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Abstract
We explore here the application of modern computer hardware and software to the collection and analysis of behavioral data. We
discuss the issues of ecological validity, storage and processing, data permanence, automation, validity, and algorithmic determinism.
Taking the modern landscape into account, we demonstrate several varying projects we have recently undertaken as proofs of concept
of the viability and utility of this approach. In particular, we describe four research projects, which involve work on child-directed
speech; the application of automatic methods to clinical populations, including children with hearing loss; quality control and the
assessment of validity; and the sharing of data in a public database. We conclude by pointing out how the methodology described here
can be extended to a wide variety of interdisciplinary and detailed projects that are likely to lead to better science and improved
outcomes for populations served by the behavioral, social, and health sciences.
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Ecological validity

Natural observations have the potential to reveal human behav-
iors that are not evident in a controlled laboratory setting.
Recognizing this, but constrained by human and technical con-
siderations such as the investment of human labor, financial cost,
and computational limitations, social scientists have historically
collected behavioral data in very small samples or under condi-
tions that have presented threats to their ecological validity
(Narayanan & Georgiou, 2013; Neisser, 1967). Many well-
documented deleterious or undesirable consequences have
followed from this methodological approach, including the
Hawthorne effect, in which study participants change behavior
due to their own knowledge of being observed (McCambridge,
Witton, & Elbourne, 2014); observer biases related to biosocial
factors (e.g., a physically largermale researcher interactingwith a
female participant) and psychosocial factors (e.g., differential
effects of undiagnosed disorders in males versus females;

Rosenthal & Rosnow, 1991); demand characteristics, in which
participants’ assumptions about the goals of the research affect
their behavior (Orne, 2009); and potential questions about the
generalizability of results (Brewer & Crano, 2000; Cook &
Campbell, 1979).Evenin thebestofstudies, thesamplesizeshave
been very small. A well-known example from the literature is
representative of these criticisms. In the mid-1990s, Hart and
Risley (1995) argued that the number of hours that parents con-
verse with children is the single strongest predictor of academic
success. Hart andRisley’sworkwas constrained by factors famil-
iar to any social scientist: namely, the labor-intensive nature of
collecting, transcribing, and tagging audio-recorded speech and
language samples. They studied 42 children for one hour per
monthover a two-and-a-half-yearperiod, averagingabout28 total
observations per family. This produced about 1,200 h of total col-
lected audio, resulting in over 30,000 pages of transcripts. It took
Bsixyears ofpainstakingeffort beforewesaw the first results^ and
Bnoneof us took avacation formore than3years^ (Hart&Risley,
1995,pp.46,41).Togetasenseofhowthingshavechangedin just
twodecades, the authors of the present article published a studyof
child-directed speech (De Palma & VanDam, 2017) whose con-
clusionswere based on an analysis of 7,000 h of recorded speech,
theoverwhelmingmajorityofwhichwasprocessedautomatically
byacomputer.Similarly,wecurrentlyhaveover20,000hof insitu
family conversations awaiting analysis.
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Current advances in micro-electronics and the ability to store,
process, and interpret vast amounts of data afford scientists new
avenues of investigation and resolve some of the earlier prob-
lems, even problems that were unseen or unconsidered in previ-
ous eras of the research enterprise. These advances include (a)
commercially available, wearable biotechnology capable of cap-
turing rich data on human behavior, (b) archival databases of raw
and processed data, and (c) computational techniques, such as
advances in automatic speech processing and recognition (ASP/
R). These have been further enhanced by the discovery and
rediscovery of computational and statistical models to interpret
the rich, complex data that are generated. Computational and
statistical advances and rediscoveries have included Bayesian
inference, so-called Brobust statistics^ (Box, 1953; Gelman &
Hennig, 2017; Huber, 1981), and the recognition that assump-
tions such as normality and homoscedasticity may not be appro-
priate for very large datasets. Also important are the easy avail-
ability and general familiarity of statistical and numerical soft-
ware packages such as R (R Core Team, 2013), Python’s SciPy
(Jones, Oliphant, & Peterson, 2014), commercial and third-party
quantitative software packages for MATLAB (MathWorks, 2018),
and user-interface-driven applications such as SPSS (IBMCorp.,
2013) or RStudio (RStudio Team, 2015) that increase the acces-
sibility of analytic techniques (McGrayne, 2012; Wilcox, 2016;
Wilcox&Keselman, 2003). The importance of these discoveries
and tools cannot be overestimated.

With the rapid rise in the abilities of modern computing, the
collection and storage of vast amounts of data are fairly
straightforward and, in many applications, pose few new tech-
nological challenges. Commercial computing began handling
large datasets in a straightforward manner within a decade
after IBM researcher E. F. Codd proposed separating the data
model from the underlying hardware (Codd, 1970). But, in the
era of very large datasets, a number of extratechnological
challenges remain. For example, wearable sensors for a dis-
abled or disordered population may pose significant chal-
lenges to obtaining data or dealing with noisy, messy, and
missing data (Milliken & Johnson, 2001, 2009). It is one thing
to record and store everything that is heard (for example), and
quite another to assess its validity. An especially thorny prob-
lem in the social, behavioral, and health sciences is a variant of
the issue that accompanied the rise of the personal computer in
the 1980s: the administration of complex systems is itself
complex. The administrative costs of hardware may be many
times the cost of the hardware itself, perhaps by as much as a
factor of 5, as the Gartner Group has been pointing out for
more than a decade (Cearley, Burke, Searle, & Walker, 2017;
van der Meulen, 2008). Who does this administration is
contested territory. A research team may pay for it out of an
already-stretched budget, or it becomes the de facto territory
of graduate students, postdocs, or, in small research teams, the
researcher herself—all amateur information technology (IT)
administrators whose time in a well-funded world might be

better spent doing the content of the science at hand. Our
colleagues in the physical sciences share the same issue, lead-
ing to an early recommendation for Bscience data centers^ that
Bwould curate one or more massive datasets, . . . the applica-
tions that provide access to that dataset, and . . . staff that
understands the data^ (Gray et al., 2005). Among the exam-
ples cited are CERN and Fermilab.

The structure of and access to very large datasets has of course
received much attention since the earliest uses of vacuum-tube
computers and monolithic databases stored on tape drives. But
the advent of massive increases in the use and storage of com-
puting technology throughout the second half of the 20th century
has resulted in new andmuch more massive datasets. Early mas-
sive data archives have been described in terms of
Bwarehousing^ (Jarke, Jeusfeld, Quix, & Vassiliadis, 1999), but
this approach was shown to have the deleterious effect of isolat-
ing or siloing data. Warehoused data is to some degree
decontextualized data. One approach to addressing this problem
was the concept of a data lake (Dixon, 2010; O’Leary, 2014). A
data lake is a large body of data filled, piped, or ingested from
many sources, in which Busers of the lake can come to examine,
dive in, or take samples^ (Dixon, 2010). There are also detailed
methods (e.g., Constance [Hai, Geisler, &Quix, 2016]) and tech-
nologies (e.g., Hadoop, Hadoop + Spark, Splunk, Storm
[Mohanty, Bhuhan, & Chenthati, 2015]) to deal with the
resulting data lake. There has been substantial interest and ana-
lytic activity (particularly using Hadoop) from Microsoft,
Amazon, Google, Oracle, Facebook, Yahoo!, and others
(Pasupuleti & Purra, 2015). The approach and resources
discussed here, namely the HomeBank resource detailed below,
are consistent with a data lake.

In addition to the general data storage and processing de-
scribed immediately above, a number of projects or tools seek
to aggregate or serve as a repository for data, often in the form of
actively ongoing, open data submission archives in which users
continually submit new data to the repository or data lake. These
also provide (open or restricted) access to that data for the pur-
pose of facilitating new empirical discovery for researchers who
may not have collected the data. The advantages of this approach
are that the costs, broadly construed, are reduced and data per-
manence increases; the disadvantages include new management
responsibilities for the curators and potential breaches of personal
or other data unintended for public consumption. Of particular
interest to behavioral scientists are the Open Science Framework
(Nosek et al., 2015), CLARIN (Hinrichs & Krauwer, 2014),
Databrary (Adolph, Gilmore, Freeman, Sanderson, & Millman,
2012), and TalkBank (MacWhinney, 2007). In addition, there are
projects whose details are only partially available to the public or
to the research community, including massive ongoing behavior-
al data collection and archiving within Google, Amazon,
Microsoft, Netflix, and other tech-based enterprises. At least
some data in the private sector are specifically oriented toward
language and speech analysis, detection, perception, or other
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similar areas of interest that generate massive datasets. Not least
of these are the Amazon Alexa, Apple Siri, Microsoft Cortana,
and Google Assistant speech recognition and language-
processing projects (Chung, Iorga, Voas, & Lee, 2017).

Along with large datasets comes the related issue of data
permanence, an issue recognized nearly two decades ago in
the context of digital libraries (Rothenberg, 1999). In this case,
the rapidity of software and hardware change becomes a lia-
bility. The researcher who does not maintain updates is
condemned to live on a technological island whose landmass
will shrink to zero as hardware and software become unus-
able, through obsolescence, reduced interoperability, or sim-
ple mechanical failure. Recognizing the problem, of course,
points to a relatively straightforward solution: maintain soft-
ware updates and data backups, and copy data to new hard-
ware periodically. These tasks will be performed as a matter of
course by professional IT administrators, and perhaps not so
routinely by (social, behavioral, and health) researchers who,
with their postdocs and graduate students, frequently maintain
their own hardware and software.

As technology changes, it is not at all clear what the best
practices will be. To offer a simple example, the fairly recent
introduction of Amazon Web Services has the capacity to put
social scientists out of the hardware business. But technology
comes with unintended consequences, and as Edward Tenner
and others have observed, in the context of very-large-
database computing, not the least of these relate to data priva-
cy (Raghupathi & Raghupathi, 2014; Tenner, 1996). Though
the problems are widely recognized and potential solutions
exist, one might be forgiven if he or she claimed that we have
simply substituted a software problem (how to maintain se-
cure data stored remotely) for a hardware problem (how to
maintain large fast computing clusters and data repositories
locally while sharing with other researchers).

At a level beyond the collection, storage, and mainte-
nance of data is interpretation of the data. With very large
datasets, this has taken on an increasing urgency. That is to
say, data collection and all its attendant processes are often
less challenging than being able to generalize meaningful
trends in the data. Without substantial tools to organize and
analyze the collected data, the advantages of ecological
validity, the ability to look longitudinally at the time course
of human behavior, and the ability to generalize would be
diminished. It is the case that algorithms that perform effi-
ciently on small datasets can require days or weeks to run
on very large datasets, or may never complete their func-
tions due to hardware limitations such as available memo-
ry. Matrix multiplication is a simple example. The number
of computations necessary to multiply matrices grows in a
nonlinear fashion as the cube of the size of the dataset.
Furthermore, as anyone who has tried to send a dataset
over the Internet surely knows, network bandwidth has
not kept pace with storage capacity.

A related theoretical problem is the necessity of automa-
tion in the processing of very large datasets. The demand for
automaticity is in fact one of the hallmark definitions of very
large datasets, or so-called big data: a dataset that is larger
than traditional means can accommodate (De Mauro, Greco,
& Grimaldi, 2016). In any analysis that depends on automat-
ic, deterministic, or algorithmic methods of computation,
there is the possibility of systematic error being introduced
into the analysis. Systematic errors or biases in machine
learning and artificial intelligence (of which ASP/R is a sub-
type) have been demonstrated in large datasets, with biases
documented in such disparate domains as insects, flowers,
race, gender, careers, and first names (Caliskan, Bryson, &
Narayanan, 2017); clearly, the potential for bias is great.
There are traditional methods to confirm the performance of
the automation by quantifying precision, accuracy, sensitivity,
and specificity, but those methods can be challenging to im-
plement reliably in large datasets. Importantly, the structural
correspondence between the measure and the description, the
validity, must also be considered. In practice, for sufficiently
small datasets, a common assessment method is to examine
some subset (or a holdout set) of the data by hand, often
10%–20% of the overall quantity of data, and compare that
hand-derived gold standard to the results obtained from the
automatic method.1 If the two results converge, they are con-
sidered valid, the results are generally trusted, and the auto-
matic method is accepted (possibly with some conditions,
such as higher error rate). But with very large datasets, vali-
dation is more challenging, due to the inability to compute by
hand an appreciably large gold standard set with which to
compare the automatic methods. The generality of the sub-
sample increases as its proportion to the whole increases, but
given the samples discussed in the present work, no reason-
able effort could attain a hand-derived subsample of even 1%,
when 20%–40% is common in the literature (see Kohavi,
1995, and Kim, 2009). For example, in some of our own
work we have performed automated analyses on more than
10,000 h of audio collected in home environments. Hand
transcription to the level of detail required for these analyses
(here, a careful orthographic transcription—but a phonetic
transcription would be substantially more labor-intensive) is
roughly a ten-to-one time investment for an experienced tran-
scriber. So, to transcribe all 10,000 h by hand would take
approximately 100,000 h of labor, or roughly 50 person-
years. A holdout or subsample of even 1% would consume
an estimated six months of full-time labor from an experi-
enced transcriber. Instead, to assess the validity of automatic
methods, we rely not only on gold-standard comparison, but
also on content, criterion, and construct validity—all

1 Other methods, such as leave-one-out cross-validation, are alternative frame-
works for the validation of datasets, but other methods are computationally
heavy or have other trade-offs.
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theoretical measures used to argue that the empirical quanti-
ties reflect the things we claim they reflect.

Yet another issue in working with very large datasets is
that, of necessity, some processing software is probabilistic.
For example, much of our work relies upon speech-processing
software from the LENA Foundation (LENA, 2018). The ad-
vances in automatic speech recognition in the past two de-
cades have been due to the introduction of probabilistic
machine-learning models, and, like the humans they are
intended to simulate, they make mistakes. Although
Google’s use of very large datasets along with yet another
machine-learning technique, neural networks, has brought
ASP/R to near-human performance, LENA is a commercial
product (Hinton et al., 2012; Kepuska & Bouthota, 2017), so
its details are opaque. Our approach has been to test the accu-
racy of LENA against the gold standard in automatic speech
recognition—namely, human subjects (Silbert, Linck, &
VanDam, 2013; VanDam & Silbert, 2016). Though LENA
performs well, it does not perform perfectly. And the errors
that any computer or automatic method makes are not the
same kinds of errors that humans make in language percep-
tion. The fact that computers and humans are known to use
different storage, analysis, and production mechanisms
(Woods, Dekker, Cook, Johannesen, & Sarter, 2017; Woods
& Roth, 1988) may introduce problems, both in fine-tuning
the output and in a deeper understanding of the mechanisms
themselves, whether the mechanisms are the product of hu-
man cognition or the often opaque models used to specify
these mechanisms (such as in hidden Markov models or com-
putational neural networks).

Outline of the present work

What follows in this report is a description of the technology
we use, followed by a series of case studies of several recent
empirical projects undertaken by our research group. We use
the methodology to explore new scientific questions by cap-
italizing on the confluence of the technological advances
and capabilities set forth above. We use our own empirical
work as an example and proof of concept. We demonstrate
how the modularity, flexibility, and extensibility of the mod-
ern landscape accommodates new areas of scientific inquiry
in a wide range of disciplines with both theoretical and
practical importance, by implementing techniques that can
be shifted or substituted to accommodate different problems.
For example, we demonstrate the use of a particular spectral
feature from acoustic speech processing, but the same gen-
eral procedure could be adapted to other spectral or temporal
features, or indeed, to any raw, high-density data, including
images and data from sensors or sensor networks. We con-
clude with short discussion of the extensibility of the frame-
work described here.

Description of the technology, its extension,
and its application

The LENA system was developed in the early 2000s in an
attempt to use automatic methods to capture the linguistic
input to children and their auditory environment (Gilkerson
& Richards, 2009). The commercially available system con-
sists of a small, body-worn audio recorder to collect audio
from the child’s perspective and software to process the col-
lected daylong audio. Audio is collected in units of one day,
with audio ideally being recorded continuously fromwhen the
child awakes in the morning until the child goes to sleep in the
evening. After a raw recording is collected, the daylong audio
file is transferred to a computer where it is processed using the
proprietary LENA software. The goal of the processing is to
segment the audio and assign one of about 60 a priori labels to
each segment. The segment size depends on the auditory sig-
nal and is not of a predetermined duration. Segments ultimate-
ly bearing labels corresponding to live human vocal events are
generally the size of an uninterrupted utterance, and not at the
level of individual words or syllables. The goal of many arti-
ficial speech recognition systems is to map audio onto an
orthographic representation of lexical items, with the output
being a readable transcript of the audio event. This fairly spe-
cific, granular goal has obvious utility, but performance de-
clines substantially as noise increases, a serious problem for
daylong recordings in which the environment is overtly un-
controlled. Ecological validity and environmental noise are, in
the context of naturalistic audio recordings, proportional to
one another. To address this problem, the LENA algorithms
assign labels at a relatively coarse level, such as adult male,
adult female, TV/electronic media, silence, noise, target-child,
and so on. The output of the processing is a raw audio file (16-
bit, 16-kHz, lossless pulse-code modulated WAV format) and
an XML-coded record of the onset–offset times at centisecond
resolution bearing the label of each segment. There is also
some additional information in the output, such as the mean
amplitude of the signal for the duration of that segment. The
audio files are as long as 16 h (the limit of the internal memory
of the recorder) but are typically less. In a database maintained
by the present authors of several thousand recordings, the
average daylong recording is just under 11 h. In our case, that
database consists of roughly 2,500 recordings from about 120
families. Some families have contributed one recording, and
one family has contributed more than 600 recordings from
three children, with one child wearing the recorder in about
300 of her first 400 days of life. The original design of the
database was to collect one recording per month from each
family for one year in early, preschool development. This goal
was largely realized, but many factors have influenced the
database since its inception in the mid-2000s. For example,
families enrolled in the data collection study with a target
preschooler might have a school-age sibling who volunteered
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to contribute recordings. Similarly, families with certain dis-
orders not targeted in the original design might be included
(and documented) if it were convenient to collect such record-
ings. In principle, we have taken the viewpoint that recordings
have a fairly high cost to collect, but we have an established
protocol and mechanism, so unplanned opportunities to col-
lect recordings are generally accommodated in the hope that
those recordings may facilitate future scientific discovery. The
time-aligned record of segment labels depends on the content
of the recording, but typically it runs to roughly 25,000 lines
of output.

The output of the LENA system can be interpreted directly,
in a limited fashion, via the interface software provided with
the processing module. Summary reports quantifying child
and adult utterances, conversational exchanges, TV and elec-
tronic media exposure, noise, and silence are available via the
entailed software. Options to output the data into various
interpreted formats, such as CLAN/CHATor Transcriber files,
are also available. Using the output of the ASP/R software to
provide time-aligned labels and the (raw) audio can be accom-
plished with third-party or custom-written software, such as
the collection of user scripts at the HomeBankCode repository
(https://github.com/homebankcode/) or the ADEX parser,
provided by the LENA Research Foundation. For example,
a researcher may want to quantify certain spectral
characteristics of all audio segments labeled noise by the
ASP/R routines. The researcher might use custom scripts to
extract the onset and offset times of those segments, read and
process the corresponding raw audio from the daylong file,
and return the acoustic features of interest.

Our approach to collecting and analyzing large amounts
of ecologically valid data can be decomposed into four prin-
cipal modules. We describe each in terms of our own work,
but argue later in this work that there is wide flexibility and
extensibility in the modules described here. First, ecological-
ly valid recordings of human behavior are collected in real
time through a body-worn recorder. In our case, we collect
daylong audio recordings from the LENA system described
above. Second, the raw data are processed by commercially
or publicly available software. For us, the daylong audio is
processed with LENA ASP/R, taking the daylong audio file
as input and outputting a tagged, time-aligned record of
segment boundaries and labels known to be important for
speech and the development of speech and language in chil-
dren. Third, we use custom software to process the results
for features of interest. We use MATLAB, C, and Python code
to process for speech and language features such as utter-
ance duration or fundamental frequencies of child and adult
speech. The ability to use the output of commercially avail-
able processes as the input for specialized analyses affords
the unique possibility of interdisciplinary applications and
specializations not previously considered or not available
directly within the LENA software. Fourth, massive data

are subjected to structural data organization and computa-
tional modeling techniques, to gain insight into the structure
of the data. The goal of some empirical work is to describe;
a loftier goal of empirical work is to use the data to draw
larger conclusions and to generalize from the sample to the
population with some degree of confidence. In the case of
the massive data described here, we are ultimately interested
in offering the potential to shed light on human behavior, the
structure of the brain, social cognition, or other understand-
ing of complex systems at play, in such a way that the
conclusions carry forward, the observations generalize, and
the results guide predictive hypotheses. The general structure
of these modules, issues important to consider, and examples
at each stage are given in Fig. 1. An important feature of this
design and implementation is the extensibility of this ap-
proach. In particular, each module and the processes
contained therein are easily substituted, rearranged, manipu-
lated, added to, or otherwise tailored to a wide array of raw
input data, so as to gain empirical insight. So, for example,
at present there are no real alternatives to the LENA system
for processing daylong audio files, but efforts are underway
to achieve a similar level of ASP/R, including the open
source Virtual Speech Kitchen project (Metze, Fosler-
Lussier, & Bates, 2013). Furthermore, any given single da-
tabase ingested into such as system could be subjected to
many alternative investigations by tailoring the method to
the questions of interest. Several examples of such projects
are given in the following section from our own work.

Detailed examples of recent work

Just as the development of corememory, the transistor, and the
high-level programming languages in the 1950s ushered in the
cognitive revolution, the formalist approach to the study of
language has made available to researchers the use of com-
puters to transcribe speech, now known as ASP/R. ASP/R,
along with current developments in computing and computa-
tional techniques, has permitted the investigations we have
undertaken. These developments include not only inexpensive
storage and recording devices, but also the rediscovery of
Bayesian inference, the application of probabilistic machine-
learning techniques—the hidden Markov model, in
particular—to speech processing, and the expansion of
Internet bandwidth. The latter has allowed both world-wide
collaboration and remotely accessible data repositories. In the
following four subsections, we describe using this collection
of methodologies, tools, and techniques to explore child-
directed speech; the application of automatic methods to clin-
ical populations, including children with hearing loss; quality
control and assessment of validity; and the advantage of shar-
ing data in a public database.
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Child-directed speech In two studies we used the phenom-
enon of child-directed speech (CDS) as a proof of con-
cept—namely, as evidence that very large speech corpora
could be analyzed in a reasonable time to produce results
unavailable to other techniques (De Palma & VanDam,
2017; VanDam & De Palma, 2014). CDS is the manner
in which adults speak to their infants and toddlers.
Characteristics of this speech are shorter utterances,
hyperarticulation, decreased syntactic complexity, and
raised fundamental frequency (f0). The phenomenon has
been attested in several European languages, Mexican
Spanish, and Japanese, leading some researchers to suggest
that not only might CDS be a language universal but also
may be implicated in language acquisition (Masataka,
1999). Though CDS has been investigated since the

1970s, the availability of automatically processed daylong
recordings has afforded a deeper look at the phenomenon.

LENA, as we noted above, is similar to a conventional
automatic speech recognizer of the SIRI variety. The system
transforms a time-stamped audio stream into a collection of
feature vectors that it segments and labels. In essence, LENA,
like any other recognizer, is a classifier, but instead of map-
ping audio segments to word classes, it maps them to the
origin of the sound. Possibilities are target-child, other child,
male adult, female adult, TV/electronic sound, and others.
These labels permit automated judgments of CDS: a speech
segment labeled adult and found adjacent to another adult
segment is defined as non-CDS, and an adult segment adja-
cent to a segment labeled target-child is defined as CDS. Both
studies described below used raised f0 as a proxy for raised
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pitch, since pitch and f0 are correlated (Hess, 1983). Raised
pitch is one of the most recognizable features of CDS. More
importantly, f0 can be extracted from WAV files and analyzed
computationally. Interestingly, the automated methods also
allowed us to explore whether CDS was different when per-
formed by mothers versus fathers. This was a straightforward
extension of the software: All that was required was for
mothers and fathers to be identified separately by the automat-
ic methods.

In one study we used over 490 h of daylong audio from 33
families as a preliminary investigation based on a small subset
of our corpus (VanDam & De Palma, 2014). The study was
done before we had developed software capable of traversing
a file system with thousands of hours of recorded speech.
There were two hypotheses:

Mothers and fathers will produce a higher mean f0 during
CDS than during non-CDS.
Mothers and fathers will produce comparable f0 regard-
less of the hearing status of children; for this analysis,
families with typically developing (TD) children were
compared to families with a child who is hard of hearing
(HH).

The results were surprising in two ways. First, during the
CDS condition, mothers significantly increased f0. Fathers, on
the other hand, did not show an increase in f0 in CDS as
compared with non-CDS speech. Second, when comparing
between the TD and HH groups, the fathers of HH children
had a higher overall f0, indicating that fathers might be sensi-
tive to the hearing status of their children. By contrast,
mothers’ speech in this study did not differentiate whether
they had an HH or TD child.

The second study used over 7,500 h of a corpus that has
now grown to over 10,000 h (De Palma & VanDam, 2017).
The number of families studied grew from 33 in the first study,
to 62 in the second. This time we had developed software
capable of traversing a complex Linux file system, building
nearly four million 1- to 2-s WAV files from the much larger
daylong recordings, and extracting f0 from files designated as
CDS and non-CDS. Software constructed for this study is
available in the HomeBankCode repository (VanDam et al.,
2016), about which we will say more below.

Curious about the strong finding from the 2014 study that
fathers do not raise f0 when speaking to TD children, we began
with a single hypothesis: Mothers and fathers will produce
higher mean f0 during CDS than during non-CDS. To test this,
we extracted the acoustic record of those segments automati-
cally labeled as the mother or father by the LENA software,
segregated into CDS and non-CDS. We processed those
acoustic files according to a pitch determination algorithm,
and then obtained the mean fundamental frequency estimates
for each talker in each social condition. We then performed a

paired t-test to test for within-talker difference between social
conditions. We also performed an ordinary least squares re-
gression to examine the trend. This time mothers remained
sensitive to the CDS condition. Fathers also raised f0 signifi-
cantly, but not as much as mothers, showing a weaker corre-
lation. The results are interesting in two ways. First, we dem-
onstrated that not only is it possible to analyze a very large
corpus, but also that the larger corpus corrected an incorrect
inference drawn from a smaller corpus, namely that mothers
but not fathers alter speech to their children in specific ways.
Second, the differential speech behavior of fathers in the pres-
ence of children and adults has not been thoroughly addressed
in the literature. We found that fathers’ speech patterns were
similar to those of mothers, but far from identical, over and
above the general differences between male and female
speech. Follow-up work will consider TD and HH popula-
tions separately, look at the potential role of siblings in the
family communicative environment, consider other
acoustic–phonetic features known to be important for speech
and language, and examine the role of linguistic complexity in
language development. The overarching goal here was to
demonstrate that very large quantities of in situ speech could
be recorded, stored systematically, analyzed through several
layers of software (automatic speech processing, finely
grained segmentation of WAV files by timestamp, f0 extrac-
tion, and statistical analysis) and yield generalizable
inferences.

Application to clinical populations Several studies have used
the automatic methods described here to investigate speech
production and language development and to describe the
auditory environment of children with hearing loss. In addi-
tion to our own work looking at children with hearing loss,
researchers have used automatic methods and the daylong
recordings to look at preterm infants (Caskey, Stephens,
Tucker, & Vohr, 2011; Caskey & Vohr, 2013), autism spec-
trum disorder (Rankine et al., 2017; Warren et al., 2010),
Down syndrome (Thiemann-Bourque, Warren, Brady,
Gilkerson, & Richards, 2014), language delay (Oller et al.,
2010), and others. Here we will briefly describe three studies,
to demonstrate the utility and productive nature of using au-
tomatic methods to describe and better understand hearing
loss in children.

In one study we asked whether two-year-olds who were
hard of hearing were exposed to the same quantity of talk from
their parents as typically developing children from our own
database and from a published sample (VanDam, Ambrose, &
Moeller, 2012). We used daylong recordings processed by the
LENA software to estimate adult words and conversational
turns (normalized by the total hours in the recorded day).
We also looked at possible covariates, such as hearing level,
sex, socio-economic status, child language skills, and child
age.We found that child hearing status had a limited influence
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on the quantity of parents’ talk to these toddlers, but within
those families with a child with hearing loss, parents produced
more talk as children’s hearing was better.

In another study we looked at the role that exposure to
television and electronic media has on the language develop-
ment of children with hearing loss (Ambrose, VanDam, &
Moeller, 2014). Here we showed that toddlers’ exposure to
more electronic media was negatively associated with recep-
tive language abilities, but that increasing conversational turns
might mitigate that disadvantage.

Finally, in another study we compared four groups: typi-
cally developing, autistic, language delayed, and hard-of-
hearing children (VanDam et al., 2015). Here we analyzed
1,913 daylong recordings from 273 children in four groups
of known diagnoses: typically developing, autism spectrum
disorder, language delayed, and hard of hearing. Using auto-
matic methods based on LENA recordings, we collected pa-
rameters from the acoustic signal known to be important for
speech and language development and built statistical models
to classify children into groups and examine their vocal de-
velopment. We were able to show successful classification of
children using automated vocal analysis. This result is a step
toward using large-sample automated methods to distinguish
among disorders and improve treatment to a differentiated
population.

The three empirical research projects described above dem-
onstrate a concrete approach to using objective, automated
methods and very large sampling to gain insight into at-risk
or clinical populations that are currently not well understood.

Quality of automatic procedures One of the issues raised
above in the context of investigations of data using probabi-
listic machine-learning techniques is that these techniques are
just that—probabilistic. The conditions under which our data
were recorded pose some of the greatest problems for ASP/R,
namely open-set vocabulary, continuous speech uttered by
many speakers. The consequences of these factors are that
the data are both complex and noisy. A natural question to
ask, then, is how accurately do the automatic methods
perform? Said more precisely, to what degree do the segment
labels—target-child, adult male, and so on—conform to those
of human judges? Previous empirical studies of children learn-
ing English, Spanish, and French have been conducted. In
these, the agreement between human coders and LENA has
varied from 82% to 64%, depending on the label (Canault, Le
Normand, Foudil, Loundon, & Thai-Van, 2015; Soderstrom
& Wittebolle, 2013; Weisleder & Fernald, 2013).

A more recent study looked at the fidelity of the automatic
LENA methods using many excised tokens of specific labels
and a cadre of judges (VanDam& Silbert, 2016). In this study,
26 daylong recordings were used, one from each of 26 fami-
lies. The ages of the participating children averaged 29.1
months. After the daylong recordings had been collected

using the LENA system, segments bearing specific talker la-
bels (male adult, female adult, and target-child) were excised,
labeled and cataloged, and saved to a file. The files were
sampled evenly throughout the day from the original record-
ings, using a custom MATLAB script that computed the total
number of utterances from one category label (e.g., father),
n, and collected each n/30th segment with that label in order to
achieve exactly 30 samples evenly spaced throughout the day.
A sampling procedure emphasizing randomness, sparser sam-
pling, or other techniques would be trivial to produce. These
excised segments then served as the stimuli for 23 human
judges who listened to a total of 53,820 stimulus presenta-
tions, 17,940 from each of the categories of interest. The judg-
es performed a four-alternative forced choice task, choosing
mother, father, child, or other for each audio presentation. In a
tenfold cross-validation procedure, the error rate stood at .353,
consistent with the performance of ASP/R in a large-
vocabulary continuous-speech setting (VanDam & Silbert,
2016). Others have investigated the quality of the tools in
typically developing (Xu, Richards, & Gilkerson, 2014) and
special (Woynaroski et al., 2017) populations. This is an ex-
ample of using the commercially available LENA system as a
first step to data collection, with custom software being used
to postprocess for features of interest.

Since this study was completed, researchers in ASP/R have
been reporting spectacular decreases in error rate though the
introduction of neural networks in their acoustic and language
models, and some have looked specifically at the LENA sys-
tem (Richards et al., 2017). Thus, Xiong and colleagues
(2017) report an error rate of .062. There are two caveats.
Xiong and colleagues at Microsoft tested on the
Switchboard corpus (Godfrey, Holliman, & McDaniel,
1992), a corpus of telephone conversations, which are consid-
erably more constrained than our own daylong recordings of
in situ child speech. Furthermore, the error rate posted by the
Microsoft team is the word error rate, whereas the study cited
above reported labeling error. The two can be compared in
order to get a rough measure, but, of course, they are not
identical.

Database management and shared data The question of how
to catalog and store thousands of hours of recorded speech in
such a way that the speech can be made available to research
groups other than our own, while protecting the privacy of the
subjects, is a nontrivial problem. After a corpus reaches a
certain size, it becomes unreasonable for investigators to be-
come their own systems administrators and, in the case where
software is to be shared, part-time librarians. This prompted
the initiation of HomeBank (https://homebank.talkbank.org),
a permanent, online database of daylong audio recordings
made in naturalistic settings along with an associated
GitHub code repository (https://github.com/homebankcode/)
to analyze, process, and store the data. The HomeBank
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database currently has eight corpora representing greater than
100 talkers and 1,000 recordings. HomeBank is administered
by a professional technology team. The recordings consist of
vetted and unvetted data. In the vetted portion, the recordings
and associated metadata have been examined by trained
listeners to ensure that no private or personally identifying
material is present. The vetted database is unrestricted and
available for public download and analysis. The unvetted
database has not been examined by human listeners for
content. It is password-protected and available only to regis-
tered HomeBank members who have agreed to confidentiality
and who have passed through recognized ethics training on
how to handle human data (VanDam et al., 2016).

Extensions, adaptations, and future
applications

The characteristic feature of the work detailed here is the high
quantity of behavioral data available to the researcher. We
believe that this is a recent advance and fertile ground for
research. That is to say, big data have been considered and
collected for much longer than behavioral big data have been
available. The advent of increases in computing, not least of
which are storage and miniaturization, have afforded interest-
ed researchers the ability to collect behavioral data from bio-
logical organisms (i.e., humans) as never before. The work
shown here is particular to research programs primarily inter-
ested in utilizing automatic methods to explore a wide variety
of open questions about speech production, language devel-
opment, and disorders with associated risk of communication
dysfunction, but the general data acquisition and analytic ap-
proach can be and has been straightforwardly extended or
adapted.

One area of current interest is the development of an alter-
native to the LENA system (Metze et al., 2013; Schuller et al.,
2017). An alternative has several challenges and several ad-
vantages. Among the challenges are standardizing hardware,
cost, coordination of effort, lack of validation, lack of conti-
nuity in the literature for a new, undescribed system, and the
varying interests of research teams leading to different or con-
flicting paths of development. The advantages of an alterna-
tive may afford the research community with transparent pro-
cessing (which is not a feature of the LENA system), flexibil-
ity in coding and applications, such as models that may direct-
ly apply to variable problems to address specific populations
of interest, and interoperability with other hardware and soft-
ware systems. The advantages will allow an alternative to be
research-driven, with development undertaken to address
problems of interest within the research community. We ex-
pect and hope that the development of this alternative will
continue to receive generous support in proportion to the in-
creasing interest in the international scientific community.

Researchers around the world using daylong audio recording
technology have made discoveries in science and engineering,
anthropology, human health disorders, language develop-
ment, and many disparate fields. With this broad scientific
attention and demonstrated results, the development of an al-
ternative to the LENA system is fast approaching viability.
Finally, an alternative may accelerate the course of scientific
discovery, expressly because of the extensibility of such a
system. Compared with the present landscape, dominated by
a single proprietary provider, a collaborative enterprise (as is
currently being undertaken) will most likely be transparent,
open-source, and accessible to a wider range of interested
scientists, who can take advantage of this flexibility and ex-
tensibility in order to gain new insights and promote new
discoveries. There is also potential for additional collaboration
between the scientific community and industry as more par-
ticipants enter the research space.

In the behavioral and health sciences domain, researchers
are exploring a breathtaking array of parameters. Just to name
a few from disparate fields, there is extant research on pro-
cessing radiological images (Shin et al., 2015), exploring the
genotypology of disease (Nalls et al., 2014), dermatological
diagnoses (Esteva et al., 2017), the onset and time course of
disease epidemics (Brownstein, Freifeld, & Madoff, 2009;
Young, 2015), neuroimaging (Beaton, Dunlop, & Abdi,
2016; Biswal et al., 2010), understanding personality traits
(Bleidorn, Hopwood, & Wright, 2017), economic behavior
and trends (Einav & Levin, 2014), the nature of human
long-term memory (Stanley & Byrne, 2016), theoretical de-
velopmental phonology (Bergmann, Tsuji, & Cristia, 2017),
and many more.

The framework described above takes in large quantities of
behavioral data and uses modern computer hardware and soft-
ware to store, organize, and analyze the data. Instead of acous-
tic sensors such as the microphones described above, re-
searchers are using piezoelectric sensors, gyroscopes, im-
planted electrodes, accelerometers, and pressure devices
(among many others) to obtain data about human behavior
in domains from the physiological to the cognitive (Gowers
et al., 2015; Imani et al., 2016; Klucken et al., 2013; Soh,
Vandenbosch, Mercuri, & Schreurs, 2015; Staudenmayer,
He, Hickey, Sasaki, & Freedson, 2015). In principle, sensors
that collect behavioral data in another domain—such as the
electrochemical response to a stimulus or in a veterinary set-
ting, for example—can be treated in largely the same way as
the data we have collected from microphones. These data can
be collected at a particular sampling frequency, stored in a
database, processed (or mined) for features of interest, and
(possibly) shared for future or collaborative analysis.

This modular approach also has certain drawbacks. First,
the computational requirements of a third-party provider are
likely to be fairly substantial. It is not clear who will fund
offsite data storage, how it will be managed, who will make
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management decisions, and how the data will bemaintained in
perpetuity. Second, access and throughput are continuing con-
cerns. As data volume increases, the need for increased capac-
ity also increases. This might restrict overall access to the data,
which would reduce the very reason it is put in place. Third,
access is a double-edged sword that is particularly risky for
behavioral data, since it critically provides details about the
humans it represents. Despite a robust appreciation for the
responsible handling of human data in the academic research
setting, it is unclear what potential harm to individuals, other
ethical violations, or alternative uses might arise out of these
data being accessible in ways they have not been previously
(Zhou et al., 2012; Krutz &Vines, 2010).

Conclusions

This article describes the use of large-scale, daylong ecologi-
cally valid audio recordings to examine human behavioral
variables. The daylong audio recordings are processed with
ASP/R software, then postprocessed to focus on variables of
interest. The resulting data are rich and complex and afford the
opportunity to generalize observations beyond a descriptive
case alone. This practical approach lends itself to a great va-
riety of extensions, expansions, and cross-discipline collabo-
rations. Here we have focused on our own research interest,
acoustic phonetic analyses to gain insight into human speech
and language development, but the extensibility of the meth-
odological approach is ripe for a wide array of other scientific
questions.
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