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Abstract
Nonverbal synchrony describes coordination of the nonverbal behavior of two interacting partners. Additionally, it seems to be
important in human interactions, such as during psychotherapy. Currently, there are several options for the automated determi-
nation of synchrony based on linear time series analysis methods (TSAMs). However, investigations into whether the different
methods measure the same construct have been missing. In this study, N = 84 patient–therapist dyads were videotaped during
psychotherapy sessions. Motion energy analysis was used to assess body movements. We applied seven different TSAMs and
recorded multiple output scores (average synchrony, maximum synchrony, and frequency of synchrony; in total, N = 16 scores).
Convergent validity was examined using correlations of the output scores and exploratory factor analysis. Additionally, two
criterion-based validations were conducted: investigations of concordant validity with a more generalized nonlinear method, and
of the predictive validity of the synchrony scores for improvement in interpersonal problems at the end of therapy. We found that
the synchrony measures only partially correlated with each other. The factor analysis did not support a common-factor model. A
three-factor model with a second-order synchrony variable showed the best fit for eight of the selected synchrony scores. Only
some synchrony scores were able to predict improvement at the end of therapy. We concluded that the considered TSAMs do not
measure the same synchrony construct, but different facets of synchrony: the strength of synchrony of the total interaction, the
strength of synchrony during synchronization intervals, and the frequency of synchrony.
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Currently, body movements can be assessed fully automatically
and with high time resolution (e.g., 25 times per second) using
either motion-tracking, motion capture devices, or video-based
algorithms (Delaherche et al., 2012). Motion energy analysis
(MEA) is a method that quantifies the intensity of videotaped
movements frame-wise (Grammer, Honda, Juette, & Schmitt,
1999). By determining a region of interest (ROI) for each of

two videotaped individuals (e.g., a patient and therapist during
a psychotherapy session), two time series can be generated
displaying the time course of the individuals’ body movements.
This technique has several advantages: (1) it is less time-
consuming than collecting human ratings; (2) it is highly objec-
tive, reliable, and valid; and (3) in comparison to motion capture
devices, no high-resolution camera equipment is necessary, and
no sensors are attached to the patient’s body (Altmann, 2010;
Ramseyer & Tschacher, 2011). Therefore, during the past few
years, the use of MEA has become enormously widespread. In
behavioral and social science, MEA has been used to assess
movements in mother–child interactions (Watanabe, 1983,
1987), child friendships (Altmann, 2011, 2013), and courtship
behavior (Grammer et al., 1999; Grammer, Kruck, &
Magnusson, 1998); for the comparison of nonverbal behavior
in different types of interactions, such as tasks that elicit truthful,
deceptive, argumentative, cooperative, competitive, or during
fun tasks (Allsop, Vaitkus, Marie, & Miles, 2016; Altmann,
2011, 2013; Duran & Fusaroli, 2017; Paxton & Dale, 2013a;

* Désirée Schoenherr
desiree.schoenherr@med.uni-jena.de

1 Institute of Psychosocial Medicine and Psychotherapy, University
Hospital Jena, Jena, Germany

2 Department of Clinical Psychology and Psychotherapy, Trier
University, Trier, Germany

3 Department of Clinical Psychology and Psychotherapy, Goethe
University Frankfurt/Main, Frankfurt/Main, Germany

Behavior Research Methods (2019) 51:361–383
https://doi.org/10.3758/s13428-018-1139-z

Quantification of nonverbal synchrony using linear time series analysis
methods: Lack of convergent validity and evidence
for facets of synchrony

Psychonomic Society, Inc. 2018

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-018-1139-z&domain=pdf
mailto:desiree.schoenherr@med.uni-jena.de


Tschacher, Rees, & Ramseyer, 2014); in ecological psychology
(Davis, Kay, Kondepudi, & Dixon, 2016); for the diagnosis of
psychological disorders (Dean, Samson, Newberry, & Mittal,
2018; Dutschke et al., 2018; Kupper, Ramseyer, Hoffmann,
Kalbermatten, & Tschacher, 2010; Kupper, Ramseyer,
Hoffmann, & Tschacher, 2015); and in psychotherapy
(Galbusera, Finn, & Fuchs, 2018; Paulick et al., 2018;
Ramseyer, 2011, 2013; Ramseyer & Tschacher, 2011, 2016).

After generatingmotion energy time series, the influence of
several variables (e.g., psychopathologies, attachment styles)
on movement behavior can be investigated. Additionally, it
has been demonstrated that the perception of a behavior
shown by one interacting partner increases the probability of
the other interacting partner engaging in that behavior
(Chartrand & Bargh, 1999). During these sequences, an ob-
server has the impression that the behavior of both interactors
is synchronized, aligned, coordinated, co-regulated, or timed
(Altmann, 2013; Bernieri & Rosenthal, 1991). Examples of
such phenomena during interpersonal interactions are the im-
itation of facial expressions or gestures, posture mirroring,
synchronous movements, or the convergence of voice parame-
ters. Bernieri and Rosenthal (1991) pointed out that these phe-
nomena are performed in a nonrandommanner, either following
specific patterns or showing formal and temporal synchrony.

However, multiple terms and conceptualizations of these
synchronization phenomena can be found, which are synony-
mous, partly overlapping or distinct from one another
(Altmann, 2013; Feldman, 2007; Harrist & Waugh, 2002;
Paxton, 2015). Paxton attempted to disambiguate different
terms of synchronization phenomena (e.g., coordination,
alignment, mimicry, imitation, synchrony, etc.) by natural lan-
guage processing, showing that terms are rather separated by
the underlying research question and study area than the phe-
nomena under investigation. Terms are therefore rather based
on different research areas with unique terminological trends
(Paxton, 2015). Thus, a psychologist and a linguist may de-
scribe equal synchronization phenomena with different words.
However, synchronywas identified as a suitable superordinate
term to describe different conceptualizations such as facial
imitation, movement synchrony or speech convergence. Due
to the fact that the behaviors are nonverbal, we refer to these
phenomena with the term nonverbal synchrony.

One possibility of grouping the different synchronization
phenomena is by using a time dimension and the level of
measurement as proposed by Altmann (2013). With respect
to the time level, three different facets can be differentiated:
(1) perfectly synchronous, simultaneous behavior or matching
(without a time lag); (2) synchronous behavior with a time
delay, echoing, alignment, imitation, or mimicry and (with a
time lag); and (3) convergence, increasing similarity, and ad-
aptation (increasing similarity over time). Referring to the lev-
el of measurement, data can be categorical, such as facial ex-
pressions (e.g., smile vs. no smile), or metric such as voice

pitch or movement intensity (Altmann, 2013). An example of
the combination of both dimensions would be the examination
of exactly simultaneous facial expressions (matching of cate-
gorical data). In addition to these different groups of synchro-
ny, different algorithms exist for measuring the construct.
Nevertheless, all algorithms are used to measure the construct
synchrony; systematic investigations of their validity and con-
cordance are missing. However, these investigations are need-
ed to make judgments about the comparability of study results.

Only one study compared human ratings of nonverbal syn-
chrony and nonverbal synchrony obtained by cross-lagged cor-
relation (Paxton & Dale, 2013b). The authors compared the re-
sults of the cross-lagged correlation of human second-by-second
coding of the movements of two persons with the results of the
cross-lagged correlation of a frame-differencing technique. This
study provided evidence that movements rated by humans and
by the algorithms led to comparable synchrony results. However,
more research will be needed to disentangle the different nonver-
bal synchrony constructs and to examine which time series anal-
ysis methods (TSAMs) lead to comparable results.

Since rater reliability in human synchrony ratings is rather
weak, or many raters are needed to obtain high values (Bernieri,
1988), we focused on objective and reliable algorithms. As
illustrated above, the construct to which synchrony obtained
by algorithms is compared is crucial. To date, no true value/
construct of synchrony has been defined. Therefore, in line with
Cronbach and Meehl (1955), who stated that investigations of
construct validity (convergent and discriminant validity) are
especially relevant if no direct criterion or “universe of content”
is available, we examined the convergent validity of different
algorithms. For this aim, we first describe different linear-based
algorithms that assess nonverbal synchrony, and then apply
these to an identical dataset containing motion energy time
series. Furthermore, we tested whether all measures load on a
common factor. If not, the adequate factor solution would be
determined. In addition, we conducted two further validations:
First, we compared linear-based TSAMs to a more generalized
nonlinear approach (cross-recurrence quantification analysis).
Second, the predictive validity of the TSAM output scores
was examined by inspecting the synchrony-outcome associa-
tion using data from psychotherapy sessions.

However, the aim of our article was not to identify the best
algorithm to assess synchrony, but rather to test whether dif-
ferent algorithms are equivalent operationalizations of the
construct of nonverbal synchrony.

Systematization of different linear-based
algorithms assessing the nonverbal
synchrony of two interacting persons

The process of co-regulation between two individuals can be
understood as dynamic (Altmann, 2013; Boker, Rotondo, Xu,
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&King, 2002; Fogel, 1993). In our study, nonverbal synchro-
ny was operationalized as the degree of association between
the nonverbal behaviors of two interacting persons.
Approaches assuming a linear relationship between both
interacting partners (correlations or regressions) are very com-
mon. Thereby, correlations or regressions are computed for
the entire time series or windows of the time series.
Subsequently, the obtained values are usually aggregated to
an output score in order to quantify this association (also
called “co-aggregation measures,” see Coco & Dale, 2014).
Other approaches investigate the degree of association by
using recurrence plots that show recurrence points if two sys-
tems are similar to each other with respect to their phase tra-
jectories. Cross-recurrence quantification (CRQA) analysis
can be used to analyze these points (for an overview, see
Delaherche et al., 2012). This method is widely applied to
analyze states of one time series and how the other revisits
these states, which is especially relevant for the investigation
of temporal patterns of nonverbal synchrony during an inter-
actional process. Thereby, this method does not make the as-
sumption of a linear relationship between two time series
(Coco & Dale, 2014; Marwan & Kurths, 2002). Comparing
linear methods with cross-recurrence analysis showed that a
systematic association between both methods is sometimes
missing (Wiltshire, 2015). However, the results from CRQA
can be regarded as a generalization of cross-correlation
methods (Marwan, Romano, Thiel, & Kurths, 2007).
Spectral methods provide further options to analyze nonverbal
synchrony (for more details, see Delaherche et al., 2012).

In the present article, we focus on methods that assume a
linear relationship between time series trajectories, because (1)
these methods are widely used in interactional research
(Altmann, 2013; Kupper et al., 2015; Nelson, Grahe,
Ramseyer, & Serier, 2014; Paulick et al., 2018; Ramseyer &
Tschacher, 2011) and (2) including other approaches would
result in a reduction of comparability of the different methods,
since the statistical assumptions of the methods are very dis-
tinctive. As a validation, we will contrast these methods with
one nonlinear method.We chose CRQA because this method is
widely used in the context of interactional analyses (e.g.,
Shockley, 2005; Shockley, Richardson, & Dale, 2009).

Linear TSAMs can be differentiated by (a) assumptions
about time lag (matching vs. echoing) and (b) the length of
time series windows (global vs. local TSAMs).

Assumptions about time lag Two operationalizations of non-
verbal synchrony can be distinguished: (a1) using no time
delay (termed “matching”; see above) or (a2) using a specific
time delay (termed “echoing”). Most algorithms that measure
echoing also include matching. Currently, the selection of the
maximum appropriate time lag is largely left up to the re-
searcher. It characterizes the greatest interval separating the
behavior of two persons, which is still considered to be

connected. Investigation of the coordination of skin conduc-
tance level showed a meaningful nonverbal synchrony with a
maximum time lag of 7 s (Robinson, Herman, & Kaplan,
1982). Additionally, virtual agents that mimic persons with a
time delay of exactly 4 s were rated more positively than
nonmimickers (Bailenson & Yee, 2005). In accordance with
that, Bilakhia, Petridis, Nijholt, and Pantic (2015) recom-
mended a time lag of 0.04 to 4 s, based on the empirical
investigation of episodes showing motor mimicry. Altmann
(2011) used a maximum time lag of 2.5 s, whereas
Ramseyer and Tschacher (2011) used a time lag of 5 s.
Another study by Louwerse, Dale, Bard, and Jeuniaux
(2012) showed that mimic expressions and head movements
have a short time lag of approximately 1.5 s. However, there
have also been attempts to evaluate the chosen time-lag based
on the comparison with shuffled data, implying that the choice
of best lag could be empirically determined.

Length of time series window Regarding the second dimen-
sion—the length of the assessed time series window—two
types of linear TSAMs can be differentiated: (b1) global and
(b2) local measures (Altmann, 2013). Two global methods are
cross-lagged correlation (CLC) and cross-lagged regression
(CLR; Gottman & Ringland, 1981; Paxton & Dale, 2013b).
Global TSAMs calculate Pearson product-moment correla-
tions or regressions using the two entire time series. The entire
time series are incorporated with equal or different starting
points. The distance between the starting points is referred to
as the time lag (see above). Global methods have the advan-
tage of being less time-consuming in terms of computational
costs, as they are less complex. However, when using global
methods, the assumption of global stationarity is made.
Stationarity means that given the respective time series, the
mean and variances stay constant over time. Additionally, by
using global methods, it is assumed that person A influences
person B or vice versa for the complete time course; that is,
there is no changing interdependence between the interacting
partners. This assumption is often violated in naturalistic con-
texts such as human communication (Boker et al., 2002). As a
result, local TSAMs were developed.

Local TSAMs analyze the entire time series window-wise,
conducting Pearson product-moment correlations (or regres-
sions) between segments/windows of two time series.
Examples are windowed cross-correlation (WCC; Tronick,
Als, & Brazelton, 1977), windowed cross-lagged correlation
(WCLC; Altmann, 2013; Paulick et al., 2018; Ramseyer &
Tschacher, 2011), and windowed cross-lagged regression
(WCLR; Altmann, 2011). By disassembling the entire time
series into windows, the assumption of stationarity can be
made locally, which is less restrictive. The length of the ana-
lyzed windows is referred to as the bandwidth or window
width. The size of this window, in addition to the maximal
time lag, is of great importance. Setting the window width too
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small results in decreased reliability, whereas a large window
width likely results in a violated assumption of local station-
arity (Boker et al., 2002). Currently, the selection of an appro-
priate window width is largely up to the researcher.
Theoretically, the window width must be large enough to
completely capture the interrelated movements of two per-
sons. From this perspective, Boker et al. (2002) recommended
a window width of 4 s. From a methodological point of view,
the window must incorporate enough values to determine a
stable correlation. Schönbrodt and Perugini (2013) recom-
mended a sample size of at least 65 values to stably detect
high correlations. For weaker correlations, 250 values are
needed to obtain stable correlations. Tronick et al. (1977) used
a window size of 10 s (= 10 values). Cappella (1996) postu-
lated that a windowwidth of at minimum 50–70 values should
be used and that this windowwidth should be about 4–5 times
larger than the maximal time lag used. However, the optimal
trade-off, which comprises a high reliability of correlations, a
stationary time series window and a theoretically plausible
episode of interrelated nonverbal behaviors, has yet to be em-
pirically determined.

Another important aspect is whether these windows are
applied as moving/rolling windows that overlap or whether
the time series is split into nonoverlapping windows.
Splitting the time series into windows that do not overlap
may result in synchrony events at the splitting point not being
detected. Therefore, rolling windows with overlap are usually
preferred. Regarding forecasting, an application of rolling or-
igins is also preferable to fixed origins in processing time
series, as they yield higher efficiency and reliability in out-
of-sample tests (Tashman, 2000).

Human interaction is characterized by the interdependence
of both interacting partners, meaning that there are periods
duringwhich the behavior of personA influences the behavior
of person B (A = drive, B = driven), and vice versa (B = drive,
A = driven). The drive is also known as the zeitgeber, or the
person who sets the pace as well as the person who leads
(Boker et al., 2002; Kupper et al., 2015; McGarva &
Warner, 2003). When using global methods, the reciprocity
of an interaction may not be captured, because by shifting one
time series with a time lag and calculating the correlation with
the second time series, the zeitgeber of the interaction is fixed.
That is, person A always influences person B, or vice versa. If
windows are used, the zeitgeber may vary for each window
(Ramseyer & Tschacher, 2011). This change of leading may
be an important aspect of nonverbal communication (Boker
et al., 2002). Using a local method makes examining dynamic
interaction changes possible (Boker et al., 2002).

Output scores By using different linear TSAMs, different
values result as output scores. Paxton and Dale (2013b) re-
ported that a variety of output scores, including the average
synchrony score and the highest value, can be used to quantify

synchrony. Most measures assess the strength of synchrony.
Altmann (2011, 2013) proposed the frequency of synchro-
ny—that is, the ratio of synchronous time to total time—as
an output score. The selection of an output score depends
largely on the research question, the researcher (Paxton &
Dale, 2013b), and the algorithm, since not every algorithm
provides every output score (e.g., the frequency of synchrony
can only be calculated using Altmann’s, 2011, 2013, algo-
rithms). With respect to the research question, it is possible
to use the average score as an indicator of the overall interre-
latedness of an interaction (e.g., Ramseyer & Tschacher,
2011). Additionally, the maximum score of a window can be
used to investigate microprocesses in psychotherapy. The fre-
quency of nonverbal synchrony may be used to evaluate in-
teraction on a temporal level (i.e., what percent of the interac-
tion was synchronous). This means that many differences ex-
ist with respect to linear TSAMs: Various algorithms have
been used, and different output scores may be calculated.
Some recent approaches are listed in Table 1 and introduced
in the following sections.

Cross-lagged correlation (CLC) In comparison to a simple
Pearson product-moment correlation, CLC additionally con-
siders the time lag between two time series, so that the corre-
lation between the time series is calculated for each time lag
until a maximum value of the time lag is reached (Kato et al.,
1983). With respect to its interpretation, CLC refers to echo-
ing. The output of the CLC is a function of the correlations
displaying the strength of the association between the time
series with respect to every permitted time lag. The two most
common outcome scores are the average of all CLC values
and the maximum CLC value. By averaging the correlations
of different lags, averaged degrees of global matching and
echoing are obtained. Using the highest correlation yields
the highest global matching or echoing in the sequence.

Cross-lagged regression (CLR) An important issue with regard
to the analysis of time series data is autocorrelation. Referring
to body movement time series, an autocorrelation means that
the individual’s current movement is influenced by their pre-
vious movements. Not considering this autocorrelation can
result in spurious correlations (Altmann, 2011, 2013;
Gottman & Ringland, 1981). In recent years, the global mea-
sure CLR was used to overcome this shortcoming (Cappella,
1996). When using the CLR, a maximum time lag must also
be specified. One difference to CLC is that CLR uses a regres-
sion. In this regression, two predictors are incorporated to
predict a person’s later movement: (1) the previous move-
ments of the person (autocorrelation) and (2) the previous
movement of the interacting partner (cross-correlation). If
the model including the autocorrelation and the cross-
correlation cannot explain significantly more variance than
the model including the autocorrelation only, the association
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is categorized as nonsynchronous. Models can be compared
using R2 difference testing. Similar to the CLC, the CLR re-
sults in a function of R2 values referring to every permitted
time lag. The interpretation of possible output scores (average,
maximum) is similar to the CLC.

Note that the distinction between correlational and regres-
sive approaches refers to the way in which the association
between both persons’ time series is operationalized
(Altmann, 2011, 2013). However, both approaches are simi-
lar, because a correlation is a one-predictor regression with
standardized variables.

Windowed cross-correlation (WCC) The WCC represents the
simplest local measure. Similar to the simple Pearson product-
moment correlation, the correlation is calculated without con-
sidering a time lag. The only difference is that the time series is
disassembled into windows, resulting in the correlation being
computed window-wise (Tronick et al., 1977). The WCC can
be applied with overlapping or nonoverlapping windows.
Before computing the WCC, the bandwidth must be specified.
As a result of theWCC, a function displaying the strength of the
association between the two time series is obtained for each
window. With respect to the WCC, a commonly used output
score is the mean of all obtained cross-correlations (Bilakhia
et al., 2015; Nagaoka & Komori, 2008). Accordingly, the
resulting output score of the WCC can be interpreted as the
averaged degree of local matching. The maximum score can
also be determined as the maximum correlation of one window,
operationalizing the maximum synchrony in the sequence.

Windowed cross-lagged correlation (WCLC) To our knowl-
edge, the WCLC was first applied by Watanabe (1983) and
became more popular after its introduction by Boker et al.
(2002), who used automated motion capture time series and
combined WCLC with a peak-picking algorithm. In WCLC,
the association between the time series windows of two

individuals is calculated using either overlapping or nonover-
lapping windows. The correlation is calculated window-
wise—that is, as a first step the correlation between the first
window of the time series of person A and the first window of
the time series of person B is conducted (time lag = 0).
Afterward, one time series window is shifted by one time
lag and the correlation between the first window of the time
series of person A and the second window of the time series of
person B is conducted (time lag = 1). This procedure is repeat-
ed until the maximum time lag is reached and all windows of
both time series have been used. After applying the WCLC an
m × n matrix of values is obtained, where m characterizes the
number of different time lags and n denotes the time point (in
frames). Note that a positive time lag refers to predictions in
which person A is the drive and person B is the driven, where-
as a negative time lag means that person B is the drive and
person A the driven.

Various versions of the WCLC can be distinguished.
Versions differ mainly in their preprocessing and processing
of the time series or how they use the matrix of correlations/R2

to generate an output score quantifying synchrony. In the fol-
lowing study, three versions of the WCLC are presented. The
first version, called WCLCS1 here and developed by Paulick
et al. (2018), is based on correlations and computes the
strength of the association between the two time series as an
outcome measure (subscript S stands for strength, and 1 indi-
cates that it is the first WCLC strength measure). More pre-
cisely, the authors re-created the algorithm by Ramseyer and
Tschacher (2011), which is the most popular method within
the psychotherapeutic context. The corrected motion energy
time series (z-transformed, with the threshold for minimal
movement; see Grammer et al., 1999) are cross-correlated
in nonoverlapping windows of a 1-min duration (for each
window, cross-correlations were computed for positive
and negative time lags of up to 5 s, in steps of 0.04 s).
Subsequently, the cross-correlations of the matrix are

Table 1 Global and local TSAMs and their applications

TSAM Time lag Windowed Control for auto-corr Outcome Output score For example, applied by

av max freq

CLC X Correlation function X X Kato et al. (1983), Paxton and Dale (2013b)

CLR X X R2 function X X Gottman and Ringland (1981)

WCC X Correlation function X X Tronick et al. (1977)

WCLCS1 X X Correlation function X X Paulick et al. (2018), Ramseyer and Tschacher (2011)

WCLCS2 X X Correlation function X X Kleinbub and Ramseyer (2018)

WCLCF X X R2 function X X X Altmann (2011, 2013)

WCLR X X X R2 function X X X Altmann (2011, 2013)

C = correlation; CLC = cross-lagged correlation; CLR = cross-lagged regression; WCC = windowed cross-correlation; WCLCS1 = windowed cross-
lagged correlation (e.g., Paulick et al.); WCLCS2 = windowed cross-lagged correlation R (e.g., Kleinbub & Ramseyer); WCLCF = windowed cross-
lagged correlation (e.g., Altmann); WCLR = windowed cross-lagged regression; av = average output score; max = maximum output score; freq =
frequency output score.

Behav Res (2019) 51:361–383 365



Fisher’s-Z transformed and their absolute values are aggre-
gated to an output score for the nonverbal synchrony of
each video sequence.

The second version is WCLCS2, developed by Kleinbub and
Ramseyer (2018), which was recently published as the R pack-
age rMEA (again the subscript S is for strength, and 2 for the
secondWCLC strength measure). The function incorporates the
following input variables: mea (MEA time series), lagSec (max-
imum time lag, in seconds), winSec (bandwidth, in seconds),
incSec (step size, in seconds), r2Z (application of Fisher’s z-
transformation), and ABS (transformation to absolute values).
It results in a cross-correlation matrix that is aggregated to an
output score measuring the strength of the association between
two time series. A difference between the two presented
WCLCS versions is the applied minimal movement threshold
in WCLCS1. Since Paulick et al.’s (2018) WCLCS1 is based on
Ramseyer and Tschacher’s (2011) procedure, Grammer et al.’s
(1999) threshold for minimal movements was applied before
calculating the cross-correlations. However, in WCLCS2 this
threshold is not present anymore. Apart from this difference,
WCLCS1 and WCLCS2 are comparable.

The third version is WCLCF (where the subscript F stands
for frequency) by Altmann (2011, 2013). Altmann (2013)
used the determination coefficient (squared correlation) as a
result of the WCLC because it contains only positive values,
and higher correlations are weighted higher than very low
correlations. An example of a time series including a synchro-
nization interval, surface and contour plots of a possible ma-
trix are displayed in Fig. 1. The distinction between the algo-
rithms measuring the strength (WCLCS1, WCLCS2) and this
algorithm lies in the peak-picking algorithm, that is used to
identify synchronization intervals. The peak-picking algo-
rithm is described in the Peak-Picking Algorithm paragraph
below. In this version of the WCLC, not the synchrony of the
entire interaction is quantified, but the local synchronization
intervals. These are characterized by the highest values/R2s of
synchrony in the local environment (Boker et al., 2002),
which are arranged on a horizontal line (see Fig. 2). To com-
pute an output score of synchrony referring to theWCLCF, the
duration of all synchronization intervals of a particular time
series pair was summed up. Afterward the ratio of the time,
synchronized to the total duration of the sequence, was calcu-
lated (Altmann, 2011, 2013). Thus, the output score indicates
the percentage of synchronous interactions. Referring to the
WCLCS1 and WCLCS2, correlations of the different time lags
and time points were averaged to obtain an output score.
Therefore, another difference between WCLCF and both ver-
sions of WCLCS is the output score, because this version
assesses instead the frequency of the associations between
the two time series as the primary output score. However,
the algorithm also computes the strength of the association
in the synchronization intervals. Therefore, the average and
maximum output scores are also calculated. Note that in all

versions, only positive values are used. In WCLCS1 and
WCLCS2, absolute values of the correlations are used, where-
as in WCLCF, R

2 is used. The procedures differ in that calcu-
lating the R2 values results in weighting higher correlations
more than lower correlations. WCLC conceptualizes both
matching and echoing locally.

Windowed cross-lagged regression (WCLR) Altmann (2011,
2013) developed WCLR, which is a combination of CLR
and WCLC, in order to benefit from the advantages of both
methods. WCLR is similarly to WCLC. The main difference
is that a regression is conducted that includes the previous
behavior of an individual as a predictor (similar to the CLR).
Interrelatedness is computed window-wise, whereby the posi-
tion of the reference window and time-lag to the other window
are varied. Altmann (2011, 2013) proposed the application of
two models on one pair of windows:

Model 1 : X self t ¼ α0 þ α1 X self s þ εM1 t ð1Þ
Model 2 : X self t ¼ β0 þ β1 X self s þ β2 X partner s þ εM2 t ð2Þ

Equation 1 shows Model 1, incorporating the previous be-
havior of an individual in order to predict the current behav-
ior—that is, the regression accounts for possible autocorrela-
tion. Xself t refers to the individual’s own behavior at time point
t, and Xself s refers to the individual’s previous behavior at time
point s (i.e., s is prior to t). α0 denotes the intercept, α1 the
slope of the linear regression, and εM1 t refers to the residual
variance of Model 1 at a time point t. These terms are used
analogously in Eq. 2. Additionally, a second predictor,
Xpartner s, is included, which denotes the previous behavior
of the interacting partner at time point s.

Accordingly, if Model 2 fits significantly better thanModel
1, synchrony between the two individuals is detected.
Whether Model 2 fits significantly better than Model 1 can
be investigated with an R2 difference test (Altmann, 2011).
Computing the WCLR results in an m × nmatrix of R2 differ-
ence values, where m characterizes the number of different
time lags and n denotes the time point (in frames). To deter-
mine an output score, a peak-picking algorithm is applied to
the matrix. The output of the WCLR (and the WCLC) is a list
of intervals that were classified by the algorithm as synchro-
nous (time-lagged) time series sequences. On the basis of this
list, the ratio of synchronous time to the total duration of the
sequence is calculated. Altmann (2013) showed that the
WCLR is preferable to the WCLC by using simulated
(cyclic) time series. The WCLR also conceptualizes local
matching and echoing.

Peak-picking algorithmThe output of theWCLCF andWCLR
(implemented byAltmann, 2011, 2013) is anR2 matrix, which
stores the strength of window-wise associations between both
persons’ time series. To extract the synchronization intervals
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from the matrix, peaks must be found. Boker et al. (2002)
defined the maximum of the cross-correlation as a peak, where
values decrease on either side of the particular peak in a spe-
cific local region. In their algorithm, the peak that has the
closest distance to time lag = 0 is chosen as the best peak to
identify the synchronization interval. Altmann (2011, 2013)
created an alternative peak-picking algorithm (for an

illustration, see Fig. 2). First, all local maxima in the R2 matrix
(peaks) are identified. Next, neighboring peaks with an equal
time lag are determined. The third step is a summary of neigh-
boring peaks to peak crests (with a small time lag tolerance).
Fourth, all intervals that last less than 0.4 s are removed, be-
cause this amount of time is considered too short to contain
meaningful synchrony. Subsequently, an adjustment of the

Fig. 1 Time series and two plots of the resulting R2 matrix after applying
WCLCF. Panel A shows the two time series (dotted and solid) with an
interval displaying synchrony (interval duration approximately 2 s,

applied bandwidth 3 s = 75 frames displayed in gray). Panel B shows a
surface plot of the R2 matrix, and panel C a contour plot of the R2 matrix.
The time lag is displayed in frames
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onset of an interval takes place using the time lag. Finally,
overlapping peak crests are identified and peak crests with
the lower R2 average are removed (see Fig. 2).

From a theoretical point of view, the peak-picking algorithms
by Boker et al. (2002) and Altmann (2013) have fundamentally
different implications for the concept of nonverbal synchrony.
The former implies that synchrony occurs over the entire dura-
tion of the interaction, with only the strength of synchrony vary-
ing over time. Therefore, the primary aim is not the detection of
synchronization intervals but the quantification of synchrony.
This implies that investigations of microprocesses within thera-
py cannot be conducted, because no synchronization intervals
are determinable. The latter peak-picking algorithm assumes the
existence of so-called synchronization intervals and that the
time series are interrelated only during these intervals. On the
basis of such an on–off pattern, the frequency of synchrony can
be quantified. However, within a synchronization interval,
Altmann’s (2013) peak-picking algorithm also computes the
strength of synchrony in terms of the average R2 values of all
identified synchronization intervals. This implies the assump-
tion that an interaction contains in-synchrony intervals and also
intervals during which no synchrony can be found. It allows for
an examination of microprocesses within psychotherapy, in

which the content of therapy may be related to different syn-
chronization intervals and in which specific moments of change
(e.g., repairs of alliance ruptures) may be investigated further.

Research questions

The aim of the present study was twofold: to test construct va-
lidity and investigate criterion validity with two different criteria.
Since authors have used different parameter settings (e.g., band-
width or overlapping vs. nonoverlappingwindows), we conduct-
ed all analyses on a set of parameters recommended by the au-
thors and on a completely equal set of parameters, for compara-
bility both between studies and within the present study.

Convergent validity First, we examined the convergent validity
of linear TSAMs used in behavioral and social science. We
applied these TSAMs to motion energy time series, resulting
in movement synchrony output scores. Thereby, we used vari-
ous output scores (average, highest value, and the ratio of syn-
chronous time). We hypothesized that all correlations would be
moderate to high because all TSAMs conceptualize nonverbal
synchrony and are widely applied to motion energy time series

Fig. 2 Contour plot of the R2 matrix, which is a result of the analysis of two time series with WCLCF. Red dots indicate the R2 peaks selected by the
Boker et al. (2002) algorithm, whereas blue lines are the R2 “mountain crests” selected by the Altmann algorithm
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in order to assess movement synchrony. Additionally, we tested
whether a common factor model fits the data. Should this not be
the case, an exploratory factor analysis would be conducted to
systemize the output scores of different TSAMs.

Criterion validity (1) We described CRQA as a widely applied
nonlinear approach to investigating synchrony that is more
generalized than the linear TSAMs presented. Thus, we also
conducted correlations with this measure and included it in the
factor analysis in order to validate the results of the linear
TSAMs. (2) Our sample comprised patients suffering from
social anxiety disorder (SAD), who are considered to show a
high level of impairment in interpersonal contexts (Wenzel,
Graff-Dolezal, Macho, & Brendle, 2005). Furthermore, with
respect to therapy outcome in a disorder-heterogeneous sam-
ple, research has shown that psychotherapy enhances interper-
sonal abilities and reduces interpersonal problems, especially
when movement synchrony during the early stage of therapy
is high (Ramseyer & Tschacher, 2011). Therefore, we hypoth-
esized that output synchrony scores would be negatively re-
lated to interpersonal problems at the end of therapy. We con-
ducted partial correlations (controlling for initial impairment)
to examine the predictive validity of the presented TSAMs.

Method

Background

Our data were gleaned from video recordings from the multi-
center randomized controlled SOPHONET treatment study,
conducted from 2007 to 2009 by outpatient clinics at univer-
sities in Bochum, Dresden, Jena, Mainz, and Goettingen,
Germany (Leichsenring et al., 2013, 2014).

Setting and material

The therapies included five preparatory sessions that are com-
pulsory in the German health care system (for more details,
see Leichsenring et al., 2013, 2014), as well as 25 individual
50-min treatment sessions. Due to the fact that the videos were
recorded in different centers, camera positions varied slightly
(lateral view ~ 90°, angular view ~ 45°). The psychotherapist
and patient were always recorded with one video camera.
Furthermore, only video files with a constant camera position,
camera settings, and light conditions were considered. To be
included in the study, videos had to show both persons (ther-
apist and patient) for at least 15 min during the first half of the
therapy session. The starting point of the considered sequence
was set after welcoming, administrative questions, and the fill-
ing out of questionnaires. The latest possible start time was set
to 10 min. Videos that showed the filling in of questionnaires
for more than 10 min were excluded. Further exclusion criteria

included: the presence of another person apart from the thera-
pist and patient, one person leaving his/her chair during the 15
min, and one person changing his/her position so that he/she
was no longer visible in the video. To ensure the comparability
of video files, they were converted to equivalent formats using
a size of 640 × 480, a frame rate of 25 fps, and a bit rate of 2,000
Kbit per second (Any Video Converter 3.0, AVC, 2009).

Study subjects

On the basis of the inclusion criteria of the SOPHONETstudy,
the patients had to be 18–70 years old, have a diagnosis of
SAD according to the German version of the Structured
Clinical Interview for DSM-IV (Wittchen, Wunderlich,
Gruschwitz, & Zaudig, 1997), a score > 30 on the Liebowitz
Social Anxiety Scale (LSAS; Mennin et al., 2002), and a
primary diagnosis of SAD with respect to the Anxiety
Disorders Interview Schedule (Brown, Barlow, & Di Nardo,
1994). Comorbid disorders less severe than SAD were
allowed, with the exception of psychotic disorders, acute
substance-related disorders, and cluster A and B personality
disorders. Additional exclusion criteria were a risk of self-
harm, organic mental disorders, severe medical conditions,
and concurrent psychotherapeutic or psychopharmacological
treatments (see Leichsenring et al., 2013, 2014).

In the present study, we examined a subsample of the
SOPHONET sample. The selection was driven by the follow-
ing inclusion criteria for video quality: (1) patients had to be
visible for the first 15 min of the third therapy session, (2)
video quality was sufficient without severe video errors, and
(3) no third person was present. After applying the inclusion
criteria to the video files, 84 of 495 study subjects remained
for the present investigation (study flow is presented in Fig. 3).
Regarding the present investigation, 53 patients were female,
52 had a high school diploma or higher, and 37 were living in
a current relationship. The mean therapy duration per patient
was 23.87 sessions (SD = 6.93). The mean pretreatment se-
verities were 73.44 (SD = 21.79) on the LSAS, 10.41 (SD =
6.51) on the Beck Depression Inventory (BDI; Beck, Ward,
Mendelson, Mock, & Erbaugh, 1961), and 1.74 (SD = 0.47)
on the Inventory of Interpersonal Problems (IIP; Horowitz,
Strauss, Thomas, & Kordy, 2016).

Assessment of movement

We used the first 15 min of the third therapy session (± one
session) to conduct motion energy time series analysis, be-
cause it has been demonstrated that movement synchrony of
the first 15 min is representative of the entire 50 min of a
therapy session (Paulick et al., 2018; Ramseyer & Tschacher,
2011). To assess the time course of individual body movements,
we used motion energy analysis (MEA), implemented in
MATLAB 2016 (The MathWorks, Inc, 2016; Altmann, 2013).
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The ROI covered the upper body from the chair’s seating-base
upward.

We determined the cutoff value for meaningful pixel
changes empirically (according to Altmann, 2013). For this
purpose, we used n = 20 video files. We specified 30 different
pixels in the background as control pixels, which should not
show any grayscale intensity changes as a result of move-
ments. Time series of these 30 pixels were calculated, showing
the intensity change from one frame to another. Afterward, we
determined the 99% quantile of all values, which equaled
12—that is, 99% of the intensity changes were lower than
12. Thus, the cutoff value was set to 12. Furthermore, we
applied a 2-D median filter in order to reduce video noise
(i.e., irregularities in the video sequences), as described in
Altmann, Schoenherr, Paulick, Knitter, et al. (submitted). In
addition, we transformed all motion energy time series to a
value range of 0–100 by dividing each value by the number of
pixels in the ROI and multiplying it by 100. The value of 100
means that 100% of the ROI was activated; the value of 1
means that 1% of the ROI was activated. Therefore, the values
of different persons were comparable, even when they did not
have the same ROI size. Moreover, we filtered video errors by

applying the MATLAB script described in Altmann,
Schoenherr, Paulick, Knitter, et al. (submitted), available at
https://github.com/10101-00001/MEA.

Parameter settings for the present analysis

When choosing parameter settings, we wanted to have maxi-
mum comparability to the literature and maximum compara-
bility within the article. Therefore, we applied the algorithms
first as described in the literature (heterogeneous parameter
settings), and second with entirely equal parameter settings
and output metric (homogeneous parameter settings). If no
standard was available in the literature, we chose parameter
settings that facilitated comparability of the algorithms. Since
there is no common standard with respect to data transforma-
tion and smoothing procedure, we neither smoothed nor trans-
formed the time series, to avoid information loss. Referring to
the maximal time lag considered, we used a homogeneous
maximal time lag of 5 s (in accordance to Ramseyer, 2011).

Heterogeneous parameter settings For the CLC or CLR, we
applied a simple cross-correlation or cross-regression with

Fig. 3 Study flow. DFG = German Research Foundation, CBT = cognitive–behavioral therapy, PDT = psychodynamic-oriented therapy, man =
manual-guided
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step size 0.04 s (= 1 frame). The CLC results in an absolute
global correlation, the CLR in an R2 value. For the WCC, we
used a bandwidth of 10 s (= 250 frames) with a step size of 1 s
(= 25 frames; Tronick et al., 1977). As a global score, an
averaged/maximum global absolute correlation was used.
With respect to WCLCS1 and WCLCS2, we applied a 1-min
window as bandwidth (= 1,500 frames) with nonoverlapping
windows (step size = 1 min = 1,500 frames; Paulick et al.,
2018; Ramseyer & Tschacher, 2011). Since a moving median
had already been applied to the raw data, we omitted the
moving average of the Ramseyer/Paulick procedure in order
to apply the algorithms to the same raw data. Before calculat-
ing the correlations, a z-transformation was applied. In addi-
tion, WCLCS1 applies a minimal threshold for movement (see
Grammer et al., 1999; Ramseyer & Tschacher, 2011). Both
WCLCS1 and WCLCS2 result in an absolute averaged/
maximum correlation as the output score. For WCLCF and
WCLR, we used a bandwidth of 5 s (= 125 frames) with a
step size of 0.04 s (= 1 frame), as well as overlapping windows
(Altmann, Schoenherr, Paulick, Deisenhofer, et al., 2018). In
the present study, Altmann’s (2013) peak-picking algorithm
was used for theWCLCF andWCLRwith a time lag tolerance
of one frame (which equates to 0.04 s). All synchronization
intervals that lasted less than 0.4 s were removed because they
were too short to display meaningful synchrony (for details, see
Altmann, 2013). All algorithms had the same time series as
input. All time-lagged methods had a maximum time lag of 5 s.

Homogeneous parameter setting To enhance comparability,
all algorithms were used with equal settings: same time
series, maximum time lag of 5 s (= 125 frames), band-
width of 5 s (= 125 frames), and overlapping windows
with a step size of 0.04 s (= 1 frame). To allow compar-
ison of the correlations and R2 values of the different
methods and obtain a homogeneous metric, we squared
the simple correlations.

We calculated various output scores for each method, when
possible (average absolute correlation = average strength of
synchrony, highest absolute correlation = maximum strength
of synchrony, ratio of synchronous time to total duration =
frequency of synchrony). The global output scores used with
respect to the different TSAMs are displayed in Fig. 4.

For a criterion-based validation with a nonlinear method,
we also computed synchrony scores using CRQA, implement-
ed in R by Coco and Dale (2014). We preprocessed our time
series via z-transformation and determined the optimal radius
and embedded dimensions by using the optimizeParam
function. The mean radius of all time series was 8.85, and the
optimal value of the embedded dimensions was 3. We calcu-
lated recurrence rate (RR) profiles by applying the runcrqa
function for continuous data with a window size of 125 frames
(= 5 s). Afterward, we averaged the RR profiles to obtain an
output score (average) representing nonlinear movement syn-
chrony. Additionally, we calculated the mean of the maximal
RR (maxrec) to obtain an output maximum score.

Statistical analysis

After video analysis withMEA and computation of synchrony
indices with multiple TSAMs, we examined the association
between different synchrony output scores. Descriptive statis-
tics (mean, standard deviation) were investigated. Then we
calculated bivariate Pearson product-moment correlations be-
tween the synchrony output scores in order to investigate con-
vergent validity. Correlations lower than .35 were considered
low, those between .35 and .67 moderate, and those between
.68 and 1.0 high (Taylor, 1990). P values of the correlations
were corrected for multiple testing by Bonferroni correction.
Correlations with the CRQA score were also conducted with
respect to all three output scores (average, max, freq). Thenwe
tested the theoretical assumption that a common factor model
holds. Thereby, we first tested the average and ratio/frequency

Fig. 4 Output measures for the different linear TSAMs
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scores, and second we examined the common factor structure
of the maximum scores, because including the correlated av-
erage and maximum scores in one analysis might have biased
the factor analysis. The root mean square error of approxima-
tion (RMSEA) should be < .05, the comparative-fit index
(CFI) > .9, and the Tucker–Lewis index (TLI) > .9 to suggest
a satisfactory fit. Because the results showed that a common
factor model was not appropriate, we conducted an explorato-
ry factor analysis (maximum likelihood estimator, rotation
oblimin), first for the average and ratio scores and second
for the maximum scores, in Mplus 7.4. Thereby, we specified
that the factor solution lay between one and six factors and
tested different factor solutions (e.g., two-factor, three-factor,
etc.) for data fit. In our exploratory factor analysis, we allowed
for correlating factors.

Finally, we examined whether the output scores were
equally related to a construct: interpersonal problems at the
end of therapy. Interpersonal problems were measured with
the IIP (Horowitz et al., 2016), which is composed of eight
scales, including dominance, self-sacrifice, and social inhibi-
tion, that measure interpersonal problems. Each scale consists
of four items based on a 5-point Likert scale. We conducted
partial correlations while controlling for interpersonal prob-
lems at the beginning of therapy.

It should be noted that we performed each analysis on two
datasets. The first dataset (N = 84 time series pairs) were
synchrony measures based on the parameter settings sug-
gested by the authors of the algorithms. The second dataset
were synchronymeasures computed when the same parameter
settings were applied to each algorithm. This was done to
maximize both comparability with other studies (heteroge-
neous settings) and comparability within our own study (ho-
mogeneous settings).

Results

Descriptive statistics

The means and standard deviations of the examined synchro-
ny output scores and time lags are displayed in Table 2.

Correlation analysis

The correlations of different synchrony output scores are
displayed in Table 3 with respect to the average strength and
frequency of synchrony. The table captures correlations in
which each algorithm was applied both as recommended in

Table 2 Means and standard deviations of synchrony indices and their time lag variables

Synchrony indices Time lag

Mean (SD) Mean (SD)

TSAM Average score Max score Ratio score Average score Max score Ratio score

Heterogeneous parameter settings

CLC .036 (.023) .075 (.039) – 0 – 8.05 (76.85) –

CLR .005 (.014) .013 (.039) – 0 108.52 (23.97) –

WCC .115 (.029) .704 (.121) – 0 0 –

WCLCS1 .047 (.015) .111 (.041) – 0 0 –

WCLCS2 .084 (.015) .750 (.245)

WCLCF .269 (.046) .871 (.059) .442 (.108) 64.18 (2.97) – 9.57 (73.70) 64.18 (2.97)

WCLR .252 (.041) .854 (.055) .444 (.108) 65.71 (3.01) – 2.29 (72.35) 65.71 (3.01)

CRQA .168 (.095) .177 (.095)

Homogeneous parameter settings

CLC .002 (.003) .007 (.009) – 0 – 8.05 (76.85) –

CLR .005 (.014) .013 (.039) – 0 108.52 (23.97) –

WCC .018 (.008) .738 (.148) – 0 0 –

WCLCS1 .008 (.002) .042 (.032) – 0 0 –

WCLCS2 .038 (.008) .997 (.006) – 0 0 –

WCLCF .269 (.046) .871 (.059) .442 (.108) 64.18 (2.97) – 9.57 (73.70) 64.18 (2.97)

WCLR .252 (.041) .854 (.055) .444 (.108) 65.71 (3.01) – 2.29 (72.35) 65.71 (3.01)

CRQA .168 (.095) .177 (.095)

Heterogeneous parameter settings according to the literature. TSAM = time series analysis method; SD = standard deviation; CLC = cross-lagged
correlation; CLR = cross-lagged regression;WCC =windowed cross-correlation;WCLC =windowed cross-lagged correlation (WCLCS, with respect to
strength of synchrony; WCLCF, with respect to frequency of synchrony); WCLR = windowed cross-lagged regression. N = 84, all values in frames
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the literature (lower triangle) and with entirely equal parame-
ter settings (upper triangle, gray-shaded). For the sake of clar-
ity, we only present results referring to the average scores and
ratio score, here. The other correlations (maximum output
scores) are displayed in the Appendix. High correlations be-
tween the scores of the more local methods indicate a substan-
tial association between parameter settings, with one excep-
tion: The correlations with WCLCS1 using equal parameter
settings are nonsignificantly different from zero. The global
methods are neither correlated with each other nor highly cor-
related with the scores of the local methods. Two associations
are illustrated by scatterplots (Fig. 5).

With respect to the maximum scores, most of the output
scores were nonsignificantly correlated. Significant associations
were only shown referring to the frequency measures (WCLCF,
WCLR) and between the WCC and frequency measures and
CRQA. Additionally, WCLCS1 (max) and CLC (max) were

associated (see the Appendix, Table 6). The maximum and av-
erage scores for each algorithm were associated with each other
mostly, but ranged from r = – .210 to r = .999* (see the
Appendix, Tables 7 and 8; here and below, asterisks indicate
results significant at the alpha level given in particular tables).

Exploratory factor analysis

With respect to our two parameter settings, we conducted two
factor analyses (A: output scores resulting with heterogeneous
parameter settings [according to literature], B: output scores
resulting with homogeneous parameter settings). We included
average scores and ratio/frequency scores only because the
highly correlated average and maximum scores might have
biased the factor analysis. For neither of the settings, a com-
mon factor model fit the data (A: χ2 = 380.25, df = 35, p < .01,

Table 3 Correlations between average output scores of nonverbal synchrony assessed with various TSAMs

CLC CLR WCC WCLCS1 WCLCS2 WCLCF WCLR CRQA WCLCF

freq

WCLR 

freq

CLC .960* .001 .250 .194 .256 .132 .110 .272 .193 .236

CLR .004 1 -.117 .067 -.026 -.033 -.011 -.110 -.155 -.155

WCC .268 -.107 .954* .271 .866* .770* .755* .768* .874* .881*

WCLCS1 .349* .037 .607* .713* .292 .217 .190 .172 .137 .146

WCLCS2 .528* .085 .734* .692* .781* .791* .772* .681* .733* .749*

WCLCF .147 -.033 .827* .492* .588* 1 .984* .604* .753* .749*

WCLR .123 -.011 .803* .460* .565* .984* 1 .601* .767* .757*

CRQA .269 -.110 .738* .454* .555* .604* .601* 1 .769* .777*

WCLCF

freq

.204 -.155 .880* .443* .550* .753* .767* .769* 1 .987*

WCLR 

freq

.239 -.155 .892* .464* .579* .749* .757* .777* .987* 1

R2 upper triangle (gray shaded): correlations of different synchrony indices (R²) based on homogeneous parameter settings; lower triangle: correlations
of different synchrony indices (coreelations/R²) based on heterogeneous parameter settings from literature. CLC = cross-lagged correlation; CLR = cross-
lagged regression; WCC = windowed cross-correlation; WCLC = windowed cross-lagged correlation (WCLCS, with respect to strength of synchrony;
WCLCF, with respect to frequency of synchrony); WCLR = windowed cross-lagged regression; CRQA = Cross recurrence quantification analysis.
* Significant correlations, Bonferroni-adjusted alpha level = .001, freq = frequency of synchrony/ratio
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RMSEA = 0.34, CFI = 0.67, TLI = 0.58; B: χ2 = 331.87, df =
35, p < .01, RMSEA = 0.32, CFI = 0.71, TLI = 0.63).

For the exploratory analyses, the results showed that a three-
factor model fit the data for both parameter settings (A: χ2 =
19.24, df = 18, p = .38, RMSEA = 0.029, CFI = 0.999, TLI =
0.997, B: χ2 = 9.80, df = 18, p = .94, RMSEA < 0.00, CFI =
1.00, TLI = 1.02). The factor loadings of the three-factor solu-
tion are displayed in Table 4. The correlations were, between
Factors 1 and 2, r = .742* for the dataset generated with het-
erogeneous parameter settings for the algorithms (respectively,
r = .726* for homogeneous parameter settings), between
Factors 1 and 3, r = .576* (respectively, r = .737*), and between

Factors 2 and 3, r = .564* (respectively, r = .702*). For maxi-
mum scores, no adequate factor solution was found.

Post-hoc analysis On the basis of the three-factor solution of
the exploratory factor analysis (EFA) and our main hypothesis
(common factor for synchrony), we also conducted a confir-
matory factor analysis to test whether the three factors loaded
on a single factor. Therefore, we specified three latent endog-
enous variables based on the factor loadings and one superior
latent synchrony variable. Referring to the heterogeneous pa-
rameter settings, we found an adequate model by excluding
the WCC and CLR (which had double loadings in EFA). The

Fig. 5 Scatterplots showing the correlations between WCC (average) and WCLCS1 (average), on the left, and WCLCF (average), on the right

Table 4 Factor loadings (geomin-rotated loadings) of the exploratory factor analysis

Heterogeneous parameter 

settings

Homogeneous parameter 

settings

Factor 1 Factor 2 Factor 3 Factor1 Factor 2 Factor 3

CLC (av) -.041 -.128     .630* .034 -.228 .448*

CLR (av) -.296* -.010 .263* -.364* .251 .028

WCC (av) .561* .232* .283* .422* .017 .592*

WCLCS1 (av) .026 .097 .638* -.266 .002 .538*

WCLCS2 (av) .019 .006 .967* -.003 .224 .767*

WCLCF (av) -.013 1.038* .006 .003 .882* .126*

WCLCF (freq) 1.018* .000 -.042 .969* .041 .000

WCLR (av) .140 .852* -.002 .037 .990* -.009

WCLR (freq) .996* -.009 .007 .920* .011 .080

CRQA (av) .689* -.005 .163 .542* -.062 .370*

Heterogeneous parameter settings according to the literature. CLC = cross-lagged correlation; CLR = cross-lagged regression; WCC = windowed cross-
correlation; WCLC = windowed cross-lagged correlation (WCLCS, with respect to strength of synchrony; WCLCF, with respect to frequency of
synchrony); WCLR = windowed cross-lagged regression. The highest factor loadings are shaded in gray. * Significant at a 5% alpha level, freq =
frequency
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model showed an excellent fit (χ2 = 7.99, df = 18, p = .98,
RMSEA < 0.001, CFI = 1.000, TLI = 1.018). The model with
significant (standardized) path coefficients is displayed in Fig.
6. Regarding the homogeneous parameter settings, no ade-
quate and converging model was found.

Criterion-based validation: Correlations
with interpersonal problems

Correlations of the output scores with interpersonal problems at
the end of therapy (while controlling for initial interpersonal prob-
lems) are displayed in Table 5. The hypothesized negative asso-
ciation between nonverbal synchrony and interpersonal problems
posttherapy was found with respect to WCC (average), WCLCF

(ratio), andWCLR (ratio), which showed significant correlations.
Additionally, marginally significant associations were found with
regard to WCLCF (average) and WCLR (average).

Discussion

The aim of the present study was to examine the convergent
validity of linear TSAMs for the assessment of nonverbal
synchrony. Besides the diversity of TSAMs, most of these
algorithms provide more than one output score—for instance,
an average and a maximum score. Therefore, various output
scores per TSAM were calculated when possible. In the liter-
ature, these different output scores and TSAMs are all used to

Fig. 6 Common factor model synchrony (heterogeneous parameter settings)

Table 5 Partial correlations between output scores and interpersonal problems at the end of therapy, with p values

Heterogeneous parameter settings Homogeneous parameter settings

Output score r IIPPost p Value r IIPPost p Value

CLC (average) – .029 .799 – .090 .419

CLR (average) .076 .497 .076 .497

WCC (average) – .268* .015 – .305* .005

WCLCS1 (average) – .179 .108 – .086 .444

WCLCS2 (average) – .123 .272 – .147 .187

WCLCF (average) – .204 .066 – .204 .066

WCLCF (ratio) – .262* .018 – .262* .018

WCLR (average) – .205 .065 – .205 .065

WCLR (ratio) – .282* .010 – .282* .010

CRQA (average) – .138 .215 – .138 .215

Heterogeneous parameter settings according to the literature. r = correlation; CLC = cross-lagged correlation; CLR = cross-lagged regression; WCC =
windowed cross-correlation; WCLC = windowed cross-lagged correlation (WCLCS; with respect to strength of synchrony; WCLCF; with respect to
frequency of synchrony); WCLR = windowed cross-lagged regression; CRQA = Cross recurrence quantification analysis. * Significant correlations at
the 5% alpha level
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assess nonverbal synchrony. Since it is not clear if all output
scoresmeasure the same construct, all TSAMswere applied to
an identical dataset of time series pairs. We conducted all
analyses with a set of heterogeneous parameter settings (ac-
cording to literature) and homogeneous parameter settings
(highest comparability between algorithms within this study).

The present study was able to demonstrate that not all out-
put scores that are used to calculate synchrony are correlated.
Especially, global and local TSAMs measure different facets
of synchrony. Whereas global TSAMs assume the interrelat-
edness of both interacting partners to be stable (i.e., person A
always influences person B, or vice versa), local TSAMs
operationalize interrelatedness dynamically with varying lead-
ing and pacing. Therefore, it is plausible for global and local
TSAMs not to be associated with each other. The correlations
largely support this inference. Furthermore, there is no evi-
dence that TSAMs that have the same methodical approach
(e.g., correlational vs. regressive methods) would inevitably
assess the same construct. Additionally, we found no common
construct underlying all TSAMs with either of the two param-
eter settings. The results of the exploratory factor analyses
suggest a three-factor solution. However, we were able to
show a common factor as a latent second-order variable of
these three factors by excluding WCC and CLR for the het-
erogeneous parameter settings.

Multifactor structure of synchrony measures

The examined three factors of the EFA incorporated with the
results of the correlations are described in the following
paragraphs.

Synchrony Factor 1 The first factor is formed by the WCLCF

(ratio), WCLR (ratio), and CRQA (average) measures. In line
with that, all three output scores are highly correlated (ranging
from r = .77 to r = .99). Both linear measures are frequency
measures that capture the ratio of time that was synchronized
to the total duration of the sequence. Correlations are very
high indicating nearly equal scores. The facet of synchrony
that is measured differs enormously in comparison to the other
(strength) measures. Apparently, the frequency measure is
highly associated with the nonlinear output score (r = .77).
The result of the CRQA is the recurrence rate indicating the
frequency of revisiting states of both phase trajectories. The
construct can be described as the frequency of synchrony.

Synchrony Factor 2 This factor incorporates the average out-
put scores of the WCLCF and WCLR. With respect to the
WCLCF and WCLR, a peak-picking algorithm is used, which
identifies the start and end points of synchronization intervals
as well as synchrony strength within the identified intervals.
Their output values are based on the identified synchroniza-
tion intervals. Intervals that do not show synchrony are

neglected. The construct can best be described as the strength
of synchrony within the identified synchronization intervals.
The strength of synchrony in intervals (Factor 2) and the fre-
quency of synchrony (Factor 1) are bothmeasured byWCLCF

andWCLR and are therefore highly associated; however, they
are not equivalent. If synchrony is highly frequent, it is not, by
default, always strong. The strength of the association is par-
tially determined by the peak height of both time series. If both
are high and similar, high strength is identified. In the context
of psychotherapy, this would mean that both persons gesture
in a large or a very space-consuming fashion. If the magnitude
of the persons’movements is very different within their space,
strength will be lower, although the interval will also be iden-
tified as showing synchrony.

The results showed that the WCLCF and WCLR measures
correlated very highly with each other (r = .98). Since WCLR
was developed on the basis of cyclical data (Altmann, 2011,
2013), it is probably advantageous for this type of data as com-
pared to WCLCF. With respect to the noncyclical data in the
present study, the scores were nearly equivalent. Therefore,
WCLCF seems to be preferable, because the computational
expense of WCLCF is much lower than that of WCLR.

Synchrony Factor 3 Factor 3 of the EFAs incorporates the CLC
output score and the WCLCS1 and WCLCS2 output scores. In
comparison to the associations within the other factors, the
correlations between CLC and the other scores of this factor
are only moderate. This may be explained because CLC is a
global measure and both forms ofWCLCS are local measures.
However, their belonging to this factor may be explained by
the large bandwidth of 1 min used in both forms of WCLCS.
Since the total duration of the sequencewas 15min, the results
of WCLCS are similar to those of the CLC and are assigned to
the same factor. Both WCLCS measures are highly associated
(r > .7), which is plausible because both measures differ only
in the used the Grammer et al. (1999) minimal movement
threshold (see the Method section). The scores of Factor 3
quantify the strength of synchrony and aggregate the value
with respect to the total interaction. Thus, the r or R2 values
of nonsignificant sequences (sequences without movement
synchrony) and movement synchrony intervals are included
in the aggregation. The construct is best described as the
strength of synchrony of the total interaction. The main dif-
ference between this factor and the WCLCF and WCLR mea-
sures is the peak-picking algorithm. The clear advantage of
WCLCF and WCLR lies in their determination of synchroni-
zation intervals, which also clearly distinguishes Factors 1 and
2 from Factor 3.

Special cases CLR andWCCOur results showed that the CLR is
not related to any other measure, suggesting that CLR maps a
completely different construct than do the other TSAMs. This
is emphasized by the finding that no converging and adequate
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model was found by incorporating CLR. We do not recom-
mend using CLR as a synchrony measure.

The measure WCC is related to the output scores of all
local TSAMs. This corresponds to the results of the factor
analysis showing significant factor loadings for more than
one factor. Apparently, WCC is related to each facet of syn-
chrony—especially to the frequency of synchrony and the
strength of synchrony of the total interaction. This might be
plausible because sequences may have similar proportions of
matching and echoing. Therefore, the assessed matching of
the WCC correlates highly with the sum of echoing and
matching of the other algorithms. This does not necessarily
imply that it is beneficial not to include a time lag; rather, it
presents the opportunity to estimate the general level of syn-
chrony of an interaction using WCC.

The existence of a diversity of procedures and low concor-
dance of scales is also found in other areas of psychological
research, such as attachment research. The investigation of the
attachment–outcome relation is complicated by the fact that
measures of attachment are quite heterogeneous (Bouthillier,
Julien, Dubé, Bélanger, & Hamelin, 2002; Kirchmann,
Fenner, & Strauß, 2007; Manes et al., 2016; Roisman et al.,
2007) and show weak, if any, convergence. Thus, the compa-
rability of studies is reduced. Evidence related to attachment
as a predictor of outcome in specific psychological treatments
remains unclear (Manes et al., 2016). Recently, it has been
assumed that (i) the methods measure different aspects of
the construct and (ii) attachment is therefore not unidimen-
sional but, rather, multidimensional. Referring to the results
of the present study, the same can be said of nonverbal syn-
chrony: Nonverbal synchrony does not seem to be a unidi-
mensional but, rather, a multidimensional construct. However,
the different facets can be related to a superior construct of
nonverbal synchrony.

Criterion-based validations

In the current literature, it is often discussed that nonlinear
methods better reflect interpersonal interactions. Therefore,
we also used the most commonly applied nonlinear method:
cross-recurrence quantification analysis. Different linear out-
put scores are differently associated with the output scores of
CRQA: The average score of the CRQA shows high correla-
tions with the local TSAMs. Only the WCLCS1 score with
homogeneous parameter settings seems to be an exception.
Therefore, the WCLCS1 should not be applied with small
bandwidth and overlapping windows. To summarize, in com-
parison to some linear models, nonlinear models do not nec-
essarily result in completely different synchrony indices. This
result can be considered a validation of the local TSAMs with
the parameter settings that are recommended in the literature.

When examining empirical research questions with
TSAMs, which are related to different synchrony constructs,

inconsistent findings may be found. Tronick et al. (1977), for
instance, showed significant nonverbal synchrony between
mother–child dyads using WCC, whereby Gottman and
Ringland (1981) did not find this association when reanalyzing
the very same dataset using CLR. We also conducted partial
correlations between ten nonverbal synchrony output scores
and therapy outcome (IIP). The assumed significant negative
relationship between synchrony and the outcome was only
observable when using three of the ten output scores. This
would mean that a high level of synchrony at the beginning
of therapy is associated with fewer interpersonal problems at
the end of the therapy. The scores showing this relationship can
be assigned to the same synchrony facet (frequency of syn-
chrony), supporting the idea of different synchrony facets.
The association between the IIP results and synchronywas also
present marginally significantly with respect to synchrony in
the intervals. However, total synchrony was only descriptively
and nonsignificantly associated with interpersonal problems.
This is inconsistent with the findings of Ramseyer and
Tschacher (2011), who reported a significant association.
However, Paulick et al. (2018) did not find a linear association
between IIP and total synchrony. Assuming an association
between synchrony and interpersonal problems, the frequency
measures of the WCLCF and WCLR and the WCC (average)
are the only valid output scores.

Practical implications

Since the output scores do not measure the same nonverbal
synchrony construct, the question arises, which of the
TSAMs and their output scores best measure nonverbal syn-
chrony. The present study is unable to answer this question
completely, because we have no “true value” of nonverbal syn-
chrony to which we can compare the output scores of the ap-
plied TSAMs. In the future it may be beneficial to create a
database that includes sequences with and without nonverbal
synchrony. To date, only two brief studies exist that have com-
pared output scores with simulated (Altmann, 2013) or human-
rated (Paxton & Dale, 2013b) nonverbal synchrony. Therefore,
extensive studies will be needed. Additionally, the criterion to
which the results of an algorithms are compared is important: If
the aim is to measure an aspect of synchrony that is associated
with interpersonal problems, the results of algorithms that cor-
relate highly with interpersonal problems are best. If the aim is
to measure a synchrony facet that is similar to human-rated
synchrony, human-rated sequences will be needed as a criterion
against which to compare the algorithms. In addition, there
have also been attempts to define synchrony empirically in
comparison to pseudosynchrony. Therefore, the choice of the
best-suited algorithms is inherently connected to the criterion.

In this context, however, it should be emphasized that the
results of the TSAMs presented are dependent on the param-
eter settings. These include, for example, the degree of
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smoothing, transformation, and bandwidth. In the present
study, standard settings from the literature and equal parame-
ter settings were used. The results were more consistent using
the parameter settings from the literature. Therefore, future
studies should investigate which parameter settings really
are best suited to optimally capture nonverbal synchrony.
Since, for example, bandwidth has a high impact on results,
which is why we do not recommend the direct comparison of
results that were conducted using different bandwidths, even
when identical TSAMs were used. Nevertheless, in line with
Delaherche and Chetouani (2010), we recommend the appli-
cation of local methods, because they are more likely to cope
with statistical challenges such as nonstationarity, and also
take zeitgeber changes or a changing time lag into account.

With respect to the present study, it can be said that
WCLCF or WCLR can be used to assess the strength of syn-
chrony in predefined intervals or the frequency of synchrony
in an interaction. CLC,WCLCS1, andWCLCS2 can be applied
to measure the strength of synchrony of a total interaction.
CLR measures are not recommended, because they are not
comparable to the other TSAMs assessing nonverbal synchro-
ny. If one is solely interested in the amount of synchrony (not
in pacing, leading, or time-lag-related variables), the WCC
(average) is a valid output score with which to estimate the
amount of interrelatedness between two time series.
Nevertheless, that a common construct of synchrony may be
found for parameter settings from the literature, future studies
should explicitly define and characterize the facet of synchro-
ny they intend to measure.

Strengths and limitations

A limitation is that the TSAM parameters were not systemat-
ically varied (e.g., in terms of time lag or bandwidth). This
indicates that our results cannot be generalized to algorithms
using other parameter settings. Since parameter settings are an
important source of variance between the results of different
TSAMs, we can only draw conclusions about the presented
algorithms with their parameter settings. In addition, no cor-
rection of spurious correlations, apart from the correction for
autocorrelation, was applied. Prewhitening can be performed
to reduce bias due to autocorrelation, as was shown by R. T.
Dean and Dunsmuir (2016). However, autocorrelation should
have influenced all methods to a comparable extent (except
for the methods that include autocorrelation within their mod-
el specification, such as CLR and WCLR). Furthermore, we
did not control for any further spurious correlations that might
have been caused by randomly occurring synchrony. Different
methods exist by which spurious correlations can be con-
trolled for. One possibility is the use of surrogate/virtual
pairs—that is, time series pairs that are split and randomly
recombined (Louwerse et al., 2012; Moulder, Boker,
Ramseyer, & Tschacher, 2018). Synchrony determined within

these surrogate pairs can be used as a baseline to evaluate the
meaningfulness of genuine synchrony. Another opportunity to
build a baseline is to randomly shuffle the data points
(Louwerse et al., 2012) or windows (Ramseyer & Tschacher,
2010) of one time series. Altmann (2013) and Gottman and
Ringland (1981) proposed a parametric test to solve this issue.
Another possibility is to increase the cutoff for distinguishing
between randomly occurring andmeaningful synchrony (R. T.
Dean & Dunsmuir, 2016). However, the lack of control for
spurious correlations should also have a comparable effects on
all TSAMs. Additionally, our study only compared algorithms
assuming a linear relationship between the interacting per-
sons. In further analyses, it may also be interesting to investi-
gate other dependencies, by using spectral analysis, for exam-
ple. Additionally, the inconsistent results with respect to the
synchrony–outcome association can also be attributed to the
limited sample size or to varying parameter settings. Valid
parameter settings for each TSAM have to be examined in
order to optimally map the corresponding synchrony con-
struct. Overall, it can be assumed that a method effect exists,
which explains the contrary results. For future studies, it will
be important to specify exactly which method (including
which parameter settings—e.g., for bandwidth) was used
and which facet of synchrony is being addressed. Regarding
the confirmatory factor analysis, it should be noted that typi-
cally exploratory and confirmatory analyses are run on differ-
ent samples. However, due to our limited sample size, this was
not possible, which should also be addressed in future studies.

One of the strengths of this study is that different algorithms
were used to measure the linear dependency of two time series
using an identical dataset. On the basis of the different algo-
rithms and output scores, we systemized the approaches to
different synchrony facets. Thereby, we used (1) the parameter
settings recommended in the literature and (2) equal parameter
settings across all TSAMs. In addition, the study draws atten-
tion to the fact that the choice of the algorithm and parameters is
essential to the subsequent analyses (e.g., association analysis
of nonverbal synchrony and therapeutic success). We applied
the methods to a sample from a psychotherapeutic setting—that
is, to real-world data—to ensure comparability of the results
and their statistical challenges to previous studies (Galbusera
et al., 2018; Paulick et al., 2018; Ramseyer & Tschacher, 2011).
Thus, we are confident of the generalizability of our results to
this field of research. However, a replication of our findings
based on another dataset is advisable.

Conclusion and future directions

The present study shows that confidence in the convergent
validity of TSAMs based on the apparent fit of the construct
and method is critical. In the literature, different methods have
been presented to determine nonverbal synchrony. Thus, the
facet of synchrony that is being measured depends on the
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algorithm applied and the output score used. Therefore, com-
paring study results calculated with TSAMs that measure dif-
ferent facets is critical. However, with the parameter settings
used in the literature, we found a superior latent factor syn-
chrony for most of the TSAMs presented.

In the future, the construct to be measured should be ex-
plicitly defined, and the chosen method should also be
checked to determine whether the defined construct is actually
being measured. Further validation studies should be conduct-
ed to measure content validity. Human ratings of synchrony
should be compared with the results obtained by these

methods. Furthermore, which method or parameter combina-
tions lead to valid results will need to be investigated.
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Appendix: Results—Maximum output score

The correlations of the maximum output scores are displayed
in Table 6. Tables 7 and 8 show the correlations between
maximum and average scores, respectively ratio scores
(Table 7 with heterogeneous parameters, Table 8 with homo-
geneous parameter settings).

Table 6 Correlations between maximum output scores of nonverbal synchrony assessed with various TSAMs

CLC CLR WCC WCLCS1 WCLCS2 WCLCF WCLR CRQA

CLC .967* .012 .088 .123 -.095 .065 .043 .155

CLR .018 1 .100 -.067 .046 -.176 -.161 -.107

WCC .073 .157 .595* .126 -.076 .406* .309 .411*

WCLCS1 .590* -.081 .248 .255* .014 .008 -.027 .193

WCLCS2 .170 .101 -.014 .165 .081 -.011 -.068 -.558*

WCLCF .085 -.176 .293 .125 -.154 1 .779* .306

WCLR .094 -.161 .155 .142 -.170 .779* 1 .261

CRQA .216 -.107 .355* .215 -.190 .306 .261 1

R2 values in the upper triangle (gray-shaded) are based on algorithms with exactly equal parameter settings, and correlations in the lower triangle are
based on algorithms with the settings recommended from the literature. CLC = cross-lagged correlation, CLR = cross-lagged regression, WCC =
windowed cross-correlation, WCLC = windowed cross-lagged correlation (WCLCS, with respect to the strength of synchrony; WCLCF, with respect to
the frequency of synchrony), WCLR = windowed cross-lagged regression, CRQA = cross-recurrence quantification analysis. * Significant correlations,
Bonferroni-adjusted alpha level = .001
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Table 7 Correlations between the average output scores and the maximum output scores of nonverbal synchrony assessed with various TSAMs—
Heterogeneous parameter settings

CLC
(av)

CLR
(av)

WCC
(av)

WCLCS1

(av)
WCLCS2

(av)
WCLCF

(av)
WCLR
(av)

CRQA
(av)

WCLCF

(ratio)
WCLR
(ratio)

CLC (max)
.817*

.010 .169 .368 .419* .109 .078 .216 .144 .161

CLR (max)
.013

.999* – .101 .038 .095 – .029 – .007 – .105 – .152 – .150

WCC (max)
.023

.154 .515* .450* .389* .433* .366 .347 .364 .380*

WCLCS1 (max)
.410*

– .080 .252 .596* .502* .162 .123 .219 .199 .186

WCLCS2 (max)
.009

.104 – .437* – .040 – .210 – .420* – .433* – .175 – .442* – .448*

WCLCF (max)
.085

– .181 .506 .325 .369 .631 .626 .298 .437 .417

WCLR (max)
.203

– .167 .418* .318 .378* .573* .569* .254 .362 .355

CRQA (max)
.271

– .113 .752* .457* .567* .616* .613* .999* .780* .789*

WCLCF (ratio)
.204

– .155 .880* .443* .550* .753* .767* .769* 1 .987*

WCLR (ratio)
.239

– .155 .892* .464* .579* .749* .757* .777* .987* 1

CLC = cross-lagged correlation, CLR = cross-lagged regression, WCC = windowed cross-correlation, WCLC = windowed cross-lagged correlation
(WCLCS, with respect to the strength of synchrony; WCLCF, with respect to the frequency of synchrony), WCLR = windowed cross-lagged regression,
CRQA = cross-recurrence quantification analysis. * Significant correlations, Bonferroni-adjusted alpha level = .001

Table 8 Correlations between the average output scores and the maximum output scores of nonverbal synchrony assessed with various TSAMs—
Homogeneous parameter settings: bandwidth 5 s, overlapping windows

CLC
(av)

CLR
(av)

WCC
(av)

WCLCS1

(av)
WCLCS2

(av)
WCLCF

(av)
WCLR
(av)

CRQA
(av)

WCLCF

(ratio)
WCLR
(ratio)

CLC (max) .687* .004 .071
.183

.111 .056 .025 .157 .101 .115

CLR (max) .010 .999* – .113
.072

– .020 – .029 – .007 – .105 – .152 – .150

WCC (max) .037 .095 .431*

.266
.400* .503* .479* .405* .448* .448*

WCLCS1 (max) .059 – .067 .207
.283

.211 .141 .113 .199 .132 .143

WCLCS2 (max) – .274 .050 – .386*

.047
– .216 – .126 – .147 – .566* – .374* – .368

WCLCF (max) .037 – .181 .410*

.289
.463* .631* .626* .298 .437* .417*

WCLR (max) .181 – .167 .359
.272

.428* .573* .569* .254 .362 .355

CRQA (max) .273 – .113 .778*

.167
.694* .616* .613* .999* .780* .789*

WCLCF (ratio) .193 – .155 .874*

.137
.733* .753* .767* .769* 1 .987*

WCLR (ratio) .236 – .155 .881*

.146
.749* .749* .757* .777* .987* 1

CLC = cross-lagged correlation, CLR = cross-lagged regression, WCC = windowed cross-correlation, WCLC = windowed cross-lagged correlation
(WCLCS, with respect to the strength of synchrony; WCLCF, with respect to the frequency of synchrony), WCLR = windowed cross-lagged regression,
CRQA = cross-recurrence quantification analysis. * Significant correlations, Bonferroni-adjusted alpha level = .001
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