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Abstract
Missing ordinal data are common in studies using structural equation modeling (SEM). Although several methods for dealing
with missing ordinal data have been available, these methods often have not been systematically evaluated in SEM. In this study,
we used Monte Carlo simulation to evaluate and compare five existing methods, including one direct robust estimation method
and four multiple imputation methods, to deal with missing ordinal data. On the basis of the simulation results, we provide
practical guidance to researchers in terms of the best way to deal with missing ordinal data in SEM.

Keywords Missing ordinal data . Structural equationmodeling . Robust estimation .Multiple imputation

Ordinal data, such as those measured using Likert scales, are
very common in the social and behavioral sciences. An ordi-
nal variable contains a few response points, which are ordered,
but the distances among the values are not meaningful. The
past research on missing data has primarily focused on con-
tinuous missing data. Little guidance has been provided to
researchers in terms of how to appropriately deal with missing
ordinal data for their studies.

Such guidance is especially needed, given that multiple
methods to deal with ordinal missing data have been made
available, due to recent advances in missing data analysis
and software developments (Enders, 2001b, 2010; Graham,
2009; Rubin, 1976, 1996; Schafer & Graham, 2002). Many of
these methods have not been thoroughly studied and com-
pared. Thus, it is not clear which method(s) should be adopted
in a study that involves ordinal missing data. Of course, the
appropriate method(s) may also vary depending on the kind of
analysis adopted in the study. This article evaluates the perfor-
mance of available methods for missing ordinal data, focusing
on one of the most popular data analytical frameworks, struc-
tural equation modeling (SEM). These methods can be
grouped into two categories: robust estimation methods and

multiple imputation (MI) methods. Robust estimation
methods deal with missing ordinal data without filling in the
missing values. MI methods, on the other hand, replace miss-
ing ordinal data with multiple sets of plausible values.

It is important to point out that the performance of a
missing data method is highly related to the mechanism
through which data are missing. Rubin (1976) classified such
processes into three missing data mechanisms: missing
completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR). MCAR refers to the case
in which the probability of missing data for a variable is un-
related to the underlying values of the missing data or to any
observed variables. MAR refers to the case in which the prob-
ability of missing data for a variable is related only to other
observed variables. AndMNAR refers to the case in which the
probability of missing data for a variable is determined by the
underlying values of the missing data themselves. Both
MCAR and MAR are deemed ignorable, in the sense that
the missing data generation process does not need to be ex-
plicitly modeled. We only consider methods developed for
ignorable missingness in this study.

The rest of the article is organized as follows. We first
describe the six methods that have been used or that theoret-
ically can be used to deal with missing ordinal data in SEM.
We then present a simulation study conducted to evaluate the
performance of five of these methods under a variety of con-
ditions for fitting a typical structural equation model. We con-
clude the article by discussing the results and limitations of the
simulation study and providing recommendations on the use
of these methods in practice.
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Robust estimation methods for missing
ordinal data

Robust full information maximum likelihood (RFIML) RFIML
treats missing ordinal data as if they were continuous. To
understand how RFIML works, we start with the maximum-
likelihood estimation method (ML) for continuous complete
data. ML assumes that the data are continuous and multivar-
iate normally distributed. Under certain assumptions, such as
normality, independent observations, large sample size, and a
correctly specified model (Bollen, 1989; Finney & DiStefano,
2006; Savalei & Falk, 2014), the parameter estimates pro-
duced by ML have desirable asymptotic properties, such as
unbiasedness (i.e., they are close enough to the true population
values), consistency (they converge to the true values as the
sample size goes large), and efficiency (the sampling distribu-
tion of the estimates has minimum variance). If any of the
assumptions are violated, these properties might not hold. In
reality, the assumption of normality is always violated when
data are not continuous. According to Bollen, when the ob-
served indicators in SEMmodels are ordinal, there are at least
two important consequences if the ordinal data are treated as
normal: (1) the linear measurement model does not hold for
ordinal indicators, and (2) the fundamental hypothesis of SEM
does not hold—in other words, the population covariance ma-
trix is not equal to the model-implied covariance matrix.

The effect of discontinuity on the performance of ML is
dependent on at least two factors: (1) the distribution of cate-
gorical variables and (2) the number of categories.
Researchers generally believe that when ordinal data are not
severely skewed or kurtotic and have at least five categories,
treating them as continuous does not result in severe bias in
the parameter estimates, standard errors, or fit indices (Finney
& DiStefano, 2006). In other situations, with a small number
of categories or/and higher levels of skewness and kurtosis,
bias in the parameter estimates and standard errors could be
more pronounced, and the fit indices could be misleading
(Dolan, 1994; Green, Akey, Fleming, Hershberger, &
Marquis, 1997; Muthén & Kaplan, 1985).

One solution to these problems is to use ML accompanied
with robust correction for nonnormality. Satorra and Bentler
(1994) developed a correction method by rescaling the stan-
dard errors and the test statistic fromML. This method is well-
known as Satorra–Bentler scaling or robust ML (RML).
However, RML is only applicable when the data are complete.
When data are incomplete but normally distributed, SEM es-
timates can be obtained by iteratively maximizing the sum of
N case-wise log-likelihood functions (Enders, 2001b). This
method is referred to as full information maximum likelihood
(FIML), which is one of the popular missing data techniques.
To deal with missing nonnormal data with FIML, Yuan and
Bentler (2000) developed three correction methods, of which
the Bdirect^ method is the most commonly used, known as

robust FIML (RFIML). For continuous data, past research has
shown that RFIML generally performed well under MCAR
and MAR, except for one situation in which MAR
missingness occurred mainly in the heavy tail of the distribu-
tion and the proportion of missing data was large (30%;
Enders, 2001a; Savalei & Falk, 2014). Although RFIML
was developed for missing continuous data, it has been widely
used to deal with missing ordinal data in practice. However,
research on the performance of RFIML for ordinal incomplete
data is lacking.

Diagonally weighted least squares estimation methods (cat-
DWLS)Another solution is to use an estimation method devel-
oped specifically for ordinal data. For example, weighted
least squares (WLS) estimators are often used for ordinal data.
WLS estimators account for ordinal data by fitting a SEM
model to the polychoric correlation matrix. There are different
versions of WLS estimators for ordinal data. Among these,
cat-DWLS is the most popular. Briefly speaking, cat-DWLS
uses the diagonal elements of the asymptotic polychoric cor-
relation matrix as a correction factor for the covariance matrix
of parameters in calculating the standard errors. Since cat-
DWLS uses summary statistics in the estimation process, it
cannot deal with missing data by itself, but needs to be com-
bined with a missing data technique (Asparouhov & Muthén,
2010).

A common missing data technique used along with cat-
DWLS is pairwise deletion. Specifically, pairwise deletion is
used to calculate the polychoric correlations, which are then
used in the cat-DWLS fit function. Asparouhov and Muthén
(2010), however, showed that pairwise deletion could produce
biased parameter estimates and unacceptable confidence inter-
val coverage rates when the data were not MCAR. In addition,
once the polychoric correlations are calculated on the basis of
pairwise deletion, cat-DWLS treats them as if they were from
complete data when estimating the model parameters. Thus,
the uncertainty due to missing data is not taken into account,
leading to inflated Type I error rates. Given the obvious dis-
advantages of pairwise deletion, we do not examine it in the
present study. In comparison, multiple imputation (MI) is a
better strategy to use when combined with cat-DWLS
(Asparouhov & Muthén, 2010).

MI methods for missing ordinal data

MI is a widely used modern missing data technique designed
for ignorable missingness (Rubin, 1987; Schafer & Graham,
2002). A standard MI procedure involves three phases: (1) the
imputation phase—generate multiple sets of complete data with
missing values filled in using a specific imputation model; (2)
the analysis phase—fit the hypothesized model to each of the
imputed data sets; and (3) the pooling phase—pool the results
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(e.g., the parameter estimates, standard errors, and fit indices)
across the imputed data sets to produce a final set of results. We
refer to the model used to impute/predict missing data as an
imputation model. An imputation model can be either paramet-
ric or nonparametric. In this article, we consider MI with three
parametric imputation models and one nonparametric imputa-
tion model. Depending on which imputation model is used,
there are different MI methods. The parametric imputation
methods include imputing the data based on multivariate nor-
mal distributions (MI-MVN), ordinal logistic regressionmodels
(MI-LOGIT), or latent variable models (MI-LV). The nonpara-
metric imputation method is MI using random forests (MI-RF).
These methods are described in detail below.

MI-MVNMI-MVN treats ordinal data as if they were continuous
and generates imputed data sets based on a multivariate normal
distribution. Although MI-MVN is not designed for ordinal
missing data, it has been used in practice to deal with ordinal
missing data, because of its wide availability. The imputed
values from this method are continuous. For ordinal missing
data, past research has recommended keeping the fractional part
of the continuous imputed values rather than rounding them,
unless a follow-up analysis requires use of a categorical metric
for the imputed values (Enders, 2010; Graham, 2009; Honaker,
King, & Blackwell, 2011; Schafer & Graham, 2002). Wu, Jia,
and Enders (2015) found that MI-MVN generally performed
well when imputing Likert-type ordinal missing values that
were then aggregated to scale scores for regression analysis,
unless the sample size was small and the distributions of the
ordinal variables were severely asymmetrical. Limited research
has examined the performance of MI-MVN in the context of
SEM with missing ordinal data.

MI-LV The imputation model used inMI-MVN is not designed
specifically for ordinal data. Given this reality, it is natural to
think, why not use a statistical model designed for ordinal data
instead? One popular model for predicting ordinal data is the
so-called latent variable model, which is basically a formula-
tion of the cumulative/ordinal probit model (Cowles, 1996).
The latent variable model assumes that a continuous latent
variable underlies each observed ordinal variable
(Asparouhov & Muthén, 2010). The latent variables are typ-
ically assumed to follow a multivariate normal distribution.
When this model is used for imputation, the missing values
are first imputed at the continuous latent-variable level and
then discretized on the basis of estimated thresholds.

MI-LV has received increasing attention in recent years.
Asparouhov and Muthén (2010) compared using the MI-LV
method followed by cat-DWLS with using direct cat-DWLS
along with pairwise deletion for estimating a growth model of
five binary variables observed at five time points. They found
that MI-LVoutperformed direct cat-DWLS by providing more
accurate parameter estimates and higher confidence interval

coverage under MAR.Wu et al. (2015) also found that MI-LV
performed well in a context in which the ordinal variables
were to be aggregated to scale scores for regression analysis,
regardless of the missing data proportions, sample sizes, num-
bers of categories of the ordinal data, and the degree of unbal-
ance of the categories. However, the performance of MI-LV
has not been systematically examined in SEM.

MI-LOGITAnother popular model for predicting ordinal data is
ordinal logistic regression. This imputation model is used with
the chained equations algorithm (van Buuren, Brand,
Groothuis-Oudshoorn, & Rubin, 2006; van Buuren &
Groothuis-Oudshoorn, 2011). Unlike MI-MVN or MI-LV,
the chained equations algorithm does not impute on the basis
of a joint distribution. Rather, it imputes missing data on a
variable-by-variable basis. Prediction of the missing data for
each variable is conditional on the current values of the other
variables at a specific iteration. The imputation model for each
missing data variable can be specified individually. Van
Buuren et al. (2006) found that MI-LOGIT was superior to
listwise deletion when estimating odds ratios. Van Buuren
(2007) also recommended using MI-LOGIT rather than MI-
MVN for ordinal logistic regression analysis.Wu et al. (2015),
however, found that MI-LOGIT led to substantial bias in es-
timating reliability coefficients, mean scale scores, and regres-
sion coefficients for predicting one scale score from another
when the items that formed the scale were ordinal, especially
with small sample sizes, unbalanced categories, and more than
five categories. Thus, an imputation model designed specifi-
cally for ordinal data might not necessarily have satisfying
empirical performance in predicting missing ordinal data.

MI-RFAll of the imputation models introduced above are para-
metric. Random forests (RF), on the other hand, is a nonpara-
metric method that can be used to predict both continuous and
categorical data, including ordinal data using the
chained equations algorithm. Briefly speaking, RF is a recursive
partitioning method that predicts a variable with missing values
by successively splitting the data set based on one predictor at a
time, so that the subsets become more homogeneous with each
split (Breiman, 2001). One advantage of RF is that it does not
rely on distributional assumptions, and thus has the potential to
accommodate nonnormality and nonlinear relationships among
the variables that cannot be easily parameterized (Doove, van
Buuren, & Dusseldorp, 2014; Shah, Bartlett, Carpenter,
Nicholas, & Hemingway, 2014). When used for MI, the data
are bootstrapped first. Each bootstrapped sample is then split
into several subsets. The values in each subset are called
Bdonors.^Missing data are then imputed by random draws from
the donors. Doove et al. (2014) compared MI-RF with MI-
LOGIT for recovering interaction effects in logistic regression
analyses. They found that MI-RF produced more accurate esti-
mates of the interaction effects and was more efficient (yielded
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smaller standard errors) than MI-LOGIT. However, MI-RF and
MI-LOGIT have not been compared in the context of SEM.

In sum, in this studywe considered fivemethods that have the
potential to be used for missing ordinal data in SEM. These
methods include RFIML and different forms of MI based on
the multivariate normal distribution (MI-MVN), based on
the latent variable model (MI-LV), using ordinal logistic regres-
sion (MI-LOGIT), and using random forests (MI-RF). Among
these methods, RFIML and MI-MVN treat missing ordinal data
as if they were continuous. All of the methods are parametric,
except for MI-RF. A brief summary of the characteristics of the
five methods can be found in Table 1.

Simulation study

In this section, we use Monte Carlo simulation to evaluate the
performance of the five methods. We attempt to address the
following three questions.

Question 1: Are the continuous-data methods RFIML
and MI-MVN applicable to ordinal data? Under what
situations and to what extent are the two methods robust
to discontinuity?
Question 2: How is the performance of each of the
methods influenced by number of categories, asymme-
try of thresholds, sample size, missing data proportion,
and missing data mechanism?
Question 3: Which of the five methods performs best
under the examined conditions?

Data generation model

Following Ferrari and Barbiero (2012), we generated contin-
uous data first and then discretized the continuous data into

ordinal data. The continuous data were generated on the basis
of the SEM used in Enders (2001a; see Fig. 1), which repre-
sents a model that is often seen in the SEM literature (e.g.,
Bollen, 1989; Palomo, Dunson, & Bollen, 2011). The model
has three latent variables: η1, η2, and η3, where η3 was predict-
ed by η1 and η2, and η2 was predicted by η1. As is shown in
Fig. 1, the values of the structural paths among the three var-
iables were .4 (η1➔η2), .286 (η2➔η3), and .286 (η1➔η3), re-
spectively. The variance of η1 was fixed at 1 for identification
purposes. The residual variances of η2 and η3 were set to .840
and .771, respectively, so that their total variances would both
equal 1. Each latent variable was indicated by three continu-
ous variables/items with all loadings set to .70. The residual
variances on the indicators were all set to .51 so that the indi-
cators would form a standardized metric. These continuous
indicators were then discretized on the basis of thresholds in
order to create ordinal indicators. For ordinal indicators with
G categories, there were G minus 1 thresholds. To examine
how the methods performed under different conditions, we
manipulated the following factors.

Design factors

Number of categories Both dichotomous and polytomous or-
dinal data were considered in the study. The numbers of ordi-
nal categories were set at two, three, and five.

Asymmetry of thresholds In practice, the distributions of or-
dinal indicators can be either symmetric or asymmetric.
Following Rhemtulla, Brosseau-Liard, and Savalei (2012),
we varied the asymmetry of the thresholds at three levels
(symmetry, moderate asymmetry, and severe asymmetry) in
order to introduce different levels of asymmetry in the item
distributions (see Table 2). For the sake of simplicity, all var-
iables shared the same set of thresholds and number of cate-
gories in each condition.

Table 1 Summary of methods for missing ordinal data

Method label Method description Software

RFIML FIML with the rescaling strategy proposed by Yuan and Bentler (2000). R (lavaan with the BMLR^ estimator)

MI-MVN Multivariate normal imputation using the EMB algorithm
(Honaker et al., 2011). Robust ML (Satorra & Bentler, 1994) was
used in the analysis phase.

R (Amelia, and lavaan with the BMLM^
estimator)

MI-LV Latent variable imputation (Asparouhov & Muthén, 2010). Cat-DWLS
(Muthén & Muthén, 2012) was used in the analysis phase.

MPlus with the BWLSMV^ estimator

MI-LOGIT Multiple imputation by chained equations with a logistic regression
model for dichotomous variables, and with an ordinal logistic regression
model for polytomous variables (van Buuren, 2012). Cat-DWLS
(Muthén & Muthén, 2012) was used in the analysis phase

R (mice, and lavaan with the BWLSMV^
estimator)

MI-RF Multiple imputation by chained equation with random forests, which involves
a random selection of a smaller group of predictors at each split
(Doove et al., 2014). Cat-DWLS (Muthén & Muthén, 2012) was used in
the analysis phase.

R (mice, and lavaan with the BWLSMV^ estimator)
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Sample size Two levels of sample size (N) were examined:
300 and 600,1 which represent typical sample sizes in studies
that have used SEM.

Missing data proportion Missing data proportions (mp) were
manipulated at two levels: low (15%) and high (30%).

Missing data mechanism Missing data were imposed on two
of the indicators for each latent variable. Specifically, missing
values occurred for X1, X2, X4, X5, X7, and X8. The missing
data were generated using three mechanisms: MCAR, MAR-
head, andMAR-tail. MCARdatawere generated by randomly
selecting a desired proportion of values to be missing for the
variables. When the ordinal indicators were asymmetric, we
considered two versions of MAR: missingness occurring
more frequently on the head of the distribution (MAR-head)
or on the tail of the distribution (MAR-tail). To generate the
MAR data, the rank order of the values on each of the fully
observed variables (i.e., X3, X6, and X9) was used to determine
the probability of having a missing observation on the other
two indicators for the same latent variable. For example, the
missingness for X1 and X2 was determined by X3. MAR-head
data were generated on the basis of ascending rank order.
Using X1 as an example, the probability of having missing
data for X1 was computed as 1 - (the ascending order of the
values on X3/N). Because all variables were positively corre-
lated, the probability of having missing observations for X1

increased as X3 increased. In addition, because all of the

indicators were positively skewed, MAR-head led to more
missing data on the head of the X1 distribution.

In contrast, MAR-tail data were generated in such a way so
that the probability of having missing data for X1 decreased as
X3 increased. Consequently, more data were missing on the
tail of the X1 distribution; the distribution of the observed data
became more skewed; and the density of the higher levels in
the ordinal variable (e.g., four or five in a five-category vari-
able) drastically decreased. In more extreme cases, some of
the categories (e.g., five) might have zero observations.
Therefore, we believe that MAR-tail was a more challenging
situation thanMAR-head, and it was necessary to differentiate
the two situations. Figure 2 demonstrates the distribution of
one three-category indicator from one replication with differ-
ent degrees of asymmetry and missing data mechanisms.

In sum, there were 108 fully crossed conditions (3 × 3 × 2 ×
2 × 3 = 108). One thousand replicated samples were created
for each condition. The analysis model was the same as the
data generation model. For the imputation methods, 50 imput-
ed data sets were obtained for each replication. Following the
guideline of White, Royston, and Wood (2011), 50 imputa-
tions should be sufficient for the amount of missing data
simulated.

Computational characteristics

This simulation study was carried out using various packages
in R 3.2 (R Core Team, 2015) and Mplus 7.2 (Muthén &
Muthén, 2012). Data were generated using functions provided
in the R package GenOrd (Ferrari & Barbiero, 2012). RFIML
was implemented in lavaan (Rosseel, 2012). MI-MVN was
implemented using Amelia (Honaker et al., 2011). MI-
LOGIT and MI-RF were implemented through functions in
the package mice (van Buuren & Groothuis-Oudshoorn,
2011), with ten burn-in iterations (van Buuren et al., 2006;

1 Originally, we also considered a smaller sample size of 150. However, severe
convergence problems were found for this sample size, and no estimates could
be obtained in most conditions with the examined levels of missing data pro-
portion and asymmetry of the distribution. Therefore, we do not report this
sample size in the present article.

Fig. 1 The structural equation model for data generation
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White et al., 2011). For MI-RF, ten bootstrap samples were
generated from each original sample, based on the suggestion
of Shah, Bartlett, Carpenter, Nicholas, and Hemingway
(2014), and the default minimum number of donors (i.e., 1)
was used to create classification trees (Liaw &Wiener, 2002).
MI-LV was implemented in Mplus.

We used cat-DWLS to analyze the imputed data sets from
all of the imputation methods, given that past research on
complete ordinal data had shown that this technique generally
outperformed RML (Li, 2016). The only exception was MI-
MVN, for which RML was used in the follow-up analysis,
because MI-MVN produced continuous imputed data, and
cat-DWLS could not be applied. For the imputation methods,
a replication was determined to be converged if the model
converged for all 50 imputed datasets.

Evaluation criteria

The performance of the five methods was evaluated for four
outcomes: proportion of convergence failures, relative bias in
the parameter estimates (Est bias), relative bias in the standard
errors (SE bias), and confidence interval coverage rate (CIC).

Proportion of convergence failures We defined convergence
failures as replications that failed to converge to proper solu-
tions. These included replications that failed to produce any
solutions and replications that produced improper solutions
(i.e., extreme parameter or standard error estimates). Improper
solutions included (1) standard error estimates greater than 10,
(2) parameter estimates ten SDs above or below the mean pa-
rameter estimate for the design cell, and (3) standard error esti-
mates ten SDs above or below the mean standard error for the
design cell. The convergence failures were removed before
computing the other three outcomes. We calculated the propor-
tion of the convergence failures in each condition.

Relative bias in parameter estimates (Est bias) The relative
bias for a specific parameter estimate was calculated as the
percentage of raw bias relative to the true population value:

EstBias ¼
�̂θest−θ0

� �

θ0
� 100%

where the numerator represents the raw bias, which is
the difference between the average parameter estimate

across replications within a design cell (θ̂ ) and the pop-
ulation value (θ0). According to Hoogland and Boomsma
(1998), an Est bias less than 5% is considered acceptable.
However, Muthén, Kaplan, and Hollis (1987) argued that
Ba bias of less than 10%–15% may not be serious in most
SEM contexts.^ We used 10% as the cutoff in the present
study.

Relative bias in standard error estimates (SE bias) Bias in
standard error estimates is the degree to which a standard error
accurately reflects the sampling standard deviation of the cor-
responding parameter estimate, which can be calculated using
the following formula:

SEBias ¼ SE−ESE
ESE � 100%;

where SE is the average standard error across replications
in a design cell, and ESE is the empirical standard error (i.e.,
the standard deviation of the parameter estimates across con-
verged replications). An SE bias is considered acceptable if its
absolute value is less than 10% (Hoogland & Boomsma,
1998).

Confidence interval coverage (CIC) Confidence interval cover-
age was estimated as the percentage of replications in a design
cell for which the 95% confidence intervals covered the pop-
ulation value. Ideally, the CIC values should be equal to 95%.
Following Collins, Schafer, and Kam (2001), a coverage value
below 90% was considered problematic.

Table 2 Distributions of ordinal data used in the simulation

Threshold Condition Number of
Categories

Thresholds as
z Scores

Percentages of Cases
in Each Category

Symmetric 2 0.00 50 50

3 – 0.83 0.83 20 59 20

5 – 1.50 – 0.50 0.50 1.50 7 24 38 24 7

Moderately Asymmetrical 2 0.36 64 36

3 – 0.50 0.76 31 47 22

5 – 0.70 0.39 1.16 2.05 24 41 22 10 2

Severely Asymmetrical 2 1.04 85 15

3 0.58 1.13 72 15 13

5 0.05 0.44 0.84 1.34 52 15 13 11 9

This is a subset of conditions from Rhemtulla, Brosseau-Liard, and Savalei (2012)
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Results

Convergence failures

Symmetrical thresholds The convergence failures were low
(below 15%) for all methods, regardless of N, mp, and
missing data mechanism.

Moderately asymmetrical thresholds Some of the methods
show significant convergence problems when the item distri-
butions were moderately asymmetrical, particularly for

dichotomous data and MAR-tail conditions. Figure 3 displays
the proportions of convergence failures in conditions with
moderately asymmetrical thresholds. All methods converged
well under MCAR or MAR-head, except that MI-LOGIT
failed in more than 60% of replications for five-category data
with N = 300 and mp = 30%. More convergence failures
occurred under MAR-tail. Specifically, for dichotomous data,
all methods had convergence failures to some degree, with
MI-RF and MI-MVN being the most problematic (more than
98% failures) when N = 300 andmp = 30%. The convergence
rates improved in general as N increased to 600. However,

Fig. 2 Distributions of X1 (three categories) from one replication with N = 300, both before (light gray) and after (dark gray) imposing 30%missing data
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with N = 600, MI-RF still had substantial convergence prob-
lems when mp = 30%. For polytomous data, all methods
converged well, except that MI-RF produced substantial con-
vergence failures for both three-catgory data and five-category
data when N = 300 and mp = 30%. Overall, MI-LV seemed
the best performer, followed by RFIML, and MI-RF was the
worst performer, followed by MI-MVN and MI-LOGIT in
terms of convergence.

Severely asymmetrical thresholds Convergence failures oc-
curredmore frequently for almost all methods when the item
distributionswere severely asymmetrical (see Fig. 4).Again,

the convergence problemwasmore severe ifNwas small and
mpwas large. Also,MAR-tail continued to be the most chal-
lenging situation. Both RFIML and MI-LV seemed to have
the least convergence problemsunderMCARorMAR-head.
Other methods also converged well under MCAR or MAR-
head, except that they encountered substantial convergence
problems for dichotomous data. Under MAR-tail, all
methods had substantial convergence failures with dichoto-
mous data, but MI-LV started to outperform the other
methods quickly as sample size increased. For polytomous
data, only MI-LVworked well for all conditions, except that
it had substantial convergence problems (91% failures) for

Fig. 3 Proportions of convergence failures with moderately asymmetrical
distributions. RFIML = robust full-information maximum liklihood; MI-
MVN = multiple imputation based on multivariate normal distributions;

MI-LV = latent variable imputation; MI-LOGIT = multiple imputation
using logistic regression or ordinal logistic regression; MI-RF = multiple
imputation using random forests
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three-category data when N = 300 and mp = 30%. The other
methods all had substantial convergence failuresunder either
N=300,mp=30%,orboth.Overall, in termsof convergence,
MI-LV appeared to be the best performer, followed by
RFIML, and MI-RF was the worst performer, followed by
MI-MVN.

Note that if the proportion of convergence failures was
higher than 75% for a method in a condition (Figs. 3 and
4), the method was considered failed for that condition,
and the other three outcomes (i.e., Est bias, SE bias, and
CIC) are not reported.

Est biases, SE biases, and CICs for factor loadings

We report Est biases, SE biases, and CICs for factor loadings
first, followed by those for structural path coefficients. For
ease of presentation, we report the averaged results across all
factor loadings or all structural paths. The results for the con-
ditions with 15% missing data followed patterns very similar
to those for the conditions with 30% missing data. Thus, we
report only the results for 30% missing data. (The results for
15% missing data can be requested from the authors.) In ad-
dition, the results were similar between symmetric thresholds

Fig. 4 Proportions of convergence failures with severely asymmetrical
distributions. RFIML = robust full-information maximum liklihood; MI-
MVN = multiple imputation based on multivariate normal distributions;

MI-LV = latent variable imputation; MI-LOGIT = multiple imputation
using logistic regression or ordinal logistic regression; MI-RF = multiple
imputation using random forests
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and moderately asymmetrical thresholds. Thus, the results for
the two threshold conditions are described together below.

Symmetric or moderately asymmetrical thresholds For factor
loadings, the results for Est bias, SE bias, and CIC under the
two threshold conditions are summarized in Tables 3 and 4.
The results show the same pattern across the two tables for all
methods. Under MCAR, all methods performed well except
for MI-RF, which produced unacceptable bias (> 10%) in both
the parameter estimates and standard error estimates. Under
MAR-head or MAR-tail, all methods performed well except
for MI-RF and MI-LOGIT. Although MI-RF and MI-LOGIT
produced acceptable parameter estimates, the standard error
estimates from both methods were substantially biased, espe-
cially when the ordinal data hadmore than two categories. MI-
LOGIT tended to produce too narrow CIs, whereas the CIs
fromMI-RF were too wide. Note that although MI-MVN and
MI-LV performed well in general, there was one condition
(moderately asymmetrical thresholds with N = 300, dichoto-
mous indicators, and 30% MAR-tail missing data) under
which MI-MVN failed to converge and MI-LVyielded unac-
ceptable SE bias (15.2%; see Table 4).

Severely asymmetrical thresholds The results for factor load-
ings under severely asymmetrical thresholds are summarized
in Table 5. Under MCAR, MI-LOGIT produced acceptable
results under all conditions. RFIML, MI-MVN, and MI-LV
also performed well, except for the dichotomous data withN =
300. MI-RF yielded problematic replications for dichotomous
data and N = 300, and also failed all other conditions by
producing biased results in terms of all three outcomes.

Under MAR-head, all methods performed well except for
MI-RF. Under MAR-tail, however, all methods failed for di-
chotomous data, by either having convergence problems or
resulting in biased results. For ordinal data with three catego-
ries, only MI-LV performed well, and only with a relatively
large sample size of N = 600. For ordinal data with five cate-
gories, only MI-LV and RFIML performed well with both
sample sizes. MI-MVN show acceptable performance only
with N = 600.

Est biases, SE biases, and CICs for path coefficients

Symmetric or moderately asymmetrical thresholds The re-
sults for the path coefficients under symmetric thresholds
and moderately asymmetrical thresholds are presented in
Tables 6 and 7, respectively. Under MCAR, all methods
performed well in general except for MI-RF, which pro-
duced substantial biases in the parameter or standard error
estimates, as well as too-wide CIs. There was also one
condition (N = 300 with dichotomous indicators) in which
MI-LV produced slightly above 10% biases in the path
coefficient estimates.

Under MAR-head andMAR-tail, RFIML was the best per-
former when the thresholds were not severely asymmetric.
MI-MVN performed well in general, but it had convergence
problems for dichotomous data with N = 300. MI-LValso had
difficulties with this condition. It produced substantial biases
in parameter estimates or standard error estimates, especially
when the thresholds were moderately asymmetric. MI-RF and
MI-LOGIT led to substantially biased parameter estimates or
standard error estimates for many of the conditions, with MI-
RF being more problematic. Again, MI-LOGIT produced too-
narrow CIs, whereas MI-RF produced too-wide CIs.

Severely asymmetrical thresholds The results for path coeffi-
cients with severely asymmetrical thresholds are presented in
Table 8. Under MCAR, only RFIML performed well for all
outcomes. MI-MVN produced acceptable results for all con-
ditions, except that it had convergence problems with N = 300
and dichotomous indicators. MI-LV and MI-LOGIT was ac-
ceptable only when the ordinal data had five categories. MI-
RF produced substantial SE biases, or both Est biases and SE
biases for all conditions.

Under MAR-head, the only method that worked under all
conditions was RFIML. MI-MVN produced acceptable re-
sults for all outcomes for only polytomous indicators. MI-
LV and MI-LOGIT produced substantial bias in the path co-
efficient estimates for all conditions except for conditions with
five-category indicators. MI-RF produced unbiased parameter
estimates across all conditions but overestimated the standard
errors, leading to wide CIs.

Under MAR-tail, all methods failed for dichotomous
data, regardless of sample size. For three-category data,
no methods worked well with N = 300, and only RFIML
produced acceptable results with N = 600. For ordinal data
with five categories, RFIML, MI-MVN, and MI-LV were
acceptable. MI-LOGIT failed to produce accurate standard
errors and CIs under any conditions for polytomous data.
MI-RF also encountered severe convergence problems for
polytomous data.

Conclusion and discussion

In this article, we evaluated five available methods to deal
with missing ordinal data in SEM across a broad range of
conditions, using Monte Carlo simulation. In this section,
we summarize the major findings for each of the research
questions raised above.

Question 1: Are the continuous-data methods RFIML
and MI-MVN applicable to ordinal data? Under what
situations and to what extent are the two methods robust
to discontinuity?
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The results show that the continuous-data methods RFIML
and MI-MVN in general worked quite well for ordinal data in
estimating factor loadings and structural path coefficients. In

fact, in most conditions they outperformed the methods de-
signed specifically for ordinal data, except for MI-LV, proba-
bly because of their simplicity. RFIML was reliable under

Table 3 Results for loadings with symmetric thresholds (mp = 30%)

MCAR MAR-Head MAR-Tail

Est Bias SE Bias CIC Est Bias SE Bias CIC Est Bias SE Bias CIC

N = 300, ncat=2
RFIML 3.0 3.2 95 3.1 2.1 95 3.2 2.0 95

MI-MVN 3.4 2.9 94 4.4 1.8 95 4.5 2.0 95

MI-LV 1.9 3.9 94 2.8 2.6 95 3.0 1.1 95

MI-LOGIT 2.3 7.4 94 2.9 9.7 94 3.0 9.4 94

MI-RF 13.0 26.7 99 8.9 22.9 98 8.9 22.6 98

N = 600, ncat=2
RFIML 1.5 2.6 95 1.3 1.9 95 1.0 1.4 95

MI-MVN 1.7 4.0 95 1.8 1.6 95 1.5 2.9 95

MI-LV 0.9 3.8 95 1.0 1.2 96 0.9 1.5 96

MI-LOGIT 1.2 6.7 94 1.1 7.8 93 1.0 8.8 93

MI-RF 10.7 21.9 99 5.2 19.6 99 5.1 18.8 98

N = 300, ncat=3
RFIML 2.1 3.1 95 1.8 1.4 95 2.2 1.1 95

MI-MVN 2.3 4.9 94 3.3 2.0 95 3.7 2.5 95

MI-LV 1.3 4.7 95 2.4 2.0 96 2.4 2.3 95

MI-LOGIT 2.5 6.1 95 5.3 27.1 90 5.6 25.2 90

MI-RF 16.6 28.9 99 8.0 35.7 99 9.0 36.5 99

N = 600, ncat=3
RFIML 0.7 2.5 96 0.5 2.0 95 0.8 2.0 95

MI-MVN 0.8 1.2 95 1.2 1.8 95 1.5 1.4 95

MI-LV 0.3 1.3 95 0.8 2.8 95 1.0 1.6 96

MI-LOGIT 0.9 3.9 95 2.3 27.7 87 2.5 28.5 86

MI-RF 14.7 32.1 97 5.6 35.7 99 6.9 37.1 99

N = 300, ncat=5
RFIML 1.5 1.8 95 1.3 2.0 95 1.9 0.9 95

MI-MVN 1.7 2.8 95 2.5 2.0 95 3.2 2.2 95

MI-LV 1.0 3.4 95 1.7 3.0 96 2.1 3.0 96

MI-LOGIT 3.2 2.4 96 3.9 16.4 92 3.5 31.2 85

MI-RF 15.4 31.8 99 7.9 31.9 99 8.7 34.9 99

N = 600, ncat=5
RFIML 0.5 1.4 95 0.1 2.1 95 0.9 1.8 95

MI-MVN 0.6 1.9 95 0.6 1.7 95 1.5 1.9 95

MI-LV 0.3 1.9 95 0.5 2.5 95 1.2 1.8 95

MI-LOGIT 1.4 4.0 95 2.1 29.7 85 3.0 43.9 77

MI-RF 13.5 30.6 93 5.1 32.1 99 6.2 34.7 99

Values highlighted are the smallest Est or SE bias in each design cell. Values in bold are unacceptable (i.e., Est bias ≥ 10%, SE bias ≥ 10%, or CIC < 90%
or = 100%). Values are not reported if the proportion of convergence failures ≥ 75%
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various conditions examined in this study, except that it failed
to converge for dichotomous data when the distributions were

severely asymmetrical and were likely truncated by missing
data (i.e., MAR-tail). MI-MVN also had convergence

Table 4 Results for loadings with moderately asymmetrical thresholds (mp = 30%)

MCAR MAR-Head MAR-Tail

Est Bias SE Bias CIC Est Bias SE Bias CIC Est Bias SE Bias CIC

N = 300, ncat=2
RFIML 3.7 2.5 95 1.4 3.9 95 7.9 4.9 95

MI-MVN 4.1 2.5 94 2.1 4.4 94 -- -- --

MI-LV 2.5 2.7 95 2.3 3.4 95 5.9 15.2 95

MI-LOGIT 3.2 9.4 94 2.9 7.4 94 4.6 17.7 91

MI-RF 16.1 26.2 99 9.5 17.1 98 -- -- --

N = 600, ncat=2
RFIML 1.4 2.0 95 -0.3 2.5 94 5.0 2.5 95

MI-MVN 1.7 3.6 94 -0.1 2.6 94 7.4 3.4 96

MI-LV 0.8 1.5 94 1.0 1.7 95 3.0 3.3 96

MI-LOGIT 1.1 5.8 94 1.5 4.4 95 1.9 19.3 90

MI-RF 13.4 23.3 99 8.0 19.1 98 -- -- --

N = 300, ncat=3
RFIML 1.8 3.1 95 0.8 3.8 95 2.4 1.4 95

MI-MVN 2.0 2.8 95 2.0 4.2 95 3.9 1.9 96

MI-LV 1.3 2.3 95 2.2 2.0 96 2.6 1.6 96

MI-LOGIT 1.9 5.1 95 3.2 19.5 92 4.8 26.3 90

MI-RF 14.1 29.4 99 9.6 29.9 99 10.2 32.9 99

N = 600, ncat=3
RFIML 0.5 1.1 95 -0.5 3.7 95 1.3 2.7 96

MI-MVN 0.7 0.8 95 0.1 4.9 95 2.0 2.8 96

MI-LV 0.4 1.7 95 0.9 2.3 96 1.4 2.3 96

MI-LOGIT 0.7 5.3 94 1.6 19.3 90 2.6 25.2 88

MI-RF 12.0 26.4 97 6.6 27.3 99 7.8 30.6 99

N = 300, ncat=5
RFIML 1.6 1.6 95 -0.1 1.7 94 4.1 0.9 95

MI-MVN 1.8 5.4 94 0.6 3.8 93 6.3 1.7 96

MI-LV 1.1 3.4 95 1.6 2.8 95 2.5 2.8 96

MI-LOGIT 3.3 3.3 96 2.9 19.4 91 3.0 23.5 91

MI-RF 16.7 32.7 99 8.5 32.2 99 10.1 46.5 99

N = 600, ncat=5
RFIML 0.4 1.1 95 -1.3 2.5 93 2.5 2.2 96

MI-MVN 0.5 2.8 94 -1.0 2.3 93 3.5 2.8 96

MI-LV 0.2 1.2 95 0.6 2.5 95 1.0 1.7 96

MI-LOGIT 1.5 1.8 95 1.4 21.3 89 0.4 26.6 86

MI-RF 14.5 35.1 93 6.1 34.6 99 7.7 40.7 99

The highlighted values are the smallest Est or SE biases in each design cell. The second smallest biases might also be highlighted if the method with the
smallest bias yielded unacceptable result on the other outcomes. Unacceptable values are in bold (i.e., Est bias ≥ 10%, SE bias ≥ 10%, or CIC < 90% or =
100%). Values are not reported if proportion of convergence failures ≥ 75%
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problems when the ordinal data had ≤ 3 categories and when
the distributions were asymmetrical.

As compared to RFIML, MI-MVN required a larger sam-
ple size or a smaller proportion of missing data in some of the

Table 5 Results for loadings with severely asymmetrical thresholds (mp = 30%)

6.2

1.7

MCAR MAR-Head MAR-Tail

Est Bias SE Bias CIC Est Bias SE Bias CIC Est Bias SE Bias CIC

N = 300, ncat=2
RFIML 11.3 3.3 94 5.7 4.7 93 -- -- --

MI-MVN -- -- -- 5.9 3.9 91 -- -- --

MI-LV 4.8 13.5 94 4.4 2.4 94 -- -- --

MI-LOGIT 5.9 3.7 94 6.2 4.8 94 -- -- --

MI-RF -- -- -- 15.7 14.5 98 -- -- --

N = 600, ncat=2
RFIML 4.7 1.4 94 1.0 1.1 94 -- -- --

MI-MVN 5.0 9.8 92 1.1 8.2 92 -- -- --

MI-LV 1.7 2.9 94 2.2 2.6 95 13.6 56.2 97

MI-LOGIT 3.4 8.2 94 3.5 4.8 95 -- -- --

MI-RF 21.7 28.5 99 13.0 14.5 99 -- -- --

N = 300, ncat=3
RFIML 4.1 2.9 95 0.9 2.2 94 -- -- --

MI-MVN 4.5 8.2 93 1.2 7.0 92 -- -- --

MI-LV 2.5 2.3 95 2.9 4.3 95 -- -- --

MI-LOGIT 3.5 6.1 95 3.2 5.7 95 -- -- --

MI-RF 17.5 25.3 99 9.8 14.4 98 -- -- --

N = 600, ncat=3
RFIML 1.5 1.4 95 -1.3 0.6 93 10.8 10.5 94

MI-MVN 1.8 9.6 93 -1.2 4.5 92 -- -- --

MI-LV 0.5 1.7 95 1.2 2.1 95 7.5 3.2 96

MI-LOGIT 1.3 6.7 94 1.9 4.2 95 43.1 79

MI-RF 14.4 22.7 98 8.3 15.1 97 -- -- --

N = 300, ncat=5
RFIML 2.1 2.2 95 -0.4 2.4 95 7.7 2.7 95

MI-MVN 2.4 6.4 94 0.0 3.9 94 10.3 13.1 96

MI-LV 1.4 2.3 95 2.2 2.2 96 4.1 4.6 96

MI-LOGIT 2.3 7.2 94 1.6 6.3 94 5.0 32.7 87

MI-RF 15.0 30.0 99 7.7 25.8 99 -- -- --

N = 600, ncat=5
RFIML 1.0 1.1 95 -1.5 2.9 93 5.5 1.2 96

MI-MVN 1.1 5.5 94 -1.4 3.2 93 7.9 1.7 96

MI-LV 0.4 1.6 95 1.1 3.3 95 2.6 95

MI-LOGIT 1.0 6.1 94 1.4 5.7 94 4.0 42.2 77

MI-RF 13.0 28.0 97 6.5 25.0 98 -- -- --

The highlighted values are the smallest Est or SE biases in each design cell. The second smallest biases might also be highlighted if the method with the
smallest bias yielded unacceptable result on the other outcomes. Unacceptable values are in bold (i.e., Est bias ≥ 10%, SE bias ≥ 10%, or CIC < 90% or =
100%). Values are not reported if the proportion of convergence failures ≥ 75%
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most difficult situations to converge to admissible solutions.
This is probably due to the fact that RFIML is a one-step

approach that handles missing data directly in the estimation
process, whereas MI-MVN separates the missing data

Table 6 Results for structural paths with symmetric thresholds (mp = 30%)

2.3

2.4

MCAR MAR-Head MAR-Tail

Est Bias SE Bias CIC Est Bias SE Bias CIC Est Bias SE Bias CIC

N = 300, ncat=2
RFIML 2.8 4.3 95 4.4 3.3 95 4.3 3.7 95

MI-MVN 3.3 3.6 95 5.4 2.8 94 5.1 2.8 95

MI-LV 10.3 2.8 96 11.8 96 11.5 2.9 96

MI-LOGIT 9.2 6.9 95 10.5 6.3 94 10.1 9.1 94

MI-RF 11.8 16.7 99 20.1 20.3 99 19.7 19.5 99

N = 600, ncat=2
RFIML 1.5 3.5 95 1.9 2.0 96 2.5 1.8 95

MI-MVN 1.8 5.5 94 2.5 3.4 95 3.0 3.8 94

MI-LV 6.7 4.9 95 7.1 2.8 96 7.5 3.7 95

MI-LOGIT 6.5 7.4 94 6.6 7.7 94 6.9 9.3 93

MI-RF 7.5 13.5 98 14.4 12.0 98 15.2 10.8 98

N = 300, ncat=3
RFIML 1.1 3.1 95 2.5 2.3 95 3.5 1.5 96

MI-MVN 1.4 2.2 94 3.1 1.8 95 4.3 1.4 95

MI-LV 4.0 2.4 95 4.6 3.1 95 5.6 0.6 96

MI-LOGIT 3.9 4.4 95 5.4 12.3 92 4.6 11.3 93

MI-RF 5.0 21.2 99 20.0 28.6 99 22.3 31.2 100

N = 600, ncat=3
RFIML 1.6 1.8 95 2.1 1.5 95 2.5 1.1 96

MI-MVN 1.8 2.9 94 2.6 2.1 95 3.0 1.2 95

MI-LV 2.7 2.9 94 2.9 3.0 95 3.4 1.6 95

MI-LOGIT 2.7 5.8 94 3.1 16.7 91 3.6 15.1 92

MI-RF 3.3 20.4 98 16.7 20.9 99 17.4 23.3 99

N = 300, ncat=5
RFIML 0.9 2.7 95 1.9 1.5 95 2.4 3.9 95

MI-MVN 1.0 1.7 95 2.7 0.8 95 3.1 3.5 94

MI-LV 2.8 2.8 95 3.3 1.1 95 3.8 3.5 95

MI-LOGIT 2.8 3.2 95 6.2 6.6 94 6.9 13.1 92

MI-RF 4.7 18.9 98 19.4 22.0 99 23.0 22.0 99

N = 600, ncat=5
RFIML 1.1 1.6 95 1.3 1.0 96 1.6 3.5 95

MI-MVN 1.3 2.6 94 1.6 1.4 95 2.0 3.2 95

MI-LV 1.9 3.1 95 1.8 1.7 95 2.0 95

MI-LOGIT 1.9 4.9 94 3.2 15.0 91 4.7 23.9 89

MI-RF 3.4 16.7 98 16.3 16.8 99 19.0 19.3 98

The highlighted values are the smallest Est or SE biases in each design cell. The second smallest biases might also be highlighted if the method with the
smallest bias yielded unacceptable result on the other outcomes. Unacceptable values are in bold (i.e., Est bias ≥ 10%, SE bias ≥ 10%, or CIC < 90% or =
100%). Values are not reported if proportion of convergence failures ≥ 75%
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handling and model estimation processes. Thus, RFIML is
more efficient than MI-MVN. In addition, although RFIML

does not account for the ordinal nature of the data, it accounts
for the nonnormality due to ordinal data. In comparison, MI-

Table 7 Results for structural paths with moderately asymmetrical thresholds (mp = 30%)

-1.1

2.5

MCAR MAR-Head MAR-Tail

Est Bias SE Bias CIC Est Bias SE Bias CIC Est Bias SE Bias CIC

N = 300, ncat=2
RFIML 2.6 2.7 95 2.6 1.1 96 5.3 1.6 94

MI-MVN 3.3 3.3 94 4.0 5.1 95 -- -- --

MI-LV 11.7 1.2 96 10.1 5.0 96 16.4 30.4 97

MI-LOGIT 10.4 6.6 94 9.3 7.4 95 9.3 12.2 93

MI-RF 11.9 22.3 98 6.2 11.4 98 -- -- --

N = 600, ncat=2
RFIML 2.0 2.7 95 2.5 2.4 95 4.1 2.1 95

MI-MVN 2.2 4.5 94 3.0 4.3 94 3.1 3.1 94

MI-LV 8.5 4.3 95 7.7 3.7 95 11.6 3.4 97

MI-LOGIT 8.1 6.5 94 7.0 6.4 94 9.9 13.5 92

MI-RF 8.6 15.8 98 3.2 11.6 98 -- -- --

N = 300, ncat=3
RFIML 0.7 2.3 95 1.8 2.4 95 3.6 4.4 96

MI-MVN 0.9 3.4 94 2.5 0.9 95 4.4 4.4 96

MI-LV 4.4 3.0 95 4.5 1.0 95 6.6 3.7 96

MI-LOGIT 4.1 5.9 94 5.4 9.9 93 3.3 11.5 92

MI-RF 5.9 18.0 98 21.2 28.1 99 25.6 32.4 99

N = 600, ncat=3
RFIML 1.2 3.4 95 1.6 2.9 96 1.9 2.5 95

MI-MVN 1.3 4.6 95 2.0 3.2 96 2.4 3.1 94

MI-LV 3.3 4.8 95 2.9 3.1 96 3.6 3.4 95

MI-LOGIT 3.1 6.3 94 3.3 10.0 93 2.7 14.2 91

MI-RF 4.2 15.1 98 16.9 18.7 99 18.7 19.3 99

N = 300, ncat=5
RFIML 0.7 1.4 95 2.8 1.4 94 2.0 2.9 94

MI-MVN 0.9 3.3 94 3.1 2.2 94 2.6 3.0 95

MI-LV 3.6 3.3 95 5.2 2.9 95 3.5 2.6 95

MI-LOGIT 4.6 3.6 95 15.3 8.2 95 11.2 91

MI-RF 5.7 19.6 98 14.0 19.2 99 35.0 50.4 100

N = 600, ncat=5
RFIML 1.1 2.3 95 2.6 1.7 95 0.4 3.1 95

MI-MVN 1.2 3.0 95 3.1 95 1.2 3.3 95

MI-LV 2.9 3.3 95 3.7 2.8 95 1.4 4.6 94

MI-LOGIT 3.1 4.0 94 7.7 13.4 92 -1.4 14.3 91

MI-RF 4.3 20.4 98 12.1 17.2 98 30.5 23.2 99

The highlighted values are the smallest Est or SE biases in each design cell. The second smallest biases might also be highlighted if the method with the
smallest bias yielded unacceptable result on the other outcomes. Unacceptable values are in bold (i.e., Est bias ≥ 10%, SE bias ≥ 10%, or CIC < 90% or =
100%). Values are not reported if proportion of convergence failures ≥ 75%
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MVN only partially account for nonnormality (in the analysis
stage, by using RML, but not in the imputation stage).

Question 2: How is the performance of each of the
methods influenced by number of categories, asymmetry

Table 8 Results for structural paths with severely asymmetrical thresholds (mp = 30%)

2.1

3.2

MCAR MAR-Head MAR-Tail

Est Bias SE Bias CIC Est Bias SE Bias CIC Est Bias SE Bias CIC

N = 300, ncat=2
RFIML 7.0 2.5 93 7.6 4.3 94 -- -- --

MI-MVN -- -- -- 11.3 5.7 93 -- -- --

MI-LV 30.3 19.7 97 25.7 4.3 97 -- -- --

MI-LOGIT 24.5 0.3 96 24.6 2.4 96 -- -- --

MI-RF -- -- -- 9.0 13.5 98 -- -- --

N = 600, ncat=2
RFIML 4.1 1.8 94 5.6 0.7 95 -- -- --

MI-MVN 4.2 8.5 92 7.2 9.9 93 -- -- --

MI-LV 21.5 2.2 96 19.6 4.1 95 40.5 137.6 99

MI-LOGIT 19.4 6.2 94 18.0 5.3 95 -- -- --

MI-RF 18.0 20.9 99 5.0 11.1 98 -- -- --

N = 300, ncat=3
RFIML 1.6 2.5 94 3.4 3.3 95 -- -- --

MI-MVN 2.0 7.1 93 5.0 6.7 94 -- -- --

MI-LV 15.0 3.2 96 13.7 3.1 95 -- -- --

MI-LOGIT 13.6 6.5 95 15.7 4.8 95 -- -- --

MI-RF 14.5 16.7 98 3.8 10.7 97 -- -- --

N = 600, ncat=3
RFIML 1.4 1.5 95 3.6 0.3 95 4.9 3.6 91

MI-MVN 1.5 6.7 93 4.3 6.9 94 -- -- --

MI-LV 12.1 3.0 95 11.3 3.4 95 17.9 8.1 97

MI-LOGIT 11.4 6.0 94 11.3 4.9 95 1.6 21.4 88

MI-RF 11.3 16.0 98 11.1 97 -- -- --

N = 300, ncat=5
RFIML 0.7 2.4 95 2.5 4.1 96 2.6 3.8 94

MI-MVN 1.0 4.8 94 3.1 2.9 95 3.1 6.4 94

MI-LV 8.2 2.4 95 7.8 2.5 95 9.1 2.5 96

MI-LOGIT 8.5 6.3 94 13.1 4.2 95 -5.3 15.2 90

MI-RF 9.3 18.2 99 5.1 16.3 98 -- -- --

N = 600, ncat=5
RFIML 1.1 2.1 95 2.8 1.9 96 0.6 94

MI-MVN 1.2 6.2 94 2.9 3.5 95 1.4 4.4 94

MI-LV 7.0 3.6 95 6.4 3.7 95 6.5 3.5 95

MI-LOGIT 6.7 6.8 94 7.7 5.7 94 -3.4 21.2 88

MI-RF 7.8 15.9 98 3.3 12.2 98 -- -- --

The highlighted values are the smallest Est or SE biases in each design cell. The second smallest biases might also be highlighted if the method with the
smallest Bias yielded unacceptable result on the other outcomes. Unacceptable values are in bold (i.e., Est bias ≥ 10%, SE bias ≥ 10%, or CIC < 90% or =
100%). Values are not reported if the proportion of convergence failures ≥ 75%
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of thresholds, sample size, missing data proportion, and
missing data mechanism?

RFIMLwas least impacted by the examined design factors.
However, it may fail to converge or may generate large biases
under the most difficult conditions (i.e., the distributions were
severely asymmetrical, the missing data were MAR-tail, and
the number of categories was two or three). RFIML could also
produce substantial biases in the loading estimates for dichot-
omous data, if the distributions were severely asymmetrical.
Otherwise, the performance of RFIMLwas stable and reliable
in general.

The other methods were influenced by all design factors to
some degree. MI-MVN and MI-LV generally performed well,
except that they could fail when the distributions were asym-
metrical, the missing data were MAR-tail, and the number of
categories was small (i.e., two or three). MI-MVN was more
sensitive to asymmetrical distributions andMAR-tail than was
MI-LV, given that MI-MVN treated missing data as continu-
ous and did not account for nonnormality when imputing the
missing data.

As compared to the other methods, MI-LOGITwas impact-
ed by the factors in different ways. In general, it worked ade-
quately under MCAR or for dichotomous data, except for data
with severely asymmetrical distributions. The performance of
MI-RF was not satisfactory across all conditions for the out-
comes considered in the study. One possible explanation for
this poor performance of MI-RF is that, as a nonparametric
method, MI-RF probably required a larger sample size (e.g.,
N = 1,000 in Doove et al., 2014) than those examined in the
study. Specifically, MI-RF predicts missing data from donors
that share similar properties with the incomplete cases. With a
small sample size, it could have been difficult for MI-RF to find
donors that were sufficiently homogeneous to those incomplete
cases, resulting in either convergence problems or biased esti-
mates. Future research will be warranted to study the conditions
under which MI-RF may deliver satisfactory performance.

In terms of the general impact of a single factor, we found
that the missing data mechanism was most influential on the
performance of the examined methods. In other words, the
methods performed quite differently under MAR-tail than un-
der MCAR orMAR-head. In our study, MAR-tail was created
in such a way that the values on the right tail of the distribution
were most likely to be truncated. Thus, when the distribution
was right-skewed, the least frequently observed values be-
came sparser or completely missing, creating a challenging
situation for the missing data techniques we examined.

Question 3: Which of the five methods performs best
under the examined conditions?

For dichotomous data, RFIML appeared to be the best
method among the five. For indicators with three categories,

RFIML was also the best performer, closely followed by MI-
MVN and MI-LV. RFIML was slightly better than MI-MVN
by being easier to converge and slightly more robust to asym-
metrical distributions and toMAR-tail. MI-LV combined with
cat-DWLS also worked well for three-category data, except
that it could result in substantially biased estimates for struc-
tural path coefficients when the item distributions were se-
verely asymmetrical. For indicators with five categories, both
RFIML and MI-LV combined with cat-DWLS seemed the
best methods. They converged properly and produced accu-
rate loading and structural path estimates under all conditions.
MI-MVN also had comparable performance, except that it
might produce biased loading estimates in the most challeng-
ing situation (small sample size, MAR-tail, and a distribution
that was severely asymmetrical). The other two methods, MI-
LOGIT and MI-RF, could produce biased results or fail to
converge to a proper solution for various types of data exam-
ined in this study, with MI-RF being the worst.

Limitations and future directions

The findings and conclusions from this article are limited to
the scope of the study. Several of these limitations are worth
mentioning. First, we only examined one type of SEM model
and focused on factor loadings and three latent paths. More
studies will be needed to examine the performance of these
methods for other types of parameters and other types of
SEMs, such as growth curve models and mixture models.

Second, when generating the data, we assumed that miss-
ing data occurred on two indicators of all three latent vari-
ables. In such a model, with three latent variables playing
different roles, it would be interesting to examine to what
extent the location of the missing data might have affected
the performance of the five methods. To shed some light on
the impact of this factor, we conducted a small-scale simula-
tion study based on a representative set of conditions (i.e., the
distributions were moderately asymmetrical, the number of
categories was three, and the missing data proportion was
30%). The same data generation and analysis model was used,
but missing data occurred on two indicators of only one latent
variable at a time. The results showed that only MI-RF was
sensitive to the location of the missing data. Specifically, when
the missing data only occurred among the indictors for η1, MI-
RF yielded extremely large positive biases in the path coeffi-
cient estimates. The biases decreased when the missing data
occurred only among the indictors for η2. When the missing
data occurred only among the indictors for η3, MI-RF yielded
negative but acceptable Est biases for the structural path co-
efficients. Given that the other methods did not seem to be
affected by the location of the missing data, varying the loca-
tion of missing data would not alter our conclusions. More
research, however, should be conducted to examine the reason
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why MI-RF performed differently with different missing data
locations.

Third, the examined methods were implemented on the
basis of the commonly used settings of the software packages.
For the methods that had frequent convergence problems,
modifying the settings may improve convergence. For exam-
ple, one might try different optimization techniques, if they are
available, or a larger number of iterations. For MI-RF, in par-
ticular, one might try different numbers of bootstrapped sam-
ples or different minimum numbers of donors. One might also
use a less conservative rule (e.g., 50% imputations converged)
to determine convergence for the imputation methods. Future
research could be conducted to examine the existing strategies
or to develop new strategies to improve the convergence of the
missing data methods.

Fourth, we only considered the situation in which all the
indicators were ordinal and had the same thresholds. In prac-
tice, continuous and ordinal missing data may coexist, and the
thresholds or number of categories might also vary across
ordinal items. It would be interesting to investigate whether
the same conclusions would hold when different types of in-
complete variables needed to be analyzed simultaneously.

Finally, we focused on the accuracy and precision of pa-
rameter estimates when evaluating the performance of the
methods. In SEM, researchers often care about model fit in-
formation such as the chi-square test statistic and practical fit
indices. Thus, it would be interesting to examine which
method(s) lead to accurate statistical inference in terms of
model fit (e.g., the chi-squared test statistic). We did record
the Type I error rates of the chi-squared test statistic associated
with RFIML (the detailed results can be requested from the
authors). We found that the Type I error rates from RFIML
were in general close to 5%, except they were inflated sub-
stantially (above 10%) with severely asymmetrical thresholds,
especially when the ordinal data had only two or three cate-
gories. Again, these findings are limited to the conditions ma-
nipulated in the simulation. For example, the Type I error rates
might be inflated when the threshold values, missing data
mechanisms, or missing data proportions are substantially dif-
ferent across items (Savalei & Falk, 2014). It is important to
note that valid model fit test statistics cannot be obtained from
the multiple imputation methods investigated in this study,
because there is no good way so far to pool the rescaled test
statistics across imputations for cat-DWLS or RML (Enders &
Mansolf, 2018). For this reason, we did not report fit indices in
the Results section. Developing an appropriate method to pool
the rescaled test statistics over imputations for RML or cat-
DWLS would be a fruitful avenue for future research.

To conclude, among the five methods examined in the
present study, RFIML performed the best for the outcomes
considered in the study, and was most stable for a wide range
of conditions. Aside from RFIML, MI-MVN and MI-LValso
performed well most of the time, unless the conditions were

extremely difficult (e.g., small number of categories, small
sample size, severely asymmetrical distributions, and a large
proportion of data missing on the tail of the distribution).
Thus, MI-MVN and MI-LV can serve as good alternatives
to RFIML, especially when MI is chosen to deal with missing
data or RFIML fails to converge. Interested researchers might
also try more than one method to see whether the different
methods converge to similar results. AlthoughMI-LOGITand
MI-RF are theoretically appealing, their empirical perfor-
mance was not satisfying for the model and conditions exam-
ined in the present study. Thus researchers should be cautious
about using them to deal with missing ordinal data in SEM.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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