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Abstract
Self-report data are common in psychological and survey research. Unfortunately, many of these samples are plagued with
careless responses, due to unmotivated participants. The purpose of this study was to propose and evaluate a robust estimation
method to detect careless or unmotivated responders, while leveraging item response theory (IRT) person-fit statistics. First, we
outlined a general framework for robust estimation specific for IRT models. Subsequently, we conducted a simulation study
covering multiple conditions in order to evaluate the performance of the proposed method. Ultimately, we showed that robust
maximum marginal likelihood (RMML) estimation significantly improves detection rates for careless responders and reduces
bias in item parameters across conditions. Furthermore, we applied our method to a real data set, to illustrate the utility of the
proposed method. Our findings suggest that robust estimation coupled with person-fit statistics offers a powerful procedure to
identify careless respondents for further review and to provide more accurate item parameter estimates in the presence of careless
responses.
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With recent technological advances, researchers have access
to large samples that are rapidly collected via online platforms,
such as Amazon Mechanical Turk (Sakaluk, 2016). These
new rapid data collection methods improve one’s ability to
efficiently collect large samples, which in turn improves the
ability to detect an effect in a more precise way. However,
crowdsourcing data collection poses a trade-off when we con-
sider Bnoisy data,^ since researchers have little control over
the data collection environment (Pauszek, Sztybel, & Gibson,
2017). Noisy data, or data with large amounts of measurement
error, hinder the researchers’ ability to detect any true effect
due to bad quality data (Loken & Gelman, 2017; Maniaci &
Rogge, 2014). Oftentimes, measurement error can arise from
aberrant responses, in which participants respond indepen-
dently of item-level content (Huang, Curran, Keeney,
Poposki, & DeShon, 2012; Meade & Craig, 2012). The range
of inattentive responses in one sample can vary, where re-
searchers have reported proportions of compromised samples
from 3.8% up to 50.0% (Berry et al., 1992; Johnson, 2005).

Different types of aberrant responses in the psychological
literature have been studied extensively. For instance, aberrant
responses can manifest themselves as a form of careless or
insufficient-effort response (Curran, 2016; Meade & Craig,
2012). Onemanifestation of carelessness is random responses,
in which a participant endorses every response option avail-
able within an item with equal probability—that is, the prob-
ability of endorsing each response option follows a discrete
uniform distribution (Beach, 1989). However, it is very diffi-
cult for a participant to repeatedly produce truly discrete uni-
form responses across multiple items (Meade & Craig, 2012).
Instead, participants may still answer independent of the item-
level content by consecutively endorsing, for example,
Bstrongly agree^ within a set of responses (Huang et al.,
2012). Therefore, in this study we differentiate between two
types of careless responses: those in which participants re-
spond randomly, versus systematic carelessness. In contrast
to random responses, systematically carelessness participants
respond in a nonrandom fashion, such as by choosing the
same response category over multiple items.

Careless responses can lead to many serious consequences
in research, such as biased correlations and attenuated or in-
flated scale reliability (Attali, 2005; Clark, Gironda, & Young,
2003; Wise & DeMars, 2009). Reducing the effect of careless
responses is no trivial problem to solve. Some researchers
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have proposed ways to reduce the harmful effects of careless
responses by removing response patterns associated with self-
reported insufficient efforts or implausible responses on bogus
items (Maniaci & Rogge, 2014; Meade & Craig, 2012).
However, these approaches require planning on the re-
searcher’s part, to include bogus items or self-reports on re-
sponse effort. For instance, some researches work with
precollected data, and thus may not have the luxury of such
preplanned methods for outlier detection. In addition, the ef-
ficacy of such approaches is questionable, at best (Meade &
Craig, 2012).

Some researchers control for aberrant responses by directly
modeling these types of complex processes (Shao, Li, &
Cheng, 2016; Wang, Xu, & Shang, 2018; Yamamoto &
Everson, 2003). In the psychological literature, others consid-
er careless responses a Bspecial case^ in a more general
modeling framework of response styles (Böckenholt, 2017;
Falk & Cai, 2016; Wetzel & Carstensen, 2017). Although
these methods are attractive, directly modeling carelessness
or low motivation can be challenging. First, researchers have
to assume they know the aberrant mechanism underlying the
data. Many different types of carelessness have already been
identified, and correctly choosing what type is in a data set
would be challenging, because the researcher would never
know (Meade & Craig, 2012). Moreover, the general goal
when modeling response styles is to gain a better understand-
ing of the cognitive process of item responding. Modeling
carelessness or response styles is certainly an interesting line
of inquiry, but it is qualitatively different from considering
carelessness as a nuisance factor.

Our proposedmethod belongs to another category—that is,
post-hoc procedures to identify careless responses and mini-
mize the impact of careless responders. Thesemethods require
no prior planning on the researcher’s part, thus providing a
much more flexible solution. To this end, researchers have
proposed many procedures of this nature, such as the popular
Mahalanobis distance (MD) method for outlier detection
(Curran, 2016). Unfortunately, the computation of MD is pro-
hibitively intensive for long surveys (Meade&Craig, 2012) in
which careless responses are more likely to occur, because
each item is essentially one dimension in the calculation.
Latent-variable modeling that allows for dimension reduction
and model-based outlier detection therefore become desirable
(Yuan, Fung, & Reise, 2004b).

Person-fit statistics based on item response theory (IRT) is
such an example. Given a chosen IRT model, outliers, or
outlying response patterns, can be identified by comparing
person-fit statistics to established cutoffs. This approach has
been shown in the literature as a viable way to classify careless
respondents (Niessen, Meijer, & Tendeiro, 2016). Person-fit
statistics have a rich place in the education literature on de-
tecting aberrant responses (e.g., Karabatsos, 2003; Meijer &
Sijtsma, 2001), and they have also begun to emerge in

psychological research when evaluating scores from psycho-
logical scales. For instance, person-fit statistics have been
used to refine scales for health outcomes, anxiety and depres-
sion, mindfulness, personality, and attitudes (Chien, Shao, &
Kuo, 2017; Edelen & Reeve, 2007; Ferrando, 2004; Pallant &
Tennant, 2007; Van Dam, Earleywine, & Borders, 2010).
Beyond identifying person misfit, person-fit statistics have
been used in moderated multiple-regression analysis to eval-
uate validity estimates (McGrath, Mitchell, Kim, & Hough,
2010). Others have shown that person-fit scores add informa-
tion when calculating criterion scores in a validation sample
(Schmitt, Cortina, & Whitney, 1993). Person-fit statistics also
provide more nuance when identifying participant subtypes,
such as for screening people at high risk for suicide who
would remain undetected otherwise (Conrad et al., 2010).

When carelessness is viewed as a nuisance variable, detect-
ing careless responses is crucial for the research process.
Carelessness can lead to unreliable measures, underestimated
effect size, and attenuated correlations between the predictor
and outcome variables, which can contribute to replication
failure (Stanley & Spence, 2014). Recently, a special issue
in the Journal of Experimental Social Psychology aimed to
identify rigorous and replicable methods for replication stud-
ies in social psychology. The very first article in the issue
highlights the importance of detecting carelessly invalid re-
sponses in survey data, for which person-fit statistics are a
clear contender (Curran, 2016). As a field, we must first iden-
tify powerful methods that can correctly classify careless re-
sponders in data.

Most, if not all, person-fit statistics require estimated pa-
rameters based on the data. One would normally estimate an
IRT model from the full sample, which would include both
normal and careless responders. Researchers can then use the
estimated item and person parameters to calculate person-fit
statistics to classify careless responders. However, the exis-
tence of a nonignorable portion of outliers could bias the
model parameter estimates (Kim & Moses, 2016; Meijer &
Sijtsma, 2001; Oshima, 1994) to the extent of Bmasking^ out-
liers—that is, reducing the probability of detecting the out-
liers. This phenomenon is well known in the literature of out-
lier detection as the Bmasking effect^ (Yuan et al., 2004b;
Yuan & Zhong, 2008).

Removing careless respondents can potentially overcome
the Bmasking effect^ in outlier detection and some researchers
have even proposed to do so iteratively to achieve the best
results (Cheng & Patton, 2014). However, removing data
can be a very controversial practice. In addition, removing
outliers could potentially remove participants who exhibit on-
ly partial carelessness—that is, only some of his or her re-
sponses are affected by carelessness. By removing all of a
participant’s responses, we may lose useful information.
Given these considerations, we propose a flexible robust esti-
mation framework based on IRT to improve item parameter
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estimation, which in turn improves the detection of careless
respondents. This method is flexible in that different
weighting mechanisms can be used in the same general frame-
work. In this study the weights are derived from the normal-

ized p value of Sinharay’s (2016a) person-fit statistic l*z , but it
does not necessarily have to be so. There is a large and diverse
set of person-fit statistics to choose from. Moreover, our pa-
rameter estimation procedure is demonstrated through the
simple unidimensional IRT model case. However, the frame-
work is by nomeans limited to the unidimensional case. It can
also work with multidimensional IRT models or be applied to
each individual subscale in a test battery (Felt, Castaneda,
Tiemensma, & Depaoli, 2017).

The rest of our article will be organized as follows. We will
provide a review of the literature pertaining to careless re-
sponses and person-fit statistics. Then, we will describe a ro-
bust procedure to estimate IRT models given response data
contaminated by careless responses. By obtaining more accu-
rate IRTmodel parameters wewill demonstrate that we will be
able to achieve better classification rates (of careless vs.
noncareless response patterns) via a simulation study.
Finally, we apply our methodology to the Feelings Scale in
the National Longitudinal Study of Adolescent Health
(AddHealth). We will conclude with a discussion and future
directions.

Method

Carelessness is one type of content-independent behavior—
that is, participants responding independently of an item’s
content. As we discussed earlier, carelessness under that def-
inition can manifest itself in several ways. For instance, for a
K-point Likert-scale item, participants can endorse any of the
K response categories with equal probability. This would con-
stitute a random response. Meanwhile, carelessness may also
manifest itself as having invariant responses to multiple items
consecutively on the survey. This type of response behavior
ties into our definition of content-independent responses, yet
the careless response itself is not necessarily random.

In this study we focused on carelessness that does create
additional randomness in item responses, which is less
straightforward to detect (Meade & Craig, 2012). The most
common, or Boff-the-shelf,^ statistic for the detection of out-
liers is the well-known Mahalanobis distance,

D uið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui−u
� �0

S−1
u ui−u
� �r

;

where the MD for the response vector ui, D(ui), is evaluated
on the basis of a general distance metric between a response
vector and average item scores, for person i (Curran, 2016).
Assuming that ui is multivariate normally distributed with

average item scores u and the covariance matrix Su, the null
distribution for D(ui) should follow a central chi-square dis-
tribution with the degrees of freedom equal to the number of
items. Participants whose D(ui) is larger than a critical value
from the central chi-square distribution are considered aber-
rant and can be flagged at a nominal Type I error level.
Unfortunately, the computation of MD is prohibitively inten-
sive for long surveys (Meade & Craig, 2012). Methods that
incorporate scale dimension reduction therefore become more
attractive.

For many questionnaires that have items based on a Likert
rating scale, participants rate an item on a fixed number of
response options such as from Strongly Disagree to Strongly
Agree. Item responses are typically coded as values one up to
the total number of response options. Arguably, the most
widely used IRT model for such item response data is the
graded response model (GRM; Samejima, 1969). Under a
GRM, each item subsumesK – 1 boundary functions specified
between item steps for K response options. The GRM repre-
sents the probability of responding either above or below the
boundary as a function of latent ability, θ. The probability of
endorsing the score category k or above can be characterized
by a simple two-parameter logistic model (Birnbaum, 1968):

P*
jk θð Þ ¼ 1

1þ exp −Daj θ−bjk
� �� � : ð1Þ

Note that D is a scaling constant often fixed to 1.7, so that
item parameters are approximately put on the same scale as in
a normal ogive model. Here, bjk is the location parameter for
the boundary that separates the (k – 1)th and kth response
categories of item j, and aj is the discrimination parameter
for item j for all boundary functions within item j. The prob-
ability of endorsing response option k can be expressed by
taking the difference between adjacent boundary functions:

Pjk θð Þ ¼ P*
jk θð Þ−P*

j kþ1ð Þ θð Þ: ð2Þ

The probabilities of responding below the first and below
the highest option are set to 0.0 and 1.0, respectively. This
model subsumes the widely used two-parameter logistic
(2PL) model for dichotomously scored items—that is, K =
2. It further subsumes the one-parameter logistic (1PL) model,
which sets all the aj to be equal across items.

For content-independent responses, the GRMwould not be
able to capture them. Person-fit statistics provide researchers a
statistical method to decide whether or not a participant’s re-
sponse vector is aberrant, in the sense that it cannot be suffi-
ciently explained by the IRT model. Careless responses, as
one type of aberrant response, can therefore possibly be de-
tected by person-fit statistics. A commonly used person-fit
statistic is the standardized log-likelihood person-fit index lz
(Drasgow, Levine, & Williams, 1985; Van Krimpen-Stoop &
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Meijer, 2002). Denote the item parameter matrix as γ, where
each column γj = (aj, bj1, bj2,…, bj(K − 1))

′. The likelihood
function for the ith respondent’s response vector ui can be
written as

Li uijθ;γð Þ ¼ ∏
J

j¼1
∏
K

k¼1
Pijk θð Þδijk ; ð3Þ

where δijk is an indicator function that the ith respondent en-
dorses the kth response category of the jth item:

δijk ¼ 1; if uij ¼ k;
0; otherwise

	
; ð4Þ

where uij is the response of the ith respondent to the jth item.
The standardized person-fit statistic lz for the ith respondent
takes the following form:

lzi ¼ li−E lið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var lið Þp ; ð5Þ

where li is the logarithm of the likelihood function of the GRM
for person i, E(li) is the expectation of li, and Var(li) is the
corresponding variance. Respondents who respond carelessly
should exhibit large negative residuals of the likelihood—that
is, a large negative lzi. The standardized likelihood function
should asymptotically follow a standard normal distribution
under the null hypothesis of person-model fit. It is therefore
common practice to flag response patterns with lzi < − 1.64,
which corresponds to a nominal Type I error of 5%.

Awell-known issue to this strategy is that the computation
of the lz statistic requires the true latent trait value. In practice,
this value is never known, so it is estimated on the basis of the
item responses. Estimated latent trait estimates would shrink
the variance of lz, so the statistic would not follow a standard
normal distribution. In consequence, the Type I error rate has
been shown to be over-conservative. To overcome this issue,
researchers have proposed corrections to the original lz statis-
tic, such as Snijders’s (2001) l*z−d for dichotomous items, and

Sinharay’s (2016a) correction for polytomous items, l*z−p: In

this study we will consider l*z−p because we are dealing with

polytomous items, or l*z for short. Appendix A includes the

formulas required to compute l*z .
Using the proposed correction addresses the uncertainty

introduced by the latent trait estimate. However, the person-
fit statistic still relies on estimated item parameter, which are
biased due to careless responders in the sample. The magni-
tude of the bias would depend on the manifestation of care-
lessness and proportion of careless responses. It is noteworthy
that the biased item parameter estimates would also lead to
bias in latent trait estimates (Oshima, 1994). Together the
biases in the structural and person parameters will distort the

l*z , and hence the Bmasking effect^ may result.

In the literature, some have suggested that responses should
be removed once they are identified as aberrant (e.g., Curran,
2016; Niessen, Meijer, & Tendeiro, 2016). However, data re-
moval can be controversial. Such controversy has been well
documented in the context of the detection and treatment of
outliers (e.g., Orr, Sackett, & Dubois, 1991). Furthermore,
complete removal of a participant’s response vector may not
be ideal when a careless responder exhibits partial careless-
ness—that is, he or she responds carelessly to some but not all
items. Partial carelessness can manifest in many forms, but the
most commonly observed form is called Bback random
responding^ (BRR), meaning that careless responses occur
in the later part of a questionnaire, due to cognitive fatigue
or boredom or other reasons (Clark et al., 2003). Full removal
would cause loss of information when a participant exhibits
partial carelessness.

We propose a robust estimation procedure that addresses
the masking effect while overcoming the two limitations men-
tioned. This was done by weighting response patterns accord-
ing to their fit in the process of item parameter estimation; that
is, misfitting patterns were be down-weighted. Note that
misfitting patterns were not removed anywhere in the analy-
sis. Meanwhile, partial carelessness was taken into account
because a response pattern with a higher proportion of careless
responses would be expected to result in a smaller weight,
whereas a response pattern with a smaller proportion of care-
less responses should receive a higher weight. A normal re-
sponse pattern would be expected to receive close to full
weight. Next, we introduce the details of the robust estimation
procedure.

Robust estimation of GRM through robust
maximum marginal likelihood

Robust estimation has been previously examined in other
measurement models, such as confirmatory factor analysis
(Yuan & Zhong, 2008, 2013). It has also been previously
applied in different applications of IRT, such as scale equating
and latent trait estimation (e.g., Bejar & Wingersky, 1981;
Linn, Levine, Hastings, & Wardrop, 1980; Schuster & Yuan,
2011; Stocking & Lord, 1983). However, these applications in
IRT have concerned themselves with robust estimation of in-
cidental parameters—that is, the latent traits of individuals—
instead of with robust estimation of structural parameters—
that is, the item parameters.

There are at least two reasons why we chose to focus on
robust estimation of the item parameters. First of all, without
accurate item parameter estimates, it would be difficult to
accurately detect response patterns affected by carelessness,
due to the masking effect.

Previous studies have investigated the utility of robust es-
timation for the latent trait estimator when conducting outlier
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detection with person fit (Sinharay, 2016b). Researchers
found that using robust estimation led to better detection rates
for aberrant responders than for nonrobust estimates, at the
price of inflated Type I error rates. The inflation became neg-
ligible for very long tests. We therefore expect to be able to
improve the detection of carelessness with robust estimation
of item parameters under certain conditions. Second,
obtaining accurate item parameters by itself is important.
Item parameters are often treated as if they are known and
without error when used in many IRT applications, such as
latent trait estimation (see Baker & Kim, 2004; Cheng &
Yuan, 2010), scale linking and equating (van der Linden &
Barrett, 2016), and computerized adaptive testing (Patton,
Cheng, Yuan, & Diao, 2013). If they are not estimated accu-
rately, using item parameter estimates in those applications
can cause many undesirable consequences (Cheng, Liu, &
Behrens, 2015; Patz & Junker, 1999; Tsutakawa & Johnson,
1990).

Robust procedures typically involve assigning a weight
to each individual case Baccording to its distance from the
center of the majority of the data^ (Yuan & Zhang, 2012).
For our purposes when estimating item parameters, robust
estimation entails assigning a weight to each respondent
when applying the common maximum marginal likeli-
hood estimation method. More specifically, it entails
assigning a weight to each respondent when computing
the overall marginal likelihood for the GRM model
(Eqs. 1 and 2), using the expectation maximization (EM)
algorithm proposed in Bock and Aitkin (1981). Assuming
that θ~f(θ), the marginal probability of observing the item
response vector ui can be written as

P uijγð Þ ¼ ∫Li
�
θ ui;γj Þ f θð Þdθ; ð6Þ

where f(θ) is often assumed to be the PDF of the standard
normal distribution. The overall marginal likelihood of
observing the entire response data matrix is therefore

P ujγð Þ ¼ ∏
N

i¼1
P uijγð Þ: ð7Þ

The MML procedure seeks to computationally find the γ̂
that maximizes P(u| γ) after the data are observed, but the
observed data are regarded as a random sample from a popu-
lation. The persons are considered a random effect, whereas
Bthe items are still considered fixed^ (de Ayala, 2009, p. 69).
This leads to maximizing over the log-likelihood of the re-
sponse data in MML:

logP uð Þ ¼ ∑
N

i¼1
logP uijγð Þ: ð8Þ

Estimation based on Eq. 8 implicitly assumes an equal
weight for each respondent. We can modify Eq. 8 by adding

a weight,wi, in order to weight individuals differentially given
the plausibility of their response patterns:

logP uð Þ ¼ ∑
N

i¼1
wilogP uijγð Þ: ð9Þ

The EM algorithm proceeds in the same manner as usual,
with just a modified log-likelihood function (Baker & Kim,
2004, pp. 285–291). Weighting the likelihood function based
on groups of individuals is similar to the so-called
pesudolikelihood approach for complex survey data
(Thomas & Cyr, 2002). Note that if we remove participants
from the data set, we are essentially fixing their weights to be
0.

By incorporating different weighting mechanisms into the
likelihood function, we can devise different robust estimation
procedures.Weighting the likelihood function by someweight
function follows the general form of M-estimation in the ro-
bust literature for general linear models (Carroll & Pederson,
1993; Künsch, Stefanski, & Carroll, 1989). For an accessible
introduction to the properties of general robust estimation, we
refer readers to chapter 2 in Wilcox (2016). In general, robust
estimation requires two parts: a residual, r, and weight func-
tion, w(.). The residual requires one to specify which observa-
tions will be considered inconsistent. Fortunately, l*z functions
as a standardized residual that we used in this study. Using a
standardized residual is similar to the approach used in Yang
and Yuan (2016). Next, we needed to choose a weight func-
tion. One possibility was to choose common weight functions
used in the robust statistical literature, such as Huber weights
or Tukey biweights (Beaton & Tukey, 1974; Huber, 1964).
However, prior work on a 2PL model showed that these com-
mon weights in the robust literature have undesirable proper-
ties for IRTmodel estimation (Cheng& Patton, 2014). Huber-
type weights have been recommended in some previous re-
search (e.g., Yuan, Bentler, & Chan, 2004a; Yuan & Zhang,
2012) on robust estimation of SEM when the majority of the
data are normally distributed but some moderate outlying
cases exist (not sitting too far away from the center). In our
case, the Huber-type weights might not work well, because
with item response data (essentially ordinal data) we can hard-
ly expect the majority of the data to be normally distributed.
Meanwhile, the type of Boutliers^ expected would not lead to
fatter tails than a normal distribution, but would result from
model misspecification: for the inattentive respondents, their
responses would no longer follow the usual IRT model.
Hence, weights based on multivariate t distributions were
not suitable.

Given the wide use of person-fit statistics in detecting re-
sponse aberrance, the previous success of robust estimation of
the latent trait estimator when conducting outlier detection
with person fit (Sinharay, 2016b), and the superiority of lz

*

over lz, we proposed a weighting scheme based on lz
*. Note
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that lz
* asymptotically follows a standard normal distribution;

therefore, we proposed to set

wi ¼
Φ l*zi
� �

∑
i
Φ l*zi
� � ; ð10Þ

where Φ(∙) is the CDF of the standard normal distribution, and
lzi
* is the lz

* statistic computed for the ith respondent. This
essentially sets wi equal to the normalized p value of the lz

*

statistic under a one-sided hypothesis-testing framework. The
following discussion will be based on such a weight, although
this will not prevent other researchers from choosing a differ-
ent person-fit statistic or weight function.

By setting the weight to be equal to the normalized p value
of the lz

* statistic, we expected to give smaller weights to
aberrant responses, such as careless responses, while main-
taining larger weights for normal response patterns. We pro-
vide a brief illustration to show the utility of the proposed
weight function. Item responses were simulated from a
GRMwith six response categories. The discrimination param-
eter was sampled from a uniform distribution with a lower
bound of .5 and upper bound of 2. The location parameters
were also sampled from a uniform distribution with a lower
bound of – 2 and upper bound of 2. To avoid the confounding
effect of sparse categories, we resampled location parameters
if the difference between adjacent categories was smaller than
.3, a similar design to those in previous studies (Jiang, Wang,
&Weiss, 2016).We generated 1,000 latent traits drawn from a
standard normal distribution for a 50-item test. However, 100
participants gave random responses to 25 of the items, ran-
domly chosen from the test. Carelessness was simulated by
generating responses from the discrete uniform distribution
U[0, 5]. These participants were considered the aberrant re-
sponders. Data generation and analysis were conducted in R
(R Development Core Team, 2017).

In Fig. 1, the left panel plots a respondent’s lz
* statistic

against the true latent ability. Note that if participants respond
aberrantly—in this case, for 50% of a survey—their lz

* statis-
tic is more negative than the normal responder’s counterpart.
The line drawn in the graph shows when participants are typ-
ically flagged in studies, at a cutoff value of – 1.64, given that
the asymptotic distribution of lz

* is standard normal. The right
panel shows the corresponding weights if one integrates the
normal distribution from −∞ to q, where q is the lz

* statistic, as
compared to the corresponding lz

* statistic. This integrand is
the associated p value for each lz

* statistic. Note that the
weights in this figure are rescaled from Eq. 9 by multiplying
each weight by N, so that the weights sum to the total sample
size. We can observe that aberrant responders are now given a
smaller weight than normal responders. Again, the rationale
behind applying a gradient weight instead of data removal
(which is essentially assigning a weight of 0 for aberrant

response patterns) is to take into account the severity, or pro-
portion of careless responses within a single participant. If we
plugged in these weights from our given sample into Eq. 9, we
conjectured that our robust procedure would produce less-
biased parameter estimates than the unweighted (or equal-
weight) estimation procedure. As compared to the method of
complete data removal, we expected our method to yield
smaller standard errors, because we would still glean valuable
information from partial valid responses and did not decrease
our sample size, neither of which would be true for data
removal.

Our robust method can then be described as a two-stage
approach to estimating a given IRT model. First, we estimate
the item parameters from the full data, which would include
equal weights for all participants. Next, we calculate the

person-fit statistic, l*z , for each participant, given the current
estimated item parameters from the first step. Finally, we use

normalized l*z ’s p value as the weights to plug into Eq. 9 and
reestimate the model. Smaller p values would indicate a great-
er severity of response aberrance, and the corresponding re-
sponse pattern would be assigned a smaller weight. Such a
weighting mechanism would allow us to form a gradient dif-
ferentiating between partial and complete carelessness. The
item parameter estimates should be less biased, which would
in turn improve the detection of careless responses. A summa-
ry for our RMML estimation procedure is provided in
Algorithm 1.

Note that this general algorithm can be adapted in multiple
ways. For example, one can devise different weighting mech-
anisms and incorporate them in Step 2. In addition, Steps 2–4
can be iterative. That is, person-fit statistics, weights, and item
parameters can be iteratively updated until some convergence
criteria are met. Here we only consider one iteration; that is,
the item parameters are updated only once. If the end goal is
only to obtain item parameters, then one may remove Step 5.

To evaluate the performance of the proposed robust proce-
dure, we conducted a simulation study by generating a data set
containing both regular and careless responses. The accuracy
and precision of parameter estimations were examined. The
power and Type I error of the proposed procedure in detecting
carelessness were also investigated. It is important to note that
our method should accommodate various forms of aberrant
response patterns. Carelessness, given its prevalence in low-
stakes testing, is one example we are most concerned with.

Simulation study

Item and person responses were simulated in the same way as
in the data generation scheme previously described, with mi-
nor changes. For accurate parameter recovery of the GRM,
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previous literature had suggested that the minimum required
sample size ranges from 375 to 750, depending on the length
of the scale (de Ayala, 1994) as well as the number of response
categories per item. This is true when the responses follow the
GRM. With misfitting response patterns in the data, it is un-
clear what would be an adequate sample size. Hence, we in-
cluded two sample sizes in our study, 500 or 3,000, with the
former being within the recommended sample size range, and
the latter being way more than an adequate size in traditional
settings.

Meade and Craig (2012) suggested that the efficacy of
detection methods for carelessness depends strongly on the
nature of the response data. Following their study, we simu-
lated both random and midpoint carelessness. Random care-
lessness was simulated by generating responses from the dis-
crete uniform distribution U[0, 5]. Each response option had
an equal chance of endorsement, 1/6. Midpoint carelessness
was simulated in which participants were more likely to select
the middle categories, in our case Categories 2 and 3. This was
done by drawing from a binomial distribution in which the
number of categories was equal to five and the probability of
success was fixed to .5. In this way, the expected probability
of endorsing 0 or 5 was roughly 3%, that of endorsing 1 or 4
was around 16%, and that of endorsing 2 or 3 was around
31%.

It is also important to consider the prevalence and severity
of careless responses in the response data, because a large
amount of careless responses can cause the Bmasking effect.^
Prevalence refers to the proportion of participants who

respond carelessly to some or all of the items. Severity refers
to the proportion of items affected by carelessness within a
response vector. Together, they indicate the proportion of re-
sponses in an N × J data matrix affected by carelessness. In
this study, prevalence in the total sample was set at either 10%
or 30%, with the former being consistent with previous re-
search on prevalence rates, which reported prevalence rates
of 5%–20% (Curran, Kotrba, & Denison, 2010) and 11%
(Meade & Craig, 2012); we chose the latter rate as a more
extreme rate to challenge our proposed procedure. With re-
spect to severity, in past research people had self-reported
responding carelessly to 50% or more of items on long sur-
veys that involved multiple subscales (Baer, Ballenger, Berru,
& Wetter, 1997; Berry et al., 1992). Given that our study
focused on shorter, unidimensional measures, we simulated
the severity rate to be either 30% or 50%. In other words,
for a careless participant, we simulated 30% or 50% of his
or her responses to be careless, distributed intermittently
throughout the survey. We also varied the test length to be
either 30 or 50.

In sum, we had a total of 32 conditions for data generation,
with 100 replications for each condition and five factors fully
crossed (2 test lengths × 2 sample sizes × 2 types of careless
responses × 2 prevalence rates × 2 severity rates). For each
data generation condition, we compared the performance of

three procedures that involved the use of l*z in terms of the
detection of careless respondents and quality of item parame-

ter estimates. The first procedure (denoted as full-sample l*z Þ
used the full sample to both estimate the GRM and identify
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participants who aberrantly responded, using l*z based on the

estimated parameters. Participants whose l*z was smaller than
– 1.64 were flagged as aberrant. The second procedure (de-
noted data removal) involved data removal—that is, partici-

pants whose l*z was smaller than – 1.64 were removed. Then

the model was reestimated and participants’ l*z values were
updated with the new parameter estimates. Data removal im-
plies that during model reestimation, each unflagged partici-
pant receives a weight of 1 and each flagged participant re-

ceives a weight of 0, based on Eq. 9. Those with an updated l*z
smaller than – 1.64 were flagged as aberrant (data removal).
The third procedure (denoted robust estimation) was our
RMML estimation procedure detailed in the previous sec-
tions. All programming was done using the R language. For
the RMMLprocedure, the number of quadrature points during
the E step was fixed to 60. Maximization over the log-
likelihood was done using a Newton–Raphson procedure dur-
ing the M step. Convergence was established if the log-
likelihood between adjacent iterations did not change beyond
.0001.

We evaluated the power and Type I errors of the three
procedures in identifying careless respondents. Power was
defined as the proportion of flagged participants over the total
number of participants affected by carelessness. Type I error
was defined as the proportion of participants unaffected by
carelessness who were flagged. For ability estimation, we
used maximum likelihood estimation procedures. When par-
ticipants endorsed 0 for all items or obtained a full score, we
fixed their ability estimates to be – 3 and 3, respectively. We
compared these three procedures in power and Type I error
against two scenarios: (a) the baseline scenario, in which item

parameters were known and l*z was used to flag participants
on the basis of the true parameter values; and (b) when MD
was used for outlier detection on all the data. This was the

same procedure as the full-sample l*z procedure, except that

MD was used for flagging participants instead of l*z : The mo-
tivation for including the full-sample MD conditions was the
ubiquity of MD in the outlier detection literature. The known
item parameters condition served as an ideal case that would
never hold in practice.

We evaluated the average bias of the location parameter

estimates, ∑
J

j¼1

cbjk−bjk� �
=J , and the root mean square error

(RMSE), ∑
J

j¼1

cbjk−bjk� � 
2=JÞ−:5, for k = 1, 2,…, (K − 1). For

the discrimination parameter, we evaluated the parameter
using conditional bias and RMSE, where we first binned the
true discrimination parameters into six equally spaced inter-
vals between .5 and 2, and then evaluated the parameter bias
and RMSE. The average parameter bias and RMSE were also

evaluated across only the three estimation procedures using l*z .
Bias, RMSE, and classification accuracy were averaged
across the 100 replications.

Results

Preliminary results showed little difference between the sam-
ple sizes of 500 and 3,000 and the test lengths. We therefore
only present results for the sample size of 500 and a test length
of 50. Tables 1 and 2 show the Type I error, and average power
for the respective conditions.

The full-sample condition using either l*z or MD is the
common practice in reality. Both the data removal method
and the robust estimation method try to take inaccurate item
parameter estimates into account when detecting careless re-
sponses. Between the two methods, data removal and robust
estimation, the former is a special case of the latter in which
the flagged participants are given a weight of 0. The known
parameter condition is an ideal condition. Evidently, power
does not appear to be high even in the ideal situation, espe-
cially when the prevalence rate is low. This is consistent with
the existing literature, which has reported traditional methods
with power well below .5 in classifying random responders
(Huang et al., 2012; Marjanovic, Holden, Struthers, Cribbie,
& Greenglass, 2015), even when multiple indices are
employed, as was suggested by Meade and Craig (2012).
Our simulation conditions particularly challenged the detec-
tion methods, because we simulated partial carelessness (in
contrast to careless responses on every item) and midpoint
carelessness, both of which have been shown in previous
studies to reduce power (Cheng & Patton, 2014; Meade &
Craig, 2012). In Table 2, we also observe that the power is
uniformly higher for detecting random careless responses than
for midpoint carelessness.

As compared to the known item parameter condition, the full-
sample condition leads to an evident drop of power when using

either l*z orMD. The data removal method does help improve the
power slightly. Data removal and the full-sample conditions re-
sult in conservative Type I error rates. On the other hand, the
robust estimation procedure increased power across conditions as
compared to the baseline and other estimation methods.
However, we also find an inflated Type I error in the robust
condition as compared to all other methods. Upon discussion,
we did not evaluate procedures based onMD any further, due to
its poor performance in detecting simulated careless respondents

as compared to methods that utilized l*z .
Figures 2 and 3 present the empirical bias and RMSE for

the item location and discrimination parameters for the three

procedures that involve l*z (full-sample l*z , data removal, and
robust estimation). For item location parameters, a clear trend
emerges whenwe look across groups. The largest and smallest
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location parameters produce the most biased estimates across
replications. Data removal reduces the bias in many scenarios.
However, robust estimation either outperforms or operates at
the same level as the data removal procedure. A different
pattern emerges when we look at RMSE. Data removal re-
duces the RMSE when compared to the full estimation. The
robust estimation procedure has a slightly larger RMSE than
data removal across conditions, and it even exceeds the RMSE
for the full-data sample occasionally. This perhaps could ex-
plain the inflated Type I error rates for the robust estimation
procedure.

For the conditional bias and RMSE of the discrimination
parameters, the full-sample approach creates a (negative) bias
for the discrimination parameters; the magnitude of the bias
increases when the true discrimination parameter increases.
The bias and RMSE also increase with greater severity and
prevalence of careless responses. Data removal improves the
estimation for larger discrimination values when we look at
both RMSE and bias. However, robust estimation outper-
forms both full-sample estimation and data removal across
the majority of the conditions, whether we look at RMSE or
bias.

Taken together, the results from the simulation study sug-
gest that the robust estimation method improves item parame-
ter estimation in the presence of careless responses, even when

the prevalence and severity rates are high. It also improves the
power for detecting careless responses. However, the
improvement in power seems to come at the cost of an
inflated Type I error rate. This suggests that we need to be
careful with the next steps once we flag participants. How to
handle suspicious responses is an evolving practice, and our
goal is not to provide strict guidelines for practitioners. For
instance, Allalouf, Gutentag, and Baumer (2017) recommend-
ed that following statistical quality control procedures, a hu-
man review of suspicious cases should be conducted. Other
precautionary steps may be taken, as outlined in Wainer
(2014), for suspicious responses. We argue that robust estima-
tion’s high power makes it a powerful tool for data-driven
methods when identifying suspicious responses. We strongly
caution against data removal on the sole basis of results from
statistical analysis in testing.

To further exemplify our key findings, we built upon our
simulation study with an empirical analysis to illustrate the
robust estimation procedure.

Empirical analysis

We applied both the data removal and robust procedures to
data from the National Longitudinal Study of Adolescent

Table 1 Type I errors for aberrant and normal response patterns

Aberrant Type Sev. Prev. Full-Sample l*z Data Removal Robust Estimation Known Item Parameters Full-Sample MD

Random 10% 30% .025 .036 .115 .036 .026

Random 10% 50% .018 .034 .111 .035 .021

Random 30% 30% .011 .019 .078 .035 .011

Random 30% 50% .005 .014 .067 .034 .007

Midpoint 10% 30% .030 .039 .123 .037 .038

Midpoint 10% 50% .028 .039 .120 .038 .039

Midpoint 30% 30% .021 .029 .098 .036 .036

Midpoint 30% 50% .019 .028 .096 .035 .043

Sev. = severity, Prev. = prevalence. The columns l*z , MD, and Known Item Parameters are based on the full data set

Table 2 Power for aberrant and normal response patterns

Aberrant Type Sev. Prev. Full-Sample l*z Data Removal Robust Estimation Known Item Parameters Full-Sample MD

Random 10% 30% .332 .389 .626 .408 .189

Random 10% 50% .607 .700 .857 .729 .354

Random 30% 30% .223 .293 .539 .415 .117

Random 30% 50% .390 .562 .787 .726 .183

Midpoint 10% 30% .169 .201 .405 .213 .022

Midpoint 10% 50% .278 .342 .570 .381 .015

Midpoint 30% 30% .120 .150 .340 .216 .016

Midpoint 30% 50% .158 .208 .422 .388 .014

Sev. = severity, Prev. = prevalence. The columns l*z , MD, and Known Item Parameters are based on the full data set
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Health (AddHealth), which is an education- and health-related
study of adolescents in grades 7–12 (Harris & Udry, 2010).
We restricted our analysis to the base year, which was an in-
home questionnaire administered during 1994–1995. We an-
alyzed the Feelings scale, which collects information about
the respondents’ current emotional state. The scale contains
19 items to which participants responded on a Likert scale
with four response categories, describing how often each of
the statements applied to the past week (e.g., BYou were both-
ered by things that usually don’t bother you^). However, par-
ticipants rarely endorsed Category 4, Bmost of the time or all
of the time.^ Therefore, we collapsed this category with
Response Category 3. This approach mirrors similar studies
using this scale, in which a unidimensional IRT model was fit
to the data and found to have adequate fit (Edelen & Reeve,
2007).

The original sample contains 6,504 respondents, but re-
spondents with any missing data in the Feelings scale were
removed, leaving 6,457 respondents. Using this final sample,
item parameter estimates were obtained without cleansing
(i.e., using all 6,457 participants), with data removal based

on l*z , and with the robust estimation method. We did not

utilize cleaning based on MD, due to its suboptimal perfor-

mance relative to the procedures that used l*z in our simulation
conditions. We evaluated all three methods on the basis of
classification of respondents and differences among the
resulting item parameter estimates and their standard errors.
Without any cleansing, 7.6% of the sample was flagged. With
data removal, 11.18% of the sample was flagged, and with
robust estimation, 20.59% of the sample was flagged. This is
consistent with our simulation studies, in which using the
entire data set resulted in reduced power and an overly con-
servative Type I error rate. According to the simulation study,
using data removal increases power, and here we saw that data
removal flagged 3.5% more participants than without any
cleansing. Robust estimation flagged an additional 13% of
the total sample, as compared to using the nonweighted full
sample.

Item parameter estimates based on the full sample, data
removal, and robust cleansed samples, with their standard
errors, are presented in Table 3. Data removal resulted in little
change or in slightly larger discrimination parameter esti-
mates. For Item 1, the full sample yielded an estimate of
1.42, whereas data removal yielded 1.48, and the robust

Fig. 2 Bias and RMSE for the location parameters for the three
estimation procedures based on lz

* (Full = full data, Rem = data
removal; Rob = robust estimation). The top two rows show estimated

bias, and the bottom two rows show RMSE. Solid and dashed lines
represent different prevalence rates, and gray and black colors represent
different severity rates
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estimation procedure produced 1.67. Larger discrimination
estimates were observed in the majority of the other items,
as well. Moreover, the effect of careless responses on the b
parameter estimates varied across items. Some parameter es-
timates increased or decreased, depending on the estimation
procedure. Potentially, different kinds of aberrant responses
might be attributed to different amounts of bias for the location
parameter, which can explain why there are different manifes-
tations of item parameter bias. It would be difficult to gener-
alize the overall effect of careless responses specifically for the
location parameter. All standard error estimates for the item
parameters were also comparable, which could be attributed to
the large sample size.

Discussion

This article has proposed a robust estimation framework to
improve item parameter estimation in presence of aberrant
responses. We provide a general method that could leverage

person-fit statistics, such as l*z , to detect careless responders
and down-weight them in the estimation process. This

procedure was compared to what is common in practice, the
unweighted full-data estimation procedure. We also applied a
data cleansing procedure, which is essentially a special case of
the robust estimation procedure, when one fixes the weights to
be zero for flagged participants. We compared all three proce-

dures that involve the use of l*z using a simulation study in
which different careless response behaviors, percentages of
severity and prevalence, sample sizes, and item bank sizes
were considered. In general, the impact of careless responses
was regulated mostly by the severity and prevalence or by the
number of careless responses. Test length and sample size
made minimal differences when considering the impact of
careless responses. Moreover, the type of careless responses
had similar impacts across conditions, with varying
magnitudes.

The results from our simulation study suggest that using
the entire data set when fitting an IRT model severely biases
both the location and discrimination parameters, at least in the
context with the GRM polytomous model. Furthermore, we
found that the biased item parameter estimates significantly
reduces the ability of detecting outliers with the person-fit

statistic, l*z . This finding is consistent with previous research,

Fig. 3 Conditional bias and RMSE for the discrimination parameters for
three estimation procedures based on lz

* (Full = full data, Rem = data
removal; Rob = robust estimation). The top two rows are estimated bias

and the bottom two rows are RMSE. Solid and dashed lines represent
different prevalence rates and gray and black colors represent different
severity rates
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in which the masking effect reduced the ability of finding
outliers due to biased structural parameter estimates (Yuan &
Zhong, 2008). To assuage the impact of item parameter bias,
our goal was to compare two procedures that could potentially
improve both item parameter estimates and detection rates: a
data removal process and a more general robust estimation
procedure. Both procedures improved item calibration; that
is, they resulted in less biased item parameter estimates. In
turn, both procedures were able to better detect outliers, due
to a reduction in the masking effect.

In spite of the encouraging results, there are several limita-
tions and room for improvement concerning our robust pro-
cedure. One confounding element for our weight function is
that we require an estimate of latent ability. For a finite test
length, lz

* may not follow a normal distribution. Sinharay
(2016b) and Snijders (2001) found that lz

* may have smaller
variances for extreme values of latent ability. This would, in
turn, influence our weight function. Second, aberrant re-
sponses contribute their own form of bias when estimating
latent trait estimates (Oshima, 1994). To correct this form of
bias in the latent trait estimates, robust estimators for latent
ability can certainly be used (e.g., Schuster & Yuan, 2011).
Coupling robust estimators for latent ability and item param-
eters could be studied in the future. The performance of our
method may be evaluated under more simulation conditions.
For instance, the tendency to respond carelessly can also be
correlated with latent trait ability (Falk & Cai, 2016), or care-
lessness may lead to responses that are not completely

independent of the item content (Shao & Cheng, 2017; Yu
& Cheng, 2017). These scenarios are not covered in this arti-
cle but certainly warrant attention in future studies.

Moreover, robust estimators of an IRT model can have a
breakdown point. A breakdown point for a robust estimator
corresponds to the proportion of aberrant observations an es-
timator can accommodate before giving a severely biased or
inconsistent estimate. For an IRT model, the breakdown point
for robust estimation would become most evident concerning
the discrimination parameter estimate. The robust estimator
for slope parameter estimates could explode after several iter-
ations of down weighting outliers (Croux, Flandre, &
Haesbroeck, 2002). This occurs when it is easy to distinguish
between high- and low-ability examinees or when a vertical
line can separate when a person would or would not endorse
an item. This would cause discrimination parameter estimate
to approach infinity. Outliers can be thought of a Bsafeguard^
to minimize this effect.

An unforeseen side effect of the robust estimation proce-
dure was inflated RMSEs as compared to the two other esti-
mation procedures, especially in the largest location parame-
ters in absolute terms. A trade-off between bias and efficiency
is not unusual, in which a less biased estimate using robust
estimation might be worth the loss of efficiency as compared
to nonrobust estimation (Carroll & Pederson, 1993).
Moreover, larger RMSEs could potentially explain why our
Type I error rates for outlier detection were significantly larger
in the case of the robust estimation procedures. A similar

Table 3 Item parameter estimates for the Feelings scale

Item aFull aRemove aRobust b1–Full b1–Remove b1–Robust b2–Full b2–Remove b2–Robust

1 1.42 (0.04) 1.48 (0.05) 1.67 (0.05) 0.40 (0.03) 0.41 (0.03) 0.47 (0.02) 2.27 (0.06) 2.39 (0.06) 2.53 (0.06)

2 1.04 (0.04) 1.08 (0.04) 1.25 (0.04) 0.69 (0.03) 0.71 (0.04) 0.79 (0.03) 2.67 (0.09) 2.79 (0.09) 2.82 (0.08)

3 2.20 (0.06) 2.31 (0.07) 2.58 (0.08) 0.72 (0.02) 0.74 (0.02) 0.79 (0.02) 1.8 (0.04) 1.89 (0.04) 1.99 (0.04)

4 0.86 (0.03) 0.94 (0.03) 1.04 (0.03) – 0.76 (0.04) – 0.79 (0.04) – 0.85 (0.04) 1.01 (0.05) 0.92 (0.04) 0.82 (0.04)

5 1.24 (0.04) 1.27 (0.04) 1.41 (0.04) – 0.40 (0.03) – 0.40 (0.03) – 0.42 (0.03) 1.64 (0.05) 1.70 (0.05) 1.82 (0.05)

6 2.74 (0.08) 2.80 (0.08) 3.08 (0.09) 0.34 (0.02) 0.34 (0.02) 0.35 (0.02) 1.54 (0.03) 1.61 (0.03) 1.73 (0.03)

7 1.01 (0.03) 1.04 (0.04) 1.16 (0.04) – 0.38 (0.03) – 0.40 (0.03) – 0.40 (0.03) 2.28 (0.07) 2.38 (0.08) 2.50 (0.07)

8 0.78 (0.03) 0.85 (0.03) 0.95 (0.03) – 1.16 (0.05) – 1.19 (0.05) – 1.31 (0.05) 0.89 (0.05) 0.79 (0.04) 0.63 (0.04)

9 2.13 (0.07) 2.33 (0.08) 2.62 (0.09) 1.29 (0.03) 1.33 (0.03) 1.40 (0.03) 2.35 (0.06) 2.50 (0.06) 2.67 (0.06)

10 1.25 (0.04) 1.28 (0.05) 1.52 (0.05) 1.00 (0.04) 1.03 (0.04) 1.07 (0.03) 3.20 (0.10) 3.57 (0.12) 3.62 (0.11)

11 1.28 (0.04) 1.36 (0.04) 1.51 (0.04) – 0.56 (0.03) – 0.60 (0.03) – 0.72 (0.03) 1.29 (0.04) 1.26 (0.04) 1.25 (0.03)

12 0.86 (0.03) 0.89 (0.03) 1.04 (0.04) 0.33 (0.03) 0.36 (0.04) 0.41 (0.03) 2.90 (0.10) 3.10 (0.11) 3.13 (0.10)

13 1.96 (0.06) 2.02 (0.06) 2.25 (0.06) 0.47 (0.02) 0.47 (0.02) 0.50 (0.02) 1.86 (0.04) 1.98 (0.05) 2.11 (0.04)

14 0.97 (0.04) 0.98 (0.04) 1.19 (0.04) 0.83 (0.04) 0.87 (0.04) 0.94 (0.04) 3.38 (0.12) 3.79 (0.14) 3.82 (0.13)

15 1.37 (0.04) 1.46 (0.04) 1.60 (0.04) – 0.07 (0.02) – 0.09 (0.02) – 0.15 (0.02) 1.33 (0.04) 1.31 (0.04) 1.34 (0.03)

16 2.27 (0.06) 2.40 (0.07) 2.61 (0.07) 0.07 (0.02) 0.05 (0.02) 0.03 (0.02) 1.88 (0.04) 1.98 (0.04) 2.13 (0.04)

17 1.38 (0.04) 1.39 (0.05) 1.63 (0.05) 0.62 (0.03) 0.65 (0.03) 0.73 (0.03) 2.55 (0.07) 2.82 (0.08) 2.95 (0.08)

18 0.96 (0.03) 0.97 (0.04) 1.07 (0.04) – 0.10 (0.03) – 0.12 (0.03) – 0.12 (0.03) 2.85 (0.09) 3.03 (0.10) 3.18 (0.10)

19 2.14 (0.08) 2.43 (0.09) 2.71 (0.11) 1.55 (0.04) 1.58 (0.04) 1.68 (0.03) 2.46 (0.06) 2.56 (0.06) 2.75 (0.06)

Standard error estimates are in parentheses
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finding when using robust estimators for latent ability further
validates this argument (Sinharay, 2016b). Perhaps coupling
our robust estimators with a resampling procedure, such as the

bootstrap, could build an empirical null distribution for the l*z
statistic (Efron & Tibshirani, 1994). The bootstrap procedure
would retain the nice properties of unbiased item parameter
estimates and could potentially reduce the Type I error rates to
a nominal level.

These limitations aside, both other researchers and ap-
plied psychometricians should find our study meaningful.
First, our method provides a general framework for robust
estimation. Our study provides the initial steps that out-
line a general methodology, but they can be improved
upon or modified. For instance, our choice of utilizing

the l*z statistic was based on its popularity, familiarity,
and simplicity of use. Researchers could potentially
choose other weighting procedures, such as using the
MD (Meade & Craig, 2012). Other person-fit statistics
can also be used, including nonparametric person-fit sta-
tistics such as Gnorm (Emons, 2008).

Our overall approach in this article was done by maximiz-
ing a so-called psuedolikelihood function, which directly
maps onto the literature on estimating IRT models with com-
plex survey designs (Thomas & Cyr, 2002) and robust gener-
alized linear model (Carroll & Pederson, 1993; Künsch et al.,
1989). However, other robust methods might be employed,
such as those in the general structural equation modeling
framework, by iteratively reweighted least squares (Yuan &
Zhong, 2008).

In addition, our study could be applied to other mea-
surement situations, such as using IRT models suited for
educational testing scenario as opposed to a psychological
battery. In that scenario, other common IRT models, such
as the 2PL or 3PL for dichotomous items, might be more
appropriate. Because GRM subsumes 2PL and 1PL, our
RMML procedure applies directly to those models. With
proper adaptation, the procedure can be used with 3PL, as
well. Other considerations could be to understand our
method in the context of more complex IRT models that
are common in the practice of psychology, such as multi-
dimensional IRT models. Our method can address this
situation in two ways. First, one could apply the robust
estimation procedure to the subscales in a psychological
battery. This approach would certainly be the easiest to
perform computationally, and it would provide a rich pic-
ture of scales on which a participant does not perform at
his or her true ability level. Our method could also be
framed using a multidimensional IRT model, in which
one would just add a weighting procedure to the likeli-
hood when estimating a multidimensional IRT model.

Our method is also easy to adopt in practice. Example code
to calculate conduct robust estimation is provided in

Appendix B using R. Moreover, one could also use other R
packages to calculate person-fit statistics, such as PerFit, or
could create their own weights to employ in mirt, which has a
weight function argument that can be used to implement our
method (Chalmers, 2012; Tendiero, 2015).

Finally, our study contributes to the literature more broadly
in psychology and other sciences that have large sources of
measurement error (Maxwell, Lau, & Howard, 2015). More
specifically, we addressed issues that arise when identifying
powerful statistics to detect outliers in a data set that could
potentially confound replication studies (Loken & Gelman,
2017). Detecting outliers is an important step psychologists
should take during data preprocessing; our method provides
one improvement on preexisting methods.

Appendix A

Suppose Pjk(θ) follow the graded response model for j = 1, . . .
, J items and k = 1, . . . , K response options. Its first-order

derivative is denoted as P
0
jk θð Þ. The derivation and notation in

Sinharay (2016a), l*z θ̂
� �

can be expressed as

l*z θ̂
� �

¼
T θ̂
� �

þ c
0
J θ̂
� �

s0 θ̂
� �h i

ffiffiffiffi
J

p
ζ J θ̂
� �h i ;

where

T θ̂
� �

¼ ∑ J
j¼1∑

K
k¼1 δjk−Pjk θ̂

� �h i
~wjk θ̂
� �h i

;

δjk ¼ 1; if uj ¼ k
0; otherwise;

	

c
0
J θ̂
� �

¼
∑ J

j¼1∑
K
k¼1P

0
jk θ̂
� �

logPjk θ̂
� �

∑ J
j¼1∑

K
k¼1

P
0
jk θ̂
� �2

Pjk θ̂
� �

:

For s0 θ̂
� �

; it depends on the estimation method of θ. For

example, s0 θ̂
� �

¼ 0 for ML estimate of θ. In addition,

ζ J
2 θ̂
� �

¼ 1

J
∑ J

j¼1v
0
j θ̂
� �

D j θ̂
� �

v j θ̂
� �

;

where D j θ̂
� �

is the variance–covariance matrix of (δj1, δj2,

…, δjK)
′:
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D j θ̂
� �

¼

P j0 θ̂
� �

1−P j0 θ̂
� �� �

−P j0 θ̂
� �

P j1 θ̂
� �

−Pj1 θ̂
� �

P j0 θ̂
� �

Pj1 θ̂
� �

1−P j1 θ̂
� �� � … −P j0 θ̂

� �
PjK θ̂
� �

… ⋯

⋯ …
−PjK θ̂

� �
Pj0 θ̂
� �

−PjK θ̂
� �

P j1 θ̂
� � … ⋯

… PjK θ̂
� �

1−PjK θ̂
� �� �

0BBBBB@

1CCCCCA;

and

v
0
j θ̂
� �

¼ ~wj1 θ̂
� �

; ~wj2 θ̂
� �

;…; ~wjK θ̂
� �� �

;where ~wjk θ̂
� �

¼ log Pjk θ̂
� �� �

−c
0
J θ̂
� � P0

jk θ̂
� �

Pjk θ̂
� � :

Appendix B

# Load package and example data set
require(mirt)
data(Science)
# Initial Model estimation
mod <- mirt(Science, 1, optimizer = ‘NR’)
# Calculating person fit
per.fit <- personfit(mod, method = ‘ML’)$Zh
# Calculating weight
w e i g h t < - p n o rm ( p e r . f i t ) * n r ow ( S c i e n c e ) /

sum(pnorm(per.fit))
# Robust estimation
robust.mod <- mirt(Science, 1, survey.weights = weight,

optimizer = ‘NR’)
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