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Abstract
The race model inequality (RMI), as first introduced by Miller (Cognitive Psychology, 14, 247–279, 1982), entails an upper
bound on the amount of statistical facilitation for reaction times (RTs) attainable by a race model within the redundant-signals
paradigm. A violation of RMI may be considered as empirical evidence for a coactivation model rather than a race model.
Here, we introduce a novel nonparametric procedure for evaluating the RMI for single participant analysis. The statistical
procedure is based on a new probabilistic representation that highlights some neglected, but important distributional features
of the RMI. In particular, we show how the reconstructed distribution function under maximal statistical facilitation for a
race model is characterized by a specific truncated-type property. The results of two Monte Carlo simulation studies suggest
that our procedure efficiently controls for type I error with reasonable power. Finally, unlike previous proposals for single
participant analysis (e.g., Maris and Maris (Journal of Mathematical Psychology 47, 507–514, 2003)), our approach is also
more consistent with the typical way to collect RT data in experimental works. R script functions for running the statistical
analysis on single participant data are made freely available to the readers on a dedicated web server.

Keywords Race model inequality · Redundant-signals paradigm · Truncated Kolmogorov–Smirnov test

Introduction

A fundamental property of the human perceptual-motor
system is its ability to deliver fast responses to signals pre-
sented in the environment. In the redundant signals task,
the observer is required to react as quickly as possible, e.g.,
by pressing a response button, to the occurrence of a tar-
get stimuli. Typically, participants exhibit shorter response
times (RTs) when two or more targets from different sensory
modalities (visual, auditory, tactile) are presented simulta-
neously. The expected RT difference between single- and
multiple-target conditions is called redundancy gain. In
the literature, two alternative explanations have been sug-
gested (Miller, 1982). The race model assumes that infor-
mation from both targets is processed in separate sensory
channels and that RT is primarily determined by the first
channel (“winner of the race”) to transmit information to
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some more central interface in the processing hierarchy.
Assuming that sensory processing time varies randomly
from trial to trial, expected RT in the redundant condi-
tion is always smaller or equal to the minimum of the
expected RTs in the single target conditions (Raab, 1962).
Alternatively, the coactivation model assumes that redun-
dancy gain occurs because information from each tar-
get is summed (somewhere) in the brain and that a
response is triggered as soon as the combined informa-
tion exceeds some threshold (Miller, 1982, 1986; Schwarz,
1994; Diederich, 1995).

The race model inequality (RMI), first suggested in
Miller (1982), states that the RT distribution function for the
redundant signal condition is never larger than the sum of
the RT distribution functions of the two single signal con-
ditions. Any violation of the RMI may be understood as an
empirical support for a coactivation integration mechanism.
In general, evaluation of the RMI has mainly been treated
using statistical procedures for group data (e.g., Miller,
1982; Ulrich et al., 2007; Gondan, 2010), while statistical
approaches for testing the RMI in single participant’s data
is less common (e.g., Miller, 1986; Maris & Maris, 2003;
Vorberg, 2008). A first proposal for analyzing data in single
participants appeared in a seminal work by Miller (1986)
in which the violation of the RMI was evaluated using a
bootstrapping procedure (Efron, 1979). More recently, a
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nonparametric test based on a modified version of the ordi-
nary Kolmogorov–Smirnov (KS) statistic was introduced by
Maris and Maris (2003). It was based on a probabilistic
sampling procedure associated with a mixture distribution
with equal weights for the two single target conditions. In
practice, this procedure required that in each single signal
trial a fair coin was tossed to determine in which channel
the stimulus was presented next. This mixture distribution
paradigm, however, had several practical limitations and
was rarely met in most experimental work.

In this paper, we take advantage of the original idea
introduced by Maris and Maris (2003) but reformulate it
to propose a new nonparametric statistical procedure for
evaluating the race model inequality for single-participant
analysis. We will introduce a novel probabilistic context
that highlights some neglected, but relevant distributional
properties of the RMI. In particular, the proposed procedure
is more consistent with the typical way to collect RT data in
experimental works.

The manuscript is organized as follows. The next section
specifies the RMI at both the population and sample
level. Some relevant properties of the distribution functions
associated with the RMI are discussed and a new statistical
procedure based on a truncated version of the KS statistic
is presented. In the third section, two simulation studies
are reported to evaluate performance of the new statistical
procedure. Finally, the fourth section presents discussion
and conclusions.

Evaluating the racemodel inequality

In the redundant condition, let (S1, S2) be a pair of
(jointly distributed) continuous random variables with S1
the processing time for the first channel and S2 for the
second channel. Under the race model, define

Z = min(S1, S2) (1)

as random variable representing observable response time in
the redundant condition, whereas S1 and S2 are considered
unobservable variables (only their minimum is). According
to the assumption of context invariance (Miller, 1982;
Colonius, 1990; Luce, 1986), the marginal distributions of
S1 and S2 are equal to the distributions of the RT random
variables X and Y observed in the single target conditions,
respectively.1

1Note that context invariance is a condition needed for testing the race
model inequality but itself cannot be empirically tested (e.g., Luce,
1986).

Under context invariance, the distribution FZ of Z

equals:

FZ(t) = FX(t) + FY (t) − P(S1 ≤ t, S2 ≤ t) (2)

where FX and FY are the distribution functions of X and
Y , respectively.2 The latter equation implies the following
inequality:

FZ(t) ≤ min{1, FX(t) + FY (t)}, for all t (3)

It provides an upper bound for RT in the redundant
condition under the race model and is called race model
inequality (Miller, 1982). Writing

K(t) = min{1, FX(t) + FY (t)}, for all t, (4)

then FZ = K corresponds to a race model under maximal
attainable statistical facilitation. More precisely, if S1 and
S2 show maximum negative stochastic dependence with
fixed marginals FX and FY (Miller, 1982; Colonius, 1990,
2016), then a coupling exists (i.e., a bivariate distribution
with maximal negative correlation) such that

P(S1 ≤ t1, S2 ≤ t2) = CS1S2(t1, t2)

= min{FX(t1), FY (t2)}, ∀t1, ∀t2

with the mapping CS1S2 being a copula and where its
diagonal section (t1 = t2) yields

FZ(t) = K(t), for all t .

Clearly, if FZ(t) > K(t) for some t , then the redundant
signals effect is no longer compatible with predictions from
the race model under context invariance. Distribution func-
tion K(t) will be referred to as reconstructed distribution
function below.

On the basis of the statistical facilitation principle and
the context invariance assumption, we can formulate the
following null hypothesis for testing the RMI:

H0 : FZ(t) ≤ K(t), for all t . (5)

Since under the null hypothesis the distribution FZ is most
to the left if FZ = K , we set the corresponding point null
hypothesis as follows

H ∗
0 : FZ(t) = K(t), for all t . (6)

Population-level representation

In what follows, we will illustrate some relevant proper-
ties regarding the reconstructed distribution function K .

2In this context, we assume that FX and FY are absolutely continuous
distribution functions with nonnegative arguments.
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Note that definitions, propositions, and corollaries are enu-
merated sequentially as they appear. We first introduce
the so-called average distribution for the single-channel
conditions:

M(t) = 1

2
(FX(t) + FY (t)). (7)

The average distribution M is a mixture distribution where
the two original distribution functions FX and FY have
equal weights. In our context, it is important to note that
this mixture distribution constituted the main probabilistic
token described by Maris and Maris (2003) in their
original proposal. Here we will show how to modify this
representation to adapt it to our new framework.

Definition 1 Let p ∈ (0, 1) and ξp = M−1(p) = inf{t :
M(t) ≥ p} the p-quantile for the average distribution
M . The p-truncated average distribution is represented as
follows:

Mp(t) =
⎧
⎨

⎩

M(t)/M(ξp), 0 < t ≤ ξp

1, t > ξp

0, t = 0
(8)

The p-truncated average distribution represents a measure
of the fraction of the average distribution M up to the
p-th quantile. The following proposition details the close
relationship between an important instance of the truncated
average distribution Mp and the reconstructed distribution
K .

Proposition 2 The reconstructed distribution function K

for the redundant condition is equivalent to the 0.5-
truncated average distribution:

K(t) = M0.5(t), for all t. (9)

Proof First, for all t ≤ 0 both distribution functions always
take value 0 as FX and FY have nonnegative arguments.
Next, suppose that 0 < t ≤ ξ0.5, then

M0.5(t) = M(t)/M(ξ0.5)

= M(t)/0.5

= 2M(t)

= K(t),

as for all positive t that never exceed the 0.5-quantile of M ,
the rescaled distribution function 2M(t) cannot exceed 1.
Finally, for all values of t > ξ0.5 we have that M(t) > 0.5
and consequently 2M(t) > 1 and so K(t) = 1. The
same goes with M0.5(t) as by construction this distribution
function is truncated at ξ0.5.

Corollary 3 Under the maximal statistical facilitation
assumption of a race model we have that:

FZ = M0.5.

Proof Trivial. It immediately follows from Proposition 2
and the definition of the point null hypothesis (6).

In sum, the most relevant result of this section regards
the characterization of the reconstructed RST distribution
function K as a truncated-type distribution with truncation
point localized at the population quantile ξ0.5 of M .
Moreover, under the point null hypothesis (6) also the RT
distribution for the original redundant condition FZ must
be characterized by exactly the same property. To our
knowledge, this is the first time that this peculiar property
about K has been explicitly characterized in the RMI
literature. Later on in this paper (e.g., in the test procedure
section), it will become clear how the truncation property of
K directly plays a key role in the definition of the statistical
test for the evaluation of the RMI in the redundant signals
paradigm.

Sample level representation

In this section, we will introduce our main idea about the
sampling procedure for the random variables involved in the
RMI and the estimation of the corresponding distributions.
Here, we will also highlight the more relevant differences
(at the sample level) between our approach and the original
proposal by Maris and Maris (2003).

Let us assume that the redundant signal (RST) condition
is associated with m distinct trials whereas the two single
signal (SST) conditions are associated with n1 and n2
trials, respectively. Moreover, let Z = {Z1, Z2, . . . , Zm},
X = {X1, X2, . . . , Xn1}, and Y = {Y1, Y2, . . . , Yn2} be
the corresponding sets of random variables. In our context,
we assume that each of the three sets is composed of
independent identically distributed (i.i.d.) random variables
with cumulative distribution functions (cdf) FZ , FX and FY ,
respectively. Taken together, the two SST conditions yield a
combined set W = X ∪ Y = {X1, . . . , Xn1 , Y1, . . . , Yn2}
of n1 + n2 elements. In our representation, we also assume
that all pairs (X, Y ) ∈ X × Y are independent. The
latter independent coupling condition (Colonius, 2016) may
easily be motivated by considering that the observations in
the two SST conditions are usually recorded in separate
experimental trials.3 In sum, the combined set W is
understood as a collection of n1 + n2 independent and non-
identically distributed random variables (e.g., Van Zuijlen,
1978).

3Unlike the observed pairs (X, Y ), the unobservable channel
processing times (S1, S2) may be correlated.
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Definition 4 Given the combined set W , the average
cumulative distribution function of W is represented as
follows:

A(t) = 1

n1 + n2
(n1FX(t) + n2FY (t)). (10)

Unlike the average distribution M , the structure of A clearly
depends on the relative frequencies of the random variables
in W for the two classes of distributions FX and FY . Here
we will highlight a relevant property of A when equal
sample sizes are considered.

Proposition 5 For all sample sizes n, if n1 = n2 = n,
then the average distribution A reduces to the population
average distribution M .

Proof Trivially, for any n = 1, 2, . . .,

A(t) = 1

2n
(nFX(t) + nFY (t))

= 1

2
(FX(t) + FY (t))

= M(t),

for all t .

Note that, unlike the average mixture distribution, here
A literally represents the average of distributions associated
with a fixed number 2n of independent and (non)identically
distributed random variables. The latter makes the sampling
procedures for the two representations quite different. In
particular, for the average mixture distribution M , the
sampling always requires that each time an SST trial is
administered in an experiment, a fair coin is tossed to
determine to which channel the next stimulus is presented
(e.g., Maris & Maris, 2003). By contrast, for the averaged
distribution A (with equal sample sizes), we have a fixed
number n of trials for each of the two SST conditions. Even
if the two sampling procedures asymptotically converge to
the same empirical distribution (i.e., when n → +∞), they
may substantially deviate for small to medium sample sizes.
In this work, we will take advantage of the equal sample size
assumption to illustrate some useful estimation procedures
for the reconstructed distribution function K . In particular,
in the estimation of K , we will replace the estimator of
M0.5(t) in Eq. 9 with the corresponding estimator of A0.5(t)

based on the observed experimental data for the combined
set W .

Now, let z, x, and y be random samples associated with
Z , X , and Y , respectively. Hereafter, we assume that x
and y have equal sample size n while z has size m with
no ties in the full data set.4 Let F̂Z,m, F̂X,n, and F̂Y,n be

4The issues of unequal sample sizes and eventual ties in the samples
will be discussed in more detail in the final section of the manuscript.

the corresponding empirical distribution functions (ecdfs)
associated with the three samples. It is well known that
ecdfs are consistent and unbiased estimators of the asso-
ciated distribution functions under representative sampling
(e.g., Pratt & Gibbons, 1981). Moreover, because all trans-
formations described in Eqs. 4, 7 and 9 are continuous
mappings, it follows that K̂ , Â, and Â0.5 are also consis-
tent estimators of K , A, and A0.5, respectively (Serfling,
1980). In particular, the reconstructed distribution K can
be estimated using one of the following three equivalent
procedures:

K̂(t) = min{1, F̂X,n(t) + F̂Y,n(t)} (11)

= min{1, 2Â(t)} (12)

= Â0.5(t) (13)

where Â−1(0.5) = ξ̂0.5 = inf{t : Â(t) ≥ 0.5}
is the empirical 0.5-quantile computed on Â. However,
under the equal sample size assumption, the estimator
for K can also be directly computed from the combined
sample vector w = (x, y). In particular, the ecdf of w
represents a direct estimator of the averaged distribution
A. Similarly, the empirical 0.5-quantile ξ̂0.5 for Â is also
equivalent to the n-th ordered value w(n) in w. Therefore,
a direct estimation of K can be obtained by computing
the ecdf on the subsample of w composed of its first n-
ordered observations: w(1), w(2), . . . , w(n). Table 1 reports
a hypothetical data set which may serve as a guiding
example to illustrate the different estimation procedures
considered here. Several properties of the (empirical)
averaged distribution functions and their relations with
order statistics have been extensively investigated in the
statistical literature (e.g., Van Zuijlen, 1976, 1978).

Note that, at the sample level, the main difference between
our proposal and the mixture representation by Maris
and Maris (2003) pertains to the way the reconstructed
distribution K is estimated. In particular, in the mixture
representation, K̂ is estimated as follows

K̂(t) = min{1, 2M̂(t)}

with M̂ being the ecdf of the mixture sample drawn from
the population mixture distribution M (see Eq. 7), which
makes the two proposals clearly different at the sample level
as detailed earlier in the manuscript.

We conclude this section by highlighting some important
relationships regarding the maximal statistical facilitation
property for a race model, the combined set W , and the
antithetic variates method for continuous random variables.
We recall that the method of antithetic variates (e.g.,
Thompson, 2000; Colonius & Diederich, 2006) can be
used to generate a pair of maximally negative dependent
random variables from the two SST conditions in line with
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Table 1 Hypothetical data based on a uniform model for FX and FY

Rank w∗ x∗ y∗ F̂X,5 F̂Y,5 Â Â0.5 K̂

1 0.165 − 0.165 0 1/5 1/10 1/5 1/5

2 0.346 0.346 − 1/5 1/5 2/10 2/5 2/5

3 0.395 − 0.395 1/5 2/5 3/10 3/5 3/5

4 0.470 − 0.470 1/5 3/5 4/10 4/5 4/5

5 0.501 0.501 − 2/5 3/5 5/10 1 1

6 0.577 0.577 − 3/5 3/5 6/10 1 1

7 0.673 0.673 − 4/5 3/5 7/10 1 1

8 0.747 − 0.747 4/5 4/5 8/10 1 1

9 0.753 0.753 − 1 4/5 9/10 1 1

10 0.783 − 0.783 1 1 1 1 1

The superscript ∗ denotes that the samples are sorted according to an increasing order. Note that ξ̂0.5 = 0.501, which is also the 5th-order statistic
w(5) for the combined sample w

the maximal statistical facilitation assumption for the RMI
(Miller, 1982; Colonius, 1990).

Definition 6 Let X(1), X(2), . . . , X(n) and Y(1), Y(2), . . . ,

Y(n) denote the order statistics for the sets X and Y ,
respectively. The antithetic variates transformations are
defined as follows:

Ri = min{X(i), Y(n−i+1)}, (14)

Ti = max{X(i), Y(n−i+1)}, i = 1, . . . , n. (15)

Note that the distribution of the antithetic variates Ri

(i = 1, . . . , n) corresponds to the reconstructed distribution
for the redundant condition under maximal statistical
facilitation. That is to say: FR = K as defined in Eq. 4.

Proposition 7 Let W(1), W(2), . . . , W(2n), (n even) denote
the order statistics for the set W , then

W(i) = R(i) and W(n+i) = T(i), i = 1, . . . , n.

Proof The problem stated here is a particular instance of
merging networks, which are networks that can merge two
sorted input sequences into one sorted output sequence
(called MERGER[n] in Cormen et al., 2001). Specifically,
R(i) and T(i) (i = 1, . . . , n) are the two sorted input
sequences and W(i) with (i = 1, . . . , 2n) corresponds to the
sorted output sequence. For details, see Cormen et al. (2001,
pp. 716–718).

Notice, however, that the close relationship between the
combined set W and the antithetic variates method can be
further generalized to all positive integer n (not necessarily
even) as highlighted in the following remark.

Remark 8 The identity FR = A0.5 follows by Proposition
2 and 5. Moreover, at the sample level, Â−1(0.5) = ξ̂0.5 =
w(n) and consequently r(i) = w(i) for all i = 1, 2, . . . , n. A
similar construction can be verified for the remaining half
sample w(n+i) (i = 1, 2, . . . , n) of w with respect to the
corresponding antithetic variate quantities t(i). Note that this
line of reasoning simply requires that n be a natural number
(either even or odd).

To summarize, the most relevant result of this section
regards the characterization of the reconstructed RST
distribution function K as a truncated distribution under the
point null hypothesis (6). Moreover, Proposition 7 shows
that computing an antithetic variates transformation simply
coincides with directly selecting the first n order statistics
from the combined set W . Overall, this means that in the
estimation of the cdf K the adoption of (i) the procedures
described in Eqs. 11, 12 and 13, (ii) the ecdf computed
on the first n ranked elements of the combined data set
w, and finally (iii) the ecdf computed on the output of the
antithetic variates approach (14), constitute all legitimate
and equivalent estimators for K . In the next section, we
will use these specific features of the reconstructed cdf K

to suggest a statistical test procedure that accounts for its
truncation property in comparing the empirical distribution
functions in the RST and SST conditions.

The test procedure

The null hypothesis (5) entails that, under the RMI, the cdf
FZ of the RST condition never dominates the reconstructed
cdf K . As a consequence, under the null hypothesis we
generally expect that F̂Z,m(t) should have smaller or equal
values than K̂(t) for all values t ≥ 0. In line with Maris and
Maris (2003), we opted for a signed Kolmogorov-Smirnov
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(KS) test approach to evaluate this condition. In general, the
KS test can be used to compute a distance between the two
ecdfs as follows:

d+ = D+(z,w)

= max
t

[F̂Z,m(t) − K̂(t)]
= max

t
[F̂Z,m(t) − min{1, 2Â(t)}]

= max
t

[F̂Z,m(t) − Â0.5(t)] (16)

However, because under the maximal statistical facilitation
assumption the reconstructed distribution K is always
characterized by a truncated feature, we need to modify the
KS test to account for this specific distributional feature
(Tsao, 1954; Conover, 1967; Barr & Davidson, 1972;
Koziol & Byar, 1975; Grover, 1977; Dufour & Maag,
1978; Michael & Schucany, 1979). In particular, a simple
adaptation of the KS test which accounts for truncated
distributions is as follows:

d+
tru = max

t≤t∗
[F̂Z,m(t) − K̂(t)] (17)

where t∗ = min{w(n), z(m)} is the common threshold
value for the two ecdfs and z(m) is the maximum value
for z. Moreover, because under the point null hypothesis
(6) the ecdf F̂Z,m tends to be largest everywhere, we also
expect that under this condition also d+

tru should reflect
largest deviation values. Note that, Eq. 17 highlights another
important difference between our approach and the mixture
representation by Maris and Maris (2003). In particular, in
their proposal the statistical test did not require any kind
of truncation correction as evident from their Kolmogorov-
Smirnov distance equation:

d+
mix = max

t
[F̂Z,m(t) − min{1, 2M̂(t)}].

Moreover, in the computation of the distance measure the
ecdf of the mixture distribution M was adopted in place of
the ecdf of the average distribution A.

Since the ordinary KS statistic, as well as its truncated
(resp. mixture) version are invariant under the probability
integral transformation of the underlying data, there is no
loss of generality in limiting the discussion of these tests to
the case of the uniform transformations (Angus, 1994; Barr
& Davidson, 1972). In particular, in the truncated version
of the KS statistic, the sample distribution functions can
be viewed as random walks from the origin (0, 0) to the
truncation point t∗ once it has been rescaled under the
uniform distribution. Finally, we can easily approximate
the probability distribution of D+

tru under the point null
hypothesis by adopting the following simple simulation
procedure.

Generating the null distribution

The main idea consists in generating transformed sample
arrays for the SST and RST conditions under the point
null hypothesis (6) on the basis of the simple algorithm
described in Table 2. The data-generation algorithm is then
used to approximate the probability distribution of D+

tru

under the point null hypothesis to any degree of precision.
In particular, to generate the point null distribution for the
truncated version of the KS statistic, we revolve in setting
the following three steps:

1. Simulate a large number N (e.g., N = 10, 000) of
transformed uniform samples, u∗ and v∗, for the SST
and RST conditions as detailed in Table 2.

2. For each pair of transformed uniform samples (u∗, v∗)
compute K̂ on u∗ and F̂Z,m on v∗. Finally, compute the
simulated truncated KS test c+

tru according to (17) with
t∗ = min{u(n), v(m)}.

3. Derive an approximated p value by using the proportion
of generated N values, c+

tru, that exceeds the empirical
sample value d+

tru.

Note that under the probability integral transformation,
the derivation of the distribution function FT ∗ for the
common threshold T ∗ = min{U(n), V(m)} is straightforward
(see also Table 2). In the following proposition, we will
derive the analytic representation for the distribution of T ∗.

Proposition 9 Under the point null hypothesis, the
distribution function FT ∗ for the common threshold variable
T ∗, computed on arrays of independent and uniformly
distributed r.v.s (U1, . . . , U2n) and (V1, . . . , V2m), takes the
following form:

FT ∗(x) = Ix(n, n + 1) + Ix(m, m + 1)

−Ix(n, n + 1)Ix(m, m + 1), (18)

with 0 < x < 1 and where Ix(a, a + 1) is the regularized
beta function

Ix(a, a + 1) = 1

B(a, a + 1)

∫ x

0
c(a−1)(1 − c)adc, (19)

with B being the ordinary beta function and a > 0.

Proof From the basic theory on order statistics (e.g., Arnold
et al., 2008), we have that the distribution function for T ∗ is
given by

FT ∗(x) = P(T ∗ ≤ x)

= 1 − P(T ∗ > x)

= 1 − [1 − FU(n)
(x)][1 − FV(m)

(x)]
with FU(n)

and FV(m)
being the distribution functions for the

order statistics U(n) and V(m), respectively. Moreover, for
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Table 2 Data generation algorithm. U(0, 1) denotes the uniform distribution

Condition Uniformly transformed data Step description

SST u : ui ∼ U(0, 1), i = 1, 2, . . . , 2n Data generation (2n i.i.d. observations)

u∗ = (u(1), u(2), . . . , u(n)) sub-array of u Data selection (first n ranked observations)

RST v : vj ∼ U(0, 1), j = 1, 2, . . . , 2m Data generation (2m i.i.d. observations)

v∗ = (v(1), v(2), . . . , v(m)) sub-array of v Data selection (first m ranked observations)

independent and uniformly distributed random variables, it
is known that

FU(n)
(x) = Ix(n, n + 1) (20)

FV(m)
(x) = Ix(m, m + 1) (21)

and therefore

FT ∗(x) = 1 − [1 − Ix(n, n + 1)][1 − Ix(m, m + 1)]
= Ix(n, n + 1) + Ix(m, m + 1) − Ix(n, n + 1)

Ix(m, m + 1),

by simple algebra.

Note that the expected values and variances for the order
statistics U(n) and V(m) are, respectively,

E(U(n)) = n

2n + 1
V ar(U(n)) = n2 + n

(2n + 1)2(2n + 2)
,

E(V(m)) = m

2m + 1
V ar(V(m)) = m2 + m

(2m + 1)2(2m + 2)
,

which make U(n) and V(m) consistent but biased estimators
of the uniform population quantile ξ0.5(= 0.5). The latter
entails that also T ∗ is a consistent but biased estimator of
ξ0.5, where in particular it underestimates the population
median 0.5 of the uniform distribution. However, it is
worthwhile noticing that this biased feature is typical for
any random sample with an even number of observations
and it does not affect the overall functioning of the truncated
statistic. More information about the basic properties of
the truncated KS statistic can be find in the nonparametric
statistics literature (e.g., Tsao, 1954; Conover, 1967; Barr
& Davidson, 1972; Koziol & Byar, 1975; Grover, 1977;
Dufour & Maag, 1978; Michael & Schucany, 1979).

R script functions

The testing procedure based on the truncated Kolmogorov–
Smirnov test is implemented using a set of R script func-
tions, which only require the base R package (R Core Team,
2018) to be installed. The R script functions work with raw
observed reaction times for the three samples of observa-
tions, x, y, and z, and can be collected with any record-
ing software capable to export data in .csv format. The

R scripts are freely available at [http://www.polorovereto.
unitn.it/∼luigi.lombardi/TestingRMI.html] together with an
associated documentation illustrating the application of the
R scripts via simple examples of data analysis.

Simulation studies

In this section, we will test the behavior of the proposed
algorithm by means of two simulation studies and compare
its results with the original nonparametric test introduced by
Maris andMaris (2003). The first simulation will investigate
the type I error rate as a function of factors such as sample
size and distributional features. The second simulation will
be focused on some statistical power aspects of the truncated
Kolmogorov–Smirnov test.

Type I error rate

To evaluate the performance of the new statistical pro-
cedure, we ran a Monte Carlo (MC) simulation study to
investigate the type I error rate. The analysis was con-
ducted within the point null hypothesis framework: H0 :
FZ(t) = K(t), ∀t ≥ 0. In this context, both F̂Z,m and
K̂ were constructed in order to correspond to the maximal
statistical facilitation attainable for a race model. Both sin-
gle target conditions and redundant target condition were
modeled according to a Weibull distribution (Van Zandt,
2000; Palmer et al., 2011). We recall that the Weibull dis-
tribution is characterized by two parameters: scale (λ) and
shape (k). In this and in the following simulation study, only
non-scaled observations were considered (as the Maris and
Maris’s KS test as well as the truncated KS test are known
to be scale invariant). The simulation was performed by
systematically varying two factors in a complete 4× 5 two-
factorial design (see also Rach et al., 2010). In particular,
the factors were:

(i) the distance rate (δ) at four levels: 0, 0.1, 0.2,
0.3. Factor δ regulates the relation between the
distributions of the two channels (X and Y ) for the two
single target conditions. This relation is modeled by
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Fig. 1 Distributions of the channels for single signal conditions when
varying the levels of factor δ. Note that, when δ = 0, the distribution
of X and that of Y perfectly overlap

increasing an initial parameters array �0 = (λ0, k0)

according to �i = �0 + δi�0, i = 1, 2, 3, 4. The
single target conditions are modeled by keeping fixed
�0 for X, and by letting �i to vary along the levels of
the factor, for Y . Initial parameter values were fixed at
λ0 = 1.5 and k0 = 100 (Fig. 1);

(ii) the sample size (s) at five levels: 20, 50, 100, 250, 500.

For each of the four distributional patterns (conveyed by
the levels of δ), 10,000 simulations were performed for each
level of s (here we assume that m = n = s). On the
basis of these simulations, we computed the proportion of
rejections of the null hypothesis for all the combinations
of the factor levels. Table 3 reports the results of this first
simulation study, that is, the type I error rate as a function
of distance rate and sample size for the two statistical
procedures. To summarize, under the framework of the point
null hypothesis, no particular effects of the factors on the
type I error rate were observed. Overall, for the truncated
KS test, the error rate approximately settled on the expected
value (5%), whereas the Maris and Maris KS test showed

sub-optimal performances. In particular, for the mixture
KS test, the H0 rejection rates were above 10% in many
simulated conditions.

Power analysis

In this section, we present a more realistic scenario in
which the (non-scaled) RT distribution FZ for the redundant
target condition is modeled in a more natural and plausible
way. In this second simulation study, we considered several
redundant target conditions in which the distributional
patterns were not constructed to reflect a maximal statistical
facilitation (and therefore a truncated distribution for FZ).
Also, in this second simulation, the observed responses were
modeled according to a Weibull distribution and assumed
equal sample size (n = m = s) for FZ and K (Rach et al.,
2010). In the simulation design, we varied three factors in a
complete 4 × 5 × 10 factorial design. The factors were:

(i) the distance rate (δ) at four levels: 0, 0.1, 0.2, 0.3;
(ii) the sample size (s) at five levels: 20, 50, 100, 250, 500;
(iii) the shape scaling factor (η) at ten levels: 0.0159,

0.0169, 0.0179, 0.0189, 0.0199, 0.0209, 0.0219,
0.0229, 0.0239, 0.0249. Factor η regulates the shape
parameter (k) of the redundant target condition
distributions according to kr = 1

ηr
for r = 1, 2, ..., 10.

The aim of this new simulation study was to analyze the
proportion of rejection ofH0 under different conditions, that
is, different distributional patterns of single and redundant
target conditions in which specific violations may occur. In
particular, four overall patterns of RMI violation magnitude
blocks were generated, one for each level of δ. For each δ-
block, the reconstructed RST distribution K was generated
according to the maximal statistical facilitation hypothesis
for a race model. By contrast, FZ was generated as the cdf of

Z with Z ∼ Weibull
(
λi, kr = 1

ηr

)
where λi = λ0 + δiλ0

and λ0 = 1.5. These redundant target condition distributions
are meant to elicit a violation of the race model inequality to
varying magnitudes. The higher the value of ηr , the greater
the magnitude of the violation (Fig. 2).

Table 3 Type I error rate (as percentage of rejections) for the truncated Kolmogorov–Smirnov test and the mixture Kolmogorov–Smirnov test (in
parenthesis)

sample size (s)

Distance rate (δ) 20 50 100 250 500

0 4.9 (15.7) 4.7 (11.4) 5.3 (13.9) 5.9 (12.6) 5.2 (13.6)

0.1 6.0 (15.3) 5.3 (10.9) 6.4 (14.1) 5.9 (12.4) 4.8 (13.7)

0.2 5.3 (15.1) 5.3 (11.5) 6.0 (10.0) 5.6 (12.7) 5.0 (13.4)

0.3 5.8 (15.4) 5.3 (11.2) 4.9 (14.2) 4.9 (12.6) 4.9 (13.1)
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Table 4 Power analysis (as percentage of rejections) for the truncated Kolmogorov–Smirnov test (first row), and the mixture Kolmogorov–
Smirnov test (second row). MG median gain, MTD maximal theoretical distance

MG

sample size (s) −5.88 −2.24 1.12 3.92 6.44 8.97 10.93 12.89 14.57 16.25

20 1.2 2.0 3.2 5.3 7.4 12.2 16.5 21.1 27.0 32.3

2.0 3.1 4.8 7.6 10.2 14.5 18.4 23.2 27.2 33.3

50 .5 .9 2.6 5.8 10.7 17.8 27.7 39.3 51.3 62.7

.7 1.9 4.3 7.3 13.0 19.1 26.5 35.1 44.6 52.7

100 .1 .7 2.0 6.5 15.6 29.8 47.8 65.4 79.0 88.7

.5 1.7 4.6 10.2 18.9 30.2 44.5 58.5 70.5 79.9

250 .0 .3 2.4 12.6 35.6 65.1 85.9 95.9 99.4 99.9

.0 .1 4.4 14.6 31.8 56.2 75.8 90.2 96.1 98.4

500 .0 .1 3.6 24.6 65.3 93.0 99.3 100 100 100

.0 .7 6.0 25.3 58.5 83.8 96.6 66.5 99.9 100

MTD 0 .00 .02 .05 .09 .12 .16 .19 .22 .25

Four power analyses were conducted, one for each of
the four blocks of violation magnitude patterns. A total of
10,000 simulations were performed for each combination
of levels of δ, s, and η.5 The dependent variable was the
proportion of rejection of the null hypothesis (H0 : FZ ≤
K) for the two statistical tests.

For the sake of space, we limit here the presentation of
our results to the δ = 0.2 condition only.6 Table 4 reports
the results concerning the violation magnitude patterns as
a function of the sample size and median gain MG (resp.,
maximum theoretical distance MTD) for δ = 0.2. The
median gain can be computed as the difference between the
median of K and the median of FZ . As expected, negative
values for the median gain were more associated with larger
approximated p value (Fig. 3). By contrast, positive median
gains are associated with a violation of the race model
inequality (Fig. 3).

However, the median gain only provides a horizontal
measure of distance and does not provide an effective
measure of theoretical violation which is, instead, yielded
by the maximum theoretical distance (MTD) between
the two distributions. Both median gain and maximum
theoretical distance were computed in order to compare the

5We rescaled ηr levels, after the end of each δ block. The rescaling
was obtained by setting ηr = ηr−1 − 0.0008. This ensured that the
magnitudes of violations of the race model inequality, at a population
level, settled on similar values for each distributional pattern across the
δi levels.
6The complete set of results for the two statistical tests are reported in
the supplementary material.

rejection rates according to readable indices of violation.
The results showed that, indeed, by increasing the positive
median gain (resp. maximum theoretical violation), the
proportion of rejections for H0 also increased in both
statistical tests (truncated KS test and mixture KS test).
Finally, as expected, rejection rates were also clearly
affected by the sample size factor with larger samples being
associated with larger probabilities of rejecting the null
model when H0 was false (Fig. 3). However, one clear
difference emerged between the two statistical procedures.
The truncated KS test was more conservative for small
samples but resulted more powerful with medium or large
samples as compared to the mixture KS test. This is not a
surprise, as in the previous simulation study, the mixture
KS test failed in controlling the type I error rate. The same
results were observed for the remaining conditions of the
simulation study, which are reported in the supplementary
material.

Taken together, the two simulation studies show that the
truncated KS test efficiently controls for type I error and it
is also characterized by a reasonable power. By contrast, the
statistical test based on the mixture representation (Maris
& Maris, 2003) appears somehow flawed. In particular, it
does not seem to adequately control for the rejection rate
under H0. It also shows (at some levels) less power as
compared to our proposal, specifically in the asymptotic
conditions where large sample sizes are considered. At the
same time, the mixture KS test seems to be too sensitive in
small samples scenarios which, in turn, should naturally be
considered less reliable. In the supplementary material, we
finally reported the results of an additional simulation study
based on the well-known diffusion superposition model for
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Fig. 2 Distributional pattern block for the power analysis (δ = 0.2).
In the block, we generated ten different distributions for FZ , one for
each level of η. The truncated distribution (thick solid line) represents
K . Dotted vertical lines represent the medians of the redundant target
distributions FZ . The thick line represents the median of K

reaction times (Schwarz, 1994), which generally confirmed
the results of the power simulation study described in this
section.

Discussion and conclusions

In this paper, we first studied the truncated property
of the reconstructed distribution K for the redundant
condition and, subsequently, proposed a new nonparametric
procedure (based on a modified version of the KS test)
to evaluate violation of the race model inequality in the
single-participant analysis context. To our knowledge, this
is the first time that this property has been explicitly
studied in the RMI framework. In particular, we showed
that under an equal sample size assumption for the
two SST conditions, estimation of the reconstructed
distribution K can be obtained using a variety of perfectly
equivalent procedures (e.g., antithetic variates method,
ecdfs transformations, truncated sample derivation), which
all yield the same consistent estimator for K . In addition,
by using the averaged representation for the combined
set W , we were also able to propose a new, simple
simulation algorithm (based on the probability integral
transformation) to approximate, to any level of desired
precision, the distribution of the test statistic under the null
hypothesis. The corresponding sampling procedure nicely

Fig. 3 Power analysis as a function of sample size and distance infor-
mation for block δ = 0.2. The first row of the horizontal axis shows the
median gain, whereas the second row shows the maximum theoretical

distance. Black lines denote the power curves for the truncated KS test.
Blue lines indicate the power curves for the mixture KS test
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overcame some inherent limitations of applying the mixture
representation as originally proposed by Maris and Maris
(2003). Indeed, in experimental contexts, participants are
typically presented a fixed number of trials from each of
the two SST conditions, instead of a random assignment as
required by the mixture sampling procedure.

Regarding the performance of the new statistical test, the
results of twoMonte Carlo simulation studies suggested that
our procedure efficiently controlled for type I error when a
point null hypothesis FZ = K was true. By contrast, the
mixture KS test failed in controlling the type I error, as it
showed a larger proportion ofH0 rejections (> 0.05). As for
power analysis, the truncated version of the KS test was in
general able to reject the null hypothesis when a violation of
the race model inequality occurred at the population level.
As expected, the power of the statistic was positively related
with sample size. Overall, the results of these preliminary
simulation studies seem to support the validity of the new
statistical proposal.

To conclude this section, we now discuss some potential
concerns associated with our statistical framework. First,
we consider the consequences of relaxing the equal sample
size assumption for the two SST conditions in testing
the RMI. In some circumstances, one may face the
problem of unbalanced data for the two SST conditions
due, for example, to missing observations caused by
omitted responses, errors, or outliers. Alternatively, in some
experiments we may observe unbalanced data because
of specific experimental designs or requirements. In all
these situations, a tempting solution could be estimating K

according to:

K̂(t) = min{1, F̂X,n1(t) + F̂Y,n2(t)}, t ≥ 0 (22)

with n1 �= n2. However, although the two ecdfs F̂X,n1

and F̂Y,n2 are consistent and unbiased estimators of FX

and FY , the reconstructed distribution K̂ , as defined in
(22), generally is no more an ecdf. In particular, the
resulting K̂(t) would not necessarily be a step function with
equal fixed jumps which, in turn, represents a mandatory
property for any well-formed ecdf.7 Note that this problem
disappears when sample sizes are equal. For n1 = n2 = n,
the reconstructed K̂ is always an ecdf (i.e., a step function
that jumps up by 1/n at each of the n data points), and
hence is also a consistent estimator of K . Similarly, it would
not be clear how to estimate K using directly the combined
sample w or the antithetic variates method. In general, for
unbalanced data, a possible way out could be the adoption
of a resampling procedure with which we repeatedly sample
a subset of n◦ = min{n1, n2} observations from the largest
SST sample. For each of these subsets, one can rerun

7We recall that an ecdf is a step function that jumps up by 1/n at each
of the n observed data points.

the analysis (on the new balanced data set) to obtain a
distribution of approximated p values on which to compute
some desired summary statistics. However, a first drawback
of this resampling approach would be a potential loss of
power due to the resulting data reduction in the largest
sample. Another limitation pertains to the possibility that
a posteriori data manipulations might raise the chance
of introducing some undesired bias in the analysis (e.g.,
Eriksen, 1988; Gondan & Minakata, 2016).

Second, we may also have methodological limitations
associated with the equal sample size n1 = n2 assumption.
In some contexts, setting equal trial numbers in the different
experimental conditions could potentially impact the way
participants perform the task and eventually lead them to
use expectations to anticipate the upcoming stimulus. For
example, if one of the two stimuli has been observed more
frequently (as compared to the other), then the participant
could be more biased toward the less-frequent stimulus and
eventually anticipate its associated response. However, this
drawback can be easily minimized by running experiments
with a sufficiently large number of trials in each of the
experimental conditions.

Third, we consider the case of observed data with ties.
Even if nowadays, with the availability of high-resolution
RT clocks, ties are barely present, it would be still desirable
to have a statistical procedure for dealing with them. In
our framework, a possible solution could consist of first
transforming the full data set into ranks and next derive all
possible total linear orders (tlo) by reordering the ties in the
equivalence classes. So, for example, if we denote by nb the
number of ties in cluster b, with b = 1, . . . , k 
 m + 2n,
then the total number of reconstructed tlos is given by

e =
k∏

b=1

nb!

For each of the e total linear orders, we can reconstruct a
new dataset with no ties on which we can finally test the
RMI. The average p value computed across all the e distinct
p values would then be considered as a measure of violation
of the race model. Of course, the former combinatorial
procedure would be meaningful only if applied to samples
with a small proportion of ties (i.e., less than 3 − 4%).

Finally, fourth, we stress the potential limitation of
assuming independent and identically distributed obser-
vations (resp. independent and non-identically distributed
observations) in the samples. As one of the reviewers noted,
this assumption simply ignores the eventual presence and
impact of known phenomena in RT experiments such as,
for example, sequence effects and modality shift costs (e.g.,
Spence et al. 2001). Under some conditions, these uncon-
trolled effects could cause our statistical test (as well as
all the statistical procedures based on this assumption)
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to become anticonservative (Gondan & Minakata, 2016).
However, we notice that the removal of the independence
assumption in RMI data would be problematic even for the
basic definition of context invariance itself.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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