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Abstract
Sometimes the reports of primary studies that are potentially analyzable within the signal detection theory framework do not
report sample statistics for its main indexes, especially the sample variance of d'. We describe a procedure for estimating the
variance of d' from other sample statistics (specifically, the mean and variance of the observed rates of hit and false alarm). The
procedure acknowledges that individuals can be heterogeneous in their sensitivity and/or decision criteria, and it does not adopt
unjustifiable or needlessly complex assumptions. In two simulation studies reported here, we show that the procedure produces
certain biases, but, when used in meta-analysis, it produces very reasonable results. Specifically, the weighted estimate of the
mean sensitivity is very accurate, and the coverage of the confidence interval is very close to the nominal confidence level. We
applied the procedure to 20 experimental groups or conditions from seven articles (employing recognition memory or attention
tasks) that reported statistics for both the hit and false alarm rates, as well as for d'. In most of these studies the assumption of
homogeneity was untenable. The variances estimated by our method, based on the hit and false alarm rates, approximate
reasonably to the variances in d' reported in those articles. The method is useful for estimating unreported variances of d', so
that the associated studies can be retained for meta-analyses.

Keywords SDT . d-prime variance .Meta-analysis

Signal detection theory (SDT; Green & Swets, 1966;
Macmillan&Creelman, 2005;Wickens, 2001) is a conceptual
framework based on the theoretical ability to separate an ob-
server’s sensitivity (typically represented by δ) from the re-
sponse decision criterion (typically represented by C). These
two parameters represent independent psychological process-
es that determine response proportions in detection or discrim-
ination tasks. Both parameters can be estimated from a sample
of data made up of trials that include targets or signals (requir-
ing “yes” responses to be correct) and trials that include
distractors or noise alone (requiring “no” responses). These
estimators (d' as an estimator of δ; c as an estimator of C)
are frequently analyzed as dependent variables in experimen-
tal studies, including not only psychophysical detection exper-
iments, but also recognition memory tests (Rotello, 2017).

However, sometimes the reports of primary studies poten-
tially analyzable within the SDT framework do not report
sample statistics for these indexes. For example, sample aver-
ages of d' or c are sometimes reported, but not their variances.

Knowing the sample variance of d' can be crucial for follow-
up research that uses the data for theoretical purposes, such as
in meta-analytic syntheses of a collection of such primary
studies. Some meta-analyses analyze the hit (H) and false
alarm (F) rates separately, even though a great virtue of SDT
is that it theoretically provides a measure of sensitivity inde-
pendent of the response criterion. To synthesize estimates of
sensitivity indices, such as d', we need to know the sample
means and the variances of these indices. Only then can we
use an appropriate weighting scheme for studies based on the
inverse of the variance, the scheme used most often in meta-
analysis and other theoretical methods for summarizing large
bodies of research (Borenstein, Hedges, Higgins, & Rothstein,
2009). For example, many primary studies use the
continuous-performance test (Nuechterlein & Asarnow,
1992; Rosvold, Mirsky, Sarason, Bransome, & Beck, 1956)
but only analyze the results for omissions and commissions
separately (e.g., Bora, Yucel, & Pantelis, 2009; Fett,
Viechtbauer, Penn, van Os, & Krabbendam, 2011). In a sub-
sequent meta-analysis, it is only possible to calculate the effect
sizes for those rates, but not for sensitivities and response
criteria. The same happens with some studies of recognition
memory (e.g., Aleman, Hijman, de Haan, & Kahn, 1999).

There are also studies in which new models are fitted to
data from sets of empirical studies published previously in
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scientific journals (e.g., Bröder & Schütz, 2009). Knowing the
variance of such statistics as d' is important for making the
most fruitful use of previous results in later mathematical
modeling and meta-analysis.

Especially in the field of meta-analysis, great efforts are
made so that no primary study need be excluded, because of
a lack of statistical information in the published report, when
obtaining combined estimates of an effect size (Cooper,
Hedges, & Valentine, 2009). For example, in a meta-analysis,
Rhodes and Anastasi (2012) analyzed separately the hit and
false alarm rates from 123 and 127 studies, respectively. In
contrast, only 87 (71%) and 68 (54%) of these studies, respec-
tively, could be included in the analysis of sensitivity and
response criterion. The reason for this difference was that
many studies did not report the sample variance of d'. When
some critical information is lacking, it is common practice to
request it from the authors or to estimate it, if possible, from
whatever information is available (e.g., from the t statistic
comparing two groups in their average d' values, or from the
F statistic calculated in a two-group analysis of variance).
Thus, there are theoretically important reasons to develop pro-
cedures that allow for inferring additional information from
the statistics that published studies do provide, without de-
manding unjustifiable or needlessly complex assumptions.

The present article describes a procedure for calculating the
variance of d' from descriptive sample statistics (specifically, the
mean and variance of the observed H and F proportions). To do
this, under the normal homoscedastic model of SDT, we will
assume that beta distributions are associated with the probabili-
ties of H and F. The procedure also assumes initially that the
probabilities of hit and false alarm are linearly independent.With
these assumptions, it is possible to define the distributions of ẑH
and ẑF from which the variance of d' is obtained (see Appendix
A). The variance of c is easily derived from that of d'.

Suero, Botella, and Privado (2018) have developed formu-
las for calculating the variance of d' and cwhen the individuals
are heterogeneous in their parametric values of sensitivity (δ)
and/or criterion (C). In their procedure, it is assumed that at the
population level the parametric values of δ and C are linearly
independent. This is reasonable, since we do not have any
expectation that more-sensitive individuals should tend to be
more conservative or liberal in their criteria. However, such
formulas are useful only for theoretical purposes, since to
employ them it is necessary to know the population variances
(σ2

δ , σ
2
C ), and of course these are unknown. Nevertheless, the

formulas can be used in simulation studies in which those
variances are set by the researcher.

In the present article we study a more practical problem,
different from the problem studied by Suero et al. (2018),
although we will profit from their results. Here we assume
the more realistic scenario that the parametric variances are
unknown and that the information available is only that related
to the rates of H and F (means and variances). On the basis of
that minimal information, we still want to get reasonable

estimates of the variances of d' and c. The rationale of the
procedure, the statistical models, and some of the formulas
are similar to those given by Suero et al. (2018), but they
cannot be identical because the present scenario is different.
Here we will assume initially that the probabilities of hit and
false alarm are linearly independent. This assumption is the
main limitation of the procedure described below, because it
looks risky. That is why once the procedure is developed and a
practical application of the procedure is presented, two simu-
lation studies will be described. In a practical application of
the procedure, the values of the variances imputed with this
procedure for a sample of published studies are comparedwith
those actually reported in the studies. The first simulation was
aimed at studying the variance of d' as calculated by the pro-
posed procedure, when the assumption of independence be-
tween the conditional probabilities of hit and false alarm is not
met. The goal of the second simulation was to study the con-
sequences that violation of the independence assumption
would have for a meta-analysis. Finally, the main conclusions
will be highlighted, as well as the limitations of the procedure,
including strategies for managing the independence issue.

Methods for calculating the variance
of a single-point estimate of d'

Several procedures have been proposed for calculating the
variance of d', given that d' is a point estimate of an individ-
ual’s sensitivity (δ). On the one hand, there is the approximate
procedure of Gourevitch and Galanter (1967), which provides
fairly accurate estimates in a broad range of situations, al-
though in other situations the estimates are not so good
(Suero, Privado, & Botella, 2017). In contrast, Miller’s
(1996) exact procedure provides very accurate estimates in
almost all situations, once the problem of extreme values of
the proportions (0.0 or 1.0) is solved. Note that both proce-
dures refer to the variance of a single-point estimator: They
provide estimates of the standard error of d'.

None of these procedures should be used blindly to calcu-
late the variance of d' for a sample of individuals. Doing so
adopts the risky and arbitrary assumption that all individuals
in the sample are homogeneous in their sensitivities and re-
sponse criteria. Representing the probability of H by πH and
that of F by πF for a single individual, the true variances of the
empirical proportions of hit and false alarm in N signal trials
(Ns) and N nonsignal or noise trials (Nn), respectively, are

Var PHð Þ ¼ πH ⋅ 1−πHð Þ=Ns
Var PFð Þ ¼ πF ⋅ 1−πHð Þ=Nn ð1Þ

The true variances of PH and PF in a sample of observers
will also be expressed in these formulas if the observers are
homogeneous in their performance—that is, if they all come
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from a single population of observers who share the same
values of πH and πF.

The assumption that all observers are homogeneous is quite
risky, however.1 It is much more realistic to assume that the
values of πH and πF will vary among observers. We can es-
tablish that, for a given population, the actual probabilities that
individuals will make YES responses on target and noise trials
will have means of μπH and μπ F

, respectively, and variances

σ2
πH and σ2

π F
. In this situation, the variance of the empirical hit

rate (and similarly for the false alarm rate) is (Kleinman, 1973;
Suero et al., 2018):

σ2
PH

¼ NS ⋅ μπH−μ2
πH

� �þ σ2
πH ⋅ N

2
S−NS

� �
N 2

S

ð2Þ

Note that if the observers are homogeneous (σ2
πH ¼ 0 ),

then Formula 2 is reduced to Formula 1 (i.e., there is a single
value for πH and πF for all individuals, and their means are
therefore those respective values). Of course, a good proce-
dure to test the assumption of observer homogeneity is to test
whether the empirical variances of H and F are statistically
greater than those expected under that assumption (Formula
1). If the test yields a statistically significant result, then it will
not be appropriate to use Formula 1 to estimate the variances
of the proportions, but rather to favor Formula 2. As a conse-
quence, it is not appropriate to use the procedures of either
Miller (1996) or Gourevitch and Galanter (1967) to calculate
the variance of d'.

Suero et al. (2018) have further developed the methods of
Miller (1996) and Gourevitch and Galanter (1967) so that they
can be applied to the situation of heterogeneous observers.
Their simulation studies showed that, whereas their adaptation
of the method of Gourevitch and Galanter provides reasonable
estimates only in some situations, their adaptation of Miller’s
method works well in practically all of the studied conditions.

Estimating the variance of a sample of d'
values from heterogeneous individuals

To use the Suero et al. (2018) procedure (hereafter referred to
as the SBP method), it is assumed that the individuals’ para-
metric sensitivity values follow an unknown distribution with
mean and variance (μδ; σ2

δ ), and that response criterion has

mean and variance (μC; σ2
C ). It is further assumed that the

pairs of individuals’ parametric values are independent (ρδC =
0). Suero et al. (2018) have shown that if there is heterogeneity
in the population sensitivity and criterion values (σ2

δ ;σ
2
C > 0

), then the population probabilities of hit and false alarm (πHi

and πFi ) are no longer linearly independent. Notice that for
calculating the variances σ2

d
0 and σ2

c with this procedure, we

need to know the variances σ2
δ and σ2

C .
In what follows, we adapt the SBP method to a different

scenario, more suited for some practical purposes. In this sce-
nario, the shapes of the population distributions of δi and Ci

and their parameters are unknown. Specifically, in this situa-
tion we assume that (a) the values of πHi and πFi are indepen-
dent and (b) both variables are described by beta distributions
(Johnson, Kotz, & Balakrishnan, 1995). Unlike the scenario
studied by Suero et al. (2018), independence between para-
metric probabilities is assumed here, and this means that δi and
Ci are not necessarily independent; in general, ρδC ≠ 0, but 0 is
a particular case. This new development can be applied to the
task of recovering the variance of d'when only the means and
variances of the proportions of H and F are known, given the
two mentioned assumptions. Let’s see what the procedure for
this scenario entails.Wewill discuss inmore depth the issue of
dependence in sections 4 and 5.

Recall that in the present work we want to obtain the var-
iance of d' knowing only the means and variances of H and F
calculated for a sample of individuals. With only this informa-
tion, it is not possible to deduce the distributions of πH and
πF. Therefore we will assume beta distributions for both πH

and πF. The density function of the beta distribution is:

f x; p; qð Þ ¼ 1

B p; qð Þ ⋅x
p−1⋅ 1−xð Þq−1; 0≤x≤1; p > 0; q > 0 ð3Þ

where B p; qð Þ ¼ ∫10 tp−1⋅ 1−tð Þq−1dt
This distribution has as its domain all values that πH and

πF can assume; that is, they are within the interval [0, 1]. It
also has the advantage of being very flexible, since it can take
different forms and degrees of symmetry, depending on the
values of its two parameters, p and q (see Johnson et al.,
1995). A final advantage is that it is not necessary to use
numerical methods to solve the integrals for the expected
values and the variances of ẑH and ẑF (Eqs. A2–A5 in
Appendix A, taken from Suero et al., 2018), since they can
be solved analytically (see below and Appendix B).

A consequence of assuming that the distributions of πH

and πF follow beta distributions is that the distribution of
the frequencies j of H (or F), and therefore of the proportions
j/N ofH (or of F) (see Appendix B), follow two beta–binomial
distributions (Skellman, 1948). In a theoretical review of such
distribution, Johnson, Kemp, and Kotz (2005) included this
distribution among the hypergeometric ones. Ennis and Bi
(1998) described an application of that distribution in a study
of sensorial discrimination and preferences.

1 The issue of variability in the parameters can be taken even beyond the
differences between individuals, since there is evidence that a given observer
can also change within the same session in his or her sensitivity and can, above
all, shift his or her response criteria (Treisman, 1987; Treisman & Faulkner,
1984, 1985; Treisman &Williams, 1984). Here we assume unique parametric
values for each individual, either because the sensitivity and criteria are stable
within the session or because we only consider an average value that in some
way represents the whole session.
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Furthermore, since ẑH and ẑF are the results of increasing
nonlinear transformations (the inverse of the standardized nor-
mal distribution) of the proportions of H (and F), then the
probability associated with a ẑH (̂zF ) value is equal to the
probability associated with its proportion H (or F).

In addition to assuming a beta distribution, and in the ab-
sence of other empirical or theoretical information, we assume
independence between πH and πF. A consequence of that
assumption is that ẑH and ẑ F are linearly independent; there-
fore, the term σẑH ẑ F is null, leaving the expression for the
variance of d' equal to (remembering that d' = ẑH – ẑF;
MacMillan & Creelman, 2005; Wickens, 2001):

σ2
d
0 ¼ σ2

ẑH
þ σ2

ẑ F
ð4Þ

In conclusion, we propose to obtain σ2
d
0 from σ2

ẑH and σ2
ẑ F ,

assuming that πH and πF are independent random variables
and that each of them follows a beta distribution. Thus, by
means of Eqs. A2 toA5 inAppendix A and Eq. 4, the variance
of d' can be calculated.

To obtain estimates of the expected values and the vari-
ances of ẑH and ẑF, it is necessary to know the parameters p
and q of the two beta distributions. To obtain the distribution
of the values of πH, it is necessary to know the parameters pH
and qH (and likewise, we must know the parameters pF and qF
to obtain the values of πF).

It should be remembered, however, that only the means and
variances of the proportions of H and F obtained from a
sample of observers are known. The next problem is how to
obtain an estimate of the pH, qH, pF, and qF values. To achieve
this, we must remember that for this distribution the following
equalities are fulfilled (Johnson et al., 1995, p. 217):

μX ¼ p
pþ q

ð5Þ

σ2
X ¼ p⋅q⋅ pþ qð Þ−2⋅ pþ qþ 1ð Þ−1 ð6Þ

Following the method of moments, the expected value is
replaced in Eq. 5 by its estimator (μ̂X ), and in Eq. 6, the

variance by its own estimator (σ̂2
X ). Solving the system of

two equations gives the estimates of p and q.
Recall that it is assumed that only the sample mean and

variance of the proportions are known. Following Suero
et al. (2018), μPH

¼ μπH (and the same is true for F).
Therefore, as estimators of μπH and μπ F

, the respective sample

means of the proportions (PH ;PF ) will be taken. Likewise,
the relationship between the variance of the empirical propor-
tions (σ2

P ) and the variance of π (σ2
π ) is defined by Eq. 2.

Assuming as an estimator of σ2
P (for both PH and PF) the

sample variance of the proportions, an estimator of σ2
π can

be calculated by the expression in Eq. 2, since N (the number
of trials) is known, and the sample means of the corresponding
proportions can be employed as estimators of μπH and μπ F

.

It therefore follows that we can obtain the estimators p̂H
and q̂H for the beta distribution associated with πH, and the
estimators p̂F and q̂F for the beta distribution associated with
πF. Before proceeding, it is necessary to verify that the two
estimators take values within the parametric space (p > 0 and q
> 0). In this way, all the elements involved in Eqs. A2 to A5
are known. It should also be noted that it is possible to solve
the integrals that appear in these equations analytically (see
Appendix B). Therefore, these expressions are equivalent to

σ2
ẑH

¼ ∑
j¼0

NS

ẑ
2

H ⋅ j

NS
� �

⋅
Γ pH þ qHð Þ
Γ pHð Þ⋅Γ qHð Þ ⋅

Γ pH þ jð Þ⋅Γ qH þ NS− jð Þ
Γ pH þ qH þ NSð Þ −E ẑH

� �2 ð7Þ

σ2
ẑ F

¼ ∑
j¼0

NN

ẑ
2

F ⋅ j

NN
� �

⋅
Γ pF þ qFð Þ
Γ pFð Þ⋅Γ qFð Þ ⋅

Γ pF þ jð Þ⋅Γ qF þ NN− jð Þ
Γ pF þ qF þ NNð Þ −E ẑF

� �2 ð8Þ

E ẑH
� �

¼ ∑
j¼0

NS

ẑH ⋅
j

NS
� �

⋅
Γ pH þ qHð Þ
Γ pHð Þ⋅Γ qHð Þ ⋅

Γ pH þ jð Þ⋅Γ pH þ NS− jð Þ
Γ pH þ qH þ NSð Þ ð9Þ

E ẑF
� �2

¼ ∑
j¼0

NN

ẑF ⋅
j

NN
� �

⋅
Γ pF þ qFð Þ
Γ pFð Þ⋅Γ qFð Þ ⋅

Γ pF þ jð Þ⋅Γ qF þ NN− jð Þ
Γ pF þ qF þ NNð Þ ð10Þ

Notice that the expression N*
j

� �
⋅ Γ p�þq�ð Þ
Γ p�ð Þ⋅Γ q�ð Þ ⋅

Γ p�þ jð Þ⋅Γ q�þN*− jð Þ
Γ p�þqHþN*ð Þ

(where * is S or N and • is H or F) is just the probability
associated with the frequency j of either H or F (see
Appendix B).

We have implemented Eqs. 7 to 10 in R (R Core Team,
2015; see Appendix C). In this program, the values of pH, qH,
pF, and qF can be substituted with their estimates, as we men-
tioned above.

To obtain both the variance and the expected value of d', it
is necessary to solve the problem of extreme values. When PH
(or PF) is equal to 0 or 1, the associated value ẑH (or ẑ F ) is –∞
or + ∞, so it is not possible to calculate the variance and the
expected value of d'. Several alternative procedures have been
proposed (for a comparison of the different methods, see
Brown & White, 2005; Hautus & Lee, 2006). Among them,
those employed most often are (a) the log–linear correction
(Snodgrass & Corwin, 1988) applied to all frequencies (what-
ever their values); it is defined as (H + 0.5)/(Ns + 1) for hits
and (F + 0.5)/(Nn + 1) for false alarms. (b) The ± 0.5 correc-
tion (Murdock&Ogilvie, 1968) is applied only if the frequen-
cy is 0 (which is replaced by 0.5) or N (replaced by N – 0.5),
where N is the number of signal or noise trials, as appropriate.
In many published primary studies, examples of these and
other procedures can be found.

In our R script, the correction has been included as an
argument of the functions (see Appendix C). This argument
takes three possible values: (a) “M&O,” for the Murdock and
Ogilve correction; (b) “S&C,” for the Snodgrass and Corwin
correction; and (c) a vector of length equal to the number of
trials, in which the values of the proportions already corrected
are included. The last option gives greater freedom to apply
any correction. By default, “M&O” is assumed.
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The output of the code includes estimates of (a) the vari-
ance of d', (b) the expected value of d', (c) the variances of ẑH
and ẑ F, (d) the expected values of ẑH and ẑF, and (e) the
marginal probabilities of ẑH and ẑ F.

If the expected values and variances of the beta distribu-
tions are known (for theoretical reasons or because they are set
in order to perform simulations), the parametric values will be
obtained instead of their estimates. Thus, this same R script
enables researchers to perform theoretical studies on the rela-
tionship between the parameters of the beta distribution of the
πH and πF values and the values of the variances and the
expected values of d' and of ẑH and ẑ F. It also allows study
of the properties of the marginal distributions of ẑH and ẑ F.

Analysis of empirical studies

The variant of the SBP method just presented has been de-
signed to estimate the variance of d' when it cannot be as-
sumed that the observers are homogeneous and when the
sample variance is unknown, but the values of the means
and variances of PH and PF are known. Of course, if an ex-
perimental report includes the empirical variance of the ob-
servers’ sample, an additional method is not necessary to es-
timate it, since the empirical variance is the best estimator of
the population variance. In this section, we demonstrate the
usefulness of our method by applying it to the results of some
studies that have provided the variance in the sample d'. By
applying the method for estimating the variance of d' to a
handful of published primary studies in which the sample
variance was included, we can compare these empirical vari-
ances with those estimated by the SBP procedure.

In each study we will also test the homogeneity assumption
by assessing the empirical variances of PH and PF. When the
tests of the variances of PH and PF indicate that individuals are
heterogeneous, the SBP procedure must provide estimates of
the d' variances that are closer to the empirical variance than
are those calculated under the assumption of homogeneity. By
contrast, when there is evidence that individuals are homoge-
neous, both the SBP procedure and Formula 1 should provide
values close to the empirical variance.

For this study, we selected a casual sample of 20 experi-
mental groups or conditions from seven articles (see Table 1),
in which the procedures of analysis followed the SDT frame-
work and in which the studies reported statistics for both theH
and F rates and for d'. The studies all used recognition mem-
ory or attention tasks. Although the search for example studies
was not exhaustive, it was an ad hoc selection of studies that
can give a fairly clear picture of the message we intend to
convey. From each study, some groups or experimental con-
ditions have been identified, and the following values have
been extracted: number of individuals, number of target and

noise trials, mean and variance of theH and F rates, and mean
and variance of d'.

Calculation procedures

The calculations made with the reported statistics of each
study began with a test of the homogeneity hypothesis. Then
we estimated the variances of d' under the homogeneity as-
sumption by the methods ofMiller (1996) and Gourevitch and
Galanter (1967). Next we repeated the estimates by relaxing
those assumptions (SBP method). Finally, we compared these
three estimates with the reported empirical variances.

The test of the homogeneity hypothesis was based on the
probabilities πH and πF. For this, we adopted as the null hy-
pothesis the value provided by Formula 1, since it expresses
the variance of the proportion (P) if π is constant. We used the
test statistic for normal variables to evaluate the values of the
empirical variances of PH and PF. Although the sample distri-
bution of the proportion is not normal (since it is a discrete
variable and its sampling distribution is asymmetric unless π
is equal to .50), with the large number of trials carried out in
these studies, the approximation is sufficient for our purposes
(see, e.g., Hays, 1988, p. 226). Since the empirical variance
should be greater (not less) than is expected under the null
hypothesis of homogeneity, these tests were one-sided in that
direction. To highlight the results of these tests, we have

marked with an asterisk the cases in the S2PH
and S2P F

columns

of Table 2 in which the test was statistically significant.

The tests on S2PH
and S2P F

just described lead to the conclu-

sion that the homogeneity assumption is not tenable in most
cases. Even so, we have estimated the variance of d' assuming
homogeneity, according to the methods of Miller (1996) and
Gourevitch and Galanter (1967), in order to assess the effects
of adopting that assumption wrongly. The values obtained

appear in the σ̂2
d
0
;M

and σ̂2
d
0
;GG

columns in Table 3. We also

estimated the variance of d' without the assumption of homo-
geneity using the SBP method (see Appendix C for the R

script used); the values obtained appear in the σ̂2
d
0
;SBP

column

of Table 3.
We compared the estimated variances with the empirical

variances by obtaining the ratios between the empirical vari-
ance and each of the three estimated variances. The numbers
of times the empirical variance of d' exceeded the three calcu-
lated variances are shown in the last three columns of Table 3.
In these columns, the studies in which the empirical variance
was statistically greater than the imputed one are marked with
asterisks (using tests in which the value of the null hypothesis
was the variance estimated with each method; Hays, 1988, p.

328). In the case of σ̂2
d
0
;M

and σ̂2
d
0
;GG

, we performed one-tailed

tests with the critical region in the higher values. In the case of

σ̂2
d
0
;SBP

, we did not know whether any discrepancies would
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appear as higher or lower values; therefore, we performed
two-tailed tests.2

Results and discussion

In almost all the samples or conditions studied, the assumption
of homogeneity for the probabilities πH and πF among ob-
servers was rejected. In fact, in only one data set did the results
not reject the null hypothesis that πwas constant for one of the
two probabilities (Case 8 in the table, corresponding to πF in
the control sample of Hooks, Milich, & Lorch, 1994).
Although we do not know how often heterogeneity occurs in
published studies generally, it undoubtedly occurs frequently
enough that the issue cannot be ignored. Imputation of the
variance of d' with methods based on the homogeneity

assumption will generally produce biased estimates of the
variance.

As we have already indicated, Miller’s (1996) method pro-
vides excellent estimates of the single-point variance of d';
Gourevitch and Galanter (1967) provide reasonably approxi-
mate estimates under certain conditions. However, if either of
these methods is applied to estimate the variance of a sample
of individuals, the homogeneity assumption results in substan-
tial underestimates of the empirical variances. In all the cases
studied, this discrepancy was statistically significant (Table 3,
second and third columns from the right). In contrast, the
procedure described here, a variant of the method developed
by Suero et al. (2018), provides muchmore accurate estimates
of the empirical variances. In none of the groups included in
this study was the discrepancy statistically significant
(Table 3, rightmost column). However, in spite of the lack of
statistically significant differences, for some of these studies2 With one-tailed tests, the results were essentially the same.

Table 1 Sample of studies selected

Study Source of the Data Task

1. Dobbins & Kroll (2005) Exp. 1A Exp. 1A. Known and unknown conditions, combined Recognition memory of pictures.

2. Dobbins & Kroll (2005) Exp. 1B Exp. 1B. Known and unknown conditions, combined Recognition memory of pictures.

3. Higham, Perfect, & Bruno (2009) Exp. 1. Low-frequency condition Recognition memory of words. Type I responses.

4. Higham et al. (2009) Exp. 1. High-frequency condition Recognition memory of words. Type I responses.

5. Higham et al. (2009) Exp. 2. Weak condition Recognition memory of words. Type I responses.

6. Higham et al. (2009) Exp. 2. Strong condition Recognition memory of words. Type I responses.

7. Hooks, Milich, & Lorch (1994) ADHD sample, Block 2 Continuous performance test. Detecting a specific
sequence of stimuli.

8. Hooks et al. (1994) Controls sample, Block 2 Continuous performance test. Detecting a specific
sequence of stimuli.

9. Matthews, Jones, & Chamberlain (1989) Vigilance. Detecting the 0s.

10. Rhodes & Jacoby (2007) Exp. 1. Mostly old condition Recognition memory of words. Side with
frequent targets.

11. Rhodes & Jacoby (2007) Exp. 1. Mostly new condition Recognition memory of words. Side with
infrequent targets.

12. Roitman et al. (1997) Schizotypal, four digits condition Continuous performance test. Consecutive
repetitions of a target.

13. Roitman et al. (1997) Other personality disorders, four digits condition Continuous performance test. Consecutive
repetitions of a target.

14. Roitman et al. (1997) Schizophrenia, four digits condition Continuous performance test. Consecutive
repetitions of a target.

15. Roitman et al. (1997) Normal comparison, four digits condition Continuous performance test. Consecutive
repetitions of a target.

16. Roitman et al. (1997) Schizotypal, shapes condition Continuous performance test. Consecutive
repetitions of a target.

17. Roitman et al. (1997) Other personality disorders, shapes condition Continuous performance test. Consecutive
repetitions of a target.

18. Roitman et al. (1997) Schizophrenia, shapes condition Continuous performance test. Consecutive
repetitions of a target.

19. Roitman et al. (1997) Normal comparison, shapes condition Continuous performance test. Consecutive
repetitions of a target.

20. Tanner et al. (1967) Condition with γ = .50 Detecting “loud” amplitude stimuli against
“soft” stimuli.

Behav Res (2020) 52:1–226



the discrepancies were not negligible and deserve to be stud-
ied in more detail (in the most extreme case, the empirical
variance was half that calculated by the SBP method; i.e.,
the study by Tanner, Haller, & Atkinson, 1967).

Once linear independence between δ and C is assumed, the
correlation between the zs (and the πs) is a consequence of the
heterogeneity of δ and C. The specific value of ρzH z F depends
on the ratio between the variances (J). When J > 4, then
ρzH z F < 0. When J < 4, then ρzH z F > 0. When J = 4 (i.e.,

when σ2
δ is four times σ2

C ), then ρzH z F ¼ 0. We can check this
through the six studies in Table 1 that report the empirical

variance S2c . As is shown in Table 4, in three of them the ratio
between the reported variances fulfills the condition

S2
d
0=S2c > 4. In only those three cases, the SBP method

underestimated the variance of d' (see the last column in
Table 3). In the other three cases, the ratio between the vari-
ances was lower than 4, and only in those three cases did the
SBP method overestimate the variance of d'. It is important to
notice that, when assuming independence between the zs, in
seven among the 20 cases selected (35%) the SBP method
underestimated the variance, and in 13 (65%) the variance
was overestimated. So, in about two thirds of the cases ρzH z F
was positive, and in about one third it was negative. In any
specific sample of studies selected for a meta-analysis, the
average correlation will depend of the sample of values of J.

Limitations of the procedure:
The independence issue

The main limitation of the present procedure arises from the
assumption of linear independence between πH and πF. As we
already noted, when heterogeneity is observed between partic-
ipants, it is quite reasonable to assume that there is indepen-
dence between the parameters δ andC. Moreover, in the context
of SDT, whether there is heterogeneity or not, a key issue is the
independence between sensitivity and the response criterion,
since they represent different psychological processes. In prac-
tical circumstances, the assumption of linear independence be-
tween πH and πF cannot generally be true (Suero et al., 2018);
zero is only one among all possible values for the correlation.

Following Suero et al. (2018), it was shown that if δ and C
are continuous random variables with finite values for μδ, μC,
σ2
δ , σ

2
C , and ρδC = 0, then the correlation between the zs asso-

ciated with πH and πF is

ρZH z F ¼
σ2
C−

σ2
δ

4

σ2
C−

σ2
δ

4

ð11Þ

From Eq. 11 it can be concluded that in general ρπHπ F
≠0

(see Suero et al., 2018). Although the cited authors do not

Table 2 Values extracted from the studies

Study M Ns PH S2PH
Nn PF S2P F

d
0

S2
d
0

1. Dobbins & Kroll, 2005, Exp. 1A 16 100 0.79 0.0235* 100 0.11 0.0089* 2.34 0.5143

2. Dobbins & Kroll, 2005, Exp. 1B 16 100 0.85 0.0269* 100 0.10 0.0058* 2.35 0.6137

3. Higham et al., 2009, Exp. 1: Low 24 70 0.79 0.0204* 70 0.20 0.0161* 1.82 0.7413

4. Higham et al., 2009, Exp. 1: High 24 70 0.67 0.0272* 70 0.34 0.0346* 0.94 0.3540

5. Higham et al., 2009, Exp. 2: Weak 50 72 0.70 0.0339* 72 0.18 0.0253* 1.65 0.9428

6. Higham et al., 2009, Exp. 2: Strong 50 72 0.86 0.0204* 72 0.17 0.0231* 2.42 1.3502

7. Hooks et al., 1994: ADHD sample 40 30 0.70 0.0570* 270 0.09 0.0237* 2.23 1.2769

8. Hooks et al., 1994: Control sample 52 30 0.82 0.0302* 270 0.04 0.0056 3.07 1.1025

9. Matthews et al., 1989 116 135 0.92 0.0166* 405 0.06 0.0015* 3.63 0.9604

10. Rhodes & Jacoby, 2007, Exp. 1: Mostly old 12 192 0.75 0.0064* 96 0.31 0.0225* 1.21 0.1681

11. Rhodes & Jacoby, 2007: Exp. 1: Mostly new 12 96 0.69 0.0064* 192 0.28 0.0169* 1.12 0.1369

12. Roitman et al., 1997, 4d: Schizotypal 30 30 0.65 0.0484* 120 0.16 0.0121* 1.52 0.6561

13. Roitman et al., 1997, 4d: Other person. disor. 35 30 0.71 0.0400* 120 0.13 0.0100* 1.90 0.7056

14. Roitman et al., 1997, 4d: Schizophren 36 30 0.57 0.0529* 120 0.21 0.0144* 1.13 0.6561

15. Roitman et al., 1997, 4d: Normals 20 30 0.84 0.0289* 120 0.14 0.0196* 2.30 1.0000

16. Roitman et al., 1997, sh: Schizotypal 30 30 0.69 0.0441* 120 0.21 0.0225* 1.55 0.5476

17. Roitman et al., 1997, sh: : Other person. disor. 35 30 0.77 0.0256* 120 0.18 0.0100* 1.86 0.7225

18. Roitman et al., 1997, sh: Schizophren 36 30 0.61 0.0400* 120 0.25 0.0144* 1.07 0.3249

19. Roitman et al., 1997, sh: Normals 20 30 0.84 0.0324* 120 0.17 0.0100* 2.19 0.8649

20. Tanner et al., 1967: γ = 0.50 12 525 0.79 0.0108* 525 0.33 0.0252* 1.38 0.1932

* Significant at p < .05
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offer a formula to calculate ρπHπ F
, it can be obtained by nu-

merical methods.
The correlation betweenπH andπF is obtained through the

generation of pairs of values of δi and Ci, where the subscript i
refers to the ith individual. From these, the values of zH and zF
are obtained through the expressions

zi;H ¼ δi
2
−Ci ð12Þ

zi;F ¼ −
δi
2
þ Ci

� �
ð13Þ

With these values, and remembering that the normal homo-
scedastic SDT model is assumed, we obtain

Φ zi;H
� � ¼ πi;H ð14Þ

Φ zi;F
� � ¼ πi;F ð15Þ

Thus, with a large number of pairs of δi and Ci, the
correlation ρπHπ F

can be estimated. For this calculation,
it is first necessary to give values to the parameters μδ,
μC, σ2

C , and σ2
δ . To reduce the number of parameters

involved, we can express the parameter σ2
δ as a function

Table 4 Analysis of the six cases that reported the empirical variance S2c

Study S2
d
0 S2c S2

d
0 =S2c S2

d
0 =σ̂2

d
0
;SBP

3. Higham et al., 2009, Exp. 1: Low 0.7413 .0795 9.32 1.21

4. Higham et al., 2009, Exp. 1: High 0.3540 .1552 2.28 0.57

5. Higham et al., 2009, Exp. 2: Weak 0.9428 .1537 6.14 1.06

6. Higham et al., 2009, Exp. 2: Strong 1.3502 .1537 8.78 1.34

10. Rhodes & Jacoby, 2007, Exp. 1: Mostly old 0.1681 .0729 2.31 0.58

11. Rhodes & Jacoby, 2007; Exp. 1:Mostly new 0.1369 .0625 2.19 0.59

Table 3 Variances estimated and comparison with the empirical variances

Study d
0

S2
d
0 σ̂2

d
0
;M

σ̂2
d
0
;GG

d
0

SBP σ̂2
d
0
;SBP

S2
d
0 =σ̂2

d
0
;M

S2
d
0 =σ̂2

d
0
;GG

S2
d
0 =σ̂2

d
0
;SBP

1. Dobbins & Kroll, 2005, Exp. 1A 2.34 0.5143 0.0513 0.0477 2.36 0.7112 10.03* 10.78* 0.72

2. Dobbins & Kroll, 2005, Exp. 1B 2.35 0.6137 0.0576 0.0527 2.77 0.8984 10.65* 11.65* 0.68

3. Higham et al., 2009, Exp. 1: Low 1.82 0.7413 0.0620 0.0583 1.92 0.6136 11.96* 12.72* 1.21

4. Higham et al., 2009, Exp. 1: High 0.94 0.3540 0.0497 0.0481 1.01 0.6236 7.12* 7.36* 0.57

5. Higham et al., 2009, Exp. 2: Weak 1.65 0.9428 0.0567 0.0537 1.73 0.8862 16.63* 17.56* 1.06

6. Higham et al., 2009, Exp. 2: Strong 2.42 1.3502 0.0706 0.0645 2.51 1.0101 19.12* 20.93* 1.34

7. Hooks et al., 1994: ADHD sample 2.23 1.2769 0.0754 0.0694 2.63 1.6541 16.94* 18.40* 0.77

8. Hooks et al., 1994: Control sample 3.07 1.1025 0.1073 0.0906 3.36 1.0451 10.27* 12.17* 1.05

9. Matthews et al., 1989 3.63 0.9604 0.0372 0.0341 3.45 0.7825 25.82* 28.16* 1.23

10. Rhodes & Jacoby, 2007,
Exp. 1: Mostly old

1.21 0.1681 0.0282 0.0276 1.25 0.2917 5.96* 6.09* 0.58

11. Rhodes & Jacoby, 2007,
Exp. 1: Mostly new

1.12 0.1369 0.0277 0.0272 1.14 0.2311 4.94* 5.03* 0.59

12. Roitman et al., 1997, 4d:
Schizotypal

1.52 0.6561 0.0793 0.0742 1.59 0.7884 8.27* 8.84* 0.83

13. Roitman et al., 1997, 4d:
Other person. disor.

1.90 0.7056 0.0869 0.0796 1.95 0.7750 8.12* 8.86* 0.91

14. Roitman et al., 1997, 4d:
Schizophrenia

1.13 0.6561 0.0734 0.0696 1.11 0.7330 8.94* 9.43* 0.90

15. Roitman et al., 1997, 4d: Normals 2.30 1.0000 0.1139 0.0959 2.56 1.0580 8.78* 10.43* 0.95

16. Roitman et al., 1997, sh: Schizotypal 1.55 0.5476 0.0797 0.0739 1.56 0.8840 6.87* 7.41* 0.62

17. Roitman et al., 1997, sh:
Other person. disor.

1.86 0.7225 0.0919 0.0819 1.86 0.5404 7.86* 8.82* 1.34

18. Roitman et al., 1997, sh:
Schizophrenia

1.07 0.3249 0.0734 0.0693 1.06 0.5465 4.43* 4.69* 0.59

19. Roitman et al., 1997, sh: Normals 2.19 0.8649 0.1116 0.0940 2.28 0.7695 7.75* 9.20* 1.12

20. Tanner et al., 1967: γ = 0.50 1.38 0.1932 0.0071 0.0070 1.36 0.3864 27.21* 27.60* 0.50

* Significant at p < .05
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of the parameter σ2
C through the ratio J ¼ σ2δ

σ2C
. Hence,

Eq. 11 is equivalent to

ρzH z F ¼ 4−J
4þ J

ð16Þ

Note that when J = 0, there is no variability in δ (all partic-
ipants share the same sensitivity value), but there is in C
(σ2

C > 0 ), and the correlation is 1. When J = 4 (the variance
of δ is four times the variance of C), the correlation is 0. Of
course, when the variances are equal (J = 1), the correlation is .6.

When J takes on values greater than 4, the correlation is
negative. When J tends to infinity, the correlation tends to – 1.
A more practical way to consider negative values is to consider

the reciprocal ratio,
σ2C
σ2δ
, and apply it in Eq. 16. If the reciprocal

ratio takes on values in the range [0, 0.25], the correlation takes
on values within the interval [– 1, 0]. It is easy to see that when
there is no variability inC, the correlation is – 1. This case would
indicate that the participants differed only in sensitivity.

In short, when ρδC = 0, the correlation between the zs (and
between the πs) is a consequence of the heterogeneity of δ
and/or C. Our formulas in the previous section are accurate
only in the particular case that σ2

δ is four times σ2
C, as only then

does ρzH z F ¼ ρπHπ F
¼ 0.

Table 5 shows the values of the correlation ρπHπ F
(from

combinations of values of the other parameters) that were
employed in the simulation study presented in a subsequent
section. They have been obtained as follows. It is assumed that
variableC follows a normal distribution and that the variable δ
follows a single, truncated normal distribution to avoid nega-
tive values, with a lower truncated point at δ = 0. Through an
R script (written by the authors), 100,000 pairs of independent
values of δi andCiwere generated. Applying Eqs. 12 to 15, we
had 100,000 pairs of probabilities for hit and false alarm, from
which the correlation was obtained. It can be observed in
Table 5 that for the chosen values of μδ, μC, J, and ρzH z F , the

correlations ρπHπ F
are not null, except when ρzH z F ¼ 0, where

they are 0 in practical terms. In the range of situations adopted
for the simulations, the assumption of independence of the
probabilities of hit and false alarm was not generally met.

Fromwhat has been argued previously, it can be concluded
that, if a meta-analysis is performed in which the participants
in the primary studies are not homogeneous, even though they
are independent in their values of δ and C, the assumption of
independence between πH and πF does not generally hold.
Then, it is necessary to ask, (a) How significant are changes in
the variance of d'when applying the procedure described here,
if πH and πF are correlated?, and (b) How much do the con-
clusions change when based on meta-analyses performed
using the procedure described in this article? The simulation
studies described next will help answer these questions.

Simulation studies

Simulating the variance of d'

The objective was to assess the consequences of violating the
assumption of independence betweenπH andπF for the value

of S2
d
0 when it was calculated from the means and variances of

the H and F rates by means of the SBP procedure. The degree
to which the assumption is not met depends on the value of the
correlation ρzH z F , expressed as a function of the ratio between

σ2
δ and σ2

C , represented by J (see Table 1).

ProcedureWe simulated primary studies performed with sam-
ples of individuals of variable size (see below). Each partici-
pant in the sample was defined by a pair of values of δ and C.
Once this pair of independent values was randomly generated,
the values of zH and zF were obtained through Eqs. 12 and 13,
and πH and πF were obtained by means of Eqs. 14 and 15.
Then the frequency of hits, H, was extracted from a binomial

Table 5 Correlation ρπHπ F
as a function of different parameter values with σC = 0.30

μC Ratio: J ¼ σ2δ
σ2C

J = 4 J = 3 J = 2 J = 1 J = 0
ρzH z F ¼ 0 ρzH z F ¼ :143 ρzH z F ¼ :333 ρzH z F ¼ :600 ρzH z F ¼ 1:000

μδ = 0.500 0 0.006 0.138 0.332 0.602 0.995

0.5 0.001 0.142 0.329 0.596 0.995

μδ = 1.000 0 0.034 0.154 0.331 0.589 0.981

0.5 0.042 0.157 0.331 0.586 0.981

μδ = 1.500 0 0.015 0.143 0.318 0.575 0.958

0.5 0.016 0.137 0.318 0.572 0.958

μδ = 2.000 0 0.006 0.138 0.314 0.556 0.927

0.5 0.003 0.129 0.306 0.557 0.928
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distribution, Binomial(NS; πH), where NS is the number of
signal trials. Similarly, the frequency of false alarms, F, was
extracted from a binomial distribution, where NN is the num-
ber of noise trials. Once theH and F values for each individual
had been obtained, the values of PH and PF were calculated.

Then, within each study we calculated PH , S2PH
, PF , and S2P F

.

For generating the values of δ and C, the following vari-
ables were manipulated: μδ, μC, and ρzH z F . As we indicated
above, it is assumed that C follows a normal distribution,
whereas δ follows a single truncated normal distribution in
order to avoid negative values, with the lower truncated point
equal to 0. The value of the correlation ρzH z F can be obtained
from the value of the ratio J. In this case, the value of σC was
kept constant at .30. The values of the correlations were ob-
tained by giving set values to J (or, implicitly, to σ2

δ ).
The sample size of each primary study was variable. To

determine its value for each primary study, we employed the
distribution suggested by Rubio-Aparicio, Marín-Martínez,
Sánchez-Meca, and López-López (2018). Finally, the num-
bers of signal (NS) and noise (NN) trials were alsomanipulated.
Table 6 shows the values of the manipulated variables.
Combining all of them, we had a total of 160 conditions.
Each condition was repeated 10,000 times.

First we extracted 100,000 pairs of frequencies, and after
calculating their d' values (Macmillan & Creelman, 2005), we
obtained the means and variances. Those values were taken as
the true parametric values,μd

0 andσ2
d
0 .We used these two values

for comparisons in this and the next simulation study. For each
primary simulated study, we estimated the variance with the SBP
procedure. Specifically, for the sample of individuals within each

primary study, we obtained PH , S2PH
, PF , and S2P F

. With those

four values plus NS and NN, we applied the procedure described

above bymeans of the R script inAppendix C, obtaining S2
d
0
;SBP

.

Then, with the 10,000 values of S2
d
0
;SBP

and the parametric value,

σ2
d
0 , we assessed the performance of the SBP procedure. With

the results of the 10,000 replications within each condition, we
calculated the bias as follows:

BIAS ¼ S2
d
0
;SBP

−σ2
d
0

Results and discussion The main results are shown in Fig. 1.
The bias increases as ρzH z F increases, but is within an accept-
able range when ρzH z F is below .333. It also increases as μδ
increases and as NS (NN) decreases. Even so, we will see after
describing the second simulation study and the final study that
the method can still be useful for our goals.

Meta-analysis simulation

Objective It must be remembered that one of the main reasons
for developing the present version of the SBP procedure was

for performing meta-analyses of SDT indexes from primary
studies that do not report descriptive statistics for d' and/or c,
especially their variances, but that do report the means and
variances of the rates of H and F.

However, taking into account the results of the previous
simulation, it is worth asking whether, despite the discrepancy

between the values of S2
d
0 and S2

d
0
;SBP

, it is reasonable to per-

form meta-analyses applying the SBP procedure. Specifically,
the objective was to study the consequences that such an appli-
cation would have on the results of a meta-analysis when the
assumption of independence betweenπH andπF in the primary
studies included was not fulfilled. The degree to which the
assumption is not met will depend on the value of the correla-
tion ρzH z F , which in turns depends on J (the σ2

δ=σ
2
C ratio).

Procedure In this study, meta-analyses were simulated, by first
generating primary studies and then grouping them into sets of
K studies that were synthesized using meta-analytical tech-
niques. The primary studies were generated using the same
procedure as in the previous study. For the size of the meta-
analyses, we set two values of K: 20 and 40 studies. Table 6
shows the values of the manipulated variables, totaling 320
conditions. Again, each condition was repeated 10,000 times.
Notice that in this study the unity repeated 10,000 times was
the meta-analysis (each composed of 20 or 40 studies).
Remember that we had also obtained in the previous study
the parametric value of μd

0 .

Meta-analysis Each repetition with a condition was formed by
the K primary studies with which each meta-analysis was
carried out. This was done as follows:

Step 1: For each primary study, the R script in Appendix C

was applied, taking as input the values PH , S2PH
, PF ,

and S2P F
, obtaining the estimated values d

0
and

S2
d
0
;SBP

for each study. At the end of this step, we

had pairs of the statistics (d
0
k , S

2
k;d

0
;SBP

), where k

takes values from 1 to K.

Table 6 Values of the variables manipulated in the simulation studies

Variables Values

μδ 0.5, 1.00, 1.50, 2.00

μC 0.0, 0.50

Ratio between the variances, J 0, 1, 2, 3, 4

Trials 25, 50, 75, 100

Primary studies, K 20, 40

In the first simulation study, all variables were manipulated but the one in
of the last row (K), whereas in the second simulation study, all of them
were manipulated
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Step 2: We obtained an estimate of μd
0 through the follow-

ing weighted mean (Hedges & Olkin, 1985),

μ̂d0 ¼
∑
k
ŵk � d 0

k

∑
k
ŵk

ð17Þ

where ŵk is the weight associated with the primary study k,

which equals ŵk ¼ 1=S2
k;d

0
;SBP

. Note that both d
0
k and S

2
k;d

0
;SBP

were obtained by applying the SBP procedure with the R
script in Appendix C.

Step 3: We calculated the limits of the confidence interval
using the expression

μ̂d
0 � jz1−α2 j⋅ 1ffiffiffiffiffiffiffiffiffiffi

∑
k
ŵk

q

Data analysis For each condition, the average of the 10,000

values of μ̂d
0 was calculated (μ̂d

0 ) and then compared with

μd
0 , the true mean of the individual d' values obtained in the

previous study. The relative bias was calculated through the
expression

Relative BIAS ¼ μ̂d
0−μd

0

μd
0

0
@

1
A⋅100

Furthermore, the coveragewas obtained for each condition.
Given the value of μd

0 and the limits of the confidence inter-

vals, coverage was obtained the proportion of times that those
limits included the value of the parameter across the 10,000
replicas in that condition.We report the complementary value,
(1 – coverage).

Results and discussionWe only present the results for K =
20, since when the number of primary studies was 40
the results were essentially identical. In Fig. 2 the re-
sults for estimation bias are presented for the different
simulation conditions. In general, it can be observed
that the bias takes values lower than 1%, except for
the unlikely condition of ρzH z F ¼ 1. The maximum bias
takes a value of – 4.71% in the condition of μδ = 2,
μC = 0.5, ρzH z F ¼ 1, and 100 trials. Although in general
the bias is low, it shows a tendency to increase for a
value of ρzH z F ¼ 1, when μδ and μC increase. It does
not appear that the number of trials is related to the size
of the bias.

The small amount of bias when estimating μd
0 is not

surprising. Formula 17 is a weighted mean of the aver-
ages of d' in each primary study, and the weights are
the reciprocal of the variances. So, if our estimates of

the variances of d' in the primary studies are biased, but
all are biased in similar proportions, then the relative
weights do not change. The mean weighted with the
wrong variances will then give rise to a value very
similar to the one found if unbiased estimates of the
variance had been employed. It is expected that if the
set of primary studies in a meta-analysis are homoge-
neous enough in their J and their ρzH z F values, then
their biases when assuming J = 4 would tend to be
similar.

Related to the coverage, Fig. 3 shows the proportions of
times that the parameter fell outside the confidence interval (1
– coverage), for a nominal value of α = .05 (the gray lines).
Values of the empirical proportions close to the nominal are
observed when ρzH z F takes values between zero and .333 (J
values between 2 and 4). The empirical proportions grow as
the values of μδ and μC increase, being higher when
ρzH z F ¼ 1. On the other hand, the empirical proportions are
less than nominal when μδ is less than or equal to 1, for 25
trials; if the number of trials is equal to 50 or more, this value
becomes equal to 1.5 or 2. Empirical values close to the nom-
inal value are observed when ρzH z F takes values between zero
and .333. The coverage rates are only unacceptable when both
ρzH z F and μδ are high (in fact, when they reach values not
credible in practical terms).

We have already said that the weighted mean estimat-
ed with incorrect (biased) variances can yield good re-
sults if the bias is proportional across studies. However,
the confidence interval could produce odd results. That
is because if the bias makes the estimates too large or
too small, the confidence interval could also be too long
or too narrow, respectively. However, our results
showed that in fact the empirical rates of rejections do
not deviate dramatically from the nominal 5%. This
means that the true correlations between the zs are in
general within a range in which the bias is small
enough to be insignificant in practical terms.

As a conclusion, the simulation showed that the SBP pro-
cedure applied in a meta-analysis allows researchers to obtain
reasonable estimates of μδ, even when the assumption of in-
dependence between the probabilities of H and F is not met
(see Table 5). In most of the conditions studied, the small bias
observed was within the range expected as a result of random
sampling.With respect to the confidence intervals, it produced
acceptable intervals for the range of parametric values that are
credible in practical terms.

General discussion

The SBPmethod has been shown to be a viable solution to the
problem of estimating the true variance of d' when measured
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in a sample of individuals who are heterogeneous in their
performance. The same happens for the variance of c, since

it is obtained directly from that of d' [since d
0 ¼ ẑH−ẑ F and

c ¼ − 1=2ð Þ∙ ẑH þ ẑ Fð Þ, then σ2
c ¼ σ2

d
0=4, because ẑH and ẑ F

are assumed to be independent]. Suero et al. (2018) showed in
simulation studies that the procedure is effective in cal-
culating estimates of the variance under a wide range of
analytical scenarios. However, confidence in a method

increases when it is also demonstrated, as in the present
study, to be valid with real experimental data. In the
sample of 20 experimental groups selected, the method
proved to yield estimates much closer to the empirical
variance than do methods that assume homogeneous
individuals.

The results demonstrate the level of risk involved in blindly
assuming homogeneity across participants. It is likely that this
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Fig. 1 Bias in the conditions employed in Simulation Study 1 (σ̂2
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assumption is false, and failure to account for the existing
heterogeneity can result in important errors in the
subsequent calculations. Individual differences in the
probabilities of responding YES to signal and noise trials are
real and should not be ignored.

The original methods of Gourevitch and Galanter
(1967) and, especially, of Miller (1996) are appropriate
for estimating the variance of d' for a single point or a
single individual. However, if the mean sample values
of PH and PF are taken to estimate the variance of that
sample of individuals and these individuals are not
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homogeneous, the variance of d' can be seriously
underestimated. Until now we have not had a direct method to
estimate the variance of d' in a sample of heterogeneous
individuals. The method proposed by Suero et al. (2018) and

the additional developments reported here essentially follow
the ideas of Miller and adapt his method to the realistic situation
in which observers do not share the same probability of giving a
YES response to signal and/or noise trials.
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Fig. 3 Proportions of times that the parameter fell outside the confidence interval, or the complement of the coverage, (1 – COV). The gray horizontal
lines reflect the nominal value α = .05, or (1 – .95)
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The main limitations of this research derive from its
assumptions. First, the assumed scenario is somewhat
restrictive (e.g., it assumes the normal homoscedastic
model for the strength of evidence in the calculation
of individual values of d'; Wickens, 2001, chap. 2).
Second, the method assumes a specific solution to the
problem of extreme values of proportions (0.0 or 1.0).
Finally, it also assumes that the individual probabilities
of H and F (πH and πF) are linearly independent. A
fault in one or more of these assumptions might be
the cause of the sometimes striking discrepancies be-
tween the results obtained with our procedure and the
actual empirical variance (e.g., in the Tanner et al.,
1967, study the estimated variance was twice the empir-
ical variance). In the next section we discuss in greater
depth the last assumption and some suggestions to han-
dle it in practical applications.

Managing the assumption of independence
between zH and zF

For anyone familiar with SDT the assumption of indepen-
dence between the zs, on the one hand, and between the πs,
on the other, sounds odd. In the situation we studied here,
independence represents something different from what we
usually think in the SDT endeavor. Normally, we think in
terms of a fixed value of d' and a c value that shifts as a
consequence of the experimental manipulations. Of course,
when this happens, a large positive correlation is observed
between the zs and also between the πs.

But the situation we studied here is different. It does not
concern individuals with constant sensitivity and changing
criteria. The only assumption of independence that we made
was between the true or parametric values of the individuals in
sensitivity and criteria (δ and C). A random sample of individ-
uals will include somewith high or low sensitivities, and some
with high or low criteria, depending on how liberal they are in
making YES responses. But there is no theoretical reason or
empirical evidence to suggest that these two dimensions
would be related. That is, individuals with high sensitivity
might in turn be equally conservative or liberal, and the same
applies to those with low sensitivity. Therefore, assuming
ρδC = 0 does not seem odd.

As we have already explained, once it is assumed that ρδC= 0,
the correlations between the zs and the πs are a consequence of
the presence of heterogeneity among the observers in δ and/or C,
as well as the ratio between their variances. We developed a
method to calculate the variance of d' in the specific case inwhich
the ratio between the variances is 4, since that takes us to the
concrete value of ρzH z F ¼ 0, which facilitates the calculations.

We should expect σ2
δ to be (almost) always greater than σ2

C .
3

Fortunately, the value 4 has been a good guess of what an average
value could be.

For example, since d
0 ¼ ẑH−ẑ F , the variance of the sen-

sitivity index can be expressed as σ2
d
0 ¼ σ2

ẑH þ σ2
ẑ F−2σẑH ẑ F .

If πH and πF were not independent, but there was instead a
positive correlation between them, then the SBP procedure
would give rise to somewhat larger estimates. In the sample
of studies analyzed in section 3, the average value of the
ratios between the empirical variance and the one produced
by this method was equal to 0.88 (7 above 1 and 13 below
1). If the mean value of the ratio J ¼ σ2

δ=σ
2
C was approx-

imately 0.88, the mean correlation between the zs in this
sample of studies would have been approximately .12.
Adding this term to the variances estimated by the SBP
method in all these studies, the mean ratio would be equal
to 1, so that the mean of the variances obtained by the SBP
procedure would be equal to the mean of the empirical
variances. We believe that the observed discrepancies be-
tween the estimated and empirical variances reported here
are most likely due to departures from some of the assump-
tions involved in the SBP method. The six cases that re-

ported S2c provide evidence that the discrepancies originate
in the correlation between the zs, which in turn originates
in ratios J other than 4. It is expected that in the sample of
studies selected for a meta-analysis, the K values of J
would be more homogeneous than in the casual sample
in Table 3 (which includes studies in attention, perception,
and recognition memory). They would most likely be larger
or smaller than 4, depending on the experimental paradigm

and the task. If a subset of those studies provided S2
d
0 (as in

the meta-analysis by Rhodes & Anastasi, 2012), then that
subsample could be employed to correct the variances es-
timated with the SBP procedure for the other studies.
Specifically, if we were to estimate the variance of d' with
the SBP method in that subset of studies and compare them
with the empirical variances, we could calculate the mean
deviation or the mean ratio between the empirical and the
estimated variances. The mean deviation or the mean ratio
could be used to correct the estimated variances of the
studies that did not report the variance of d'.

In summary, the use of the procedures described here
is an interim solution, which should be refined in future
work. Of course, the variances in d' predicted by our
method in the sample of studies selected here are better
than those that would be obtained assuming homogene-
ity. When our methods are used, the estimated variances
may still sometimes differ from the empirical ones, but
the discrepancies will seldom if ever be statistically

3 One of the reviewers rightly indicated that this relationship could be reversed
in some specific fields (σ2

C > σ2
δ ). For example, in the study of subliminal

perception, variations in delta may be small, whereas almost all exper-
imental variations will usually be associated with the response criterion.
In cases in which it is suspected that this circumstance is present, the
procedure we propose here should not be applied without adjustments.
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significant. There is also a proportionality between the esti-
mates and the empirical variances: The correlation between
the two in our sample of 20 groups or conditions was .84.
Therefore, if used to weight the primary studies synthesized
in a meta-analysis, the combined estimates will not differ
much from what would have been obtained through use of
the empirical variances of d'. This is because of the structure
of Formula 17, in which if the weights employed are wrong
but are proportional to the correct weights, then the formula
yields the same value.

Appendix A: Formulas taken from Suero et al.
(2018)

Since d' = ẑH – ẑF, the variance of d' is

σ2
d
0 ¼ σ2

ẑH
þ σ2

ẑH
−2⋅σ

ẑH ẑ F
ðA1Þ

where σ2
ẑH is the variance of the estimated z values for

hits, ẑH , while σ2
ẑ F is the variance of the estimated z

values for false alarms, ẑ F , and σẑH ẑ F is the covariance.
Following Suero et al. (2018), both σ2

ẑH and σ2
ẑ F can be

obtained through the equations

σ2

ẑH
¼ ∑

j¼0

Ns

ẑ
2

H ⋅ ∫
πH¼0

πH¼1

Ns
j

� �
⋅π j

H ⋅ 1−πHð ÞNs− j⋅gπH πHð ÞdπH

� E ẑH
� �2

ðA2Þ

σ2

ẑ F
¼ ∑

j¼0

Nn

ẑ
2

F ⋅ ∫
π F¼0

π F¼1

Nn
j

� �
⋅π j

F ⋅ 1−πFð ÞNn− j⋅gπF πFð ÞdπF

� E ẑF
� �2

ðA3Þ

where E ẑHð Þ and E ẑFð Þ are the expected values, which are
calculated through the equations

E ẑH
� �

¼ ∑
Ns

j¼0
ẑH ⋅ ∫

πH¼1

πH¼0
Ns
j

� �
⋅π j

H ⋅ 1−πHð ÞNs− j⋅gπH πHð ÞdπH

ðA4Þ

E ẑF
� �

¼ ∑
Nn

j¼0
ẑ F ⋅ ∫

π F¼1

π F¼0
Nn
j

� �
⋅π j

F ⋅ 1−πFð ÞNn− j⋅gπ F
πFð ÞdπF

ðA5Þ

Appendix B

We begin with the equation

h jð Þ ¼ ∫
π¼1

π¼0
N
j

� �
⋅π j⋅ 1−πð ÞN− j⋅g πð Þdπ ðB1Þ

Note that the expression within the integral is a mixture of
two distributions: one binomial distribution with parametersN
and π, and the g distribution, associated with the parameter π
of the binomial distribution (see Johnson et al., 2005, p. 253).
Note also that it is similar to the integrals that appear in Eqs.
A2 to A5. If it is assumed that g(π) is a beta density function
(see Eq. 3), then Eq. B1 is

h jð Þ ¼ ∫
π¼1

π¼0
N
j

� �
⋅π j⋅ 1−πð ÞN− j⋅

1

B p; qð Þ ⋅π
p−1⋅ 1−πð Þq−1dπ

ðB2Þ

Grouping terms with respect to π and extracting the con-
stant values with respect to the integral,

h jð Þ ¼ N
j

� �
⋅

1

B p; qð Þ ⋅ ∫
π¼1

π¼0
πpþ j−1⋅ 1−πð ÞqþN− j−1dπ ðB3Þ

If you multiply and divide by the term B(p + j, q +N − j),

h jð Þ ¼ N
j

� �
⋅
B pþ j; qþ N− jð Þ

B p; qð Þ �

� ∫
π¼1

π¼0

1

B pþ j; qþ N− jð Þ ⋅π
pþ j−1⋅ 1−πð ÞqþN− j−1dπ

ðB4Þ

Note that the expression within the integral corresponds to
a beta distribution with parameters (p + j) and (q + N – j).
Since the integral includes the entire domain of the density
function, then the integral is equal to 1, and Eq. B1 is equiv-
alent to

h jð Þ ¼ N
j

� �
⋅
B pþ j; qþ N− jð Þ

B p; qð Þ ðB5Þ

which, in terms of the gamma function Γ, is equal to

h jð Þ N
j

� �
⋅
Γ pþ qð Þ
Γ pð Þ⋅Γ qð Þ ⋅

Γ pþ jð Þ⋅Γ qþ N− jð Þ
Γ pþ qþ Nð Þ ðB6Þ

Note that Eq. B5 is a beta–binomial distribution.
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# CALCULATION OF THE VARIANCE AND EXPECTED VALUE OF d' WITH 
VARIABILITY IN PI.

############ Function estadiszes ############

#Computes
# The mean and variance of z estimated.
# The marginal distribution of z estimated.

#Assumptions:
# Pi is c.r.v
# Pi following a beta distribution.
# Applied +- 0.5 correction.

#If frequency is 0, then frequency + 0.5.
#If frequency is number of trials, then frecuency – 0.5. 

#Arguments:
# medpro: mean of proportions or expected value of beta distribution.
# varpro: variance of proportions or variance of beta distribution.
# n_ens: numbers of trials.
# correc: like correct in function var_dp.

estadiszes <- function(medpro, varpro, n_ens, correc)
{

#Computed the “p” and “q” parameters of beta distribution.

medPi <- medpro
varPi <- ((varpro*(n_ens*n_ens))-(n_ens*(medPi-(medPi*medPi))))/((n_ens*n_ens)-

n_ens)
desPi <- sqrt(varPi)

p <- ((medPi^2) - (medPi^3) - (medPi*varPi))/varPi
q <- ((medPi-1)*((-medPi) + (medPi^2) + varPi))/varPi

#Computed the marginal distribution of z estimated.  
prob <- c()
for(i in 0:n_ens)
{

<]1+i[borp -
choose(n_ens,i)*(gamma(p+q)/(gamma(p)*gamma(q)))*((gamma(p+i)*gamma(
q+ (n_ens-i)))/(gamma(p+q+n_ens)))

}

#Correction extreme values is applied.

Appendix C: R code to estimate the expected value and the variance of d' with the SBP method
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if((!is.numeric(correc)) & length(correc) > 1)
{

return("Non valid values in correc")
}

if(is.numeric(correc) & length(correc) != n_ens)
{

return("Length of correc and n_ens are not equal")
}

if(is.numeric(correc))
{

prop <- correc
} 
else
{

if(correc == "M&O")
{
frec <- c(0.5, (1:(n_ens-1)), n_ens-0.5)
prop <- frec/n_ens

} 
else
{
if(correc == "S&C")
{
frec <- (c(0:n_ens) + 0.5)
prop <- frec/(n_ens + 1 )

}
else
{
return("Non valid options in correc")

}   
}

}

#Computed the mean and variance of z estimated.
frec <- c(0.5,(1:(n_ens-1)), n_ens-0.5)
prop <- frec/n_ens
zetas <- qnorm(prop, mean = 0, sd = 1)

me_zetas <- sum(zetas*prob)
var_zetas <- sum((zetas^2)*prob)-(me_zetas^2)

estadis <- list(me_z_es = me_zetas, var_z_es = var_zetas, proba = prob)

return(estadis)
}
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################## Function var_dp ###################

#Computed
# Mean of d'
# Variance of d'
# Mean of z estimated of hits.
# Variance of z estimated of hits.
# Mean of z estimated of false alarms.
# Variance of z estimated of false alarms.
# Marginal probability of z estimated.

#Arguments
# medpro_h: mean of proportions of hits.
# medpro_fa: mean of proportions of false alarms.
# varpro_h: variance of proportions of hits.
# varpro_fa: variance of proportions of false alarms.
# n_ens_h: number of signal trials.
# n_ens_fa: number of noise trials.
# correct: correction extreme frequencies. If "M&O", the ±0.5 correction 
# (Murdock & Ogilvie, 1968). If "S&C", log-linear correction (Snodgrass &
# Corwin, 1988). Or Vector, length equal to n_ens, containing
# corrected proportions. The default value is "M&O".

# estadiszes function it is needed

var_dp <- function(medpro_h, varpro_h, n_ens_h, medpro_fa, varpro_fa, n_ens_fa, 
correct = “M&O”)

{

# Check if the parameters are within range, if not, stop.   

medPi_h <- medpro_h
varPi_h <- ((varpro_h*(n_ens_h*n_ens_h))-(n_ens_h*(medPi_h-

(medPi_h*medPi_h))))/((n_ens_h*n_ens_h)-n_ens_h)
desPi_h <- sqrt(varPi_h)
p_h <- ((medPi_h^2) - (medPi_h^3) - (medPi_h*varPi_h))/varPi_h
q_h <- ((medPi_h-1)*((-medPi_h) + (medPi_h^2) + varPi_h))/varPi_h

medPi_fa <- medpro_fa
varPi_fa <- ((varpro_fa*(n_ens_fa*n_ens_fa))-(n_ens_fa*(medPi_fa-

(medPi_fa*medPi_fa))))/((n_ens_fa*n_ens_fa)-n_ens_fa)
desPi_fa <- sqrt(varPi_fa)
p_fa <- ((medPi_fa^2) - (medPi_fa^3) - (medPi_fa*varPi_fa))/varPi_fa
q_fa <- ((medPi_fa-1)*((-medPi_fa) + (medPi_fa^2) + varPi_fa))/varPi_fa

if( (p_h > 0) & (q_h > 0) & (p_fa > 0) & (q_fa > 0))
indi <- 1

else
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{
cat("Some of the parameters are out of range ", "\r\n", 

"p hits parameter:", p_h, "\r\n",
"q hits parameter:", q_h,"\r\n",
"p false alarms parameter:", p_fa, "\r\n",
"q false alarms parameter:", q_fa,"\r\n",
"It is not possible calculate variance of d’ nor mean of d’", "\r\n")

indi <- 0
}

#Computed
# Mean and variance of d’
# Mean and variance of hits z estimated
# Mean and variance of false alarms z estimated.
# Marginal distribution of z estimated.

if( indi == 1)
{

esta_h <- estadiszes(medpro = medpro_h, varpro = varpro_h, n_ens = n_ens_h, 
correc = correct)

esta_f <- estadiszes(medpro = medpro_fa, varpro = varpro_fa, n_ens = n_ens_fa, 
correc = correct)

varzh <- esta_h$var_z_es
medzh <-esta_h$me_z_es
probzh <- esta_h$proba

varzf <- esta_f$var_z_es
medzfa <- esta_f$me_z_es
probzfa <- esta_f$proba

vardp <- varzh + varzf
medp <- medzh - medzfa

}
else
{

varzh <- NaN
medzh <- NaN
probzh <- NaN

varzf <- NaN
medzfa <- NaN
probzfa <- NaN

vardp <- NaN
medp <- NaN

}

resum <- list( med_zes_H = medzh, var_zes_h = varzh, prob_h = probzh,
med_zes_f = medzfa, var_zes_f = varzf, prob_f = probzfa,

var_dp = vardp, me_dp =medp)
return(resum)

}

Behav Res (2020) 52:1–2220
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