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Abstract
The Bayesian information criterion (BIC) can be useful for model selection within multilevel-modeling studies. However, the
formula for the BIC requires a value for sample size, which is unclear in multilevel models, since sample size is observed for at
least two levels. In the present study, we used simulated data to evaluate the rate of false positives and the power when the level 1
sample size, the effective sample size, and the level 2 sample size were used as the sample size value, under various levels of
sample size and intraclass correlation coefficient values. The results indicated that the appropriate value for sample size depends
on the model and test being conducted. On the basis of the scenarios investigated, we recommend using a BIC that has different
penalty terms for each level of the model, based on the number of fixed effects at each level and the level-based sample sizes.

Keywords Multilevel modeling . Bayesian information criterion . BIC . Monte Carlo study . Model comparison . Hierarchical
linear modeling

The Bayesian information criterion (BIC; Raftery, 1995;
Schwarz, 1978) represents a useful measure for the compari-
son of multilevel models (McCoach & Black, 2008). The BIC
offers several advantages over traditional hypothesis-testing
procedures, including the abilities to compare nonnested
models (McCoach & Black, 2008), make selection among
several competing models (Raftery, 1995), and Bshow that a
smaller model is better than a larger model^ (Weakliem, 2004,
p. 179). The BIC is a simplification of an approximation to
minus twice the log of the marginal density of the observed
data (Kass &Raftery, 1995). Specifically, the marginal density
is approximated by taking the joint distribution of the data and
the parameters, dividing by the Laplace approximation of the
posterior of the parameters, and evaluating at the posterior
mode. The BIC is obtained from this approximation by plug-
ging in the maximum likelihood estimator instead of the pos-
terior mode and dropping terms that are constant as a function
of the sample size and model complexity.

The BIC is a function of model deviance (where the devi-
ance is – 2 times the log-likelihood of the maximum-
likelihood estimator) and is given as

BIC ¼ devianceþ k � ln Nð Þ; ð1Þ
where k is the number of parameters estimated and N is the
sample size (Hox, 2010). The BICs for two or more models
can be compared, and the lower BIC indicates a better fit
(McCoach & Black, 2008). The difference between the BICs
for two models (ΔBIC) can be computed, where guidelines
indicate that a difference greater than 10 indicates very strong
evidence; 6–10 indicates strong evidence; 2–6 indicates pos-
itive evidence; and 0–2 indicates weak evidence for the more
complex model (Raftery, 1995). To compare fixed effects
using the BIC, full maximum-likelihood estimation (as op-
posed to restricted maximum-likelihood estimation) should
be used (Hox, 2010). The comparison of nested models using
BICs as a testing procedure (with, say, ΔBIC > c for fixed c as
a testing rule) results in a test whose Type I and Type II error
rates go to zero asymptotically as the sample size goes to
infinity under suitable regularity conditions. The ln(N) value
in the BIC causes the Type I error rate to decrease to zero as N
increases. The tradeoff is a decrease in the statistical power of
the test (as compared to a test with a fixed Type I error rate),
although the power still increases to 1.

Use of the BIC may aid data analysts beginning to explore
a dataset, or BIC values may be reported in a final multilevel-
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modeling analysis. For example, a study examining a music
ensemble participation outcome reports the results from three
multilevel logistic regression models, including a BIC value
for each model (Lorah, Sanders, & Morrison, 2014). The re-
searchers may have preferred to report BIC in order to guard
against some of the weaknesses of hypothesis-testing proce-
dures, such as arbitrary selection of p values or inflation of the
Type I error rate when multiple models are proposed for
explaining variation in a dataset (Cohen, 1990). The change
in BIC provides a route to the approximate Bayes factors, but
it does not contain a multiplicity correction, which is typically
handled using the model space prior distribution (Hoeting,
Madigan, Raftery, & Volinsky, 1999; Scott & Berger 2010).
In classical testing, multiplicity correction is obtained by
spreading the significance over multiple tests (such as through
a Bonferroni correction). In the Bayesian context, multiplicity
correction is best viewed as a penalization of model complex-
ity through the specification of a prior distribution on the
space of models. For instance, one can decrease the prior
probability of a model as the dimension of the model’s param-
eter increases. When the number of models is small and the
sample size is large, the prior over the model space is essen-
tially inconsequential.

The BIC may be used with many models, including the
multilevel model, which is a model with a random effect
for group membership added. However, a complication
arises because the BIC requires that the sample size, N,
be specified for the computation, and this value is ambig-
uous (Hox, 2010; McCoach & Black, 2008; Raftery, 1995)
because sample size is given at two or more levels.
Researchers argue that the value for sample size somehow
should be reduced (Raftery, 1995), and in practice, differ-
ent software packages deal with the issue differently (Hox,
2010; McCoach & Black, 2008). This choice could impact
the rate of false positives and the power for testing effects,
indicating that if an inappropriate value for sample size is
chosen in computation of the BIC, researchers could be
more likely to make erroneous claims or to miss important
substantive findings.

One possibility for reducing the value of sample size is to
use the value for the effective sample size, which can be com-
puted as the total sample size divided by the design effect
(Kish, 1965; Snijders & Bosker, 2012). This reduction is ex-
plored in the present study and is compared with use of the
level 1 sample size (i.e., the total sample size) and the level 2
sample size (i.e., the number of groups), while varying group
size and number of groups. Additionally, the intraclass corre-
lation coefficient (ICC), given as

ICC ¼ τ2= τ2 þ σ2
� � ð2Þ

(Snijders & Bosker, 2012), will be varied in the present
study, where τ2 represents the variance at level 2 and σ2

represents the variance at level 1. The ICC represents the
proportion of variance in the outcome that is explained by
group membership (Snijders & Bosker, 2012). Note that as
it is used in the present study, this is a conditional definition of
the ICC. It is defined as the correlation in the outcome variable
among the group members in a two-level model conditioned
on the fixed-effect design matrix. An alternative definition of
the ICC is the marginal ICC, which views the design itself as
random and incorporates the variance of the design within and
between groups into the definition of the ICC.

In this study, we explored different sample size calcula-
tions for N in the formula for the BIC through a simulation
study. In the next section, we discuss the connection be-
tween the BIC and hypothesis testing. Then we discuss the
theoretical justification for different sample size calcula-
tions. In the section after that, we describe the research
questions and hypotheses. Next, we describe the simula-
tion study. Finally, we present the results of the simulation
study and discuss its implications.

BIC and hypothesis testing

The BIC represents an information criterion approach, and
as such, the concept of statistical significance does not
strictly apply. Model selection using information criteria
is usually achieved by viewing a criterion as a loss function
and selecting the model that minimizes the loss. The crite-
rion and action rule are set, and their properties, such as
frequentist risk or error rates, can be evaluated. Because it
approximates the log marginal, the BIC can be considered
a BBayesian approach to hypothesis testing, model selec-
tion, and accounting for model uncertainty^ (Raftery,
1995, p. 111). We discuss the connection between the
BIC and hypothesis testing, as well as various evaluation
schemes, in this section.

To use the BIC for hypothesis testing, it is useful first to
conceptualize a null hypothesis test of a fixed effect as the
model selection question when there are only two models
under consideration and one is nested in the other. The test
will consist of failing to reject the smaller model whenever
BIC0 – BIC1 = BIC > 0. The difference in BICs between the
smaller and larger models is the difference in log-likelihood
minus twice the difference in model dimension times the log
of the sample size. Under suitable regularity conditions, the
difference in log-likelihood converges in distribution to a chi-
square random variable whose number of degrees of the free-
dom is the difference in the model dimensions. Thus, the BIC-
based test produces both Type I and Type II error rates that
decrease to zero as the sample size increases. This is in con-
trast to the test based on the Akaike information criterion,
whose decision rule provides a Type I error rate that, for each
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difference in model dimensions, converges to a nonzero con-
stant as the sample size increases (Yang, 2005).

In the general case, a hypothesis might not be uniquely
described by one particular model, but rather by a collection
of models. For example, when a researcher wants to perform a
null-hypothesis test of a particular fixed effect, there are two
model classes under consideration. One model class contains
all of the models in which the fixed effect is assumed to be
zero, and the other class contains all of the models in which it
is not. These classes might be able to be disaggregated into
finer hypotheses (e.g., also considering a hypothesis regarding
a different parameter), but an entire class of models represents
the single hypothesis being tested.

There are multiple ways to make Bayesian decision rules
for addressing the hypothesis test in this setting. One approach
is to consider class-wide minimization of the BIC—that is, to
choose the class that contains the model that achieves the
minimal BIC. This is akin to the thresholding decision rule
discussed above, though its frequentist properties are more
nuanced and are tied to the particular model classes under
consideration. A more traditional Bayesian approach would
be to choose the class of models that attains the maximum
posterior probability. This can be achieved by converting the
BICs for the models to approximate posterior probabilities and
computing the posterior probability of each model class. Both
testing procedures are asymptotically consistent for indepen-
dent and identically distributed data when the true data-
generating process is among the considered models.

The false positive rate (equivalent to the Type I error rate in
hypothesis testing) is the likelihood of claiming evidence for
an effect that does not exist. Within hypothesis-testing proce-
dures, this rate is defined asα and is typically set at .05 (Cohen,
1992; Hox, 2010). However, since computation of the BIC
takes into account the sample size, this rate is expected to vary
on the basis of the number of groups and the group size.
Specifically, as the sample size increases, the equivalent of a
smaller p value would be required in order to find evidence for
a given effect with the BIC (Raftery, 1995). Furthermore, al-
though at the smallest sample sizes (about 30–50) these corre-
sponding p values are slightly higher than .05, for any larger
sample size the corresponding p value for the BIC is much
lower than .05, and this value continues to decrease as sample
size increases (see Table 9 of Raftery, 1995).

Power can be considered the likelihood of correctly
claiming evidence for a real effect, and typically re-
searchers desire power of approximately .80 or higher
(Cohen, 1992; Spybrook, 2008). Increasing either the
group size or the number of groups is expected to increase
power, although the number of groups has been shown to
have a bigger influence on power than does group size
(Spybrook, 2008). Furthermore, increases in ICC are relat-
ed to decreases in power (Spybrook, 2008), because of a
decrease in the effective sample size.

Because Bayesian methods typically have both the Type I
and Type II error rates going to zero, this results in a tradeoff
between reductions in the number of false positives and in
statistical power. The cost of decreasing the probability of a
false positive to zero is a decrease in statistical power. This can
be seen intuitively by once again considering a simple null-
hypothesis test with two nested models. When the smaller
model is true, the ΔBIC increases as a logarithmic function
of the sample size. When the larger model is true, the ΔBIC
decreases as a linear function of the sample size. Thus, the cost
of a reduction in power is not burdensome when sample sizes
are large, because the logarithmic function grows much more
slowly than a linear function.

BIC and sample size

For the study in this article, three distinct BIC values were
computed using different values for the number of obser-
vations: the level 1 sample size, level 2 sample size, and
effective sample size (i.e., the total level 1 sample size
divided by the design effect). The design effect (Kish,
1965) is defined as

Design effect ¼ 1þ n–1ð Þ � ICC; ð3Þ

where n represents the group size (Snijders & Bosker,
2012). This definition of the design effect uses balanced
groups of size n, and we also used balanced groups in our
simulation study. However, for the discussion in this sec-
tion, let nj be the size of group j, J = Ngrp be the number of
groups (level 2 sample size), and Ntot be total sample size,
given by the sum of the nj.

The total sample size can be derived for testing level 1 fixed
effects when the covariance structure is assumed to be known
(Dellatre, Lavielle, & Poursat, 2014). Similarly, the BIC can
be derived by using a unit information prior approach (Kass &
Raftery, 1995; Kass & Wasserman 1995). Let the covariance
of the data be given by Σ, the covariate design matrix be X,
and the prior precision of the fixed effects be ΩΩ = XTΣ 1X/
Ntot, which is a unit information prior precision. The BIC
conditioned on the maximum-likelihood estimator (MLE) of
Σ uses the level 1 sample size. We note that in the two-level
case, Ω can be derived using group-specific covariate matri-
ces, Xj, and covariance structures, Σj. The prior precision is
obtained by

Ω ¼ ∑ J
j¼1wjΩ j;where Ω j ¼

XT
j Σ

−1
j X j

n j
and wj ¼ nj=N tot ð4Þ

Thus, the unit information precision can be viewed as a
convex combination of the unit information precision from
each group, where the weights are determined by the relative
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sample sizes. The insight here is that the groupings only affect
the testing of a level 1 effect through a change in the contri-
bution of each group to the precision of the estimate of the
level 1 effect.

The effective sample size presented here is a special case of
counting the effective number of observations in a random-
intercepts model (Jones, 2011). The number of effective sam-
ples is counted by computing the sum of the elements of the
inverse correlation matrix for each group, which is related to
the group precision matrix. In the particular case of compound
symmetry, the number of effective observations (ne) in group j
is defined as

ne j ¼ nj

1þ nj−1
� �

ICC
ð5Þ

and the total number of effective observations, Nicc, is giv-
en as the sum of the nej. When the group sizes are all the
same, this results in the definition of the effective sample
size being the same as that described at the beginning of
this section.

The effective number of observations in multilevel
models with more than two levels, random slopes, or
nonnested groupings can be calculated by using a general
approach (Jones, 2011). Specifically, one computes the
MLE for Σ, converts it to a correlation matrix, inverts the
correlation matrix, and sums the elements of the resulting
matrix. This effective sample size could then be used anal-
ogously for computation of the BICs for a variety of
models (Jones, 2011), but demonstration of these topics
is beyond the scope of the present study.

Using the number of level 2 groups (J) can bemotivated by
the case in which the ICC is near 1. Then each group has
approximately one effective observation, and Nicc is approxi-
mately J. Similarly, when the ICC is near 0, then Nicc is ap-
proximately Ntot. When the number of samples in each group
is large relative to 1/ICC (e.g., when the ICC is bounded away
from 0 and group sizes are large), then the effective number of
observations in each group is approximately 1/ICC, so that
Nicc is approximately J/ICC. Using the number of level 2
groups (J) can also be theoretically justified when testing ran-
dom effects and not fixed effects (Dellatre et al., 2014), al-
though this case is not considered here.

Research questions and hypotheses

The present study examines the following research questions
and offers the following hypotheses:

Research Question 1 What is the likelihood of choosing the
correct null model when assessing a fixed effect in a multilevel
model with three different values of sample size for

computation of the BIC—level 1 sample size, effective sam-
ple size, and level 2 sample size—while varying the number
of groups, group size, and ICC? This research question is
related to the Type I error rate of hypothesis tests and is also
explored through a Bayesian model selection rule.

Hypothesis As the number of groups and the group size in-
creases, the false positive rate will decrease (Raftery, 1995).
As the ICC decreases, the effective information in the data will
increase, resulting in lower false positive rates. Since the level
1 sample size will be larger than the effective sample size or
the level 2 sample size, the rate of false positives will be lowest
for level 1 sample size, then for effective sample size, and
highest for level 2 sample size.

Research Question 2 What is the likelihood of correctly
selecting the model with a nonzero fixed effect in a multilevel
model using the same three values of sample size for compu-
tation of the BIC under the same varying conditions? This
research question is related to the power of hypothesis tests
and is similarly investigated using a Bayesian hypothesis se-
lection rule.

Hypothesis As the number of groups and the group size
increases, power will increase. As the ICC decreases, the
effective information in the data will increase, resulting in
higher power. Since the BIC implicitly makes it harder to
find an effect as the sample size increases, the computation
using level 2 sample size will show the highest power,
followed by effective sample size, followed in turn by level
1 sample size.

Method

A simulation study was conducted to answer the research
questions. For each simulated dataset, the following four mul-
tilevel models were estimated:

Y ij ¼ B0 þ uj þ eij; ð6Þ

Y ij ¼ B0 þ B1X ij þ uj þ eij; ð7Þ

Y ij ¼ B0 þ B2Z j þ uj þ eij; ð8Þ

Y ij ¼ B0 þ B1X ij þ B2Z j þ uj þ eij; ð9Þ

where Yij is the outcome for individual i within group j, B0 is
the intercept,B1 is the slope coefficient for the individual-level
predictor variable Xij, and B2 is the slope for the group-level
predictor Zj. The uj term is the random effect for clusters and is
normally distributed with mean of zero and variance of τ2, and
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eij is the random error term, which is also normally distributed
with mean of zero and variance of σ2. The independent vari-
ables, X and Z, were generated as independent standard nor-
mal random variables.

The following values were all fully crossed, for a total
of 1,600 separate conditions: group sizes of 5, 15, 25, 35,
and 45; numbers of groups of 10, 20, 35, 50, and 100; ICCs
of .1, .2, .3, and .5; and individual- and group-level predic-
tor slopes (B1 and B2) of 0, .1, .2, and .3. This rich set of
conditions was guided by commonly encountered datasets
within the field of education. Previous simulation studies
had used similar (Lorah, 2018; Maas & Hox, 2004) sample
size conditions (group size and number of groups). Maas
and Hox chose 30 clusters as a minimum specified in the
literature, 100 clusters as a sufficient size specified in the
literature, and 50 clusters as a common size found in re-
search; they chose a cluster size of 5 to represent a com-
mon condition in family research, 30 to represent a com-
mon condition for educational research, and 50 based on
the literature. Furthermore, guidance regarding the mini-
mum sample size for multilevel models was considered.
The B30/30 rule^ specifies a minimum of 30 clusters with
30 individuals per cluster (Hox, 2010), whereas others
have suggested that a minimum of 10 clusters should be
used (Snijders & Bosker, 2012). Exploring simulated
datasets at and around these minima should be particularly
relevant.

Previous research has assessed typical ICC conditions: for
K–12 academic achievement, the average ICCs were .22 over-
all and .09 for low-achieving schools (Hedges & Hedberg,
2007), and another study reported average achievement in
the United States between .10 and .20 (Spybrook, 2008). A
previous simulation study had used similar ICC values: .10,
.20, and .30 (Maas & Hox, 2004). The present values were
chosen to represent the range of typically observed ICC values
in educational research, as well as a high ICC value. Note that
the actual observed ICC values based on simulated data are
expected to differ slightly, due to a known bias in ICC
(Atenafu et al., 2012), as well as a known bias in variance
component estimation with full maximum-likelihood estima-
tion (Hox, 2010) and an omitted-variable bias when a mean-
ingful group-level predictor is omitted from the estimated
model.

For each of the 1,600 conditions, a total of 200 simulation
replications were run. All data were generated and analyzed in
R (RCore Team, 2017), and multilevel models were estimated
with the lmer() function within the lme4 package (Bates,
Mächler, Bolker, & Walker, 2015) using full maximum-
likelihood methods. For each scenario, the models were eval-
uated in two ways. First we considered the simple selection
rule, according to which the model with the smallest BIC was
selected. The results of such a rule were summarized by con-
sidering the rank of the true model amongst the models under

consideration. Second, we considered hypothesis-testing
questions by using the class-wide minimization selection rule.
The hypothesis for testing the level 1 (and similarly the level
2) fixed effect was represented by a model class containing
two models. The model class containing the model that had
the smallest BIC was selected.

Results and discussion

Tables 1, 2, 3, 4, 5 and 6 in Appendix A suggest that using the
BIC with Ngrp provided the best ranking for the true model
across the range of conditions. However, this is misleading,
because of aggregation over all the different models that were
simulated. In the rest of this section, we discuss the nuances of
testing level 1 and level 2 fixed effects using the different
methods for calculating the BIC.

Research Question 1 Tables 7, 8, 9 and 10 in Appendix B
show the results for testing a level 1 fixed effect using
the three different BIC methods. Table 7 shows the ex-
pected behavior that the decrease in penalty from going
from Ntot to Nicc to Ngrp increases the Type I error rate.
Table 8 shows that the Type I error rate only changes
with the ICC for the penalty using Nicc. Table 9 shows
that increasing the number of observations by increasing
the number of groups decreases the Type I error rate for
all three BIC types, with the smallest false positive rates
coming from Ntot.

The most interesting result for testing level 1 fixed
effects is in Table 10, which shows that increasing the
number of observations by increasing group size renders
the penalties from using Ngrp and Nicc useless for con-
trolling false positives. Considering the model in Eq. 7
or 9, Appendix D shows that increasing the group size
while keeping the number of groups fixed is asymptoti-
cally equivalent to mean-centering Xij by groups when
considering a level 1 fixed effect.

As was discussed in Delattre et al. (2014), the concen-
tration rate for the variance of level 1 fixed effects is 1/Ntot.
The other methods for computing the BIC only provide
asymptotic protection from false positives when the num-
ber of groups increases. Thus, requiring in any manner that
the Type I error rate decrease to 0 as the sample size in-
creases restricts us to the use of Ntot when testing level 1
fixed effects. This restriction is reasonable for testing a
level 1 fixed effect, because the consistency of the
Bayesian testing procedure needs to be maintained even
when there is only a single group.

Similar empirical results hold for the false positive rate
when testing a level 2 fixed effect, as is evidenced in
Tables 11, 12, 13 and 14 in Appendix C. Note that the penalty
from Ntot is a sum of the penalties from the number of groups
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and the average group size. Thus, although increasing the
group size does decrease the Type I error rate under the BIC
computed using Ntot, it is not immediately clear that this is
desirable for level 2 fixed effects. Intuitively, when the num-
ber of groups is fixed, it does not make sense that increasing
group size should provide overwhelming information about a
level 2 fixed effect.

Research Question 2 First, consider the power for testing a
level 1 fixed effect. Although Appendix B does show the
power increasing to 1 for the penalties using Nicc and Ngrp,
we restrict our attention to Ntot, because its Type I error rate
decreases to 0 even when the number of groups is fixed.
We observe empirically the expected increases in power as
the sample size increases. However, we do not observe the
expected decrease in power as the ICC increases in Table 8.
This is due to the fact that the level 1 design matrix X was
simulated with the theoretical group means set at 0. For
instance, the Fisher information for B1 in Eq. 7 with B0 =
0 is given by

I B1ð Þ ¼ ∑ j
n j

σ2
x2j−x

2

j � ICC� nej

� �
ð10Þ

and thus the effect of an increase in ICC causing a decrease
in power was not observed in the simulation study.

Power for level 2 fixed effects is a bit more subtle. We did
observe the increase in power due to an increase in the number
of groups, as expected. Table 12 shows the expected decrease
in power due to an increase in ICC. Nowwe need to determine
whether Ntot is a reasonable penalty for a level 2 fixed effect.
From Table 14 it is not obvious, but the power of the test does
decrease to zero as group size increases for a fixed number of
groups when penalizing using Ntot. To see this, consider the
model in Eq. 8, with B0 = 0 and any τ > 0. The Fisher infor-
mation for B2 is given by

I B2ð Þ ¼ ICC� ∑ j
ne j
τ2

z2j ð11Þ

So that the variance of theMLE for B2 concentrates at a rate of
1/J. Thus, Ntot penalizes too much as the group size increases,
decreasing the power to 0. Again, consider the extreme case in
which there are only two groups. As the group sizes increase,
log(Ntot) produces an infinite penalty, even though there are
only two groups with which to estimate B2 and I(B2) con-
verges to (z1

2 + z2
2)/τ2.

Finally, Eq. 11 provides an additional justification for using
the sum of the effective sample sizes as a penalty. I(B2)/Nicc

converges to a positive number under suitable conditions as J
increases, and thus log(Nicc) could be an appropriate penalty
for the BIC for level 2 fixed effects. However, we note that Eq.
11 itself does not really provide a reason to prefer Nicc to Ngrp,
or vice versa.

Conclusions and limitations

Through this study, we have been able to conclude something
similar to the results of Delattre et al. (2014). We have dem-
onstrated that a single computation for the sample size in the
penalty for the BIC for a multilevel model is insufficient.
Delattre et al. considered testing both fixed and random effects
and used both group size and the total number of observations.
We have shown that both are needed in order to properly
penalize fixed effects at different levels of the data. To get
both the Type I and Type II error rates to decrease to 0, both
the level 1 sample size and the level 2 sample size need to be
used to penalize fixed effects at their respective levels. Thus,
the preferred form of the BIC should include a penalty term of
the form d1 log(Ntot), where d1 is the number of level 1 fixed
effects, and a term of the form d2 log(Ngrp), where d2 is the
number of level 2 fixed effects. This will produce appropriate
model selection behavior from the BIC for testing fixed effects
at both levels.

One limitation to this study is that the results do not
necessarily generalize beyond the specific conditions ex-
amined in the simulation. In the present study we exam-
ined a two-level linear regression model with balanced
groups, but future research should extend this to more
complicated models, such as three-level models,
nonnested groupings, random-slope models, nonlinear
models, latent-variable models, and so forth. In particular,
three-level models include sample size at three rather than
two levels, making the value for sample size additionally
ambiguous. We conjecture that an appropriate BIC would
include a penalty that is the product of the number of
fixed effects at each level times the log of the appropriate
level-based sample size. Furthermore, in the present study
we examined testing for a fixed effect, but future research
should extend this inquiry to random effects. Additionally,
although the penalty based on Nicc in the present study did
not seem to show dramatically different behavior from
that for Ngrp, its use in analyzing unbalanced groups needs
to be explored.

Tabulated output for proportions of ranks
for the true model

Table 1 Proportions of ranks for the true model (overall average)

BIC Type Rank
True = 1

Rank True = 2 Rank True = 3 Rank True = 4

N_tot .42 .39 .10 .09

N_icc .47 .37 .09 .07

N_grp .54 .33 .07 .05
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Table 2 Proportions of ranks for the true model (average by level 1 fixed effects)

BIC Type Rank True = 1 Rank True = 2 Rank True = 3 Rank True = 4 Rank True = 1 Rank True = 2 Rank True = 3 Rank True = 4

L1_FE = 0 L1_FE = .1

N_tot .48 .36 .15 .01 .29 .29 .16 .26

N_icc .52 .30 .15 .02 .35 .32 .13 .20

N_grp .56 .26 .14 .03 .44 .32 .10 .14

L1_FE = .2 L1_FE = .3

N_tot .44 .42 .07 .07 .47 .48 .03 .02

N_icc .49 .40 .05 .06 .52 .44 .02 .02

N_grp .57 .36 .03 .04 .59 .39 .01 .01

Table 3 Proportions of ranks for the true model (average by level 2 fixed effects)

BIC Type Rank True = 1 Rank True = 2 Rank True = 3 Rank True = 4 Rank True = 1 Rank True = 2 Rank True = 3 Rank True = 4

L2_FE = 0 L2_FE = .1

N_tot .82 .13 .04 .01 .08 .60 .17 .15

N_icc .84 .12 .04 .01 .12 .61 .15 .12

N_grp .81 .13 .05 .01 .21 .57 .12 .09

L2_FE = .2 L2_FE = .3

N_tot .29 .47 .12 .12 .48 .34 .08 .09

N_icc .37 .44 .10 .10 .57 .30 .07 .07

N_grp .48 .38 .08 .07 .65 .25 .05 .05

Table 4 Proportions of ranks for the true model (average by ICC)

BIC Type Rank True = 1 Rank True = 2 Rank True = 3 Rank True = 4 Rank True = 1 Rank True = 2 Rank True = 3 Rank True = 4

ICC = .1 ICC = .2

N_tot .55 .30 .08 .07 .45 .36 .10 .09

N_icc .58 .29 .07 .07 .50 .34 .08 .07

N_grp .67 .24 .05 .04 .58 .30 .07 .05

ICC = .3 ICC = .5

N_tot .38 .41 .11 .10 .29 .47 .13 .11

N_icc .45 .39 .09 .08 .37 .45 .11 .08

N_grp .51 .36 .08 .06 .40 .43 .10 .07

Table 5 Proportions of ranks for the true model (average by number of groups)

BIC Type Rank True = 1 Rank True = 2 Rank True = 3 Rank True = 4 Rank True = 1 Rank True = 2 Rank True = 3 Rank True = 4

# Groups = 10 # Groups = 20
N_tot .24 .38 .17 .20 .32 .42 .13 .13
N_icc .28 .40 .15 .16 .37 .41 .11 .10
N_grp .38 .38 .12 .12 .45 .38 .09 .07

# Groups = 35 # Groups = 50
N_tot .41 .41 .10 .07 .49 .39 .07 .05
N_icc .48 .39 .08 .06 .55 .35 .06 .04
N_grp .54 .35 .07 .04 .60 .32 .05 .03

# Groups = 100
N_tot .63 .32 .03 .02
N_icc .68 .27 .03 .01
N_grp .72 .24 .03 .01
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Tabulated output for tests of level 1 fixed effects

Table 6 Proportions of ranks for the true model (average by group size)

BIC Type Rank True = 1 Rank True = 2 Rank True = 3 Rank True = 4 Rank True = 1 Rank True = 2 Rank True = 3 Rank True = 4

Group Size = 5 Group Size = 15

N_tot .32 .32 .16 .20 .42 .37 .11 .10

N_icc .34 .32 .15 .18 .46 .36 .10 .08

N_grp .39 .33 .14 .14 .53 .34 .08 .06

Group Size = 25 Group Size = 35

N_tot .44 .40 .09 .07 .46 .42 .08 .05

N_icc .50 .37 .07 .05 .52 .38 .06 .03

N_grp .57 .34 .06 .03 .59 .33 .05 .02

Group Size = 45

N_tot .46 .43 .07 .04

N_icc .53 .39 .06 .02

N_grp .60 .34 .05 .02

Table 8 Proportions rejecting H0: L1_FE = 0 (average by ICC)

BIC Type ICC = .1 ICC = .2 ICC = .3 ICC = .5 ICC = .1 ICC = .2 ICC = .3 ICC = .5

L1_FE = 0 L1_FE = .1
N_tot .014 .014 .014 .014 .542 .535 .534 .533
N_icc .024 .030 .037 .045 .593 .615 .631 .655
N_grp .073 .069 .072 .070 .708 .702 .704 .698

L1_FE = .2 L1_FE = .3
N_tot .878 .875 .872 .870 .964 .959 .961 .959
N_icc .891 .898 .904 .906 .967 .966 .969 .971
N_grp .929 .926 .928 .921 .980 .979 .978 .976

Table 7 Proportions rejecting H0: L1_FE = 0 (overall average)

BIC Type L1_FE = 0 L1_FE = .1 L1_FE = .2 L1_FE = .3

N_tot .014 .536 .874 .961

N_icc .034 .623 .900 .968

N_grp .071 .703 .926 .978

Table 9 Proportions rejecting H0: L1_FE = 0 (average by number of groups)

BIC
Type

# Groups =
10

# Groups =
20

# Groups =
35

# Groups =
50

# Groups =
100

# Groups =
10

# Groups =
20

# Groups =
35

# Groups =
50

# Groups =
100

L1_FE = 0 L1_FE = .1

N_tot .025 .016 .012 .009 .007 .218 .380 .565 .682 .834

N_icc .058 .042 .029 .023 .017 .348 .507 .656 .747 .859

N_grp .130 .086 .061 .047 .033 .493 .615 .728 .795 .884

L1_FE = .2 L1_FE = .3

N_tot .689 .837 .911 .941 .991 .877 .947 .984 .996 1.000

N_icc .765 .865 .925 .951 .994 .899 .957 .988 .997 1.000

N_grp .831 .897 .942 .964 .996 .930 .970 .992 .998 1.000
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Tabulated output for tests of level 2 fixed effects

Table 10 Proportions rejecting H0: L1_FE = 0 (average by group size)

BIC
Type

Group Size
= 5

Group Size
= 15

Group Size
= 25

Group Size
= 35

Group Size
= 45

Group Size
= 5

Group Size
= 15

Group Size
= 25

Group Size
= 35

Group Size
= 45

L1_FE = 0 L1_FE = .1

N_tot .027 .015 .011 .009 .008 .180 .431 .594 .701 .774

N_icc .040 .035 .032 .032 .031 .221 .533 .701 .800 .862

N_grp .072 .072 .073 .068 .071 .294 .636 .791 .873 .920

L1_FE = .2 L1_FE = .3

N_tot .580 .872 .948 .978 .991 .829 .978 .997 1.000 1.000

N_icc .628 .911 .973 .990 .997 .855 .987 .999 1.000 1.000

N_grp .700 .947 .987 .996 .999 .896 .995 1.000 1.000 1.000

Table 11 Proportions rejecting H0: L2_FE = 0 (overall average)

BIC Type L2_FE = 0 L2_FE = .1 L2_FE = .2 L2_FE = .3

N_tot .021 .091 .327 .550

N_icc .037 .138 .408 .635

N_grp .088 .237 .526 .726

Table 12 Proportions rejecting H0: L2_FE = 0 (average by ICC)

BIC Type ICC = .1 ICC = .2 ICC = .3 ICC = .5 ICC = .1 ICC = .2 ICC = .3 ICC = .5

L2_FE = 0 L2_FE = .1

N_tot .021 .019 .020 .022 .171 .093 .064 .038

N_icc .024 .029 .040 .054 .207 .141 .111 .092

N_grp .086 .086 .091 .090 .368 .250 .190 .138

L2_FE = .2 L2_FE = .3

N_tot .574 .380 .245 .107 .805 .644 .496 .256

N_icc .613 .458 .346 .214 .826 .709 .604 .401

N_grp .762 .599 .464 .279 .910 .816 .702 .475

Table 13 Proportions rejecting H0: L2_FE = 0 (average by number of groups)

BIC
Type

# Groups =
10

# Groups =
20

# Groups =
35

# Groups =
50

# Groups =
100

# Groups =
10

# Groups =
20

# Groups =
35

# Groups =
50

# Groups =
100

L2_FE = 0 L2_FE = .1

N_tot .047 .024 .013 .011 .008 .068 .060 .075 .090 .164

N_icc .070 .045 .029 .024 .016 .099 .097 .119 .142 .233

N_grp .184 .106 .067 .052 .033 .234 .192 .204 .232 .322

L2_FE = .2 L2_FE = .3

N_tot .138 .192 .293 .394 .615 .259 .390 .561 .675 .866

N_icc .185 .266 .384 .495 .709 .330 .498 .664 .764 .918

N_grp .362 .411 .503 .592 .762 .510 .624 .742 .816 .937
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Score equations and concentration rates
for the random intercepts model

We work with the model Yij = B0 + B1Xij + B2Zj + uj + eij,
where the uj are independent and identically distributed
Gaussians with mean 0 and variance τ2 and are independent
of eij, which are Gaussians with mean 0 and variance σ2. Here
we assume that there are J groups with j = 1,… , J and that i =
1,… , nj for group j. The score equation for estimating
B = (B0, B1, B2)

T is given by

∑
J

j¼1ð n jY j= n jτ2þσ2ð Þ
n j

σ2ðX jY j−n jτ2X j Y j= n jτ2þσ2ð Þ
�

n jZ jY j= n jτ2þσ2ð Þ
Þ

¼ ∑
J

j¼1ð n j= n jτ2þσ2ð Þ n jX j = n jτ2þσ2ð Þn jZ j = n jτ2þσ2ð Þ

n jX j= n jτ2þσ2ð Þ
nj

σ2ðX 2
j−

n jτ2 X j

2

= n jτ2þσ2ð Þ
!

n jX j Z j= n jτ2þσ2ð Þ

n jZ j = n jτ2þσ2ð Þn jX j Z j= n jτ2þσ2ð Þn j Z2
j= n jτ2þσ2ð Þ

Þ B0

B1

B2

0
@

1
A

Consider the asymptotic score as group sizes grow. Letting
each nj be large relative to σ2/τ2, we obtain the asymptotic
score approximation

∑
J

j¼1

�Y j=τ
2

nj

σ2
�X jY j− �X j �Y j

� �
Z j �Y j=τ

2

0
B@

1
CA≈ ∑

J

j¼1

1=τ2 �X j=τ
2 Z j=τ

2

�X j=τ
2 nj

σ2
�X 2
j− �X j

2
� �

�X j Z j=τ
2
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2 �X j Z j=τ

2 Z2
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2

0
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1
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B1

B2

0
@

1
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Dividing each side by ∑nj, we get the approximate equa-
tion for B1,

∑ J
j¼1nj �X jY j− �X j �Y j

� �
σ2∑ J

j¼1nj
≈

∑ J
j¼1nj

�X 2
j− �X j

2
� �

σ2∑ J
j¼1nj

0
@

1
A B1:

This is the exactly the equation (without asymptotic
approximation) for B1 that is obtained when the design
points have been mean centered by group (X ij↦X ij− �X j )
before the analysis is performed. We note that, because
this transformation depends on j, the MLE is not invari-
ant to it. However, the MLE for B1 computed without
the transformation converges to that computed with the
transformation.

The Fisher information is given by

I ¼ ∑ J
j¼1ð n j= n jτ2þσ2ð Þ n j

�X j= n jτ2þσ2ð Þn jZ j= n jτ2þσ2ð Þ
n j

�X j= n jτ2þσ2ð Þ
nj

σ2ð �X 2
j−

n jτ2
�X j

2

= n jτ2þσ2ð ÞÞn j
�X j Z j= n jτ2þσ2ð Þ

n jZ j = n jτ2þσ2ð Þn j
�X j Z j= n jτ2þσ2ð Þn j Z2

j= n jτ2þσ2ð Þ
Þ

The asymptotic concentration rates for asymptotic vari-
ances are described by the growth rates of the diagonal
terms. The diagonal term corresponding to B0 grows at a
rate that is bounded above by J/τ2. Similarly, the diagonal
term corresponding to B2 grows at a rate that is bounded

above by ∑Z2
j=τ

2. Assuming that ∑Z2
j=J and the MLE for

τ2 converge in probability to finite, positive numbers as J
increases, the appropriate penalty for B0 and B2 in the BIC
is log(J). In contrast, the diagonal term corresponding to B1

is bounded below by ∑n j

σ2
�X 2
j− �X j

2
� �

and above by ∑n j

σ2
�X 2
j.

Assuming that ∑ �X 2
j− �X j

2
� �

=J , ∑ �X 2
j=J , and the MLE for

σ2 converge in probability to finite, positive numbers as J
increases, then the appropriate penalty for B2 in the BIC is

log ∑ J
j¼1nj

� �
.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Table 14 Proportions rejecting H0: L2_FE = 0 (average by group size)

BIC Type Group
Size = 5

Group
Size = 15

Group
Size = 25

Group
Size = 35

Group
Size = 45

Group
Size = 5

Group
Size = 15

Group
Size = 25

Group
Size = 35

Group
Size = 45

L2_FE = 0 L2_FE = .1

N_tot .034 .022 .018 .014 .014 .101 .093 .093 .086 .083

N_icc .042 .039 .035 .033 .036 .118 .136 .144 .145 .146

N_grp .082 .093 .087 .089 .091 .189 .233 .247 .258 .257

L2_FE = .2 L2_FE = .3

N_tot .304 .342 .332 .329 .326 .537 .562 .554 .551 .547

N_icc .338 .408 .424 .434 .435 .572 .634 .650 .654 .665

N_grp .429 .525 .550 .559 .566 .652 .727 .743 .747 .759
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