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Abstract
Restricted factor analysis (RFA) is a powerful method to test for uniform differential item functioning (DIF), but it may require
empirically selecting anchor items to prevent inflated Type I error rates. We conducted a simulation study to compare two
empirical anchor-selection strategies: a one-step rank-based strategy and an iterative selection procedure. Unlike the iterative
procedure, the rank-based strategy had a low risk and degree of contamination within the empirically selected anchor set, even
with small samples. To detect nonuniform DIF, RFA requires an interaction effect with the latent factor. The latent moderated
structural equations (LMS) method has been applied to RFA and has revealed inflated Type I error rates. We propose using
product indicators (PI) as a more widely available alternative to measure the latent interaction. A simulation study, involving
several sample-size conditions and magnitudes of uniform and nonuniform DIF, revealed that PI obtained similar power but
lower Type I error rates, as compared to LMS.
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Measurement invariance

In the presence of differential item functioning (DIF), ob-
served differences in composite scores (e.g., scale means)
might not represent true differences in the construct that a
scale is developed to measure. DIF is formally defined as a
violation of measurement invariance (Mellenbergh, 1989):

f 1 X jT ¼ t;V ¼ vð Þ ¼ f 2 X jT ¼ tð Þ ð1Þ

where X is a set of observed variables measuring the construct
of interest T, and V is a set of variables other than T that
potentially violate measurement invariance (e.g., groups de-
fined by sex or ethnicity). Throughout this article, we will use
the terms item and indicator interchangeably to refer to the
observed indicators X of the construct T, and refer to the var-
iable V as (potential) violators. Function f1 is the conditional
distribution of X given T and V, and f2 is the conditional dis-
tribution of X given T. If measurement invariance holds (i.e.,
f1 = f2), the measurement of T by X is invariant with respect to
V. If measurement invariance does not hold (i.e., f1 ≠ f2),

however, the measurement of T by X functions differently
with respect to V. A distinction can be made between uniform
and nonuniform DIF, where uniform DIF implies that the
magnitude of DIF is constant for all levels of the construct T,
and nonuniform DIF implies that the magnitude of DIF varies
with T. In different measurement contexts, DIF goes by many
other names, such as measurement bias (Oort, 1992),
noninvariance (Byrne, Shavelson, &Muthén, 1989), or differ-
ential indicator functioning (Kline, 2011, p. 253).

A common method to test for DIF with respect to a group-
ing variable V is multiple-group confirmatory factor analysis
(MGCFA; Vandenberg & Lance, 2000), in which a measure-
ment model is estimated for each group, and then invariance
constraints are imposed on the parameter estimates in order to
test whether any items exhibit DIF. Hence, this method re-
quires sufficiently large samples for each group. Restricted
factor analysis (RFA; Oort, 1992, 1998) is an alternative when
sample sizes are small. In RFAmodels, the potential violator V
is added to a measurement model as an exogenous variable
that is allowed to covary with T. Multiple-indicator multiple-
cause (MIMIC)models (Muthén, 1989) are statistically equiv-
alent to RFA models, but instead of covariance between Vand
T, a causal effect of Von T is modeled. An advantage of RFA
over MGCFA is that the division of the sample into subsam-
ples by V is not necessary, but RFA also involves an additional
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assumption—namely, the homogeneity of common and
unique factor variances across groups. If this additional as-
sumption holds, RFA has slightly higher power than
MGCFA to detect DIF (Barendse, Oort, Werner, Ligtvoet, &
Schermelleh-Engel, 2012).

A possible disadvantage of RFA is that it is not readily
suited to detect nonuniform DIF. Because nonuniform DIF
implies that the magnitude of DIF varies as a function of the
common factor T, an interaction effect of Twith Von X should
be estimated. To this end, RFA has been extended with a
distribution-analytic approach to model interactions in factor
models called latent moderated structural equations (LMS;
Barendse, Oort, & Garst, 2010). With LMS, the violator V
should be modeled as a single-indicator latent variable in the
RFA model (or MIMIC model; Woods & Grimm, 2011), in
order to enable estimation of a latent interaction of T with V,
thus allowing nonuniform DIF to be estimated as the latent-
interaction’s effect(s) on the indicator(s). Barendse et al.
(2010; Barendse et al., 2012) showed that RFA with LMS
generally has high power (89% to 100%) to detect both uni-
form and nonuniform DIF, except in conditions with a small
sample size and small nonuniform DIF. However, severely
inflated Type I error rates have been observed (Barendse
et al., 2010; Barendse et al., 2012; Woods & Grimm, 2011).
This motivated us to find an alternative method for estimating
the interaction effect of TwithVonX that would provide better
control of Type I error rates.

The first aim of the present study was to compare the per-
formance of LMS with that of product indicators (PI; Kenny
& Judd, 1984), which is an alternative method to model inter-
actions between latent variables in structural equation models.
We aimed to examine whether this method can minimize the
inflated Type I error rates obtained with LMSwhen testing for
DIF using RFA models. The PI method has been studied ex-
tensively in the general context of modeling latent interactions
in structural equation modeling (SEM; Henseler & Chin,
2010; Lin, Wen, Marsh, & Lin, 2010; Little, Bovaird, &
Widaman, 2006; Marsh, Wen, & Hau, 2004), but its perfor-
mance in RFA models to test for nonuniform DIF has not yet
been explored. An advantage of PI over LMS is that it can be
implemented in any SEM software package, and several
methods for calculating product indicators have been automat-
ed in the open-source R package semTools (version 0.5-0;
Jorgensen, Pornprasertmanit, Schoemann, & Rosseel, 2018).
In contrast, testing for nonuniform DIF with RFA models
using LMS can only be applied with the commercial SEM
software Mplus (L. K. Muthén & Muthén, 2012). In addition
to its limited availability, this software does not provide most
traditional SEM fit indices to test for model fit when using
LMS estimation. A preliminary study on the use of PI in RFA
models suggested that PI and LMS obtain comparable conclu-
sions about whether an item exhibits (non)uniform DIF
(Kolbe & Jorgensen, 2018). However, a more extensive

simulation study was necessary in order to (dis)confirm the
promising performance of the PI method in RFA models for
DIF detection.

Methods for testing DIF generally require the selection of
anchor items. These items are indicators used to link the scales
of the latent construct of interest across groups, and they are
assumed to be DIF-free. A common strategy is to use all items
other than the studied item as anchors. This strategy leads to a
contaminated subset of anchor items when some items other
than the studied item exhibit DIF, which in turn leads to prob-
lems such as inaccurate item-parameter estimates and an over-
estimation of the amount of DIF in the test data (W.-C. Wang,
2004). Hence, Woods (2009) argued that the inflated Type I
error rates obtained with LMS might be caused by a contam-
inated subset of anchor items. A simulation study by Woods
and Grimm (2011) showed that LMS still resulted in inflated
Type I error rates when using an uncontaminated anchor set,
which calls into question whether any alternative method
might control Type I errors better, given a valid set of anchor
items.

The importance of an uncontaminated anchor set for testing
DIF provided a second motivation to our study: to investigate
practical methods of empirically identifying anchor items
when they are not known a priori. Rather than explicitly
selecting anchor items, Barendse et al. (2012) applied RFA
with LMS in order to test DIF, iteratively accounting for DIF
in one indicator at a time. They showed that this brings Type I
error rates closer to the nominal level of significance, although
some inflation remains. In the present study, we adapted the
iterative procedure suggested by Barendse et al. (2012) as an
anchor-selection strategy, to be implemented before testing for
DIF—that is, iteratively removing indicators from an anchor
set initially consisting of all indicators. The iterative procedure
can arguably result in large anchor sets, because it begins by
assuming all items as anchors and then selects indicators to
remove from this anchor set. The potential danger of a larger
anchor set is that it generally displays a higher risk of contam-
ination than a smaller anchor set (Kopf, Zeileis, & Strobl,
2015b). Therefore, we contrasted the iterative procedure with
the rank-based strategy proposed byWoods (2009). This is an
easily implemented forward-selection strategy, in which a lim-
ited proportion of all items—those that show the weakest ev-
idence of DIF—are added to the anchor set. A similar strategy
has already been applied in MIMIC models (Chun, Stark,
Kim, & Chernyshenko, 2016). Woods (2009) recommended
that the number of items in the anchor set should be approx-
imately 10% to 20% of the total number.

We will describe both our adaptation of Barendse et al.’s
(2012) iterative procedure and Woods’s (2009) rank-based
strategy for empirically selecting anchor items in greater detail
in a later section. Because both of these empirical anchor-
selection strategies involve preliminary tests of DIF, we begin
by describing how to test for DIF using RFAmodels with both
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LMS and PI. A description of anchor-selection strategies fol-
lows, after which we describe two simulation studies: one to
compare anchor-selection strategies, and the other to compare
latent-interaction models for detecting DIF.

Detection of DIF using RFA models

The data-generating model for observed continuous scores x
with potential uniform and nonuniform DIF can be written as
follows

x j ¼ τ þ λt j þ bv j þ ct jv j þ δε j ð2Þ

where xj is a vector of observed scores, tj is the common factor
T score, vj is the violator variable V score, and εj is a vector of
the residual scores of subject j. The violator variable V can be
either observed or latent, continuous or categorical,1 and it is
allowed to covary with the common factor T. The model pa-
rameters in Eq. 2 include a vector of intercepts (τ), a vector of
factor loadings (λ) on the common factor T, a vector of resid-
ual factor loadings (δ), and vectors of regression coefficients b
and c. The regression coefficients in b represent the linear
effect of the violatorVon the observed scores xj, and a nonzero
element in b indicates uniform DIF (i.e., a violation of scalar,
or Bstrong,^ invariance). The regression coefficients in c rep-
resent the nonlinear interaction effects of V with T on xj, and a
nonzero element in c indicates nonuniform DIF (i.e., a viola-
tion of metric, or Bweak,^ invariance).

When a MGCFA model is fitted to sample data generated
under the population described by Eq. 2, b and c are not
explicitly estimated, but their effects are implicitly captured
by virtue of allowing τ and λ, respectively, to vary across
levels of V. In contrast, a single-group RFA model for the
common factor T with observed indicators X can be fitted to
the data, where the potential violator V is added to the model
as an exogenous variable. The analytical RFA model resem-
bles the data-generating Eq. 2, but it fixes δ = 1 for identifica-
tion. Furthermore, traditional maximum likelihood estimation
of an RFA model is complicated by the inability to calculate
the product between an observed violator Vand the latent T in
order to estimate the nonlinear interaction effects c. LMS has
been proposed as a solution to model these nonlinear interac-
tion effects in RFA models (e.g., Barendse et al., 2010), and
we have proposed PI as a more widely available alternative
method (Kolbe & Jorgensen, 2018), which we investigated
more thoroughly in the present study.

In general, uniform and nonuniform DIF can be detected
through RFA by comparing the fit of an unconstrained model
with the fit of a constrained model. The unconstrained model

freely estimates the b and c parameters for all items stud-
ied (i.e., nonanchor items), fixing the b and c parameters
of the anchor items at zero. In the constrained model, the b
and c parameters of a single studied item are additionally
fixed at zero. Any potential DIF in the other to-be-studied
items is controlled for, because the b and c parameters of
those items are freely estimated in both models. This min-
imizes the chance of inflated Type I error rates (Woods &
Grimm, 2011).

For each studied item, the constraints on the b and c pa-
rameters can be tested simultaneously via model comparison
of that item’s constrained model with the unconstrained mod-
el. This comparison produces a likelihood ratio test (LRT)
statistic, which is distributed as a χ2 random variable with df
= 2. A significant LRT statistic indicates that the studied item
functions differently with respect to V. To reveal whether this
DIF is uniform or nonuniform, follow-up tests of the individ-
ual b and c coefficients can be performed using each param-
eter’s Wald z statistic. We focused our investigation only on
the omnibus test with df = 2 for each studied item.

Latent moderated structural equations RFA has most com-
monly been extended with LMS in order to test items for
nonuniform DIF (Barendse et al., 2010; Barendse et al.,
2012; see also Woods & Grimm, 2011, about using LMS to
test DIF withMIMICmodels). The LMS approach to estimate
interaction effects of latent variables is a distributional analytic
approach available inMplus (L. K. Muthén &Muthén, 2012),
which implements a maximum likelihood estimation proce-
dure developed especially for the distributional properties of a
model that includes product terms among normally distributed
latent factors (Klein &Moosbrugger, 2000). In LMS, the joint
distribution of indicators is represented as a finite mixture of
normal distributions. The mixture distribution function is used
in order to obtain maximum likelihood estimates by means of
the expectation maximization algorithm (Dempster, Laird, &
Rubin, 1977). The LMS approach assumes multivariate nor-
mality for all latent exogenous variables. The most common
situation for testing invariance is a comparison of two groups
(Putnick & Bornstein, 2016), but when the possible violator V
is a categorical variable, the normality assumption is violated.
This violation can be accounted for by using a robust maxi-
mum likelihood estimator (Woods & Grimm, 2011).
Additional details on how to apply LMS in Mplus and an
example Mplus script for fitting the RFA model with LMS
are provided by Barendse et al. (2012).

Figure 1 depicts an example RFA model estimable with
LMS for DIF detection. The model represents a ten-item case,
with the last two items treated as anchors. The LMS approach
requires the violator V to be modeled as a latent variable. In
this example, the violator is measured by a single indicator G,
representing group membership. As is indicated in Fig. 1, the
residual variance of G has to be fixed at zero in order for the

1 Equation 2 could be expanded with additional dummy effects or contrast
codes when V has > 2 categories. Additional violators could also be added to
Eq. 2 to reflect additive or interactive effects on the measurements.
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model to be identified. LMS uses the raw data of all indicators
in the model for estimation, but it does not require any indi-
cators of the latent interaction factor T × V; hence, that factor is
represented by a dotted circle. An item can be tested for DIF
by comparing the fit of an unconstrained model with the fit of
a constrained model. The unconstrained model regresses all
studied items on V and T × V, but not the anchor items (in
Fig. 1, the items X9 and X10 are anchors, not regressed on
V and T × V). Put differently, the b and c parameters only
of the anchor items are fixed at zero. In a constrained
model, the b and c parameters of a studied item are addi-
tionally set to zero, to test that item for DIF.

Product indicators Another possibility for estimating the non-
linear interaction effects in RFA models is the PI method pro-
posed by Kenny and Judd (1984). The PI method involves
specifying a measurement model for an additional factor, re-
ferred to as the latent interaction factor, which represents the
interaction between two latent variables. Hence, using the PI
method in RFA models requires the violator variable V to be
modeled as a latent variable, and the measurement model of
the latent interaction factor is specified using products be-
tween the violator and each of the indicators of T. If maximum
likelihood is used to estimate the parameters of a model with
product indicators, all indicators (including the product indi-
cators) are assumed to be multivariate normally distributed.
This assumption is violated, because even the products of
normal variables are not normally distributed; the present ex-
ample, however, involves the product of normal indicators

with a binary dummy code, which is itself not normally dis-
tributed. A robust maximum likelihood estimator should
therefore be used (Marsh et al., 2004).

There are various PI methods that differ in the formation of
the product indicators of the latent interaction factor. The most
recently proposed PI method is the double-mean-centering
strategy (Lin et al., 2010). Using this strategy, indicators for
the latent interaction factor are built by mean-centering the
product terms produced by multiplying the mean-centered
indicators of the associated latent variables. In our ten-item
example with a grouping variable as the potential violator,
an initial product term between the grouping variable G and
an indicator (e.g., the first indicator X1) is first calculated from

the mean-centered variables2: G−G
� �

X 1−X 1

� �
. The double

mean-centered product indicator is then formed by mean-

centering the init ial product term: G−G
� �

X 1−X 1

� �

− G−G
� �

X 1−X 1

� �
.

Fig. 1 An RFAmodel with LMS for DIF detection. The items X9 and X10 are the anchor items. The dashed and dotted arrows represent effects that may
be estimated in order to test for uniform and nonuniform DIF, respectively.

2 The Bmean^ of a binary dummy code is the proportion of the sample for
whom the dummy code equals 1, so the mean-centered dummy code will still
have only two levels: the zeros become negative, and the ones become posi-
tive. This transformation does not change the interpretation of its effect, be-
cause the distance between the negative value and positive value is still one
unit. That is, its effect on an indicator is interpreted as the average change in
that indicator associatedwith a one-unit change in the (mean-centered) dummy
code, which therefore still represents the difference between two groups’
means (controlling for other predictors, such as T). Because the double-
mean-centering strategy negates the need for modeling a mean structure,
mean-centering a dummy code has no effect on the interpretation of any
(covariance structure) model parameters.
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Advantages of the double-mean-centering strategy over
other strategies are that it does not require that a mean struc-
ture be modeled and does not involve a cumbersomemultiple-
step estimation procedure. An additional advantage is that this
strategy outperforms other strategies when the assumption of
normality is violated (Lin et al., 2010). See Kolbe and
Jorgensen (2018) for an example application of RFA to detect
DIF using double-mean-centered product indicators in the R
package lavaan (Rosseel, 2012).

Figure 2 illustrates the same ten-item example of an RFA
model, but the latent interaction factor T × V is estimated with
a measurement model using product indicators calculated via
the double-mean-centering strategy. This example includes
ten mean-centered indicators, of which the last two are treated
as anchors. Each mean-centered indicator of T is multiplied by
the mean-centered indicator ofV, and all indicators of T × Vare
recentered in order to obtain the double-mean-centered prod-
uct indicators. The double-mean-centered product indicators

are denoted as GCXC
k

� �C
for the k = 1, . . . , 10 items in Fig. 2.

Although the path diagram in Fig. 2 still represents the
statistical model fitted to the data, it should not be interpreted
as representing an actual data-generating model. The T × V
factor is not an independently identified latent variable, nor are
its indicators, so their factor loadings should not be interpreted
as the causal effects of T × V on the product indicators. The
product indicators are calculated from other variables in the
model, and their loadings merely represent the portion of a
product indicator’s variance associated with the product of T
with V, as opposed to the product of V with that item’s unique
factor. Thus, the Bmeasurement^ of a latent T × V factor is
merely an ad hoc technique for extracting the variance that is
in common among all of the (double-mean-centered) indica-
tors, so that the effects of the latent T × V factor on the actual
items (i.e., the indicators of T) can be estimated in order to
detect nonuniform DIF.

As in the LMS method, items can be tested for DIF by
comparing the fit of an unconstrained model (i.e., the b and
c parameters of only the anchor items are fixed at zero) with

Fig. 2 An RFA model with product indicators for DIF detection. The items X9 and X10 are the anchor items. The dashed and dotted arrows represent
effects that may be estimated in order to test for uniform and nonuniform DIF, respectively.
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the fit of a constrained model (i.e., the b and c parameters of
the studied item are additionally set to zero). Unlike the ad hoc
interpretation of the factor loadings for T × V, the interpretation
of ck is straightforward: the degree to which the effect of latent
factor T on observed variable Xk is moderated by V.

Anchor-selection strategies

An anchor-selection strategy guides the decision about which
particular items should be used as anchors when testing items
for DIF. The anchor items are presumed to be DIF-free and are
used to identify the latent construct (i.e., the model would not
be identified if all indicators loaded on T and were regressed
on V and T × V, as well as estimating factor covariances). In
RFA models, the anchor items are not regressed on Vand T ×
Vwhen testing studied items for DIF. At least one anchor item
is required in order to identify the latent construct in the un-
constrained model. Several strategies for selecting or identify-
ing anchor items have been proposed. Some strategies rely on
prior knowledge of DIF-free items or on content experts’ ad-
vice, whereas empirical strategies are based on preliminary
item analysis. This study focused only on empirical anchor-
selection strategies. We first describe Woods’s (2009) rank-
based strategy, because it involves fewer steps than
Barendse et al.’s (2012) iterative procedure.

Rank-based strategy The rank-based strategy introduced by
Woods (2009) involves a quick and easy procedure to select
anchor items. It stems from the idea that the value of each
item’s test statistic reflects the magnitude of DIF of that item.
The proposed strategy is to test all items for DIF using all
other items as anchors. A test statistic with df = 2 can be
calculated in order to examine DIF for one item at a time. In
the context of RFA, the fit of a constrained model can be
compared with the fit of several unconstrained models (one
per item). In the constrained model, none of the items is
regressed on Vor T × V, whereas in each unconstrained model,
only the studied item is regressed on V and T × V.

After calculating a test statistic for each item’s set of con-
straints, the items are ranked in an ascending order based on
their test statistics. The items with the smallest test statistics
(i.e., the weakest evidence of DIF) are selected as anchor
items. The actual number of items being selected as anchor
items may be determined by factors such as test length and
sample size.Woods (2009) suggested that the number of items
selected as anchors should be approximately 10%–20% of the
total number of items.

Iterative procedure The iterative procedure was proposed by
Barendse et al. (2012) as a detection method for DIF.
However, their procedure can also be applied for the purpose
of selecting anchor items (for examples in practice, see

Candell & Drasgow, 1988; Hidalgo-Montesinos & Lopez-
Pina, 2002; Kopf, Zeileis, & Strobl, 2015a, 2015b). Similar
to the rank-based strategy, this procedure involves comparing
the fit of a constrained model with the fit of several uncon-
strainedmodels. In the constrained model, none of the items is
regressed on Vand T × V, whereas in an unconstrained model,
a studied item is regressed on Vand T × V. Instead of choosing
anchors among the items with the weakest evidence of DIF, all
items are initially considered eligible as anchors, and the item
with strongest evidence of DIF is removed from
consideration.

In the first run of the iterative procedure, the item associat-
ed with the largest significant test statistic is considered to
function differently. This DIF is taken into account in the
second iteration by modifying the constrained and uncon-
strained models to allow regression of that item on V and
T × V. The remaining items are tested for DIF, and again, the
item with the strongest evidence of DIF is removed from con-
sideration (assuming the test statistic is significant). The
constrained and unconstrained models are again modified by
regressing this item on V and T × V, before testing the remain-
ing potential anchor items. This procedure continues until
none of the remaining items has a significant test statistic, or
until half of the items are considered to function differently.
Any remaining items are then considered DIF-free and used as
anchor items when testing all other items (again3) for DIF.

Study 1: Selecting anchor items

Method

In this study, we used simulated data to examine the suitability of
the rank-based strategy (Woods, 2009) and the iterative proce-
dure (Barendse et al., 2012) for selecting anchor items. The suit-
ability of these strategies was assessed in the context of extending
RFAwith both LMS and PI. In addition to the latent-interaction
method (LMS vs. PI), we manipulated the anchor-selection strat-
egy (rank-based with 20% or 70% as anchors, or iterative proce-
dure), group sample size (n = 50, 100, 150, or 200 per group),
and size of DIF (small or large), yielding a 2 × 3 × 4 × 2 factorial
design with 1,000 replications in each condition. The relatively
small group sample sizes were used because that is the situation
when RFA is preferred over MGCFA, which requires larger
samples (Oort, 1998). Our outcomes included risk of

3 Recall that DIF is tested for by comparing one constrained model per item to
the same unconstrained model (which constrains b and c only for anchor
items). This is distinct from the approach used by the rank-based strategy
and iterative procedure, which compare one unconstrained model per item to
the same constrained model (which constrains b and c for all items). The
former approach is preferred when testing items for DIF, to prevent inflating
Type I error rates due to estimation bias that is introduced by constraining
items that exhibit DIF (Woods & Grimm, 2011).

Behav Res (2019) 51:138–151 143



contamination (i.e., the percentage of replications in which the
anchor set contained at least one item exhibiting DIF) and degree
of contamination (i.e., the percentage of selected anchor items
within each set that exhibited DIF), for which we report the
means in each condition.

Data generation Data were generated for two groups under
different sample sizes. A scale of k = 10 items was considered,
of which one item exhibited uniform DIF, one item exhibited
nonuniform DIF, and one item exhibited both types of DIF.
This allowed us to investigate the performance of the anchor-
selection strategies under nonideal conditions because a sub-
stantial degree of contamination in the anchor set was possi-
ble. The following model was used to generate item scores of
subject j in group g:

x j ¼ τg þ λgt j þ δgε j ð3Þ

where xj is a vector of ten item scores, tj is subject j’s common
factor score, and εj is a vector of residual factor scores of subject
j. Differences in common factor scores between the groups were
simulated by drawing common factor scores from a standard
normal distribution for the reference group tr∼N(0, 1) and from
a normal distribution with a lower mean and variance for the
focal group, tf∼N(−0.5, 0.7), similar to Barendse et al. (2010).
The residual factor scores in both groups were drawn from a
standard normal distribution εj∼N(0, 1).

The group-specific vector τg includes ten intercepts, and λg
includes ten common factor loadings. We replicated the same
magnitude of uniform and nonuniform DIF used by Barendse
et al. (2010). Uniform DIF was introduced by imposing
across-group differences in intercepts. All intercepts were
equal to 0, except for the intercepts for the second and fourth
items in the focal group, which were equal to 0.5 in the small-
DIF-size conditions and 0.8 in the large-DIF-size conditions.
All common factor loadings were equal to 0.8, except for the
factor loadings of the third and fourth items in the focal group,
which were equal to either 0.55 or 0.3, in the conditions with
small and large DIF, respectively. For each group g, the vector

of residual factor loadings δg was set equal to
ffiffiffiffiffiffiffiffiffiffiffi
1−λ2

g

q
, so the

items had population variances equal to 1.

Analytical procedure Using RFAwith both LMS and PI, each
item was tested for DIF by comparing the fit of a constrained
model with the fit of an unconstrained model. In the constrained
model, b and c (see Eq. 2) are vectors containing zeros, whereas
in the unconstrained model, the elements in b and c correspond-
ing to the studied item are freely estimated. The difference in fit
between the models was compared using a robust χ2 statistic
with df = 2 (Satorra & Bentler, 2010), with α= .05 as the crite-
rion for significance. To enable the estimation of the model pa-
rameters, group membership was modeled as a latent factor with

a single indicator whose factor loading was fixed at unity in each
of the models. The residual variance of the group membership
indicator was fixed at zero in the RFA models with PI (see Fig.
2), whereas this residual variance was fixed at 0.001 in the RFA
modelswith LMS, to overcome identification problems. For both
methods, the common factor Twas identified by fixing the factor
loading of the first item at unity. In RFA models with PI, the
factor loading of the first indicator of the interaction factor T ×X
was also fixed at unity.

When the iterative procedure was used to select the anchor
items, items were iteratively tested for DIF. After each itera-
tion, the item associated with the largest significant χ2 test
statistic was considered to function differently, and this DIF
was explicitly modeled in the following iteration. The proce-
dure continued until none of the remaining items was associ-
ated with a significant χ2 statistic or until half (i.e., five) of the
items were considered to function differently. Any remaining
items, considered DIF-free after the final iteration, were se-
lected for the anchor set. If the χ2 statistic of one or more of
the studied items could not be determined (e.g., because of
convergence problems), the procedure was ended and the
items considered DIF-free in the previous iteration were se-
lected as the anchor items. With these criteria, the iterative
procedure could select 50%–100% of the total number of
items as anchors.

With the rank-based strategy, all items were tested for DIF
and ranked in ascending order based on their χ2 statistics.
Then, the items with the lowest χ2 statistics were selected
for the anchor set. We examined two versions of the rank-
based strategy, one in which 20% of the total number of items
were selected as anchor items, as suggested byWoods (2009).
To assess the effect of using a larger anchor set, and to com-
pare the results of the rank-based strategy fairly to those of the
iterative procedure by having a larger anchor set, we also
examined the rank-based strategy when seven items (70% of
the total number of items) with the lowest statistics were
selected.

In each condition, the risk of contamination was deter-
mined, which represented the percentage of replications that
yielded an anchor set containing at least one item with DIF. In
addition to the risk of contamination, we evaluated the degree
of contamination in the anchor set, which was the percentage
of items exhibiting DIF in the anchor set. For both risk and
degree of contamination, we report the mean across replica-
tions in each condition. Because the iterative procedure might
result in varying lengths of the anchor sets, the average count
(i.e., the average number of items with DIF in the anchor set)
was calculated. The RFA models with LMS were fit with
Mplus (version 7; L. K. Muthén & Muthén, 2012) via the R
package MplusAutomation (version 0.7; Hallquist &
Wiley, 2018). The RFA models with PI were fit with the R
package lavaan (version 0.5-23; Rosseel, 2012). The results
were analyzed with R (version 3.3.2; R Core Team, 2016).
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Results

After conducting the analysis for each of the conditions, we
found that the LMSmethod did not always produce valid results,
due to convergence problems. The percentages of replications
with invalid results in each condition with the LMS method are
represented in Table 1. Across all conditions, convergence prob-
lems occurred in 20.84% of all replications using LMS. The
convergence problems did not seem to be associated with either
the sample size of the groups or the size of DIF. Among the cases
with convergence problems, one or more items could not be
tested for DIF because the χ2 statistic(s) for the corresponding
item(s) could not be calculated. When such problems occurred
with the LMS method using the rank-based strategy, the results
of that replication in that condition were not included in the
analysis, because an unambiguous decision about anchor items
could not be made in practice. Similarly, when convergence
problems occurred with the LMS method in the first run of the
iterative procedure, the replication in that condition was not in-
cluded in the analysis.

In contrast, each of the models converged for every single
replication among all conditions using PI. Because the results
of the LMS method were based on a smaller number of replica-
tions, the validity of comparing results between the two methods
could be considered questionable (e.g., if the subsample of rep-
lications for which LMS had convergence problems was not a
random sample from all 1,000 replications, at least with respect
to our outcomes of interest). Therefore, we also calculated results
for the PI method using only the replications for which LMS
converged. We found the same pattern of results when compar-
ing methods using only the replications that had no convergence
problems, so below we present the results using all available
converged replications in each condition.

Risk of contamination Table 2 shows the risk and degree of
contamination of the selection strategies within each condition.
Across all conditions, the rank-based strategy selecting 20% of
the total number of items as anchors had the lowest risk of

contamination, as compared to the rank-based strategy selecting
70% of the items as anchors and the iterative procedure. The
rank-based strategy selecting 20% of the total number of items
as anchors had a risk of contamination of 0.00% to 6.11%,
whereas the rank-based strategy selecting 70% of the items as
anchors had a risk of contamination ranging from 0.40% to
65.70%. The selection strategy with the highest risk of contam-
ination in each of the conditions was the iterative procedure,
except in conditions using PI in which the size of DIF was large
and the sample size was either 150 or 200. Among all conditions,
the iterative procedure had a risk of contamination from 0.20% to
89.50%. The risk of contamination generally decreased with
sample size and the size of DIF for each selection strategy. For
example, the risk of contamination for the iterative procedure
with small DIF and n = 200 was less than half of the risk of
contamination with small DIF when n = 50.

Degree of contamination Similar to the risk of contamination,
the degree of contamination typically decreased with sample size
and the size of DIF for each selection strategy. The rank-based
strategy selecting 20% of the items as anchors had the lowest
degree of contamination in themajority of the conditions, with an
overall degree of contamination of 0.68%. The only condition in
which the rank-based strategy selecting 70% of the items as
anchors had a lower degree of contamination was when using
LMSwith a large size ofDIF and a sample size of n = 200. In this
condition, the rank-based strategy selecting 20% of the items as
anchors yielded a degree of contamination of 0.47%,whereas the
rank-based strategy selecting 70% as anchor items had a degree
of contamination of 0.14%. In all other conditions, the rank-
based strategy selecting 20% of the items as anchors performed
better than the two other selection strategies with respect to de-
gree of contamination. In addition, the iterative procedure had the
highest degree of contamination in themajority of the conditions.
To ensure a fair comparison between the anchor-selection strate-
gies on the outcome variables, the average number of anchor
items selected by the iterative procedure for each sample size
and size of DIF condition is reported in Table 3. The average
number of items selected as anchors by the iterative procedure
was typically close to seven (ranging from 6.920 to 8.112 across
conditions), which was comparable to the number of items se-
lected by the rank-based strategy in the 70% condition.

Study 2: Detecting DIF

Method

In Study 2, we evaluated the Type I error rates and power of
the LMS and PImethods in RFAmodels to detect uniform and
nonuniform DIF. In addition to the latent-interaction method
(LMS vs. PI), we again manipulated the reference and focal
group sample sizes (n = 50, 100, 150, or 200 per group) and

Table 1 Percentages of replications using latent moderated structural
equations (LMS) with invalid results in Study 1

n Percentage of Invalid Results

Small DIF Large DIF

50 23.10 22.50

100 18.00 15.50

150 19.50 17.40

200 24.40 26.30

DIF = differential item functioning. The total number of replications in
each condition was 1,000. Only the percentages of invalid results when
using LMS are reported in this table, because none of the replications with
product indicators obtained invalid results.
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the size of DIF (small or large), but not the anchor-selection
strategy. Because Study 1 had shown that the rank-based strat-
egy selecting 20% of the total number of items as anchors
yielded the lowest risk and degree of contamination in the
anchor set, only two out of the ten items were used as anchors
in Study 2. However, we manipulated an additional factor
(known vs. unknown anchors). The performance of LMS

and PI was assessed in the best-case scenario; that is, two
known DIF-free items (Items 9 and 10) were used as the an-
chor items and were not tested for DIF. This best-case scenario
always yielded a DIF-free anchor set. By comparison, we also
used an empirical-selection scenario, in which the two anchor
items selected by the rank-based strategy from Study 1 were
used as anchors to test all other items for DIF. This yielded a 2
× 3 × 4 × 2 factorial design, using the same random-number
seeds to generate the same 1,000 data sets in each sample-size
and DIF-size condition as in Study 1.

Analytical procedure Each item was tested for DIF by com-
paring the fit of an unconstrained model with the fit of several
constrained models (one per studied item) using a robust χ2

statistic with df = 2 (Satorra & Bentler, 2010). In the uncon-
strained model, all elements in b and c were freely estimated,
except for the elements corresponding to the anchor items. For
all studied items, a constrained model was fitted, in which the
corresponding elements in b and c for the studied item were
fixed at zero. The same identification constraints were used as
in Study 1. An item was flagged as an item with DIF when the
χ2 statistic was significant at α = .05.

Power and Type I error rates were calculated across all
conditions. Power reflects the proportion of replications in
which the truly DIF items were correctly flagged as items with
DIF. The Type I error rate represents the proportion of

Table 2 Results of the anchor-selection strategies for each of the conditions in Study 1

Method Size of DIF n Average Risk of Contamination Average Degree of Contamination (Average Count)

RB (20%) RB (70%) IP RB (20%) RB (70%) IP

LMS Small 50 6.11 62.68 88.30 3.06 (0.061) 9.23 (0.646) 14.14 (1.203)

100 1.46 36.83 73.05 0.73 (0.015) 5.26 (0.368) 11.39 (0.973)

150 0.62 23.35 55.78 0.31 (0.006) 3.34 (0.234) 9.43 (0.826)

200 0.13 14.68 43.52 0.07 (0.001) 2.10 (0.147) 8.14 (0.735)

Large 50 0.52 24.52 52.77 0.26 (0.005) 3.52 (0.247) 8.77 (0.764)

100 0.12 4.26 26.04 0.06 (0.001) 0.61 (0.043) 5.91 (0.556)

150 0.00 0.85 17.68 0.00 (0.000) 0.12 (0.008) 4.64 (0.452)

200 0.95 0.95 20.90 0.47 (0.009) 0.14 (0.009) 5.93 (0.585)

PI Small 50 5.80 65.70 89.50 2.90 (0.058) 9.66 (0.676) 12.33 (0.995)

100 2.00 43.40 75.30 1.00 (0.020) 6.20 (0.434) 9.53 (0.753)

150 0.40 31.80 57.30 0.20 (0.004) 4.54 (0.318) 7.29 (0.573)

200 0.30 21.30 43.70 0.15 (0.003) 3.04 (0.213) 5.54 (0.437)

Large 50 2.90 31.80 49.60 1.45 (0.029) 4.63 (0.324) 6.38 (0.506)

100 0.20 7.30 11.00 0.10 (0.002) 1.04 (0.073) 1.42 (0.111)

150 0.10 2.20 0.50 0.05 (0.001) 0.31 (0.022) 0.07 (0.005)

200 0.00 0.40 0.20 0.00 (0.000) 0.06 (0.004) 0.02 (0.002)

The average count (i.e., the average number of DIF items in the anchor set) is reported in parentheses alongside the average degree (as a percentage) of
contamination. DIF = differential item functioning; LMS = latent moderated structural equations; PI = product indicators; RB (20%) = rank-based
strategy selecting 20% of all items as anchors; RB (70%) = rank-based strategy selecting 70% of all items as anchors; IP = iterative procedure. Risk of
contamination = percentage of replications in which the anchor set contained at least one item exhibiting DIF. Degree of contamination = percentage of
items exhibiting DIF in the anchor set averaged over all replications

Table 3 Average numbers of items selected as anchors in the iterative
procedure

Size of DIF n Number of Items in the Anchor Set

LMS PI

Small 50 8.112 7.897

100 7.878 7.671

150 7.739 7.476

200 7.631 7.350

Large 50 7.679 7.415

100 7.460 7.034

150 7.366 6.929

200 7.479 6.920

DIF = differential item functioning; LMS = latent moderated structural
equations; PI = product indicators. Ideally, only seven items would be
included in the anchor set (i.e., the seven items without DIF in the
population).
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replications in which there was at least one Type I error (i.e.,
one of the DIF-free items was incorrectly flagged as item with
DIF). Agresti–Coull confidence intervals4 (Agresti & Coull,
1998) around the observed Type I error rates were calculated
in order to evaluate the significance of inflation. Power was
calculated for each type (uniform, nonuniform, and both) and
magnitude (small and large) of DIF separately. The models
were fit with Mplus (version 7; Muthén & Muthén, 2012)
via the MplusAutomation package (version 0.7;
Hallquist & Wiley, 2018) in the LMS conditions, and with
lavaan (version 0.5-23; Rosseel, 2012) in the PI conditions,
and the results were analyzed with R (version 3.3.2; R Core
Team, 2016).

Results

After performing the analysis for each of the conditions, we
again observed a number of replications with invalid results
when using the LMS method. Table 4 shows the percentages
of replications with invalid results among the conditions for
the best-case and empirical scenarios. On average across all
the best-case scenario conditions, invalid results were obtain-
ed in 24.39% of all replications using LMS. For each of these
replications, the problem involved a nonconverging uncon-
strained model. Due to this complication, a χ2 statistic could
not be calculated for any of the items. The results of these
replications in the best-case scenario were not included in
the analysis because, in practice, a researcher would not be
able to test for DIF in this situation using RFA. The empirical
scenario obtained invalid results in 23.36% of all replications,
averaged across the conditions with LMS. These replications
were excluded from the analysis for this scenario because, in
practice, a decision could not be made regarding the selection
of anchor items, or DIF could not be tested for due to a
nonconverging unconstrained model.

The PI method did not produce any convergence problems.
All models converged for every replication in each condition.
Because the analysis of the LMS method included a smaller
number of replications, we again compared results between
the two methods using only the replications for which LMS
converged. The same pattern of results was found for this
smaller set of replications, so we present results using all
available converged replications in each condition.

Best-case scenario Table 5 shows the power of LMS and PI
across conditions in the best-case scenario (always a DIF-free

anchor set). In the majority of the conditions, the PI method
obtained a higher power than LMS, although the differences
were quite small. Exceptions included the power to detect
small nonuniform DIF, which was higher for LMS than for
PI. In contrast, large nonuniform DIF was more often detected
by PI than by LMS. Power generally increased with sample
size for all types and sizes of DIF. Relative to uniform DIF,
nonuniform DIF was more difficult to detect, which is consis-
tent with previous research (Barendse et al., 2010). Both LMS

4 Agresti–Coull confidence intervals were obtained by first defining
~n ¼ nþ z2, where n is the total number of replications in a single
condition, and z the 1 −α/2 quantile of a standard normal distribution.

Then, the midpoint for X Type I errors is determined by ~p ¼ 1
~n X þ z2

2

� �
.

The Agresti–Coull confidence interval around the Type I error rate is

given by ~p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p
~n 1−~pð Þ

q
.

Table 4 Percentages of replications with invalid results in Study 2 for
the best-case and empirical scenarios

Method Size of DIF n Percentage of Invalid Results

Best-Case Empirical

LMS Small 50 21.50 24.40

100 18.10 19.70

150 26.50 22.50

200 31.40 26.40

Large 50 21.50 24.10

100 18.00 18.30

150 25.60 22.60

200 32.50 28.90

DIF = differential item functioning. The total number of replications in
each condition was 1,000. Only the percentages of invalid results when
using latent moderated structural equations (LMS) are reported in this
table, because none of the replications with product indicators obtained
invalid results.

Table 5 Power of the latent moderated structural equations (LMS) and
product indicators (PI) methods under each condition of the best-case
scenario in Study 2

Type of DIF n Small DIF Large DIF

LMS PI LMS PI

Uniform 50 .828 .737 .932 .981

100 .960 .995 .977 1.000

150 .973 1.000 .991 1.000

200 .994 1.000 .991 1.000

Nonuniform 50 .162 .108 .535 .464

100 .341 .218 .834 .839

150 .544 .358 .882 .973

200 .672 .493 .825 .996

Combination 50 .660 .710 .925 .977

100 .947 .994 .966 1.000

150 .980 1.000 .974 1.000

200 .993 1.000 .982 1.000

DIF = differential item functioning; small uniform DIF = a difference of
0.5 in intercepts across groups; large uniform DIF = a difference of 0.8 in
intercepts across groups; small nonuniform DIF = a difference of 0.25 in
factor loadings across groups; large nonuniform DIF = a difference of 0.5
in factor loadings across groups.
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and PI especially yielded low power for small nonuniform
DIF. With a sample size of n = 50, for example, small nonuni-
form DIF was only detected in 10.80% to 16.20% of all rep-
lications. Moreover, the power to detect items exhibiting both
uniform and nonuniform DIF was in most conditions compa-
rable to the power to detect uniform DIF.

Type I error rates for the LMS method in the best-case
scenario ranged between .080 and .200 (see Table 6). In each
of the conditions, the error rates were significantly larger than
the nominal level of significance (5%). The Agresti–Coull
confidence intervals for the error rates in each condition with
LMS were above the nominal level of significance. The PI
method yielded Type I error rates ranging from .047 to .069.
When n = 100, the error rates were above the nominal level of
significance, and the Agresti–Coull lower confidence limits
for these error rates were just above the nominal level of sig-
nificance. In the remaining conditions, the error rates were
slightly above or below α = .05. However, the error rates for
these conditions were not significantly smaller or larger than
.05, because the Agresti–Coull confidence intervals for the
Type I error rates in the conditions with n = 50, n = 150, and
n = 200 included the nominal level of significance. Because
there was no reason to expect that only the n = 100 condition
would yield (barely) inflated error rates, we assumed that this
only reflected Monte Carlo sampling error.

Empirical scenario Table 7 shows the power of LMS and PI
across conditions in the empirical scenario in which two an-
chor items were selected with the rank-based strategy. The
pattern of results found for the empirical scenario was compa-
rable to that in the best-case scenario. For example, similar to
the best-case scenario, the PI method had more power to de-
tect DIF than did LMS in the majority of the conditions, but

the differences were generally small. Again, a noticeable ex-
ception was the power to detect small nonuniform DIF, which
was higher for LMS than for PI. With a sample size of n = 50,
small nonuniform DIF was only detected in 5.70% of all rep-
lications using PI.

Type I error rates for the LMS method in the empirical
scenario ranged from .077 to .247 (see Table 8). As in the
best-case scenario, each of the error rates of LMS was signif-
icantly larger than the nominal level of significance. The

Table 6 Type I error rates of latent moderated structural equations
(LMS) and product indicators (PI) under each condition of the best-case
scenario in Study 2

Size of DIF n Type I Error [95% CI]

LMS PI

Small 50 .088 [.070, .110] .058 [.045, .074]

100 .129 [.108, .154] .068 [.054, .085]

150 .151 [.127, .179] .051 [.039, .067]

200 .197 [.169, .228] .047 [.035, .062]

Large 50 .080 [.063, .101] .059 [.046, .075]

100 .133 [.111, .158] .069 [.055, .087]

150 .149 [.125, .177] .051 [.039, .067]

200 .200 [.167, .227] .049 [.037, .064]

DIF = differential item functioning. Bold font indicates that the lower
95% confidence limit exceeds the nominal 5% alpha level, implying the
Type I error rate is statistically significantly inflated. The square brackets
contain Agresti–Coull confidence intervals around the error rates.

Table 7 Power of the latent moderated structural equations (LMS) and
product indicators (PI) methods under each condition of the empirical
scenario in Study 2

Type of DIF n Small DIF Large DIF

LMS PI LMS PI

Uniform 50 .718 .560 .906 .949

100 .963 .979 .969 .998

150 .983 1.000 .994 .999

200 .997 1.000 .992 1.000

Nonuniform 50 .168 .057 .573 .422

100 .367 .156 .859 .825

150 .563 .288 .894 .980

200 .696 .414 .834 .997

Combination 50 .577 .537 .920 .948

100 .949 .977 .963 .999

150 .974 .999 .984 1.000

200 .997 1.000 .997 1.000

DIF = differential item functioning; small uniform DIF = a difference of
0.5 in intercepts across groups; large uniform DIF = a difference of 0.8 in
intercepts across groups; small nonuniform DIF = a difference of 0.25 in
factor loadings across groups; large nonuniform DIF = a difference of 0.5
in factor loadings across groups.

Table 8 Type I error rates of latent moderated structural equations
(LMS) and product indicators (PI) under each condition of the empirical
scenario in Study 2

Size of DIF n Type I Error [95% CI]

LMS PI

Small 50 .077 [.060, .098] .022 [.014, .033]

100 .105 [.085, .128] .026 [.018, .038]

150 .129 [.107, .155] .023 [.015, .034]

200 .247 [.217, .280] .035 [.025, .048]

Large 50 .083 [.065, .105] .048 [.036, .063]

100 .106 [.087, .130] .041 [.030, .055]

150 .123 [.101, .148] .032 [.023, .045]

200 .231 [.201, .263] .032 [.023, .045]

DIF = differential item functioning. Bold font indicates that the lower
95% confidence limit exceeds the nominal 5% alpha level, implying the
Type I error rate is statistically significantly inflated. The square brackets
contain Agresti–Coull confidence intervals around the error rates.
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Agresti–Coull confidence intervals for these error rates were
entirely above the nominal level of significance. By compar-
ison, the Type I error rates for the PI method ranged from .022
to .048. In the condition with large DIF and a sample size of
n = 50 or n = 100, the Agresti–Coull confidence interval
around the error rate included the nominal level of signifi-
cance. The confidence intervals of the other conditions were
all below α = .05.

Discussion

The present study concerned testing items for DIF using RFA
models. One of the aims of this study was to compare LMS
with PI, an alternative method to model latent interactions. We
examined whether this method can minimize the inflated Type
I error rates obtained with LMS when testing for DIF using
RFA models. Woods (2009) argued that the inflated Type I
error rates of LMS might be caused by a contaminated set of
anchor items. Hence, prior to the comparison between the two
methods to model latent interactions, we investigated which
anchor-selection strategy is most suitable when testing DIF
using RFA models.

The findings of Study 1 indicated that Woods’s (2009)
rank-based strategy selecting a small number of items as an-
chors is more suitable than an iterative procedure of removing
items with DIF from the anchor set (Barendse et al., 2012).
The rank-based strategy selecting 20% of the total number of
items as anchors consistently yielded lower risk and a lower
degree of contamination and performed well across all sample
sizes. These results are in line with previous studies (M.Wang
& Woods, 2017; Woods, 2009), which showed that the rank-
based strategy frequently obtains a DIF-free anchor set. The
most striking finding of Study 1 was perhaps the high risk of
contamination yielded by the rank-based strategy when
selecting 70% of the total number of anchor items and by
the iterative procedure. These selection strategies allow for
larger anchor sets, which generally display a higher risk of
contamination than smaller anchor sets (Kopf et al., 2015b).
It is also worth noting that other promising empirical anchor-
selection strategies have been identified in the item response
theory literature that could also generalize well to RFA (or
multigroup CFA)—namely, the forward mean test-statistic
threshold and forward mean p-value threshold methods
(Kopf et al., 2015a)—but their implementation is not as
straightforward as the rank-based strategy, which yielded ex-
cellent results even with small samples. Future research could
focus on identifying optimal anchor-selection strategies for
factor analysis models in various contexts (e.g., MGCFA).

In Study 2, we compared the LMS and PI methods to
model latent interactions in RFAmodels. Themain conclusion
was that PI obtained similar power but lower Type I error
rates, as compared to LMS. In line with previous studies,

severely inflated Type I error rates were observed in condi-
tions with LMS (Barendse et al., 2010; Barendse et al., 2012;
Woods & Grimm, 2011). Although it has been argued that the
inflated Type I error rates obtained with LMSmight be caused
by a contaminated set of anchor items (Woods, 2009), our
results contradict this possible explanation. The severely in-
flated error rates were not only observed in the empirical sce-
nario in which contamination of the anchor set was allowed,
but also in the best-case scenario with a DIF-free anchor set.
This suggests that a contaminated anchor set may not fully
account for the frequently observed inflated error rates when
using LMS. In response to a reviewer’s suggestion to increase
the external validity of our Monte Carlo design, we allowed
factor variances to differ across groups. This could explain
why our Type I error rates under LMS were larger than those
reported by Barendse et al. (2010; Barendse et al., 2012) and
Woods and Grimm (2011), given further support by Chun
et al.’s (2016) recent demonstration that unequal factor vari-
ances yield more inflated Type I error rates than equal factor
variances when using LMS.

In contrast, the Type I error rates observed in conditions
with PI were all close to the nominal level of significance in
the best-case scenario of a DIF-free anchor set, and slightly
below the nominal level of significance when using empiri-
cally selected anchors. Hence, the results of the present study
indicate that the PI method can minimize the inflated Type I
error rates obtained with LMS. We suspect a possible expla-
nation for PI’s better control of errors could be the explicitly
estimated covariance between the latent factor T and the T × V
interaction, which is not a free parameter in LMS estimation
algorithms (Klein & Moosbrugger, 2000). This warrants fur-
ther investigation, but it is beyond the scope of the present
investigation.

Corresponding to the findings of previous studies
(Barendse et al., 2010; Barendse et al., 2012), we found that
nonuniform DIF was more difficult to detect than uniform
DIF. Power to detect nonuniform DIF was especially low in
conditions with a small sample size. This finding is
concerning to some extent, because the present investigation
included a best-case scenario of a DIF-free anchor set. As
opposed to simulation studies in which the items with true
DIF are known, in practice there may seldom be any reliable
prior knowledge about DIF in the items of a scale. The results
of the empirical scenario, however, showed that empirically
selecting anchor items using the rank-based strategy selecting
20% of the total number of items had minor impact on DIF
detection. The power to detect DIF using an empirically se-
lected anchor set with this strategy was comparable to the
power observed in the best-case scenario. A possible explana-
tion for this minor impact is that the selection strategy used in
the empirical scenario had yielded a remarkably low risk and
degree of contamination in Study 1. Future research could
more extensively investigate the consequences of different
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anchor-selection strategies on power and Type I error in the
context of RFA.

An additional limitation of the LMS method brought to
light by the present study is the large proportion of invalid
results due to convergence problems. These convergence
problems point to an important practical limitation of the
LMS method, because in practice they would prevent a re-
searcher frommaking a decision about anchor items or testing
items for DIF. Moreover, this study showed that the PI method
tomodel latent interactions in RFAmodels generally performs
at least as well as the LMS method for the purpose of testing
DIF. Because RFA extended with LMS can only be applied
with the commercial SEM software Mplus (L. K. Muthén &
Muthén, 2012), knowing that PI is a viable alternative to LMS
can provide more researchers with the opportunity to test for
nonuniform DIF using RFAwith any SEM software package.
However, several aspects of the use of PI are yet unclear—for
example, which items should serve as product indicators for
the interaction factor. There are various possibilities regarding
the formation of product indicators; among others are using
only the studied item, only the anchor items, the anchor items
and the studied item, or all items (the latter strategy was the
one employed in the present study). Although this study
showed promising results, more research will be necessary
in order to determine the optimal use of PI in RFA models
to test for DIF.
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