
Pablo Garaizar1 & Ulf-Dietrich Reips2

Published online: 1 October 2018
Psychonomic Society, Inc. 2018

Abstract
The Web is a prominent platform for behavioral experiments, for many reasons (relative simplicity, ubiquity, and accessibility,
among others). Over the last few years, many behavioral and social scientists have conducted Internet-based experiments using
standard web technologies, both in native JavaScript and using research-oriented frameworks. At the same time, vendors of
widely used web browsers have been working hard to improve the performance of their software. However, the goals of browser
vendors do not always coincide with behavioral researchers’ needs. Whereas vendors want high-performance browsers to
respond almost instantly and to trade off accuracy for speed, researchers have the opposite trade-off goal, wanting their
browser-based experiments to exactly match the experimental design and procedure. In this article, we review and test some
of the best practices suggested by web-browser vendors, based on the features provided by new web standards, in order to
optimize animations for browser-based behavioral experiments with high-resolution timing requirements. Using specialized
hardware, we conducted four studies to determine the accuracy and precision of two different methods. The results using CSS
animations in web browsers (Method 1) with GPU acceleration turned off showed biases that depend on the combination of
browser and operating system. The results of tests on the latest versions of GPU-accelerated web browsers showed no frame loss
in CSS animations. The same happened in many, but not all, of the tests conducted using requestAnimationFrame (Method
2) instead of CSS animations. Unbeknownst tomany researchers, vendors of web browsers implement complex technologies that
result in reduced quality of timing. Therefore, behavioral researchers interested in timing-dependent procedures should be
cautious when developing browser-based experiments and should test the accuracy and precision of the whole experimental
setup (web application, web browser, operating system, and hardware).

Keywords Web animations . Experimental software . High-resolution timing . iScience . Browser

Shortly after its inception, the Web was demonstrated to be an
excellent environment to conduct behavioral experiments.
The first Internet-based experiments were conducted in the
mid-1990s, shortly after the World Wide Web had been
invented at CERN in Geneva (Musch & Reips, 2000; Reips,
2012). Conducting studies via the Internet is considered a
second revolution in behavioral and social research, after the
computer revolution in the late 1960s, and subsequently that
method has brought about many advantages over widely used
paper-and-pencil procedures (e.g., automated processes,

heightened precision). The Internet added interactivity via a
worldwide network and brought many benefits to research,
adding a third category to what had traditionally been seen
as a dichotomy between lab and field experiments (Honing
& Reips, 2008; Reips, 2002). Although Internet-based exper-
iments have some inherent limitations, due to a lack of control
and the limits of technology, they also have a number of ad-
vantages over lab and field experiments (Birnbaum, 2004;
Reips, 2002; Schmidt, 1997). Some of the main advantages
are that (1) it is possible to easily collect large behavioral data
sets (see, however, Wolfe, 2017, noting that this is actually not
happening as frequently as one would expect); (2) it is also
possible to recruit large heterogeneous samples and people
with rare characteristics (e.g., people suffering from
sexsomnia and their peers; Mangan & Reips, 2007) from lo-
cations far away; and (3) after an initial investment, the meth-
od is more cost-effective, in terms of time, space, and labor,

* Pablo Garaizar
garaizar@deusto.es

1 University of Deusto, Bilbao, Spain
2 University of Konstanz, Konstanz, Germany

Behavior Research Methods (2019) 51:1441–1453
https://doi.org/10.3758/s13428-018-1126-4

Best practices: Two Web-browser-based methods for stimulus
presentation in behavioral experiments with high-resolution timing
requirements

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-018-1126-4&domain=pdf
mailto:garaizar@deusto.es

than either lab or field research. As compared to paper-and-
pencil research, most of the advantages of computer-mediated
research apply—for example, the benefit that process vari-
ables (Bparadata^) can be recorded (Stieger & Reips, 2010).

Despite the numerous studies comparing web-based re-
search with laboratory research that have concluded that both
approaches work, there are still doubts about the capabilities
of web browsers for presenting and recording data accurately
(e.g., Schmidt, 2007). Early discussions (Reips, 2000, 2007;
Schmidt, 1997) saw reaction time measurement in Internet-
based experimenting as possible, but clearly pointed out its
limitations. In fact, there is an open debate as to the lack of
temporal precision of experimentation based on computers as
a possible cause to explain the ongoing replication crisis
across the field of psychology (Plant, 2016).

On the other hand, several studies have provided web tech-
nology benchmarks (see van Steenbergen&Bocanegra, 2016,
for a comprehensive list) that help researchers figure out when
the timing of web-based experimentation is acceptable for the
chosen experimental paradigm. Moreover, notable efforts
have been made in recent years to simplify the development
and improve the accuracy of timing in web experiments using
standard web technologies based in research-oriented frame-
works including jsPsych (de Leeuw, 2015) or Lab.js
(Henninger, Mertens, Shevchenko, & Hilbig, 2017).

At the same time, vendors of widely used web browsers
(Google Chrome, Mozilla Firefox, Apple Safari, and
Microsoft Edge, among others) have been working hard to
improve the performance of their software. However, there
are some important discrepancies between the goals of brows-
er vendors and behavioral researchers regarding the desired
features of an ideal web browser. Whereas browser vendors
try their best to provide a faster browser than their competitors
and have as their main goal to increase the responsiveness of
the web applications presented to the user, behavioral re-
searchers foremost need precision and accuracy when present-
ing stimuli and recording user input, and not necessarily
speed. Thus, browser vendors and researchers tend to be at
opposite ends of the desired speed–accuracy trade-off.

Fortunately, some of the technological advances that have
recently been developed in response to browser vendors’ needs
have turned out to be aligned with behavioral researchers’ needs
as well. Modern web browsers are now provided with frame-
oriented animation timers (i.e., requestAnimationFrame), a com-
prehensive and accurate application programming interface for
audio (Web Audio API), and submillisecond-accurate input
events timestamps (DOMHighResTimeStamp). They are also
provided with submillisecond-accurate timing functions (i.e.,
window.performance.now) in several versions, but a new class
of timing attacks in modern CPUs (e.g., Spectre andMeltdown)
have forced web-browser vendors to reduce the precision of
these timing functions, either by rounding (Scholz, 2018) or
slightly randomizing the value returned (Kyöstilä, 2018). In

the case of Mozilla Firefox, this limitation can be disabled by
modifying the privacy.reduceTimerPrecision configuration
property, which has been enabled by default since version 59.
In the case of Google Chrome, developers decided to reduce the
resolution of performance.now() from 5 to 100 μs and to add
pseudorandom jitter on top.

To explain these new features to application developers,
web-browser vendors have written several best-practice
guidelines emphasizing the underlying concepts related to
web animations in terms of performance (Bamberg, 2018a,
2018b; Lewis, 2018). In the next section, we will review those
best practices from a behavioral researcher’s perspective.

Best practices for animations in Web-based
experiments

It is important to understand that a browser-based experiment
can be conducted either offline (not via the Internet) or online
(on the Internet); see, for instance, Honing and Reips (2008)
or Reips (2012). Even in web-technology-based experiments
conducted offline, it is necessary for accurate timing to load
the experiment’s assets (images, styles, audio, video, etc.) in a
participant’s browser before the experiment starts. Once load-
ed, the assets will be ready to be rendered by the browser. In
this section, we will analyze these two tasks from the perspec-
tive of a behavioral researcher.

Best practices for loading assets

For controlled timing, web browsers need to download all the
assets, including any media, referenced in the HTML docu-
ment that describes a web page before running it. In most
cases, preloading delays the time until the user can interact
with the web page, so reducing download time becomes a
priority. Consequently, browser vendors are defining new
standards to eliminate unnecessary asset downloads, optimize
file formats, or cache assets, among others (see HTTP/2 spec-
ification for details; Belshe, Peon, & Thomson, 2015).

However, from a behavioral researcher perspective, there is
no such need for speedy downloading or blocking of web
assets. In most experiments, researchers have to explain to
participants how to proceed, get their informed consent and
maybe gather some socio-demographic information. This
preexperimental time can be used to download large assets
in the background. Even in the unlikely case that participants
have read the instructions and filled all required information
before all the assets are downloaded, asking them to wait until
the experiment is ready to be conducted is not a serious prob-
lem. However, not predownloading all assets needed to com-
pose an experiment’s stimuli before it is presented to the par-
ticipant can cause serious methodological issues.

1442 Behav Res (2019) 51:1441–1453

There are several techniques to preload web assets. In the
past, web developers used CSS tricks like fetching images as
background images of web components placed outside the
boundaries of the web page or set as hidden. Currently, the
rel=Bpreload^ property of the link element in the header of the
HTML document should be the preferred way to preload web
assets (Grigorik & Weiss, 2018). This method should not be
confused with <link rel=Bprefetch^>. The Bprefetch^ directive
asks the browser to fetch a resource that will probably be
needed for the next navigation. Therefore, the resource will
be fetched with extremely low priority. Conversely, the
Bpreload^ directive tells the web browser to fetch the web
asset as soon as possible because it will be needed in the
current navigation.

Alternatively, web developers can preload images (or other
web assets) creating them from scratch in JavaScript. In
Listing 1, we provide an example script of how to create a
set of images and wait until it has been completely
downloaded in a JavaScript web application relying on the
Bonload^ event of the images. This method works in most
cases, but there are some issues related to Bonload^: Events
not properly being fired have been reported in previous ver-
sions of widely used web browsers (e.g., Google Chrome v50)
and would affect cached images. For this reason, in Listing 2,

we provide a new script of how to actively wait until a set of
images has been completely downloaded in a JavaScript web
application that does not rely on the Bonload^ event to deter-
mine whether the image has been completely downloaded and
ready to be displayed or not. These examples can be easily
adapted for other kinds of assets (audio, video) if needed, by
querying web elements’ properties (e.g., in the case of video
assets, the readyState property).

Best practices for rendering web pages

Once the assets needed to conduct the experiment have been
downloaded, the browser is ready to show the experiment.
Showing or—more technically speaking—rendering a web
application implies a sequence of tasks that web browsers
have to accomplish in the following order: (1) JavaScript/
CSS (cascading style sheets), (2) style, (3) layout, (4) paint,
and (5) composite. Understanding all of them is crucial to
develop accurate and precise animations for web-based be-
havioral experiments.

However, rendering is only one of the steps web browsers
take when executing a web application, a simple form of which
is a web page. Web applications run in an execution environ-
ment that comprises several important components: (1) a

var images = [],
total = 24,
loaded = 0;

for (var i = 0; i < total; i++) {
images.push(new Image());
images[i].addEventListener('load', function() {

loaded++;
if (loaded == total) {

startExperiment();
}

}, false);
images[i].src = 'img/numbers/'+(i+1)+'.png';

}

Listing 1 JavaScript code to preload a set of images and use the onload event to check that all of them have been downloaded before the experiment
begins

function isImageLoaded (img) {
if (!img.complete) { return false; }
if (typeof img.naturalWidth != "undefined" && img.naturalWidth == 0)
{ return false; }
return true;

}

function checkLoad () {
for (var i = 0; i < images.length; i++) {

if (!isImageLoaded(images[i])) {
setTimeout(checkLoad, 50);
return false;

}
}
startExperiment();
return true;

}

Listing 2 JavaScript code to test whether a set of images has been downloaded before the experiment begins by not relying on the onload event

Behav Res (2019) 51:1441–1453 1443

JavaScript execution context shared with all the scripts referred
in the web application, (2) a browsing context (useful to man-
age the browsing history), (3) an event loop (described later),
and (4) an HTML document, among other components. The
event loop orchestrates what JavaScript code will be executed
and when to run it, manages user interaction and networking,
renders the document, and performs other minor tasks (Mozilla,
2018; WHATWG 2018). There must be at most one event loop
per related similar-origin browsing contexts (i.e., different web
applications running on the same web browser do not share
event loops, each one has its own event loop).

The event loop uses different task queues (i.e., ordered lists
of tasks) to manage its duties: (1) events queue: for managing
user-interface events; (2) parser queue: for parsing HTML; (3)
callbacks queue: for managing asynchronous callbacks (e.g.,
via setTimeout or requestIdleTask timers); (4) resources
queue: for fetching web resources (e.g., images) asynchro-
nously; and (5) document manipulation queue: for reacting
when an element is modified in the web document. During
the whole execution of the web application, the event loop
waits until there is a task in its queues to be processed.
Then, it selects the oldest task on one of the event loop’s task
queues and runs it. After that, the event loop updates the ren-
dering of the web application.

Browsers begin the rendering process by interpreting
the JavaScript/CSS code that web developers have coded
to make visual changes in the web page. In some cases,
these visual changes are controlled by a JavaScript code
snippet, whereas in others CSS animations are used to
change the properties of web elements dynamically (JS/
CSS phase). This phase involves (in this order): (1)
dispatching pending user-interface events, (2) running
the resize and scroll steps for the web page, (3) running
CSS animations and sending corresponding events (e.g.,
Banimationend^), (4) running full-screen rendering steps,
and (5) running the animation frame callbacks for the web
page. Once the browser knows what must be done, it
figures out which CSS rules it needs to apply to which
web element and the compounded styles are applied to
each element (style phase). Then, the browser is able to
calculate how much space each element will take on the
screen to create the web page layout (layout phase). This
enables the browser to paint the actual pixels of every
visual part (text, colors, images, borders, shadows) of
the elements (paint phase). Modern browsers are able to
paint several overlapping layers independently for in-
creasing performance. These overlapping layers have to
be drawn in the correct order to render the web page
properly (composite phase).

Considering this rendering sequence as a pipeline, any
change made in one of the phases implies recalculating
the following phases. Therefore, developing web anima-
tions that only require composite changes prevents the

execution of previous phases. In addition to this general
recommendation, some other details should be taken into
account in each phase.

Taking into account the underlying technologies men-
tioned before, Web experiments should rely on CSS ani-
mations whenever suitable in the JavaScript/CSS phase,
for several reasons. First, they do not need JavaScript to
be executed and therefore do not add a new task to the
queues to be executed by the event loop. This not only
reduces the number of tasks that has to be executed, but
also increments the likelihood that input events (i.e., user
responses in the case of a web experiment) are dispatched
as fast as they occur. Second, if the web browser is able to
use GPU-accelerated rendering, some CSS animations can
be managed asynchronously by the browser’s GPU pro-
cess, resulting in a performance boost.

However, not all web experiment animations can be de-
fined declaratively using CSS. For the cases in which the
animations needed to present stimuli rely on JavaScript,
avoiding standard timers (i.e., setTimeout, setInterval) in favor
of the requestAnimationFrame timer is a must: Standard
timers are not synchronized with the frame painting process
and can lead to accumulative timing errors in web animations
(e.g., it is impossible to be in sync with a display at 60 Hz–
16.667 ms per frame using standard timers, because setting a
16-ms interval is too short and a 17-ms interval is too long),
whereas requestAnimationFrame was designed to be in per-
fec t sync wi th the frame ra te . Moreover, us ing
requestAnimationFrame in web experiments enables re-
searchers to implement frame counting in order to achieve
single-frame accuracy in most cases (Barnhoorn, Haasnoot,
Bocanegra, & van Steenbergen, 2015). Nevertheless, being
aware of the time needed by the browser to calculate every
frame of the animation is crucial. At this point, we should
consider that JavaScript’s call stack is single-threaded, syn-
chronous, and nonblocking. This means that only one piece
of JavaScript code can be executed at a time in a browsing
context; there is no task switching (tasks are carried out to
completion); and web browsers still accept events even
though they might not be dispatched immediately. In such
an execution environment, requestAnimationFrame-based an-
imations’ JavaScript code must compete with the rest of
JavaScript tasks waiting for the single execution thread.
Fortunately, newer versions of common browsers allow web
programmers to trace these times in detail using their web
developer toolkits, reducing the problem substantially.

The style phase can be optimized reducing the complexity
of the style sheets (i.e., complexity of selectors, number of
elements implied, or hierarchy of the elements affected by a
style change). Some tools (e.g., unused CSS) can significantly
reduce the complexity of style sheets.

Avoiding layout changes within a loop is the best recom-
mendation regarding the layout phase, because it implies the

1444 Behav Res (2019) 51:1441–1453

calculation of lots of layouts that will be discarded immedi-
ately (also known as Blayout thrashing^). Another important
recommendation for this phase is to apply animations to ele-
ments that are position fixed or absolute because it is much
easier for the browser to calculate layout changes in those
cases.

Painting is often the most expensive phase of the pipeline.
Therefore, the recommendation here is to avoid or reduce
painting areas as much as possible. This can be done by dif-
ferent means: using layers, transforming opacity of Web ele-
ments, or modifying hidden elements. Finally, the recommen-
dation for the composite phase is to stick to transformations
(position, scale, rotation, skew, matrix) and opacity changes
for the experiment’s animations to maximize the likelihood of
being managed asynchronously by the GPU process of the
browser.

To validate these best practices, we prepared a set of exper-
iments in which we (1) preloaded all assets before an experi-
ment begins, (2) used CSS animations to control the experi-
ment’s animations, (3) tried to minimize layout changes, (4)
tried to reduce painting areas, and (5) tried to stick to opacity
changes in animations. In the study presented in the next sec-
tion, we tested the accuracy and precision of the animations
used in these experiments.

Study 1

The goal of the present study was to test the accuracy and
precision of the animations used in a set of experiments that
would try to follow the web-browser vendors’ best practices
explained above.

Method

Apparatus and materials Considering the potential inaccura-
cies that can take place when the same device is used to pres-
ent visual content and assess its timing, we decided to use an
external measurement system: the Black Box Toolkit
(BBTK), which is able to register the precise moment at which
the content is shown, with submillisecond accuracy (Plant,
Hammond, & Turner, 2004).

We installed Google Chrome 58 and Mozilla Firefox
54 web browsers on both Microsoft Windows 10 and
Ubuntu Linux 16.04.3 systems, on a laptop with an Intel
i5 6200-U chip with 20 GB of RAM and a 120-GB SSD
disk, not connected to the Internet and isolated from ex-
ternal sources of asynchronous events. In this setting, we
ran a web experiment application that showed an anima-
tion of visual items typical for many of the web experi-
ments that will be described below. This web application
uses CSS animations to control the presentation of the
stimuli. Each stimulus is placed in a different layer, and

the CSS animation controls which one is shown through
opacity changes of the layers. The stimuli consisted of 24
different images (i.e., the natural numbers from 1 to 24) in
which odd numbers were placed on a white background
and even numbers on a black background, to facilitate the
detection of changes by the photo-sensors of the BBTK.
The stimuli were preloaded by the experimental software
before the animation started. This set of stimuli and the
web application used in this study are publicly available
via the Open Science Framework: https://osf.io/h7erv/.

Listing 3 shows the setSlideshow function of this web
experiment. In this function, a set of 24 images are
appended to the parent element in a for loop. Before this,
each image is properly configured: (1) opacity is set to
zero (invisible) and BwillChange^ property is set to
Bopacity,^ to inform the web browser that this property
will change during the animation; (2) a fixed position is
set, in order to prevent reflows of the web document; (3) a
CSS animation is configured—an Binterval^ argument de-
fines the duration of the animation, the Bsteps (1, end)^
function defines a nonprogressive (= immediate) change
of opacity, and status is set to paused; (4) CSS animation
events are defined (Banimationstart,^ Banimationend^) to
log the onset and offset times of the stimuli. Then, all the
animations of the images are changed to the Brunning^
state.

Procedure For each combination of web browser (Google
Chrome, Mozilla Firefox) and operating system (MS
Windows, GNU/Linux), we tested the same web experiment,
which presented a slideshow of the first 24 natural numbers.
Each number was presented during a short interval before the
next one was presented. We tested this series of stimuli with
different presentation intervals for each stimulus: 500, 200,
100, and 50 ms, which correspond to the duration of 30, 12,
six, and three frames in a 60-Hz display. Considering that all
the tests were conducted using this refresh rate, the subframe
deviations of the intervals measured by the photo-sensors of
the BBTK (e.g., 51.344 ms instead of 50 ms) were caused by
difficulties of the LCD displays with handling abrupt changes
of luminosity, and not by the series of stimuli tested.
Therefore, we converted all durations of the stimulus presen-
tations from milliseconds to frames because the main purpose
of this study was to assess the accuracy of the web presenta-
tion software, not the hardware. To reduce the effect of un-
foreseen sources of delays, we tested each configuration three
times.

Results

The results of the tests conducted on Google Chrome are
shown in Table 1. Each cell in the table represents the number
of Bshort^ or Blong^ frames during each test (a presentation of

Behav Res (2019) 51:1441–1453 1445

https://osf.io/h7erv/

the 24 stimuli). Surprisingly, there is a noticeable difference
between the GNU/Linux and MS Windows setups. The web
application tested works flawlessly on Google Chrome under
GNU/Linux at all intervals, whereas the same web application
presents an unacceptable number of lost frames under MS
Windows. We call those frames Bshort^ that were presented
before they were expected, and those Blong^ that were pre-
sented after they were expected (note that in many cases, the
sum of short and long frames is near zero, because CSS ani-
mations tend to interpolate all missing frames in an animation,

making the animation last as long as expected). As happens
with experimental software such as E-Prime, with its event
mode timing and cumulative mode timing (Schneider,
Eschman, & Zuccolotto, 2012), researchers can decide how
their experiment will behave when an unexpected delay oc-
curs. In the first case (event mode timing), the delay will
cause a stimulus to be displayed longer than expected.
This will not affect the duration of the next stimulus,
but will affect the total duration of the animation. In the
second case (cumulative mode timing), the delay will

function setSlideshow (element, start, interval) {
element.style.backgroundImage = 'none';

for (var i = 0; i < total; i++) {
images[i].style.opacity = 0;
images[i].style.willChange = 'opacity';
images[i].style.position = 'fixed';
images[i].style.top = 100;
images[i].style.left = 100;
images[i].style['animation'] = 'show '+interval+'ms steps(1,end) '+(start

+ i*interval)+'ms 1 normal none paused';
images[i].addEventListener('animationstart', function (event) {

console.log('Start at: ' + event.elapsedTime + ' ' + event.timeStamp);
}, false);
images[i].addEventListener('animationend', function (event) {

console.log('End at: ' + event.elapsedTime + ' ' + event.timeStamp);
element.style.backgroundImage = 'none';

}, false);
element.appendChild(images[i]);

}

for (var i = 0; i < total; i++) {
images[i].style['animation-play-state'] = 'running';

}
}

Listing 3 JavaScript code to configure a slideshow using opacity changes through CSS animations on a set of images

Table 1 Study 1: Short/long frames using CSS animations and opacity changes between layers on Google Chrome 58 and Mozilla Firefox 54

Test N 30 Frames 12 Frames 6 Frames 3 Frames

Short Long Short Long Short Long Short Long

Google Chrome 58 Windows 1 24 – 10 10 – 13 12 – 13 12 – 12 11

2 24 – 5 5 – 12 11 – 6 6 – 10 10

3 24 – 11 10 – 12 11 – 12 11 – 11 10

Linux 1 24 0 0 0 0 0 0 0 0

2 24 0 0 0 0 0 0 0 0

3 24 0 0 0 0 0 0 0 0

Mozilla Firefox 54 Windows 1 24 0 1 0 0 0 0 0 0

2 24 0 0 0 0 0 0 0 0

3 24 0 1 0 0 0 0 0 0

Linux 1 24 – 6 6 – 5 5 – 5 5 – 5 5

2 24 – 5 5 – 7 5 – 3 1 – 4 4

3 24 – 4 4 – 6 7 – 4 2 – 5 4

1446 Behav Res (2019) 51:1441–1453

cause one stimulus to be displayed longer, whereas the
next will be displayed a shorter time than expected, to
make the whole animation meet its duration requirements.
In the tests presented in this study, CSS animations work
like E-Prime’s cumulative mode timing. However, it is
possible to use CSS animations to develop experiments
that work in event mode timing by replacing the 24-
keyframe animation used here with 24 animations of one
keyframe to be launched successively once the
Banimationend^ event of the previous animation is
triggered.

The results of the tests conducted on Mozilla Firefox
are also shown in Table 1. There is also a noticeable
difference between GNU/Linux and MS Windows,
but—surprisingly—in the opposite diection from the dif-
ference we found running these tests with Google
Chrome. Therefore, the tested technique (i.e., layer
opacity changes through CSS animations) cannot be
used as a reliable way to generate web experiments with
accurate and precise stimulus presentations in any
multiplatform environment. Consequently, we developed
a new web application for test purposes, based on a
slightly different approach.

Study 2

The goal of Study 2 was to find a good combination of
best practices in the development of web animations
that would be suitable to present stimuli in an accurate
and precise way on both Google Chrome 58 and
Mozilla Firefox 54 under MS Windows and GNU/
Linux operating systems.

In this new web application we also used CSS animations
to control the sequence of stimuli, but instead of creating the
slideshow by placing each stimulus in a separate layer and
using opacity changes to show each of them, we placed all
stimuli in one large single image and used Bbackground
position^ changes to show each of them. This big image con-
taining all of the stimuli, and the corresponding offsets to
show each of them can easily be generated using tools such
as Glue (https://github.com/jorgebastida/glue) or through
HTML/JavaScript features such as canvas API. Needless to
say, the image with all stimuli has to be preloaded before the
experiment begins.

Method

Apparatus, materials, and procedureAs in Study 1, we ran
the same web application with different presentation in-
tervals for each stimulus (30, 12, six, and three frames)
three times for each stimulus–browser–OS combination,
on Google Chrome 58 and Mozilla Firefox 54 under

both GNU/Linux and MS Windows. The BBTK’s
photo-sensor was attached to the display of the laptop
used in Study 1. The procedure was identical to that in
Study 1.

Listing 4 shows how this web application defines the
slideshow of stimuli. First, the corresponding background po-
sition for each stimulus in the big picture is defined. Then the
keyframes of the animation are added to a string that will
contain the whole definition of the CSS animation. After that,
the CSS animation keyframes are included in the web docu-
ment’s Bslideshow^ style sheet. Finally, the animation of the
parent’s element (i.e., the div box that will show all stimuli) is
configured to use the keyframes previously defined. For log-
ging purposes, the Banimationstart^ and Banimationend^
event listeners log the starting and ending time stamps of the
slideshow.

Results

Table 2 summarizes the results obtained for Google Chrome
58 using our test web application. As we can see, despite the
fact that some frames were presented too early in the three-
frame interval under MS Windows, this new approach
outperformed the previous one and was able to present stimuli
in an accurate and precise way in most cases. The same hap-
pened when running our tests in Mozilla Firefox 54. The web
application tested also showed some short frames under MS
Windows in the three-frame interval, and under GNU/Linux
in the 30-frame interval, but it was able to present stimuli
accurately and precisely in most cases.

Therefore, contrary to the best practices suggested by the
web-browser vendors for the development of web animations,
changing background position in an image with all stimuli
(which implies new paint and composite phases)
outperformed changing the opacity of layers (which implies
just redoing the composite phase) in this setup. Slideshows
based on background position changes work properly in both
Google Chrome 58 andMozilla Firefox 54 under GNU/Linux
and MS Windows. However, to understand the unexpected
results from Study 1, we decided to conduct another study
as a replication with newer browser versions and forced
GPU acceleration.

Study 3

The goal of Study 3 was to find out whether the browser
versions used in Study 1 could have been the cause of the
unexpected results found. With this goal in mind, we repeated
all the tests using the same technique (layer opacity changes
through CSS animations) 10 months later, using the latest
versions of Google Chrome (v.66) and Mozilla Firefox
(v.59) available, under GNU/Linux and MS Windows.

Behav Res (2019) 51:1441–1453 1447

https://github.com/jorgebastida/glue

Method

Apparatus, materials, and procedureWe ran the same set of
stimuli with different presentation intervals for each stimu-
lus (30, 12, six, and three frames) three times for each

stimulus–browser–OS combination, on Google Chrome 66
and Mozilla Firefox 59, under both GNU/Linux and MS
Windows. The BBTK’s photo-sensor was attached to the
display of the laptop used in Study 1. The procedure was
identical to that of Study 1.

function setSlideshow (element, start, interval) {
var rules = '',

percs = '',
images = [],
order = ['blank', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10',
'11', '12', '13', '14', '15', '16', '17', '18', '19', '20',
'21', '22', '23', '24', 'blank'],

animationName = 'slideshow'+(new Date().getTime()),
stylesheet = document.getElementById('slideshow');

images['24'] = '{background-position:0px 0px;}';
images['23'] = '{background-position:0px -1440px;}';
images['22'] = '{background-position:-640px -1440px;}';
images['21'] = '{background-position:-1280px -1440px;}';
images['20'] = '{background-position:-1920px 0px;}';
images['19'] = '{background-position:-1920px -960px;}';
images['18'] = '{background-position:-1920px -1440px;}';
images['17'] = '{background-position:0px -1920px;}';
images['16'] = '{background-position:-640px -1920px;}';
images['15'] = '{background-position:-1280px -1920px;}';
images['14'] = '{background-position:-1920px -1920px;}';
images['13'] = '{background-position:-2560px 0px;}';
images['12'] = '{background-position:-2560px -480px;}';
images['11'] = '{background-position:-2560px -960px;}';
images['10'] = '{background-position:-2560px -1440px;}';
images['9'] = '{background-position:-640px 0px;}';
images['8'] = '{background-position:0px -480px;}';
images['7'] = '{background-position:-640px -480px;}';
images['6'] = '{background-position:-1280px 0px;}';
images['5'] = '{background-position:-1280px -480px;}';
images['4'] = '{background-position:0px -960px;}';
images['3'] = '{background-position:-640px -960px;}';
images['2'] = '{background-position:-1920px -480px;}';
images['1'] = '{background-position:-2560px -1920px;}';
images['blank'] = '{background-position:-1280px -960px;}';

for (var i = 0, len = order.length; i < len; i++) {
percs += (i*100/len) + '% ' + images[order[i]] + '\n';

}

rules += '@keyframes ' + animationName + ' {\n' + percs + '}\n';

stylesheet.innerHTML = rules;

element.style['animation'] = animationName + ' ' + (order.length *
interval) + 'ms steps(1) ' + start + 'ms 1 normal none paused';

element.addEventListener('animationstart', function (event) {
console.log('Start at: ' + event.elapsedTime + ' ' + event.timeStamp);

}, false);
element.addEventListener('animationend', function (event) {

console.log('End at: ' + event.elapsedTime + ' ' + event.timeStamp);
element.style.backgroundImage = 'none';

}, false);
element.style['animation-play-state'] = 'running';

}

Listing 4 JavaScript code to configure a slideshow using background position changes through CSS animations on a set of images

1448 Behav Res (2019) 51:1441–1453

In addition to updating the versions of the web browsers,
we also configured them to force the use of GPU accelera-
tion. In the case of Google Chrome, we accessed the
chrome://flags URL in the address bar and enabled the
BOverride software rendering list.^ option. Then we
relaunched Google Chrome and verified that GPU accelera-
tion was enabled by accessing the chrome://gpu URL. In the
case of Mozilla Firefox, we accessed the about:config URL
and changed the Blayers.acceleration.force-enabled^ property
from Bfalse^ to Btrue.^

Results

All tests conducted (24-stimulus animations with three-,
six-, 12-, and 30-frame durations, repeated three times)
resulted in no frame loss on Google Chrome 66 and
Mozilla Firefox 59 under MS Windows and GNU/
Linux. This was a significant improvement over the re-
sults obtained in Study 1.

On the basis of the results of Study 3, we could assume
that the poor results of Study 1 were due to the fact that the
configuration used did not ensure the use of GPU accelera-
tion in animations based on the change in opacity of the
layers. However, these results cannot distinguish whether
the web browser version update or the GPU acceleration
configuration caused the better performance of the tests. To
disentangle these possible causes, we repeated the tests that
had uncovered the timing problems in Study 1 (Mozilla
Firefox 54 under GNU/Linux and Google Chrome 58 under
MS Windows), but forced the use of GPU acceleration in
those configurations.

GPU-accelerated Mozilla Firefox 54 under GNU/
Linux performed accurately in the new tests (no frame

loss). However, GPU-accelerated Google Chrome 58 un-
der MS Windows still missed an unacceptable number
of frames in all tests (see Table 3 for details).
Specifically, every stimulus presented on a white back-
ground lasted one frame longer than expected (i.e., one
long frame), and every stimulus presented on a black
background lasted one frame less than expected (i.e.,
one short frame) in the three-, six-, and 12-frame dura-
tion tests. At first sight, this inaccurate behavior might
look like a BBTK photo-sensor calibration problem.
However, every time we found a significant number of
short or long frames in our tests, we repeated a previ-
ously conducted test that yielded no short or long
frames (e.g., a six-frame duration stimulus using CSS
animations and background-position changes on Google
Chrome 58 under MS Windows) to be sure that our
experimental setup was still properly calibrated.

In the case of the 30-frame duration tests on GPU-
accelerated Google Chrome 58 under MS Windows, on-
ly one test presented this behavior, whereas the other
two lost no frames while presenting the last 16 stimuli.
Therefore, our recommendation for studies in which de-
viations of one frame are not acceptable is not only to
restrict data collection to browsers with enabled GPU
acceleration and to have participants update the
browsers whenever possible to a tested version that
loses no frames, but also to assess the accuracy of the
web technique used to present stimuli accurately on the
exact setup that will be used by participants. However,
accuracies within a one-frame deviation are likely ac-
ceptable in many experiments. Therefore, researchers
should weigh the cost of following these recommenda-
tions in those cases.

Table 2 Study 2: Short/long frames using CSS animations and background-position changes on Google Chrome 58 and Mozilla Firefox 54

Test N 30 Frames 12 Frames 6 Frames 3 Frames

Short Long Short Long Short Long Short Long

Google Chrome 58 Windows 1 24 0 0 0 0 0 0 – 3 0

2 24 0 0 0 0 0 0 – 2 0

3 24 0 1 0 0 0 0 – 2 0

Linux 1 24 0 0 0 0 0 0 0 0

2 24 0 1 0 0 0 0 0 0

3 24 0 0 0 0 0 0 0 0

Mozilla Firefox 54 Windows 1 24 0 0 0 0 0 0 – 1 0

2 24 0 0 0 0 0 0 – 1 0

3 24 0 0 0 0 0 0 – 1 0

Linux 1 24 0 0 0 0 0 0 0 0

2 24 – 1 2 0 0 0 0 0 0

3 24 – 1 2 0 0 0 0 0 0

Behav Res (2019) 51:1441–1453 1449

Study 4

The goal of Study 4 was to assess the accuracy of both tech-
niques developed in Studies 1 and 2 (layer opacity changes
and background-position changes) before using request
AnimationFrame instead of CSS animations.

Method

Apparatus, materials, and procedure In this study we tested
the two techniques presented in Studies 1 (layer opacity
changes) and 2 (background-position changes) using
requestAnimationFrame to animate the slideshow. Listing
5 shows the animation function, which is scheduled to be
executed in every v-sync (i.e., repaint of the whole screen,
60 times every second at 60 Hz). This function gets a
time stamp from the web browser, to be aware of the
precise moment when requestAnimationFrame started to
execute callbacks (i.e., all the functions requested to be
executed by requestAnimationFrame). By subtracting from
this time stamp the moment the web animation had shown
the previous stimulus, it was possible to estimate the num-
ber of frames the stimulus had been presented and decide
when to present the next one. Note that 5 ms are added to
this numeric expression in order to prevent rounding errors
when calculating the moment when the next stimulus
should be rendered. This Brule of thumb^ is a common

recommendation in experiment software user manuals
(e.g., E-Prime; see Schneider et al., 2012), and it allowed
our tests to work properly even with timing sources
rounded to 2 ms, such as in Mozilla Firefox’s latest ver-
sions. We have made the web applications used in this
study publicly available at the Open Science Framework:
https://osf.io/h7erv/.

Results

The results of all the tests conducted are shown in Table 4. As
can be seen, there was no frame loss in the tests conducted on
Google Chrome 66 and Mozilla Firefox 59 under MS
Windows. The same happened in the tests conducted on
Mozilla Firefox 59 under GNU/Linux. In the case of Google
Chrome 66 under GNU/Linux, all tests that used background-
image position changes worked flawlessly, but we found
frame loss in tests using layer opacity changes to show the
stimuli. In most cases these tests only missed one frame, but
this combination of web technologies was especially unreli-
able during the 30-frame interval tests.

Conclusions and outlook

Studying the accuracy and precision of browser animations is
of fundamental methodological importance in web-based

Table 3 Study 3: Short/long frames using CSS animations and opacity changes between layers on Google Chrome 58 and Mozilla Firefox 54 with
GPU acceleration

Test N 30 Frames 12 Frames 6 Frames 3 Frames

Short Long Short Long Short Long Short Long

Google Chrome 58 Windows 1 24 – 4 4 – 12 12 – 12 12 – 12 12

2 24 – 4 4 – 12 12 – 12 12 – 12 12

3 24 – 12 12 – 12 12 – 12 12 – 12 12

Mozilla Firefox 54 Linux 1 24 0 0 0 0 0 0 0 0

2 24 0 0 0 0 0 0 0 0

3 24 0 0 0 0 0 0 0 0

function animate (timestamp) {
if (i < total) window.requestAnimationFrame(animate);

var progress = timestamp - start;

if (progress + 5 >= interval) {
images[i].style.opacity = 0;
i++;
images[i].style.opacity = 1;
start = timestamp;

}
}

Listing 5 JavaScript code to animate a slideshow using layer opacity changes through requestAnimationFrame on a set of images

1450 Behav Res (2019) 51:1441–1453

https://osf.io/h7erv/

research. All static visual stimuli used by researchers in their
experiments can be easily converted to images (sometimes in
scenes made of several distinct image files) using the canvas
element before the experiment begins to preload or
pregenerate the assets needed in the web experiment.
Crucially, the stimuli presentation can then be controlled by
CSS animations to free the JavaScript event queue in order to
dispatch user-generated input events promptly to get accurate
time stamps.

The results of Studies 1 and 2 allow us to realize that
even when a combination of web techniques has proved
to be accurate enough for our experimental paradigm in
the past, it should be tested thoroughly (using BBTK or
similar procedures) again for the combinations of
browsers and operating systems that may be used by par-
ticipants. This can be done ex post for the OS–browser
combinations identified from server log files; see, for in-
stance, Reips and Stieger (2004). Otherwise, researchers
might obtain results that are biased by the choice of tech-
nology, as in the interaction between browsers and oper-
ating systems that we found in Study 1.

Best-practice recommendations by web-browser vendors
encourage researchers to use techniques such as manipulating
layers’ opacity to keep all the changes in the composite phase,
but Study 2 shows that background-position changes worked
better in most cases, even if this involved more phases in the
pipeline.

The results of Study 3 showed that enabling GPU acceler-
ation in web browsers can result in a significant improvement
of the accuracy of the presentation of visual stimuli in web-
based experiments. Thus, we recommend checking the status
of this feature before running web-based behavioral experi-
ments with high-resolution timing requirements.

Study 4 showed some limitations of the layer opacity
changes technique using requestAnimationFrame in Google
Chrome under GNU/Linux, but it worked flawlessly in the
rest of the tests under both GNU/Linux and MS Windows.

In light of the results from the studies we have presented
here, we believe that behavioral researchers should be cau-
tious in following browser vendor recommendations when
developing web-based experiments, and rather should adopt
the best practices derived from our empirical tests of the

Table 4 Study 4: Short/long frames using requestAnimationFrame to make layer opacity and background-position changes on Google Chrome 66 and
Mozilla Firefox 59

Test N 30 Frames 12 Frames 6 Frames 3 Frames

Short Long Short Long Short Long Short Late

Back-ground position Google Chrome 66 Windows 1 24 0 0 0 0 0 0 0 0

2 24 0 0 0 0 0 0 0 0

3 24 0 0 0 0 0 0 0 0

Linux 1 24 0 0 0 0 0 0 0 0

2 24 0 0 0 0 0 0 0 0

3 24 0 0 0 0 0 0 0 0

Mozilla Firefox 59 Windows 1 24 0 0 0 0 0 0 0 0

2 24 0 0 0 0 0 0 0 0

3 24 0 0 0 0 0 0 0 0

Linux 1 24 0 0 0 0 0 0 0 0

2 24 0 0 0 0 0 0 0 0

3 24 0 0 0 0 0 0 0 0

Layer opacity Google Chrome 66 Windows 1 24 0 0 0 0 0 0 0 0

2 24 0 0 0 0 0 0 0 0

3 24 0 0 0 0 0 0 0 0

Linux 1 24 – 3 2 – 1 0 – 1 0 – 1 0

2 24 – 2 2 – 1 0 – 1 0 – 1 0

3 24 – 4 3 – 1 1 – 1 0 – 1 0

Mozilla Firefox 59 Windows 1 24 0 0 0 0 0 0 0 0

2 24 0 0 0 0 0 0 0 0

3 24 0 0 0 0 0 0 0 0

Linux 1 24 0 0 0 0 0 0 0 0

2 24 0 0 0 0 0 0 0 0

3 24 0 0 0 0 0 0 0 0

Behav Res (2019) 51:1441–1453 1451

accuracy and precision of the whole experimental setup (web
application, web browser, operating system, and hardware).
These best practices should also immediately be included in
curricula in psychology and other behavioral and social sci-
ences, as students are often conducting web-based experi-
ments and will be future researchers (Krantz & Reips 2017).

Because the proposed web techniques had not been assessed
in previous studies on the accuracy of web applications under
high-resolution timing requirements (de Leeuw &Motz, 2016;
Garaizar, Vadillo, & López-de-Ipiña, 2014; Reimers & Stewart,
2015), the studies and detailed guidelines presented in this arti-
cle can help behavioral researchers who take them into account
when developing their web-based experiments.

In the old days of Internet-based experimenting, technology
was simpler. The effects of new technologies were easier to spot
for researchers who began using the Internet. In fact, one of us
(Reips) has long advocated a Blow-tech principle^ in creating
Internet-based research studies, because, early on, technology
was shown to interfere with participants’ behavior in Internet-
based experiments. For example, Schwarz and Reips (2001)
created the very same web experiment both with server-side
(i.e., CGI) and client-side (i.e., Javascript) technologies and
observed significantly larger and increasing dropout rates in
the latter version. Buchanan and Reips (2001) further
established that technology preferences depend on a partici-
pant’s personality and may thus indirectly bias sample compo-
sition, and consequently behavior, in Internet-based research
studies (even though this seems to be less the case for different
operating systems on smartphones; see Götz, Stieger, & Reips,
2017). Modern web browsers have evolved to handle a much
wider range of technologies that, on the one hand, are capable of
achieving much more accuracy and precision in the control of
loading and rendering content than were earlier browsers, but on
the other hand, are increasingly likely to fall victim to insuffi-
cient optimization of complexity. Unbeknownst to many re-
searchers, vendors of web browsers implement a multitude of
technologies that are geared toward the optimization of goals
(e.g., speed) that are not in line with those of science (e.g.,
quality, timing). In the present article we have empirically shown
that this conflict has an effect on display and timing in Internet-
based studies and provided recommendations and scripts that
researchers can and should use to optimize their studies.
Alternatively—and this may be the only general rule of thumb
we are able to offer as an outcome of the empirical investigation
presented here—they might follow the Blow-tech principle^ as
much as possible, to minimize interference.

Author note Support for this research was provided by the
Departamento de Educación, Universidades e Investigación
of the Basque Government (Grant No. IT1078-16) and by
the Committee on Research at the University of Konstanz.
The authors declare that there was no conflict of interest in
the publication of this study.

References

Bamberg, W. (2018a). Intensive JavaScript. MDN web docs. Retrieved
from https://developer.mozilla.org/en-US/docs/Tools/Performance/
Scenarios/Intensive_JavaScript

Bamberg, W. (2018b). Animating CSS properties. MDN web docs.
Retrieved from https://developer.mozilla.org/en-US/docs/Tools/
Performance/Scenarios/Animating_CSS_properties

Barnhoorn, J. S., Haasnoot, E., Bocanegra, B. R., & van Steenbergen, H.
(2015). QRTEngine: An easy solution for running online reaction
time experiments using Qualtrics. Behavior Research Methods, 47,
918–929. https://doi.org/10.3758/s13428-014-0530-7

Belshe, M., Peon, R., Thomson, M. (2015). Hypertext Transfer Protocol
Version 2 (HTTP/2). Retrieved from https://http2.github.io/http2-spec/

Birnbaum, M. H. (2004). Human research and data collection via the
Internet. Annual Review of Psychology, 55, 803–832. https://doi.
org/10.1146/annurev.psych.55.090902.141601

Buchanan, T., & Reips, U.-D. (2001). Platform-dependent biases in on-
line research: Do Mac users really think different? In K. J. Jonas, P.
Breuer, B. Schauenburg, &M. Boos (Eds.), Perspectives on Internet
research: Concepts and methods. Available at http://www.uni-
konstanz.de/iscience/reips/pubs/papers/Buchanan_Reips2001.pdf.
Accessed 26 Sept 2018

Garaizar, P., Vadillo, M. A., & López-de-Ipiña, D. (2014). Presentation
accuracy of the web revisited: Animation methods in the HTML5
era. PLoS ONE, 9, e109812. https://doi.org/10.1371/journal.pone.
0109812

Götz, F. M., Stieger, S., & Reips, U.-D. (2017). Users of the main
smartphone operating systems (iOS, Android) differ only little in
personality. PLoS ONE, 12, e0176921. https://doi.org/10.1371/
journal.pone.0176921

Grigorik, I., & Weiss, Y. (2018). W3C Preload API. Retrieved from
https://w3c.github.io/preload/#x2.link-type-preload

Henninger, F., Mertens, U. K., Shevchenko, Y., & Hilbig, B. E. (2017).
lab.js: Browser-based behavioral research. https://doi.org/10.5281/
zenodo.597045

Honing, H., & Reips, U.-D. (2008). Web-based versus lab-based studies:
A response to Kendall (2008). Empirical Musicology Review, 3, 73–
77. https://doi.org/10.5167/uzh-4560

Krantz, J., & Reips, U.-D. (2017). The state of web-based research: A
survey and call for inclusion in curricula. Behavior Research
Methods, 49, 1621–1629. https://doi.org/10.3758/s13428-017-0882-x

Kyöstilä, S. (2018). Clamp performance.now() to 100us. Retrieved from
https://chromium-review.googlesource.com/c/chromium/src/+/
853505

de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behav-
ioral experiments in a Web browser. Behavior Research Methods,
47, 1–12. https://doi.org/10.3758/s13428-014-0458-y

de Leeuw, J. R., &Motz, B. A. (2016). Psychophysics in aWeb browser?
Comparing response times collected with JavaScript and
Psychophysics Toolbox in a visual search task. Behavior Research
Methods, 48, 1–12. https://doi.org/10.3758/s13428-015-0567-2

Lewis, P. (2018). Rendering performance. Retrieved from https://
developers.google.com/web/fundamentals/performance/rendering/

Mangan, M., & Reips, U.-D. (2007). Sleep, sex, and the Web: Surveying
the difficult-to-reach clinical population suffering from sexsomnia.
Behavior Research Methods, 39, 233–236. https://doi.org/10.3758/
BF03193152

Mozilla. (2018). Concurrency model and Event Loop. MDN web docs.
Retrieved from https://developer.mozilla.org/en-US/docs/Web/
JavaScript/EventLoop

Musch, J., & Reips, U.-D. (2000). A brief history of Web experimenting.
In M. H. Birnbaum (Ed.), Psychological experiments on the Internet
(pp. 61–88). San Diego: Academic Press. https://doi.org/10.1016/
B978-012099980-4/50004-6

1452 Behav Res (2019) 51:1441–1453

https://developer.mozilla.org/en-US/docs/Tools/Performance/Scenarios/Intensive_JavaScript
https://developer.mozilla.org/en-US/docs/Tools/Performance/Scenarios/Intensive_JavaScript
https://developer.mozilla.org/en-US/docs/Tools/Performance/Scenarios/Animating_CSS_properties
https://developer.mozilla.org/en-US/docs/Tools/Performance/Scenarios/Animating_CSS_properties
https://doi.org/10.3758/s13428-014-0530-7
https://http2.github.io/http2-spec/
https://doi.org/10.1146/annurev.psych.55.090902.141601
https://doi.org/10.1146/annurev.psych.55.090902.141601
http://www.uni-konstanz.de/iscience/reips/pubs/papers/Buchanan_Reips2001.pdf
http://www.uni-konstanz.de/iscience/reips/pubs/papers/Buchanan_Reips2001.pdf
https://doi.org/10.1371/journal.pone.0109812
https://doi.org/10.1371/journal.pone.0109812
https://doi.org/10.1371/journal.pone.0176921
https://doi.org/10.1371/journal.pone.0176921
https://w3c.github.io/preload/#x2.link-type-preload
https://doi.org/10.5281/zenodo.597045
https://doi.org/10.5281/zenodo.597045
https://doi.org/10.5167/uzh-4560
https://doi.org/10.3758/s13428-017-0882-x
https://chromium-review.googlesource.com/c/chromium/src/+/853505
https://chromium-review.googlesource.com/c/chromium/src/+/853505
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.3758/s13428-015-0567-2
https://developers.google.com/web/fundamentals/performance/rendering/
https://developers.google.com/web/fundamentals/performance/rendering/
https://doi.org/10.3758/BF03193152
https://doi.org/10.3758/BF03193152
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/EventLoop
https://doi.org/10.1016/B978-012099980-4/50004-6
https://doi.org/10.1016/B978-012099980-4/50004-6

Plant, R. R. (2016). A reminder on millisecond timing accuracy and
potential replication failure in computer-based psychology experi-
ments: An open letter. Behavior Research Methods, 48, 408–411.
https://doi.org/10.3758/s13428-015-0577-0

Plant, R. R., Hammond, N., & Turner, G. (2004). Self-validating presen-
tation and response timing in cognitive paradigms: How and why?
Behavior Research Methods, Instruments, & Computers, 36, 291–
303. https://doi.org/10.3758/BF03195575

Reimers, S., & Stewart, N. (2015). Presentation and response timing
accuracy in Adobe Flash and HTML5/JavaScript Web experiments.
Behavior Research Methods, 47, 309–327. https://doi.org/10.3758/
s13428-014-0471-1

Reips, U.-D. (2000). The Web experiment method: Advantages, disad-
vantages, and solutions. In M. H. Birnbaum (Ed.), Psychological
experiments on the Internet (pp. 89–117). San Diego: Academic
Press. https://doi.org/10.5167/uzh-19760

Reips, U.-D. (2002). Standards for Internet-based experimenting.
Experimental Psychology, 49, 243–256. https://doi.org/10.1027/
1618-3169.49.4.243

Reips, U.-D. (2007). Reaction times in Internet-based research. Invited
symposium talk at the 37thMeeting of the Society for Computers in
Psychology (SCiP) Conference, St. Louis.

Reips, U.-D. (2012). Using the Internet to collect data. In H. Cooper, P.
M. Camic, R. Gonzalez, D. L. Long, A. Panter, D. Rindskopf, & K.
J. Sher (Eds.), APA handbook of research methods in psychology,
Vol 2: Research designs: Quantitative, qualitative, neuropsycholog-
ical, and biological (pp. 291–310). Washington, DC: American
Psychological Association. https://doi.org/10.1037/13620-017

Reips, U.-D., & Stieger, S. (2004). Scientific LogAnalyzer: AWeb-based
tool for analyses of server log files in psychological research.
Behavior Research Methods, Instruments, & Computers, 36, 304–
311. https://doi.org/10.3758/BF03195576

Schmidt, W. C. (1997). World-Wide Web survey research: Benefits, po-
tential problems, and solutions. Behavior Research Methods,
Instruments, & Computers, 29, 274–279. https://doi.org/10.3758/
BF03204826

Schmidt, W. C. (2007). Technical considerations when implementing
online research. In A. Joinson, K. McKenna, T. Postmes, & U.-D.
Reips (Eds.), The Oxford handbook of Internet psychology (pp.
461–472). Oxford: Oxford University Press.

Schneider, W., Eschman, A., and Zuccolotto, A. (2012). E-Prime user’s
guide. Pittsburgh: Psychology Software Tools, Inc.

Scholz, F. (2018). performance.now(). MDN web docs. Retrieved from:
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now

Schwarz, S., & Reips, U.-D. (2001). CGI versus JavaScript: A Web ex-
periment on the reversed hindsight bias. In U.-D. Reips & M.
Bosnjak (Eds.), Dimensions of Internet science (pp. 75–90).
Lengerich: Pabst.

van Steenbergen, H., & Bocanegra, B. R. (2016). Promises and pitfalls of
Web-based experimentation in the advance of replicable psycholog-
ical science: A reply to Plant (2015). Behavior Research Methods,
48, 1713–1717. https://doi.org/10.3758/s13428-015-0677-x

Stieger, S., & Reips, U.-D. (2010). What are participants doing while
filling in an online questionnaire: A paradata collection tool and an
empirical study. Computers in Human Behavior, 26, 1488–
1495. https://doi.org/10.1016/j.chb.2010.05.013

WHATWG (Apple, Google, Mozilla, Microsoft). (2018). HTML living
standard: Event loops. Retrieved from https://html.spec.whatwg.
org/multipage/webappapis.html#event-loops

Wolfe, C. R. (2017). Twenty years of Internet-based research at SCiP: A
discussion of surviving concepts and new methodologies. Behavior
Research Methods, 49, 1615–1620. https://doi.org/10.3758/s13428-
017-0858-x

Behav Res (2019) 51:1441–1453 1453

https://doi.org/10.3758/s13428-015-0577-0
https://doi.org/10.3758/BF03195575
https://doi.org/10.3758/s13428-014-0471-1
https://doi.org/10.3758/s13428-014-0471-1
https://doi.org/10.5167/uzh-19760
https://doi.org/10.1027/1618-3169.49.4.243
https://doi.org/10.1027/1618-3169.49.4.243
https://doi.org/10.1037/13620-017
https://doi.org/10.3758/BF03195576
https://doi.org/10.3758/BF03204826
https://doi.org/10.3758/BF03204826
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://doi.org/10.3758/s13428-015-0677-x
https://doi.org/10.1016/j.chb.2010.05.013
https://html.spec.whatwg.org/multipage/webappapis.html#event-loops
https://html.spec.whatwg.org/multipage/webappapis.html#event-loops
https://doi.org/10.3758/s13428-017-0858-x
https://doi.org/10.3758/s13428-017-0858-x

	Best...
	Abstract
	Best practices for animations in Web-based experiments
	Best practices for loading assets
	Best practices for rendering web pages

	Study 1
	Method
	Results

	Study 2
	Method
	Results

	Study 3
	Method
	Results

	Study 4
	Method
	Results

	Conclusions and outlook
	References

