of the position of the researcher or
the chosen refinement target procedure. However, if the
items have a more ambiguous relationship, then researchers
must decide on their personal position and the refinement
target they will use.

Table 7 Congruence coefficient value among the three RETAM
strategies used in the three analyses of the illustrative example

RETAM strategies EX EE CO AM OE SD

MC vs. CR .995 .997 .992 .954 .996 .940

MC vs. MS .995 .998 .988 .950 .995 .920

CR vs. MS .998 .998 .995 .999 .997 .994

EX, extraversion; ES, emotional stability; CO, conscientiousness; AM,
amiability; OE, openness to experience; SD, social desirability. Values
lower than the threshold of .95 are printed in bold
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Conclusions

The outcomes of the simulation study seem to suggest that no
one RETAM refinement model can be regarded as systemat-
ically superior to the others. When the researcher can set a
large number of elements to zero in the target matrix, the
MC refinement is advisable. When the researcher prefers to
set a low number of elements to zero in the target matrix, then
the MS refinement is advisable. Finally, the CR strategy may
be useful to researchers who can modify their initial target
matrix (and possibly the implicit substantive model) during
the analysis. This would be the case for a factor analysis that
is closer to a pure EFA. Researchers, however, must be aware
that this exploratory approach may require a larger sample
(especially if communalities are low).

Discussion

Traditionally, factor analysis has been artificially split into two
approaches: exploratory factor analysis (to be applied when
the researcher does not have a hypothesis about the population
model) and confirmatory factor analysis (to be applied when
the researcher has a definitive hypothesis about the population
model). In the first situation, exploratory rotations can be
used. In the second situation, the researcher assesses the fit
of the proposed model using a sample (and probably working
with specific software, such as LISREL or Mplus). However,
between these two extremes, a large number of situations are
sometimes closer to one of the two poles and sometimes are in
the middle (e.g., Henson&Roberts, 2006; Myers et al., 2015).
Applied researchers who find themselves in one of these in-
definite intermediate points have no clear methodological al-
ternative. They must choose between (1) dropping their weak
tentative hypothesis (and computing a full exploratory analy-
sis) or (2) making as if the tentative hypothesis was a defini-
tive one and proceeding with a CFA. Our proposal is aimed at
researchers who have a tentative hypothesis and are prepared
to refine this hypothesis in an exploratory way (e.g., Browne,
2001).

We have proposed RETAM as a new procedure for objec-
tively refining target matrices in the context of unrestricted
FA. To date, it has been recommended that this kind of refine-
ment be guided by human judgment (see Browne, 2001).
Furthermore, the approach has already being used by applied
researchers. For example, Ayr, Yeates, Taylor, and Browne
(2009) presented an FA of postconcussive symptoms in chil-
dren with mild traumatic brain injuries. They made a number
of Procrustes rotations based on progressively refined target
matrices, used a threshold value of .40 to correct
misspecifications of the items to the factors, and finished with
a multidimensional test of 39 items and four factors.
Conceptually, their approach was similar to our refinement

Model 2. In comparison with these proposals, however, ours
(a) is more objective (because the researcher does not need to
set a necessarily arbitrary threshold value), (b) is computed
automatically (there is no need to manually compute a number
of factor rotations every time), and (c) controls for capitaliza-
tion on chance, as we discuss below. Methodologically, our
approach incorporates proposals that already exist in the
factor-analytic literature, mainly the iteration procedure for
refining a target (Moore et al., 2015) and the Promin proce-
dure (Lorenzo-Seva, 1999) for objectively defining the thresh-
olds. The resulting proposal in which these developments are
combined, however, appears to be new.

Overall, RETAM can be regarded as a hybrid procedure, in
the sense that it combines theoretically derived specifications
(the initial target) with analytical, empirically informed spec-
ifications (the refinement procedure). In this way, our proce-
dure falls between a pure analytical rotation and a target rota-
tion. In our view, it is of particular interest for those applica-
tions in which a priori knowledge or theory allow for a spec-
ification that is more detailed than merely setting the number
of factors and deciding whether or not they are correlated (i.e.,
pure analytical rotation). However, it is not so complete as to
allow a definite target to be specified. Rather, the initial target
might be too strict (i.e., complex items wrongly specified as
pure items) or too lenient, and in both cases the proposed
procedure is expected to be able to arrive at a more correct
final target.

As long as the initial information available is more than is
required by a purely analytical rotation, we believe that our
proposal is more appropriate. A wide variety of analytical
rotation options exist, which understand the structure of
item–factor relations in different ways. So, if an initial struc-
ture is proposed (albeit only tentatively), the process becomes
less determined by the analytical simplification criterion (i.e.,
rows, columns, or both) and more guided by theory. To un-
derstand this point in more detail, note that RETAM does not
seek to simplify rows or columns as analytical criteria do, but
rather to identify a pattern of salient loadings, starting from a
theoretically informed initial pattern.

Because different analytical rotation criteria tend to lead to
diverging solutions when the factor structure is complex (e.g.,
Moore et al., 2015), we believe that the extra initial guidance
provided by RETAMwill be especially important for complex
structures, and the results of our simulation point in this direc-
tion. Despite this, however, the simulation results do not sug-
gest a consistent superiority of the strategies related to their
use. Some researchers prefer to specify the initial target by
using very few items per factor (i.e., markers), and in this case,
MS seems to be the best refinement. Others tend to start with
highly restrictive targets (i.e., following a typical CFA ap-
proach), and if they do, MC is the strategy to choose. CR is
the strategy closest to pure EFA, so if would be justified in the
case of a very weak measurement theory.
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Because of its partially data-driven component, RETAM is
potentially prone to theoretically unjustified ad hoc modifica-
tions, capitalization on chance, and problems of pattern inde-
terminacy. Thus, we strongly emphasize that the potential
problems should be addressed by using a well-designed
cross-validation schema (Simulation Study 2 provided guid-
ance on this point) and carefully controlling the process,
which includes a check that the final rotated loading matrix
has a substantive interpretation that is consistent with the
theory.

Our illustrative example aimed to show how a researcher
can advance a hypothesis based on the factor in which (a) each
item is expected to be a good indicator of a single factor, but
(b) secondary factor loadings can be expected (which are
much more difficult to predict). In addition, we showed that,
depending on their personal positions, researchers can pro-
pose (a) a strong hypothesis, or (b) a weak hypothesis. Both
of these positions can be combined with a different refinement
strategy. In the first position, an MC strategy (i.e., setting free
loading values initially specified to be zero in the target) may
be more advisable, whereas in the second position an MS
strategy (i.e., setting loading values initially specified to be
free values in the target) may be more useful. The CR would
be an exploratory option even when a strong target has been
defined.

The authors’ experience suggests that proposals such as the
present one can only be applied in practice when they are
implemented in user-friendly and easily available software.
For this reason, the procedure proposed here has been imple-
mented in the 10.7 version of the program FACTOR
(Ferrando & Lorenzo-Seva, 2017). To compute a RETAM
approach with FACTOR, the user has to provide an initial
(partially specified) target matrix and determine the refine-
ment model to be applied. In addition, a cross-validation as-
sessment based on split-half random subsamples can be
selected.
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