
spreadr: An R package to simulate spreading activation in a network

Cynthia S. Q. Siew1,2

Published online: 20 February 2019
# The Author(s) 2019

Abstract
The notion of spreading activation is a central theme in the cognitive sciences; however, the tools for implementing spreading
activation computationally are not as readily available. This article introduces the spreadr R package, which can implement
spreading activation within a specified network structure. The algorithmic method implemented in the spreadr subroutines
follows the approach described in Vitevitch, Ercal, and Adagarla (Frontiers in Psychology, 2, 369, 2011), who viewed activation
as a fixed cognitive resource that could Bspread^ among connected nodes in a network. Three sets of simulations were conducted
using the package. The first set of simulations successfully reproduced the results reported in Vitevitch et al. (Frontiers in
Psychology, 2, 369, 2011), who showed that a simple mechanism of spreading activation could account for the
clustering coefficient effect in spoken word recognition. The second set of simulations showed that the same mechanism could
be extended to account for higher false alarm rates for low clustering coefficient words in a false memory task. The final set of
simulations demonstrated how spreading activation could be applied to a semantic network to account for semantic priming
effects. It is hoped that this package will encourage cognitive and language scientists to explicitly consider how the structures of
cognitive systems such as the mental lexicon and semantic memory interact with the process of spreading activation.

Keywords Spreading activation . Network science . Computer simulation . Lexical retrieval . False memory . Clustering
coefficient . Semantic priming . Semantic network

Cognitive scientists view the mind as inherently associative,
and an understanding of how the mind works necessitates an
understanding of associative processing. A prominent theme
in several theories of cognitive psychology is the idea of
spreading activation (Anderson, 1983; Collins & Loftus,
1975), in which the activation of one concept in memory is
thought to spread to, and activate, other closely related con-
cepts. The notion of spreading activation has been invoked to
account for a variety of cognitive phenomena, including se-
mantic processing (Collins & Loftus, 1975; Collins &
Quillian, 1969), semantic priming effects (Balota & Lorch,
1986; de Wit & Kinoshita, 2015), sentence processing
(Traxler, Foss, Seely, Kaup, & Morris, 2000), errors in sen-
tence production (Dell, 1986), false memories (Roediger,
Balota, & Watson, 2001), and emotional influences on mem-
ory and processing (Bower & Cohen, 2014).

One implicit assumption of spreading activation that has cu-
riously escaped discussion in the literature is that the spread of
activation among concepts orwordsmust necessarily occur with-
in a given cognitive structure (e.g., long-term memory). This is
an especially important point to consider, given the growing
amount of research showing that the structure of cognitive sys-
tems affects processing in a variety of domains, including spoken
word recognition (Chan & Vitevitch, 2009; Goldstein &
Vitevitch, 2017), speech production (Chan & Vitevitch, 2010),
visual word recognition (Siew, 2018; Yates, 2013), memory pro-
cesses (Siew & Vitevitch, 2016; Vitevitch, Chan, & Roodenrys,
2012), semantic processing (Kenett, Levi, Anaki, & Faust,
2017), language acquisition in monolingual (Hills, Maouene,
Maouene, Sheya, & Smith, 2009) and bilingual (Bilson,
Yoshida, Tran, Woods, & Hills, 2015) children, word learning
in adults (Goldstein & Vitevitch, 2014), and higher-order cogni-
tive processes such as creativity (Kenett, Anaki, & Faust, 2014).
In this body of research, cognitive systems are represented as a
network with nodes and links connecting these nodes. For in-
stance, a semantic network consists of nodes that represent indi-
vidual words that are connected if they share a semantic relation-
ship based on co-occurrences or free associations (De Deyne,
Kenett, Anaki, Faust, & Navarro, 2016; Steyvers &
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Tenenbaum, 2005). Representing cognitive systems as networks
permits the application of network science techniques in order to
further examine the underlying structural properties of these cog-
nitive networks (Baronchelli, Ferrer-i-Cancho, Pastor-Satorras,
Chater, & Christiansen, 2013; Borge-Holthoefer & Arenas,
2010).

Given the prevalence of research articles discussing spread-
ing activation as a key feature of cognitive theories and
models (e.g., Anderson, 1983; Collins & Loftus, 1975), it is
surprising that few computational tools to explicitly explore
the notion of spreading activation exist; in addition, the tools
that do exist do not tend to be specifically tailored for the
needs of the psychologist. As was noted by Lewandowsky
(1993), there are many benefits to conducting computer sim-
ulations to test out simple ideas about cognitive processes and
to build stronger conceptual linkages between theory and be-
havioral data. This article fills this gap in the literature by
introducing a computational tool for cognitive and language
scientists who wish to conduct simulations of their own to
examine spreading activation processes in their research area.
That tool is the R package spreadr (pronounced BSPREAD-
er^), which implements the spreading of activation among
connected nodes (representing concepts or words) in a net-
work (which could be viewed as an instantiation of semantic
memory or the mental lexicon).

To investigate the theoretical concept of spreading activa-
tion, cognitive scientists have implemented models of random
walks (and its variants) in the domain of semantic memory, in
order to examine how people retrieve items from a category in
fluency tasks (Abbott, Austerweil, & Griffiths, 2015), infer
the structure of individual semantic networks from fluency
data (Zemla & Austerweil, 2018), infer semantic similarity
among words in a network of word associations (De Deyne,
Navarro, Perfors, Brysbaert, & Storms, 2018), and examine
search processes in people with high and low levels of crea-
tivity (Kenett & Austerweil, 2016). In its simplest implemen-
tation, a random walk is initiated from a specific node in the
network, and the probability of moving from node i to node j
is given by its transitional probability, as computed by:

Tij ¼ Aij

∑n
k¼1Akj

;

where Aij is the adjacency matrix of the network representa-
tion, whereby the presence of an edge between any two nodes
in the network is indicated by a value of 1 (and 0 if the edge
does not exist). The Bwalk^ is permitted to continue for a
certain number of steps, as specified by the modeler. When a
large enough number of random walks have been implement-
ed, researchers typically compute the probability that node i
has been visited by the random Bwalker^ or the probability
that node i represents the final end point of the random walk;
these probabilities are argued to reflect the Blong-run^

activation levels of nodes that would be produced by a spread-
ing activation process implemented on the same network
structure (Kenett & Austerweil, 2016).

Although random walk and spreading activation models
lead to similar outputs (see Appendix 3 for simulations that
demonstrate this), spreadr represents an important tool that
complements random walk models and provides greater flexi-
bility to the modeler. For instance, instead of conducting hun-
dreds of thousands of random walks and compiling the results,
the spreading activation process implemented in spreadr pro-
duces outputs that reflect the long-run behavior of random
walks, leading to substantial savings of computational time
(see Appendix 3). The spreadr package also includes a number
of parameters (discussed below) that allow activation to decay
over time or that increase or decrease the amount of activation
spread to other nodes, which may be less straightforward to
implement in the basic version of the random walk model.
Although it should be emphasized that the present article does
not aim to present a complete, formal theory of spreading acti-
vation and compare it against random walk models, spreadr
does provide the tools that will enable future researchers to
formalize and test models of spreading activation and compare
them against random walk models and their variants.

At this point, it is also important to briefly acknowledge
that other tools that can conduct simulations of diffusion pro-
cesses in networks (which are analogous to the notion of
spreading activation) do exist. Within the network science
literature, there has been a strong interest in examining diffu-
sion processes in network structures, and many open-source
tools exist for researchers who study how epidemics and ideas
might spread in social networks (e.g., the netdiffuseR
package; Valente, Dyal, Chu, Wipfli, & Fujimoto, 2015).
However, it is important to note that these tools model net-
work diffusion in ways that specifically mimic the diffusion of
a discrete event such as an epidemic. Specifically, an initial set
of nodes is first Binfected,^ and the aim is to determine the
proportion of nodes that adopt some type of discrete event
(e.g., a disease) as a function of the overall network structure
and parameters such as the probability of a connected node
adopting the event (i.e., becoming infected). Although it is
certainly possible to repurpose the notion of spreading activa-
tion as a diffusion process that Binfects^ certain nodes in a
cognitive network with some amount of activation, this is
arguably tedious and unnecessary, given that spreadr imple-
ments spreading activation in a way that is consistent with
how spreading activation is commonly discussed and used
in the cognitive sciences—where activation is viewed as a
limited cognitive resource that can spread and activate con-
nected words and concepts in long-term memory (Collins &
Loftus, 1975). The spreadr package is designed to be highly
accessible to psychologists and for addressing questions that
psychologists are deeply interested in, such as language pro-
cessing and memory retrieval.
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Finally, it is important to emphasize that the network rep-
resentation on which the spreading of activation process is
being implemented is not a neural network. The term Bneural
network^ comes from the connectionist framework and refers
to a representation that consists of processing units that are
connected to each other via weights acquired via a learning
phase, and specific concepts are represented as distributed
activity patterns in that representation. In contrast, the network
representation discussed in the present context is Blocalist^ in
nature, whereby each concept/word is represented by a dis-
tinct node, and the modeler is required to explicitly define the
relationships (or edges) that exist between nodes in the net-
work representation.

As we shall see below, spreadr explicitly implements
spreading activation in a network of interconnected nodes.
This is a deliberate feature of spreadr, emphasizing a central
tenet in the field of network science—that is, a complete un-
derstanding of any process we wish to investigate is not pos-
sible without a careful consideration of the structure within
which those processes occur (Borge-Holthoefer & Arenas,
2010; Strogatz, 2001). Unlike the connectionist framework,
the network science approach compels the modeler to be ex-
plicit about the edges and connections that give rise to the
overall structure of the network representation, thereby
allowing the researcher to deliberately study how specific
structural properties of the system interact with the processes
that occur in that system. Hence, spreadr represents an invita-
tion to all researchers to explicitly study the interaction be-
tween structure and process in the cognitive and language
sciences.

Especially germane to the present article is the set of com-
puter simulations conducted by Vitevitch, Ercal, and Adagarla
(2011) to invest igate a possible account for the
clustering coefficient effect observed in spoken word recogni-
tion. Vitevitch and colleagues (Chan & Vitevitch, 2009, 2010)
found that across a variety of tasks, words with low clustering
coefficients were processed more quickly than words with
high clustering coefficients.

In the phonological network, nodes represent lexical
representations, and edges are placed between words that
are phonologically similar to each other (Vitevitch, 2008).
Words that differ by the substitution, deletion, or addition
of one phoneme are considered to be phonologically sim-
ilar (Luce & Pisoni, 1998). Using the tools of network
science, one can compute various similarity measures,
such as degree and clustering coefficient. Degree repre-
sents the number of connections a node has. In the context
of the phonological language network, degree is equivalent
to the number of phonological neighbors that a word has in
terms of the one-phoneme edit distance metric (i.e.,
phonological neighborhood density; Luce & Pisoni,
1998). For instance, the phonological neighbors of the
word cat /kæt/ include bat /bæt/ (substitution), at /_æt/

(deletion), and cast /kæst/ (addition). Clustering coefficient
represents the extent to which a word’s neighbors are also
neighbors of each other (Watts & Strogatz, 1998).
Clustering coefficient is computed using the following
equation:

Ci ¼
2 ejk
�
�

�
�

ki ki−1ð Þ ;

where ejk refers to the presence of a connection between
two neighbors j and k, and ki refers to the degree (i.e.,
neighborhood density) of node i. Thus, the clustering co-
efficient represents the number of links that exist in a
word’s neighborhood divided by the maximum number of
links that could possibly exist in a word’s neighborhood. Ci

ranges from 0 to 1, such that words with low clustering
coefficients have a low level of connectivity among their
neighbors (see the right side of Fig. 1), whereas words with
high clustering coefficients have a high level of connectiv-
ity among their neighbors (see the left side of Fig. 1).

Given that current models of spokenword recognition were
unable to account for the finding that words with low cluster-
ing coefficients were processed more quickly than words with
high clustering coefficients, Chan and Vitevitch (2009) pro-
vided a post-hoc explanation of their findings. Beginning with
the assumption that activation is a fixed cognitive resource
that can Bspread^ among connected nodes in a network,
Chan and Vitevitch (2009) suggested that for words with low-
er levels of interconnectivity, activation among the neighbors
would spread back to the target word, with the remaining
activation dispersing to the rest of the network (right side of
Fig. 1). The target low C word would be strongly activated,
resulting in rapid retrieval from the lexicon. On the other hand,
for words with higher levels of interconnectivity, activation
would likely remain among the interconnected neighbors rath-
er than spread back to the target word or disperse to the rest of
the network (left side of Fig. 1). This would lead the target
high C words to be less strongly activated, resulting in less
rapid retrieval from the lexicon.

Vitevitch et al. (2011) explicitly tested this verbal account
in a computer simulation in which activation was allowed to
spread among the words in a phonological network. In
Vitevitch et al.’s (2011) implementation (whose algorithm
was adopted in spreadr), the target node was assigned an ar-
bitrary amount of activation. Some of that activation was
retained by the node, and the rest was spread equally among
the node’s neighbors. In the next time step, the same process
was repeated for all nodes with nonzero activation levels.
Vitevitch et al. (2011) allowed this process to be repeated
ten times and then compared the final activation levels of
words with high and low clustering coefficients. Higher levels
of final activation indicated greater efficiency of lexical re-
trieval.Words with low clustering coefficients had higher final
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activation levels than words with high clustering coefficients,
providing support for Chan and Vitevitch’s (2009) verbal ac-
count of their behavioral finding.

The simulations conducted by Vitevitch et al. (2011)
may appear simplistic, but they provide important in-
sights into how a simple process of spreading activation
can lead to different outcomes, depending on the
structure in which this process was operating. The de-
velopment of spreadr was motivated by similar princi-
ples of parsimony, and its functions were designed to be
as simple as possible, to enable generalizations and
extensions to a broad range of investigations. In the
following section, I first describe how the functions in
spreadr were constructed, and provide a simple example
to walk the user through its use. In the next section, the
results of three simulation studies are reported. The first
set of simulations demonstrated that the results
described in Vitevitch et al. (2011) can be replicated
using the spreadr package. The second set of simula-
tions examined the clustering coefficient effect on false
memory (Vitevitch et al., 2012), to demonstrate the util-
ity of spreadr for investigating spreading activation in
cognitive phenomena other than lexical retrieval. The
final set of simulations was conducted on a semantic
network, to further demonstrate the generality and use-
fulness of spreadr and how it can be used to investigate
semantic priming.

Implementation of spreading activation
in a network

The functions created in the spreadr R package were written to
implement the spreading activation process described in

Vitevitch et al. (2011). The algorithmic details are provided
below.

At each time step t and for each node n that has a nonzero
activation value at t [i.e., inflow(t, n) > 0]:

(i) A proportion of activation is retained in node n, as given
by the following equation:

reservoir t; nð Þ ¼ r � inflow t; nð Þ;

(ii) The nonretained activation is equally Bspread^ to all im-
mediate neighbors of node n, as given by the following equation:

out f low t; nð Þ ¼ 1−rð Þ � in f low t; nð Þ
deg nð Þ ;

In addition, for all nodes in the network at each time step t:
(iii) The activation received from each of its neighbors are

added to its own retained activation from the previous time
step, as given by the following equation:

inflow t; nð Þ ¼ ∑
deg nð Þ

i¼1
outflow t−1; dið Þ þ reservoir t−1; nð Þ;

where reservoir (t, n) is the amount of activation retained at
node n at time step t, inflow (t, n) is the total amount of
activation flowing into node n at time step t, outflow (t, n) is
the activation flowing out of node n to each of its neighbors at
time step t, r is the proportion of activation retained at node n,
d is a neighbor of node n, and deg(n) is the number of neigh-
bors of node n.

Calling the spreadr function in spreadr will invoke a sub-
routine that algorithmically implements actions (i)–(iii) for all
nodes in the specified network for a given number of times.
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Parameters

The spreadr function includes a number of parameters that
can be specified by the user. A detailed description of these
parameters is provided below.

start_run: This parameter takes the form of a data frame
that contains the activation values assigned to specific
nodes at t = 0.
retention, r: This parameter refers to the proportion of
activation that is retained by the node at each time step
of the simulation. This parameter was manipulated by
Vitevitch et al. (2011) to demonstrate that the simula-
tion results were consistent across various values of
retained activation; however, the retention parameter
could also be manipulated in order to examine hypoth-
eses related to the notion of an Bincreased^ spread of
activation (i.e., implemented as a lower proportion of
activation retained) as a possible mechanism underly-
ing hyperpriming effects observed in people with
schizophrenia (Moritz et al., 2001; Pomarol-Clotet,
Oh, Laws, & McKenna, 2008).
decay, d: This parameter refers to the proportion of acti-
vation that is Blost^ at each time step of the simulation.
Although Vitevitch et al. (2011) did not manipulate d,
thereby ensuring that the total sum of activation values
in the network would remain constant over time, d was
included as a parameter in the function in order to allow
the researcher to reexamine the assumption that activa-
tion is a fixed cognitive resource that does not diminish
over time, in line with previous empirical work suggest-
ing that activation is a resource that can decay over time
(Lorch, 1982; McKoon & Ratcliff, 1992).
suppress, s: This parameter refers to the minimum acti-
vation value, whereby nodes with activations less than
this minimum value at the end of each time step will have
their activations Bsuppressed^ to 0. The purpose of in-
cluding this parameter is to speed up the simulations
and instantiate the assumption that nodes with extremely
low activation levels are essentially nonactive during the
spreading activation process.
time steps, t: This parameter refers to the number of time
steps over which the spreading activation process occurs.
Vitevitch et al. (2011) allowed activation to spread for ten
time steps and assumed that lexical retrieval occurred at
the end of ten time steps. The final activation levels of the
target nodes were assumed to be positively correlated
with processing efficiency (i.e., faster reaction times
[RTs] or higher accuracy). It is important to note that,
although there are different ways to implement the re-
trieval process, the different mechanisms commonly
employed in those models (e.g., an activation threshold
that must be crossed, different resting levels of activation,

etc.) typically produce isomorphic results (McClelland &
Rumelhart, 1981; Morton, 1969).

Finally, it is important to note that the selection of values
for these parameters is somewhat arbitrary. However, many
computational models typically include a large number of free
parameters (e.g., McClelland & Elman, 1986), and what is
most crucial is to ensure that the qualitative behavior of the
model is robust under a range of parameter values. In compu-
tational work it is important for the researcher to be transpar-
ent about the values of the parameters that were tested in the
simulation, enabling a thorough examination of the ability of
the model to reproduce behavioral patterns.

Step-by-step guide to using spreadr

The spreadr R package can be downloaded directly from the
Comprehensive R Archive Network. The latest version of the
package can also be downloaded from the author’s Github
page. The source code for the functions used in spreadr can
also be downloaded directly from the following website,
https://github.com/csqsiew/spreadr, and researchers are
welcome to download and modify the functions for their
own purposes.

First, the network in which the spreading of activation oc-
curs must be specified. In this example, we use the
sample_gnp function from the igraph R package to generate
a network with 20 nodes, and undirected links are randomly
placed between pairs of nodes with a probability of .2 (Fig. 2).
It is possible for the user to create a network from an edge list
or an adjacency matrix. In this step, it is important to create a
network object that is (i) recognized by igraph as a network
object and (ii) has a meaningful name attribute (to specify the
node labels). In addition, spreadr is able to conduct the simu-
lation directly on an adjacency matrix without requiring con-
version to an igraph object. Note also that the present network
specified consists of unweighted, undirected links; however, it
is possible to conduct simulations on networks with weighted
and directed edges (see the detailed vignette provided at
https://github.com/csqsiew/spreadr for more information
about these advanced topics).

[R code]
# direct download from CRAN
install.packages('spreadr')
# download latest version from author's github
# install.packages('devtools')
# library(devtools)
# install_github('csqsiew/spreadr')
library(spreadr)
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The user must then specify the initial activation level(s) of
the node(s) in the network in a data frame object with two
columns, labeled node and activation. Below the node labeled
BN1^was assigned 20 units of activation. The user can choose
to provide different activation values or to initialize more
nodes with various activation values (a concrete example of
this will be provided in Study 2 below).

We are finally ready to run the simulation. In this step, the
user must specify the following arguments and parameters in
the spreadr function:

(i) start_run: the data frame (initial_df) specified in the pre-
vious step that contains the activation values assigned to
nodes at t = 0;

(ii) decay, d: the proportion of activation lost at each time
step (ranges from 0 to 1);

(iii) retention, r: the proportion of activation retained in the
originator node (ranges from 0 to 1);

(iv) suppress, s: nodes with activation values lower than
this value will have their activations forced to 0.
Typically this will be a very small value (e.g., <
.001);

(v) network: the network (N.B. must be an igraph object or
an adjacencymatrix) in which the spreading of activation
occurs;

(vi) time, t: the number of times to run the spreading activa-
tion process, and

(vii) create_names: the default is TRUE, so that unique nu-
meric labels will be created for the nodes in case they
were not named in the network object.

The output is a data frame with three columns, la-
beled node, activation, and time, and contains the acti-
vation value of each node at each time step of the sim-
ulation. The output can easily be saved as a .csv file for
further analysis later. A plot showing the activation
levels of each node in the network at each time step is
shown in Fig. 3.

In the next section of this article, the results of three sets of
simulations are reported. The first set of simulations serves as an
Bsanity check,^ to ensure that spreadr is able to reproduce the
results reported in Vitevitch et al. (2011) regarding the
clustering coefficient effect in lexical retrieval. The second and
third sets of simulationsdemonstratehowspreadr canbeextended
to investigate other aspects of cognitive phenomena, specifically
the behavioral findings in false memory and semantic priming.

Simulation Study 1: Lexical retrieval

Thegoal ofStudy1was todemonstrate that the implementationof
the spreading activation process in spreadr is able to reproduce the

Fig. 2 The randomly generated network in which the simulation was
conducted. The blue node BN1^ was initialized with 20 units of
activation, some of which spread to nodes BN5,^ BN8,^ BN9,^ and
BN18^ in the next time step

[R code]

[R code]

[R code]
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resultsofVitevitchetal.(2011).Hence,thestepstakenfollowedthe
method described inVitevitch et al. (2011) as closely as possible.

A total of 12 words with high clustering coefficients and 12
wordswith lowclusteringcoefficientswere selectedfromthepho-
nological languagenetworkdescribed inVitevitch (2008). The24
words were selected such that their degree, clustering coefficient,
and two-hop network density (a measure indicating the overall
connectivityof the target’s two-hopnetwork)valueswereasclose-
ly matched as possible to the values listed in Appendix 1 of
Vitevitch et al. (2011), who selected words across a wide range
of degree values (3 to 40). The two-hop network consisted of the
target node, its immediate neighbors, and the neighbors of its im-
mediate neighbors (i.e., its two-hop neighbors). The network sta-
tistics of the 24 words used in the present set of simulations are
provided inAppendix 1.

The two-hop network for each of the 24 words was extract-
ed and converted to an igraph network object for the simula-
tions. In accordance with Vitevitch et al. (2011), the following
parameters were used: nine different retention values (.1 to .9,
in increments of .1), to ensure that the results would be gen-
eralizable across different parameter settings, and 100 units of
activation were assigned to the target node at t = 0 (see Fig. 4).
The suppress and decay parameters were set to 0, since

Vitevitch et al. (2011) did not manipulate these parameters.
A total of 216 simulations were conducted (24 word networks
* 9 retention levels).

A linear regression model was conducted to examine
the influences of degree, clustering coefficient, and reten-
tion on the activation values of the target node at the
final time step. Note that the activation value of the
target node at the final time step was taken to be a proxy
for the efficiency with which the word was retrieved
from the lexicon. Specifically, higher activations corre-
spond to faster RTs and higher accuracy rates in psycho-
linguistic tasks. The predictors were retention, degree,
and clustering coefficient, which were all included in
the model as continuous variables.

Table 1 shows the standardized beta coefficients for
each predictor and their corresponding t tests. The overall
adjusted R2 was .550, F(3, 212) = 88.7, p < .001.
Unsurprisingly, retention was a significant predictor of
the final activation values, such that higher retention rates
were associated with higher final activation values.
Clustering coefficient was also a significant predictor of
the final activation values, such that words with high clus-
t e r ing coeff i c i en t s had lower f ina l ac t iva t ions
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(corresponding to lower accuracy and slower RTs), repli-
cating the simulations reported in Vitevitch et al. (2011),
and consistent with the behavioral findings of Chan and
Vitevitch (2009). Finally, degree was a significant predic-
tor of the final activation values, such that words with high
degrees had lower final activations (corresponding to low-
er accuracy and slower RTs), consistent with prior work in
spoken word recognition regarding phonological neighbor-
hood density effects (Luce & Pisoni, 1998) and mirroring
the effect also reported in the original simulation (Vitevitch
et al., 2011). Figure 5 shows the standardized difference
scores between the activation levels of words with low
clustering coefficients and words with high clustering co-
efficients across various values of degree. For almost all
values of degree, the difference scores were positive, indi-
cating that words with low clustering coefficients had
higher final activations than words with high clustering

coefficients, although the difference was larger for words
with lower degrees (i.e., fewer immediate neighbors), and
much smaller for words with higher degrees (i.e., many
immediate neighbors), suggesting that the internal connec-
tivity of a word’s neighborhood might have a greater influ-
ence on processing when a word’s neighborhood is small-
er. The simulations suggest an interesting interaction be-
tween degree and clustering coefficient that could be ex-
amined in future empirical work.

Simulation Study 2: False memory

The goal of Study 2 was to demonstrate that the implementation
of the spreading activation process in spreadr can be applied to
investigate other aspects of cognitive processing—specifically,
the emergence of false memories. In the original paradigm, par-
ticipants studied a word list consisting of items semantically
associated with the critical word sleep, but never the word sleep
itself (e.g., dream, bed, tired, awake). In the test phase, during
which participants recalled items from the study phase, the word
sleep tended to be falsely recalled, even though it had not been
presented during the study phase (Deese, 1959; Roediger &
McDermott, 1995). Since then, others have adopted the same
paradigm to investigate phonological false memory, in which
lists of phonologically similar words were presented to partici-
pants during the study phase, and the participants tended to false-
ly recall words that sounded similar to those in the presented list
(Sommers & Huff, 2003; Sommers & Lewis, 1999; Watson,
Balota, & Sergent-Marshall, 2001).

For this set of simulations, we focused on the findings in
Experiment 1 of Vitevitch et al. (2012), who investigated
phonological false memory (e.g., Sommers & Lewis, 1999).
In this study, Vitevitch et al. (2012) presented the phonologi-
cal neighbors of words with high and low clustering coeffi-
cients during the study phase, but not the critical words them-
selves (i.e., the words with high and low clustering coeffi-
cients), and found that words with low clustering coefficients
were more likely to be falsely remembered. This finding sug-
gested that the internal connectivity of a word’s phonological
neighbors might play a role in modulating the partial activa-
tion of the non-presented word (i.e., the critical word). In the
present simulations, we sought to see whether these behavior-
al findings could be accounted for via the same process of
spreading activation.

The same two-hop networks for each of the 24 words from
Study 1 were used in this set of simulations. Although these
were not the same words used in the phonological false mem-
ory experiment conducted in Vitevitch et al. (2012), this set of
24 words from the earlier simulation was used because these
words had already been selected to represent a wide range of

Table 1 Standardized beta coefficients for each predictor in the
regression model in Simulation Study 1, and their corresponding t tests

β SE t p

Retention 7.97 0.507 15.71 < .001

Degree – 2.07 0.523 – 3.96 < .001

Clustering coefficient – 1.48 0.520 – 2.83 .005

Fig. 4 One of the 24 word networks used in Simulation Study 1. The
target node is in black and was initially assigned 100 units of activation.
The immediate (one-hop) neighbors of the target node are in gray, and the
two-hop neighbors of the target node are in white. None of the one-hop or
two-hop neighbors were assigned any activation at t = 0
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degree and clustering coefficient values (i.e., 12 pairs of words
with degrees ranging from 3 to 40, such that each pair had the
same degree and contained a word with high C and another
word with low C). The following parameters were used as
before: nine different retention values (.1 to .9, in increments
of .1), to ensure that the results would be generalizable across
different parameter settings, and suppress and decay parame-
ters set to 0. Instead of assigning activation to one node at the
outset, activation was assigned to the target’s immediate neigh-
bors. To ensure that the amount of activation that each network
was initialized with was constant across all simulations, the
amount of activation assigned to each neighbor of target node
i was 100 units/degree of node i. Note that no activation was
assigned to the target node, mirroring the false memory para-
digm, in which a word’s semantic or phonological neighbors
(but not the word itself) were presented during the study phase
(Roediger & McDermott, 1995; see Fig. 6). A total of 216
simulations were conducted (24 word networks * 9 retention
levels).

A linear regression model was constructed to examine
the influence of degree, clustering coefficient, and reten-
tion on the activation value of the target node at the final
time step. Note that the activation value of the target node
at the final time step was taken to be a proxy for false alarm
rates in false memory tasks. Specifically, higher activations
correspond to a higher likelihood of false alarms (recogni-
tion or recall of a non-presented word) in false memory
paradigms. The predictors were retention, degree, and

clustering coefficient, which were all included in the model
as continuous variables.

Fig. 6 One of the 24 word networks used in Simulation Study 2. The
target node is in black. The immediate (one-hop) neighbors of the target
node are in gray and are assigned 33 units (= 100/3) of activation at t = 0.
The two-hop neighbors of the target node are in white. None of the two-
hop neighbors or the target node was assigned any activation at t = 0

Fig. 5 Mean standardized difference scores (with error bars) between the
final activation of words with low clustering coefficients and words with
high clustering coefficients with the same degree in Simulation Study 1.
The difference score was obtained by subtracting the final activation of
the highCword from the final activation of the lowCword with the same
degree and for the same retention parameter (i.e., for each value of

degree, nine difference scores represented the nine different retention
values [.1 to .9, in increments of .1]). The mean difference score was
obtained by averaging across all retention values. In almost all cases,
the final activation values of words with low clustering coefficients
were greater than the final activation value of words with high
clustering coefficients
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Table 2 shows the standardized beta coefficients for each
predictor and their corresponding t tests. The overall adjusted
R2 was .683, F(3, 212) = 155.4, p < .001. Unsurprisingly,
retention was a significant predictor of final activation values,
such that higher retention rates were associated with higher
final activation values. Clustering coefficient was also a sig-
nificant predictor of final activation values, such that words
with high clustering coefficients had lower final activations
(corresponding to lower false alarm rates), replicating the be-
havioral findings in Experiment 1 of Vitevitch et al. (2012),
who reported a higher false alarm rate for words with low
clustering coefficients than for words with high clustering
coefficients. Finally, degree was a significant predictor of final
activation values, such that words with high degrees had lower
final activations (corresponding to lower false alarm rates; see
Fig. 7).

Simulation Study 3: Semantic priming

The goal of Study 3 was to demonstrate how spreadr can be
used to investigate the cognitive mechanisms that underlie
semantic priming. Semantic priming is typically investigat-
ed via the lexical decision task, in which participants are
presented with a prime followed by a target and have to
decide, as quickly and accurately as possible, whether the
target word was a real English word or a nonword. The
general finding is that participants are faster and more ac-
curate when the prime is related to the target (e.g.,
DOCTOR–nurse), as compared to when the prime is
unrelated to the target (e.g., DOCTRINE–nurse; see
Neely, 1991, and McNamara, 2005, for reviews of the
semantic priming literature). The present simulations dif-
fered from the previous ones in two ways: (i) These simu-
lations were conducted in a semantic network (instead of a
phonological network), where edges were placed between
words that were semantically related to each other, and (ii)
the simulation outputs were compared against empirical
data for the same prime–target pairs. The purpose was to
provide a more stringent test of the capabilities of spreadr
and to demonstrate how researchers can use spreadr to
study cognitive processes in a different domain.

This set of simulations was conducted in a semantic
network, in which edges were placed between words that
represented the cues and responses in a free association
task. In the free association task, a cue word is presented
to participants who provide words that are related to the
cue (e.g., listing the words Bdog^ and Bkitten^ in re-
sponse to the cue word Bcat^; De Deyne et al., 2018;
Nelson, McEvoy, & Schreiber, 2004). Specifically, the
semantic network used in the present set of simulations
was constructed from the University of South Florida
(USF) free association norms (Nelson et al., 2004) and
was obtained from http://vlado.fmf.uni-lj.si/pub/networks/
data/dic/fa/FreeAssoc.htm (where the cues and responses
from the USF database were converted into a network
representation in Pajek, a network analysis program).
This Pajek network object was converted to an igraph
network object for the present study, and directed and
weighted edges in the Pajek network were converted to
undirected and unweighted edges in the igraph network.
Self-loops and duplicated edges were also removed,
resulting in a network with 10,617 nodes and 63,782
edges.

The empirical data were obtained from the Semantic
Priming Project (SPP; Hutchison et al., 2013; http://spp.
montana.edu), a megastudy that collected speeded naming
and visual lexical decision data for 1,661 words following
related and unrelated primes from a large number of
participants. For the present study, 100 targets were
randomly selected from the set of 1,661 targets, and the
related and unrelated primes associated with each target
were retrieved (e.g., the target Bballet^ with its related
prime Btutu^ and unrelated prime Bofficer^), resulting in
200 prime–target pairs. All 200 primes and 100 targets
were included in the USF free association norms. The
mean item z-scored lexical decision RTs (with a stimulus
onset asynchrony of 1,200 ms) for each of the 200 prime–
target pairs were then retrieved from http://spp.montana.
edu. A list of the 200 prime–target pairs selected for the
simulation is provided in Appendix 2.

The goal of the present study was to conduct a Bvirtual^
experiment using the empirical data obtained from the SPP
and the outputs of the simulations (i.e., final activation values
of the target words in the semantic network) conducted with
spreadr for the same set of prime–target pairs. If a process such
as spreading activation implemented on a semantic net-
work of free associations could be used to account for
semantic-priming effects, one would expect to find higher
activation levels of the target at the final time step to be
correlated with faster RTs in lexical decision, and targets
with related primes to have higher final activation levels
than targets with unrelated primes. Although these hypoth-
eses might appear to be trivial, it is important to

Table 2 Standardized beta coefficients for each predictor in the
regression model in Simulation Study 2, and their corresponding t tests

β SE t p

Retention 0.77 0.116 6.68 < .001

Degree – 2.21 0.120 – 18.48 < .001

Clustering coefficient – 1.58 0.120 – 13.19 < .001
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demonstrate that spreading activation as implemented by
spreadr in a semantic network representation is indeed able
to account for the general semantic priming effect, espe-
cially given that spreading activation is generally accepted
as the basic mechanism underlying semantic priming ef-
fects (McNamara & Altarriba, 1988; but see Lucas, 2000).

To investigate the ability of a simple spreading acti-
vation process to account for the advantage observed for
related prime–target pairs, 100 units of activation were
assigned to the prime at t = 0, and the spreading acti-
vation process was allowed to proceed for ten time
steps. At the end of ten time steps, retrieval of the target
was presumed to occur (as in Studies 1 and 2), and the
final activation level of the target was recorded. The
following parameters were used: four values of retention
[.2, .4, .6, .8], to ensure that the results could be gen-
eralized across different amounts of retained activation;
suppress = 0; and decay = 0. A total of 800 simulations
were conducted (100 targets * 2 prime types * 4 values
of retention).

Results

The z-scored item mean RTs for the 200 prime–target pairs
from the SPP were negatively correlated with the final activa-
tion levels of the target for all retention values [r.2 = – .264, r.4
= – .245, r.6 = – .262, r.8 = – .273; all ps < .001], indicating that
targets that receivedmore activation tended to be responded to

more quickly in the lexical decision task. To examine whether
prime type (related vs. unrelated to the target) was a significant
predictor of the empirical data and simulation results, five
linear regression models were fitted in which z-scored item
mean RTs and the final activation level of the target for each
retention value were the dependent variables. The key predic-
tor of interest was prime type (i.e., related or unrelated to the
target), and the following covariates were included: length of
prime, frequency of prime, orthographic neighborhood size of
prime, length of target, frequency of target, orthographic
neighborhood size of target, forward association strength
(the proportion of participants in Nelson et al. (2004), norms
who reported the target in response to the prime), backward
association strength (the proportion of participants in Nelson
et al. (2004), norms who reported the prime in response to the
target), CueFanOut (the number of targets given as a response
to the prime when it was a cue in the Nelson et al. (2004),
norms), TargetFanIn (the number of cues that produced the
target as a response in the Nelson et al. (2004), norms), and
semantic similarity computed via latent semantic analysis
(LSA; Landauer & Dumais, 1997; this value represented the
similarity between the prime and target based on their co-
occurrences in text corpora). The values for these covariates
were obtained from the SPP.

The results of the regression are shown in Table 3. After
controlling for variables known to influence lexical decision
performance (i.e., the lexical characteristics of the prime and
target) and variables typically used to measure the relatedness

Fig. 7 Mean standardized difference scores (with error bars) between the
final activation of words with low clustering coefficients and words with
high clustering coefficients with the same degree in Simulation Study 2.
The difference score was obtained by subtracting the final activation of
the highCword from the final activation of the lowCword with the same
degree and for the same retention parameter (i.e., for each value of

degree, nine difference scores represented the nine different retention
values [.1 to .9, in increments of .1]). The mean difference score was
obtained by averaging across all retention values. In almost all cases,
the final activation value of words with low clustering coefficients was
greater than the final activation value of words with high clustering
coefficients
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of prime and target (Hutchison et al., 2013), targets that
followed related primes corresponded with higher activation
levels and were also responded to more quickly than targets
that followed unrelated primes. Figure 8 shows the marginal
effect of prime type, after controlling for covariates. Overall,
the results of this Bvirtual^ experiment showed that the simu-
lations conducted using spreadr, which involved a simple pro-
cess of spreading of activation implemented in a semantic
network of free associations, was able to account for the
semantic priming effect in lexical decision.

General Discussion

This article introduced spreadr, an R package that can simulate
spreading activation in a network of nodes and edges. Three sets
of simulations demonstrated the utility of this tool to simulate
spreading activation as a possible mechanism to account for the
clustering coefficient effect in lexical retrieval and false memory,
and for semantic priming effects in lexical decision. It fills a
surprising gap in the literature—although the metaphor of
spreading activation is very prevalent in cognitive psychology
research (e.g., Anderson, 1983; Collins & Loftus, 1975), to the
best of my knowledge, few tools are both freely available and
accessible to psychologists that enable them to specifically test
these ideas or intuitions computationally.

The simulation studies reported in this article demonstrate
how the functions in spreadr can be readily extended to investi-
gate a variety of cognitive phenomena. As was demonstrated in
Study 3, spreadr can be used to examine how spreading activa-
tion occurs in a semantic network constructed from free associ-
ations (De Deyne et al., 2016; Nelson et al., 2004), and future
work should examine whether various complex behavioral pat-
terns of semantic priming (e.g., interactions with stimulus onset
asynchrony, asymmetric priming effects, mediated priming
effects; seeMcNamara, 2005, for a review) can be Breproduced^
using spreadr, and how this implementation compares to a con-
nectionist, neural network framework (e.g., Lerner, Bentin, &
Shriki, 2012; Plaut & Booth, 2000). Indeed, a common and valid
critique of spreading activation models is that they are
Bmetaphorical models, which do not offer a mechanistic account
of the dynamics in question^ (Lerner et al., 2012, p. 3). With
spreadr, however, cognitive scientists can begin to evaluate
spreading activation models computationally, instead of merely
discussing these models in metaphorical terms.

For instance, one research question in the semantic priming
literature that could benefit from computer simulations conduct-
ed using spreadr involves the mediated semantic priming effect,
which has a long history of research with contradictory results
across different tasks (Balota & Duchek, 1989; Balota & Lorch,
1986; De Groot, 1983; deWit & Kinoshita, 2015). One possible

explanation for these findings is that researchers have failed to
take into account the broader semantic structure of language
when developing the stimuli (primes and targets) used in these
experiments. For instance, consider the words lion–tiger–stripes.
In two-step (mediated) priming, lion primes the target word
stripes, mediated via the word tiger. However, it is conceivable
that larger amounts of Blong-range priming^might occur if there
are multiple paths (through mediating words such as tiger and
zebra) from the prime (lion) to the target (stripes), such that the
target receives more activation accumulated from multiple
sources (not an implausible idea, given past work showing that
the accumulation of activation is additive in nature; Balota &
Paul, 1996). A simulation of spreading activation among words
in a semantic network for two or three steps and examining the
probability distribution of activation values across all other words
in the semantic lexicon could lead to new insights into mediated
priming effects.

More importantly, the package and the simulations conducted
exemplify a key idea in network science—that a complete un-
derstanding of any process should include a consideration of the
structure in which the process is operating in. Such consider-
ations may be particularly relevant to at least two diverse bodies
of research: One related to the theoretical debate regarding
models of retrieval from semantic memory, and one related to
cognitive aging and decline.

First, a key theoretical debate in the area of semantic memory
relates to the difficulty of disentangling the influences of structure
and process in retrieval outputs frommemory (i.e., responses in a
category fluency task). For instance,Hills, Jones, andTodd (2012)
found that a search process that dynamically switched between
subcategories of a semantic space extracted from a text corpus
could account for fluency data (see also Hills, Todd, & Jones,
2015). On the other hand, Abbott, Austerweil, and Griffiths
(2015) argued that a randomwalkmodel operating on a semantic
network of free associations is also a plausible mechanism of
search in fluency tasks. The spreadr package could be useful to
researchers who wish to conduct simulations to examine how
information might be retrieved from a memory representation
with varying structural properties (which could be approximated
by a semantic network constructed of edges that represent free
associations, shared features, or co-occurrences in text corpora),
and could be extended to investigate howvariations of the spread-
ing activation process (i.e., adjusting the parameters of decay,
suppress, retention) might interact with the structure of semantic
memory to produce the outputs in the fluency task.

Second, spreadr could contribute to theoretical work related to
cognitive aging and decline. As people age they accumulate
more semantic information, resulting in denser semantic net-
works (Dubossarsky, De Deyne, & Hills, 2017; Ramscar,
Hendrix, Shaoul, Milin, & Baayen, 2014; Wulff, Hills,
Lachman, & Mata, 2016). Together with research showing that

Behav Res (2019) 51:910–929 921



Table3 Standardized beta coefficients for each predictor in the regression models and their corresponding t tests. In all models, the BPrime Type^
predictor was significant (highlighted in gray)

LDT Z RT
Predictors std. Beta SE t p
(Intercept) -0.29 0.769

Prime Length 0.14 0.08 1.65 0.101

Prime Log Sub Freq 0.04 0.07 0.57 0.569

Prime Ortho N 0.08 0.08 0.98 0.327

Target Length 0.33 0.09 3.53 0.001
Target Log Sub Freq -0.26 0.08 -3.41 0.001
Target Ortho N 0.16 0.09 1.72 0.087

FAS -0.18 0.1 -1.75 0.083

BAS -0.01 0.07 -0.12 0.903

Cue Fan Out -0.08 0.11 -0.77 0.442

Target Fan In -0.16 0.07 -2.22 0.028
LSA -0.04 0.09 -0.43 0.669

Prime Type 0.24 0.09 2.77 0.006
Observations 200

R
2

/ adjusted R
2

0.354 / 0.312

activation (retention = 0.2) activation (retention = 0.4)
Predictors std. Beta SE t p std. Beta SE t p
(Intercept) 3.37 0.001 4.11 <0.001
Prime Length -0.09 0.07 -1.16 0.246 -0.08 0.07 -1.1 0.274

Prime Log Sub Freq -0.17 0.06 -2.73 0.007 -0.2 0.06 -3.4 0.001
Prime Ortho N -0.06 0.07 -0.79 0.431 -0.05 0.07 -0.77 0.444

Target Length -0.1 0.09 -1.13 0.259 -0.09 0.08 -1.18 0.238

Target Log Sub Freq -0.02 0.07 -0.26 0.796 -0.02 0.06 -0.29 0.771

Target Ortho N -0.19 0.08 -2.25 0.026 -0.17 0.08 -2.27 0.024
FAS 0.13 0.09 1.39 0.165 0.15 0.09 1.7 0.091

BAS -0.13 0.06 -2.06 0.041 -0.13 0.06 -2.28 0.023
Cue Fan Out -0.05 0.1 -0.56 0.577 -0.09 0.09 -1.04 0.3

Target Fan In 0.25 0.07 3.87 <0.001 0.08 0.06 1.33 0.186

LSA 0.27 0.08 3.31 0.001 0.26 0.07 3.48 0.001
Prime Type -0.34 0.08 -4.31 <0.001 -0.44 0.07 -6 <0.001
Observations 200 200

R
2

/ adjusted R
2

0.470 / 0.436 0.549 / 0.520

activation (retention = 0.6) activation (retention = 0.8)
Predictors std. Beta SE t p std. Beta SE t p
(Intercept) 5.4 <0.001 6.35 <0.001
Prime Length -0.06 0.06 -1.08 0.283 -0.05 0.05 -1 0.321

Prime Log Sub Freq -0.2 0.05 -3.95 <0.001 -0.18 0.04 -3.9 <0.001
Prime Ortho N -0.04 0.06 -0.63 0.526 -0.02 0.05 -0.38 0.704

Target Length -0.06 0.07 -0.9 0.367 -0.01 0.06 -0.23 0.821

Target Log Sub Freq -0.02 0.05 -0.37 0.708 -0.02 0.05 -0.45 0.652

Target Ortho N -0.11 0.06 -1.78 0.077 -0.03 0.06 -0.58 0.561

FAS 0.13 0.07 1.77 0.079 0.1 0.07 1.45 0.15

BAS -0.12 0.05 -2.5 0.013 -0.11 0.04 -2.51 0.013
Cue Fan Out -0.16 0.07 -2.18 0.031 -0.24 0.07 -3.52 0.001
Target Fan In 0.01 0.05 0.24 0.812 -0.02 0.05 -0.38 0.703

LSA 0.2 0.06 3.2 0.002 0.11 0.06 2.02 0.045
Prime Type -0.57 0.06 -9.13 <0.001 -0.67 0.06 -12.02 <0.001
Observations 200 200

R
2

/ adjusted R
2

0.675 / 0.655 0.739 / 0.722
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older adults experience declines in episodic memory (Balota,
Dolan, & Duchek, 2000; Naveh-Benjamin, Hussain, Guez, &
Bar-On, 2003) and more frequent lexical search and retrieval dif-
ficulties (Burke, MacKay, Worthley, & Wade, 1991; James &
Burke, 2000), an important theoretical question is the extent to
which the cognitive deficits observed in older adults are due to a
denser semantic structure or due to a process that has become less
Befficient.^ Using the spreadr package, one could (i) compare
spreading activation in sparse and densely connected network
structures, and (ii) manipulate the parameters (i.e., decay, reten-
tion, suppression) to simulate an efficient or inefficient process.
For instance, specifying a higher decay rate, higher retention rate,
or higher suppression threshold would introduce Bfriction^ into
the spreading activation process, so that activation would not
spread as easily in the network. Therefore, spreadr provides a
computational Bsandbox^ for researchers to explore (albeit on a
small scale) the interaction between structure and process.

In closing, it must be emphasized that the intention of this
articlewasnot toprovide adefinitive theoryormodelof spreading
activation; rather, itspurpose is toenable thebroaderapplicationof
spreading activation in a specified network structure,which could
represent a language network or semantic network or any cogni-
tivenetworkof interest.Theapproachusedherehas relatively few
parameters as compared to more established and prominent
models, such as the interactive-activation model (McClelland &
Rumelhart, 1981) and connectionist models (Gordon & Dell,
2001; Harm & Seidenberg, 2004; Seidenberg & McClelland,
1989), that are more complex and have several parameters

that must be carefully tuned to improve performance. The ap-
proach here complements these models, but differs from them
by focusing on exploring a single, simple idea—how spreading
activation might occur in a network of connected nodes. As was
noted by McClelland (2009), cognitive models were never
intended to fully account for any cognitive phenomenon, but rath-
er are Bexplorations of ideas about the nature of cognitive
processes^ (p. 11). Conducting simple simulations allows us to
clearly test specific ideas related to cognitive processing.

There is much value in computationally testing verbal the-
ories, and such research can complement behavioral and ex-
perimental approaches in cognitive psychology research
(Lewandowsky, 1993; Farrell & Lewandowsky, 2010). It is
hoped that this package will be useful to cognitive and lan-
guage scientists who are interested in investigating spreading
activation in a concrete way, and will encourage others to
consider how the structure of cognitive systems such as the
mental lexicon and semantic memory interacts with the pro-
cess of spreading activation.

Author note The author is supported by an Overseas Postdoctoral
Fellowship from the National University of Singapore. The author thanks
Thomas Hills and Mike Vitevitch for providing useful comments on
earlier versions of the manuscript, as well as Dirk Wulff and an anony-
mous reviewer for assistance with optimizing the R code. The data and R
scripts used in the simulations are freely available at https://osf.io/a9bv6.
The source code used to construct the spreadr R package can be found at
https://github.com/csqsiew/spreadr.
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Fig. 8 Marginal effects of prime type for all regression models. In all cases, targets that followed related primes were responded to more quickly (a) and
had higher levels of activation in the spreadr simulations conducted (b–e), as compared to targets that followed unrelated primes
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Appendix 1

Appendix 2

Table 4. Degree and clustering coefficient values of the 24 target nodes
used in Simulation Studies 1 and 2

Node Degree Clustering Coefficient

1 3 .67

2 3 .33

3 6 .47

4 6 .13

5 8 .46

6 8 .14

7 12 .47

8 12 .14

9 16 .49

10 16 .16

11 20 .61

12 20 .27

13 24 .59

14 24 .26

15 28 .46

16 28 .24

17 32 .39

18 32 .21

19 36 .32

20 36 .21

21 38 .28

22 38 .20

23 40 .31

24 40 .23

Table 5. List of prime–target pairs randomly selected from the
Semantic Priming Project (Hutchison et al., 2013) for Simulation Study 3

Target Related Prime Unrelated Prime

africa continent straight

ambulance emergency cape

baby child inside

ballet tutu officer

bass treble meticulous

begin originate professional

blow whistle acid

bother nag perceive

breathe air hay

building architect what

camera tourist excuse

climb stairs chisel

coat trench vegetable

compact disc criterion

Table 5. (continued)

Target Related Prime Unrelated Prime

cool refreshing precipice

cough sneeze drive

crack crevice annoy

dancer singer kettle

dead corpse mineral

defeat conquer slug

dinner lunch join

dolphin flipper sheet

doughnut pastry ill

east west stewardess

exhale inhale gravy

explain elaborate tar

far distance monument

fashion fad command

feet hands spell

finish accomplish god

five four wagon

gas fuel unique

general specific soon

gin tonic resort

give generous bumps

glory hope influence

glue paste moss

gone going federal

grasp hold spread

guilty innocence bug

have must newspaper

hill steep birthday

hold grip equal

human being catch

indian tribe breakable

insurance claim wheel

itch rash boots

item product let

juvenile delinquent jury

know intuition wool

lawyer attorney central

leg crutch appendage

live survive virgin

many variety owe

more extra convict

move shift oasis

nephew niece captain

obsession compulsion interesting

paint art some

paper news inmate

pass fail motel

pen quill freckle

persuade convince rebel
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Appendix 3 Results of simulations comparing
the outputs of spreadr to naïve randomwalks
implemented in the same network

All simulations were conducted on the same Erdös–Renyí
random network of 100 nodes and 738 unweighted, undi-
rected edges (~ .15 probability of an edge existing between
two nodes).

Parameters used in the spreading activation simulation
(SA) implemented by spreadr: 100 units assigned to a
single node at t = 0; decay = 0, retention = 0, suppress
= 0. The simulation was allowed to continue until the
activation levels of all nodes were stable (i.e., changed
by less than 0.001 units of activation). The simulation
continued for 12 time steps based on this criterion. Time
taken: 0.007 s.

Random walk simulations (RW), implemented by the
random_walk function from the igraph R library: 100,000
random walks of 12 steps (analogous to the 12 time steps in
SA) originating from the same node as above. Time taken: ~
1.4 h.

Results

The final activation levels of all nodes from the SA simulation
were divided by 100 units in order to obtain the proportion of
activation that Bended up^ at each node at the end of 12 time
steps.

The probability that the random walk Bended^ at each of
the 100 nodes was computed from the outputs of 10, 100,
1,000, 10,000, and 100,000 walks. The results can be seen
in Figs. 9 and 10 below.

Overall, the outputs from the randomwalk model converge
to the outputs from spreadr, but only when the randomwalk is
repeated several times (at least 10,000 times). Hence, the out-
puts from spreadr could be argued to reflect the long-run be-
havior of the naïve randomwalker (i.e., when an infinite num-
ber of random walks have been taken), but computed with a
fraction of the time it takes to complete a large number of
random walks (less than 1 s, as compared to 1 h). It is impor-
tant to emphasize that the two cases converge when the pa-
rameters of spreadr are set to specific values (i.e., decay = 0,
retention = 0, suppress = 0). Additional work will be required
to determine whether the two models converge when different
parameter values are used for the spreading activation
simulation.

Table 6. Correlations between the SA and RW outputs for various
conditions

r p

SA | RW_10 .137 .173

SA | RW_100 .342 .005

SA | RW_1000 .616 < .001

SA | RW_10000 .927 < .001

SA | RW_100000 .993 < .001

Table 5. (continued)

Target Related Prime Unrelated Prime

planet venus author

plug outlet map

prejudice stereotype innocent

present gift jerk

priest monk close

protect defend bowl

refuse denial comma

remember reminiscence cougar

rent lease up

ride bike guilt

rule policy memory

run jog thin

sample example tax

science chemistry move

service memorial buzz

shake malt sibling

shame disgrace thimble

shave foam macaroni

sheep lamb entry

shopping spree pumpkin

smoke cigar lane

smooth rough relax

sorority fraternity slave

spine backbone real

spoiled brat argument

stamp postage flood

state governor cotton

stream brook annual

student graduate spatula

tall grow frog

thief crook blueberry

tire flat sneakers

toes feet mate

trees landscape fashion

values morals sleeve

wolf coyote coal

worm maggot anarchy
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Fig. 9 Proportion of activation for each node from the SA simulation (solid line) and the random walk probabilities for each node based on 10, 100,
1,000, 10,000, and 100,000 walks (dashed or dotted lines). The outputs begin to converge when more random walks are implemented

Fig. 10 Proportion of activation for each node from the SA simulation (solid line) and the random walk probability for each node based on 100,000
walks (dotted line)
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