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Abstract

When multiple groups are compared, the error variance—covariance structure is not always invariant between groups. In this study we
investigated the impacts of misspecified error structures on testing measurement invariance and the latent-factor mean difference
between groups. A Monte Carlo study was conducted to examine how measurement invariance and latent mean difference tests were
affected when heterogeneous error structures were misspecified as being invariant across groups. Multiple-group confirmatory factor
analysis (MGCFA) and the multiple-indicator multiple-causes model (MIMIC) were employed in the present study. The rejection
rates of both metric and strict invariance in measurement invariance testing, as well as the estimation accuracy and statistical inference
of'the factor mean difference, were investigated under error structure misspecification. In addition, sensitivity of the model fit indices
to error structure misspecification was examined. Overall, misspecification of the error structure affected testing for metric but not
scalar invariance. Metric invariance was often rejected, especially when error covariance in one group was ignored. In contrast,
MGCFA and MIMIC performed comparatively well at detecting latent-factor mean differences between groups, with acceptable
power and well-controlled Type I errors. The practical implications of these findings are discussed, as well as recommendations.
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Introduction

When multiple groups are compared using factor models, re-
searchers are often interested in the group mean difference.
However, prior to any multiple-group analysis, measurement
invariance should hold across the groups (DeShon, 2004).
Mellenbergh (1989) developed a mathematical expression of
measurement invariance concepts using conditional probabil-

ity:

P(Yy = yln;, G) = P(Y; = yln), (1
where 7); is the factor score for ith examinee, Y} is the ith
examinee’s response score for jth item, and G is a group mem-

bership. Equation 1 states that the probability of a response of
ith examinee to the jth item, conditioned on the latent-factor
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score, is independent of group membership G. In other words,
if measurement invariance holds, examinees with the same
latent-factor scores are expected to have the same probability
of endorsing a response on the measure, regardless of their
group membership. Multiple-group confirmatory factor anal-
ysis (MGCFA) is perhaps the most widely used method for
testing measurement invariance among applied researchers,
due to its flexibility and convenience.

Alternatively, multiple-indicator multiple-causes modeling
(MIMIC; Joreskog & Goldberger, 1975) has been employed
for detecting measurement invariance and testing for latent
mean differences (e.g., Fleishman, Spector, & Altman, 2002;
McCarthy, Pedersen, & D’Amico, 2009; Muthén, Kao, &
Burstein, 1991; Rubio, Berg-Weger, Tebb, & Rauch, 2003;
Woods, Oltmanns, & Turkheimer, 2009). MIMIC for mea-
surement invariance testing has several advantages in model
specification. For example, multiple categorical variables
(e.g., ethnicity or socioeconomic status) and their interaction
terms can be tested simultaneously (e.g., Ainsworth, 2008;
Fleishman et al., 2002), and the measurement invariance of a
continuous covariate can be investigated (Barendse, Oort, &
Garst, 2010).
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Measurement invariance, in general, is tested with a se-
quence of increasingly restrictive models. The sequence be-
gins with the equality of confirmatory factor model configu-
rations across groups (configural invariance), then moves
across equality of the factor loadings (metric or weak invari-
ance), intercepts (scalar or strong invariance), and error vari-
ances of the observed variables (strict invariance).
Homogeneity of factor loadings, intercepts, and error vari-
ances across groups (strict invariance) is a necessary condition
to enable common factor models to obtain some certainty that
measurement invariance holds for multiple groups (e.g.,
DeShon, 2004; Meredith, 1993).

However, measurement invariance studies have suggested
that the equality constraints for factor loadings and intercepts
across groups are sufficient for multiple-group analysis (e.g.,
Joreskog & Sorbom, 1993; Marsh, 1994; McArdle, 1998;
Sorbom, 1974), because the difference in error variances af-
fects only the reliability of observed variables (Little, 1997).
In addition, when latent variables are compared across groups,
measurement errors are taken into account for the latent vari-
ables (Marsh, Nagengast, & Morin, 2013). Thus, the invari-
ance of error variances is often not considered if group mean
differences in the latent factors or observed scores are of con-
cern, as long as strong invariance holds for the data.

On the other hand, some scholars have raised concerns
about possible impacts of heterogeneous error variances in
multiple-group analysis. Lubke and colleagues took admis-
sion decisions based on observed scores as an example
(Lubke, Dolan, Kelderman, & Mellenbergh, 2003). If hetero-
geneous error variances truly exist between groups, incorrect
admission decisions could be made more frequently for the
group with the larger error variance. Heterogeneity of error
variances could also mislead interpretation of the results of
measurement invariance testing using likelihood ratio (LR)
test or model fit indices, because inflated chi-squares or poor
model fit could occur when the model is misspecified (i.e., if
homogeneous error variances are assumed when there is het-
erogeneity). Consequently, the measurement invariance test
could mislead toward noninvariance, although measurement
invariance does hold.

In addition, it is not uncommon to observe correlated error
structures in practical situations (e.g., Heene, Hilbert,
Freudenthaler, & Biihner, 2012; Lubke et al., 2003). Correlated
errors could occur if item contents were overlapped or items were
logically dependent upon one another. If the item contents were
multidimensional but a unidimensional model was chosen, cor-
related error structure could also occur because unexplained re-
siduals would be correlated with the unspecified factor. In the
context of multiple-group analysis, error covariances could be
present in one of the groups compared (Lubke & Dolan, 2003).
For example, in cross-cultural studies, respondents in one culture
might interpret negatively worded items differently, and the er-
rors of the negatively worded items would possibly be correlated

in this cultural group. Previously, researchers have empirically
examined the impact of correlated error structures for confirma-
tory factor analysis (CFA) and have reported that correlated er-
rors could lead to bias in the factor loadings and reliability esti-
mates (e.g., Heene et al., 2012; Raykov, 2001; Shevlin, Miles,
Davies, & Walker, 2000). Because an error covariance can indi-
cate the presence of an additional factor, either substantive or
nuisance, not specified in the model, ignoring error covariance
in one group could be consequential in multiple-group analysis.

In this study, heterogeneity in either error variances or error
covariances is considered as a heterogeneous error structure
across groups. Of note is that an error covariance present in
one group but not in the other group would be considered a
violation of configural invariance, because the configuration
of the CFA model would not be homogeneous across groups.
On the other hand, heterogeneity in the error variances would
be considered a violation of strict invariance, given equality of
the configurations, factor loadings, and intercepts. Strict in-
variance indicates homogeneous error variances and covari-
ances in addition to equal factor loadings and intercepts.

Although the issue of noninvariant error variance—covari-
ance structure (or, interchangeably, simply error structure) in
multiple-group analysis has been raised, the impact of such
heterogeneity on measurement invariance testing and latent-
factor mean difference testing has not been systematically
investigated to date. Hence, a Monte Carlo study was needed
so as to empirically examine the extent to which
misspecifying the error structure affects testing measurement
invariance and latent-factor mean differences with commonly
used multiple-group analysis models—namely, MGCFA and
MIMIC. Given that heterogeneity in the error structure is po-
tentially more problematic with MIMIC, because MIMIC
does not have the flexibility to specify different error variances
or covariances across groups, comparing MGCFA and
MIMIC directly would be worthwhile.

MGCFA and measurement invariance

In a single-group confirmatory factor model, continuous ran-
dom variables Yare regressed on continuous latent variables 7.
Giventhati=1,...,/forexamineesandj=1,...,J foritems,
the single-group confirmatory factor model can be represented
as follows:

Yj = vj+ X5 Awtl + €5 (2)

where v}, Ay, 7, and €;; denote the intercepts, factor loadings,
latent factors, and residuals, respectively. In Eq. 2, there are a
total of K latent factors, k= 1, . . ., K. Additionally, ¢, is
assumed to follow a multivariate normal distribution with
mean vector 0 and diagonal matrix ®. The diagonal matrix,
®, implies an uncorrelated error structure of the confirmatory
factor model. To incorporate the measurement invariance
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concept with MGCFA, suppose there are a total of G groups,
denotedas g= 1, ..., G. Also, let the expected values of the
random variables Y; and 7); in vector form be denoted as pu,
and a, respectively, for group g. The covariance matrices of
the random variables Y; and 7, are denoted X, and W, re-
spectively, for group g. Then, the mean and covariance of ¥
for group g can be represented in matrix forms as follows, with
the consideration of measurement invariance satisfied:

My =V + Aay, (3)
T, = AT, A + 0O, (4)

where © is a diagonal matrix of the variance components of
errors, and A represents the factor loading matrix with respect
to latent factors. Equations 3 and 4 imply that (a) the factor
loadings are equal across groups (A, = A), (b)the intercepts are
equal across groups (v,=v), and (c) the residual covariance
matrices are equal across groups (@, =®). When those condi-
tions are satisfied in MGCFA, it is considered that measurement
invariance or factorial invariance holds across groupsg=1, .. .,
G (Meredith, 1993). Then, differences in the observed means
across groups (f4) are due solely to differences in the factor
means across groups (o,); differences in observed variance—co-
variance (2,) are due solely to differences in the factor variance—
covariances across groups (W,).

MIMIC and measurement invariance

Alternatively, in MIMIC, group variables are considered caus-
al indicators of factors. These causal indicators are coded as
dummy variables (X; ), and the effects of the variables can be
detected according to this model. For simplicity of the discus-
sion, a single causal indicator for two groups (i.e., reference
and focal groups) is included.

YU:VJ+)‘j77i+EU'7 (5)
n =Xi+ ¢ (6)

Equation 5 represents the measurement relationships be-
tween an observed variable and a latent factor in MIMIC. In
Eq. 6, X; denotes a dummy variable that indicates group mem-
bership, v denotes an effect or path coefficient of the group
variable on the latent factor, and (; represents the disturbance
of the latent factor. Given that the mean of the disturbance
term for the latent factor is 0, the expected value of the latent
factor can be represented as follows:

E(n;) = 2E(X3), (7)

where ~ indicates the group difference in the latent-factor
means with a dummy-coded grouping variable, X;
(Thompson & Green, 2006). In other words, the latent-factor
mean for the focal group (X; = 1) is y units higher (or lower)
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than that of the reference group (X; = 0). Also note that the
residual variance (Var[e;]) is assumed to be independent (i.e.,
Covle;] = 0) and homogeneous, regardless of the multiple
groups.

Measurement invariance testing using MIMIC can be per-
formed by adding a direct path from the grouping variable to
the observed variables (Kim, Yoon, & Lee, 2012):

Yi=v;+ A+ B Xi + wmXi + &5, (8)
n; =Xi + G- 9)

Statistical significance of the direct path from the grouping
variable to the observed variable () indicates that the inter-
cept of item j is not invariant across groups; this is referred to
as uniform noninvariance (Woods & Grimm, 2011).

Similarly, nonuniform measurement noninvariance can be
tested using MIMIC, by adding a path from an interaction
term between the latent factor and the grouping variable to
the observed variables (1.X;, in Eq. 8). Statistical significance
of the path from the interaction term to the observed variable
(w;) implies factor loading noninvariance or nonuniform
noninvariance of the associated item (e.g., Barendse et al.,
2010; Barendse, Oort, Werner, Ligtvoet, & Schermelleh-
Engel, 2012; Woods & Grimm, 2011).

Noninvariance of the error structure in MIMIC
and MGCFA

The issue of noninvariance in error variance—covariance
can be capitalized on with MIMIC, because MIMIC in-
herently assumes strict invariance. Relaxing the equality
of factor loadings and intercepts between groups is possi-
ble, as we explained earlier. However, relaxing the equal-
ity of residual variances—covariances between groups is
challenging, which is one of the major limitations of
MIMIC. Previously, Kim, Yoon, and Lee (2012) investi-
gated the performance of MIMIC when strict invariance
was incorrectly specified in the presence of factor loading
noninvariance. Their study concluded that MIMIC could
not detect noninvariance of the factor loadings properly,
and they recommended using MIMIC only when factor
loading invariance is established, unless the factor loading
equality is relaxed by including the Factor X Grouping
variable interaction. A question remained unsolved, how-
ever: How does MIMIC behave in the presence of the
residual variance—covariance noninvariance when
MIMIC assumes strict invariance? Moreover, sensitivity
of the model fit indices to violation of the strict invariance
assumption of MIMIC is worth investigating when
MIMIC is misspecified for error structures between
groups. MGCFA, on the other hand, has greater flexibility
in modeling the error structures between groups. That is,
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in MGCFA the error variance—covariance matrix can be
freely estimated between groups (@ # ©,).

Purpose of the study

The purpose of the present study was to investigate the impact
of misspecified error structure on measurement invariance
testing and latent-factor mean estimation when MGCFA and
MIMIC are used for multiple-group analysis. More specifical-
ly, we examined the performance of both metric and scalar
invariance tests following typical measurement invariance
procedures under conditions in which either error variance
or error covariance was heterogeneous across groups. For
each type of misspecification, we further examined the accu-
racy of the latent-factor mean estimations using MGCFA and
MIMIC under the assumption of strict invariance. Finally, we
investigated the sensitivity of the model fit indices to the
misspecification of error structure.

Method
Simulation design

A simulation study was conducted to investigate how the het-
erogeneity in residual variance—covariance made an impact on
testing configural, metric, and scalar invariance with MGCFA
and MIMIC. The simulation conditions included manipula-
tions of (1) the type of error structure misspecification (het-
erogeneous error variances vs. heterogeneous error covari-
ances), (2) the size of the heterogeneity (small vs. large), (3)
the number of heterogeneous items (one vs. two), (4) the sam-
ple size for each group (100, 200, 500, 1,000), and (5) the size
of the population latent-factor mean differences (0, .1, .5). A
total 0of 96 (2 x 2 x 2 x 4 x 3) conditions were included, and
1,000 replicated data were generated for each condition.

Data generation
Data were generated on the basis of a unidimensional single-

latent-factor model with six observed variables (Y1-Y6) for
two groups. The generating parameters for the reference group

Table 1 Generating parameter values for the reference group

Items Loadings Intercepts Error Variances
Y1 .90 -.15 .19

Y2 .70 25 51

Y3 .60 15 .64

Y4 .80 -.25 36

Y5 .70 —-.10 51

Y6 .60 .10 .64

are presented in Table 1. The factor loadings and intercepts
were simulated as being homogeneous between groups. The
latent-factor variance was fixed at 1 for both the reference and
focal groups, whereas the latent-factor mean was 0 for the
reference group and 0, .1, or.5 for the focal group, depending
on the simulation condition. For the reference group, the gen-
erating parameter values for residual variances were computed
with the parameterization such that N+60=1.Asa result, the
reliability coefficient (w) for the reference group was .87. For
the focal group, because the residual variances were manipu-
lated across conditions, the \> + 6> =1 parameterization was
not applied. Also, the reliability coefficient was varied ranging
from .84 to .86, depending on the size and number of
misspecifications (more severe misspecification resulted in a
smaller reliability). All items were generated as continuous
variables and were assumed to follow a multivariate normal
distribution. The generating parameters were based on previ-
ous MGCFA and MIMIC studies (e.g., Kim et al., 2012).

Simulation conditions

Type of error structure misspecification We manipulated error
structure misspecifications in two ways: (a) heterogeneity of
error variances and (b) heterogeneity of error covariances
between the reference and focal groups. For the heteroge-
neous error variance condition, the focal group had higher
error variances than did the reference group. For the hetero-
geneous error covariance conditions, the focal group’s errors
were correlated. We included this type of heterogeneity be-
cause, in practice, errors are not always independent (e.g.,
Heene et al., 2012; Lubke et al., 2003), and error covariances
could occur only in one of the groups. To the authors’ best
knowledge, few studies have investigated the impact of het-
erogeneous variance—covariance in MGCFA (e.g., Green &
Hershberger, 2000; Lubke & Dolan, 2003), and no studies
have examined the performance of MIMIC under such
conditions.

Size of heterogeneity We considered two levels of the size of
heterogeneity: small and large. For the heterogeneous error
variance condition, the focal group had error variances .2
(small) or .4 (large) higher than those in the reference group.
Similarly, for the heterogeneous error covariance condition,
the error covariance in the focal group was included at two
levels, .2 (small) or .4 (large), which correspond to correla-
tions of about .4 and .8, respectively. It should be noted that
small covariance (.2) is more commonly observed in applied
research, and the generated large covariance (.4) was consid-
ered to be more extreme conditions than usual.'

" In the multilevel CFA studies Kim, Dedrick, Cao, and Ferron (2016)
reviewed, the error correlations ranged from .20 to .65 (n = 22), with one
outlier (.08).
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Number of heterogeneous items We included a scenario in
which the number of heterogeneity was one or two. Note that
the total number of items considered in this study across con-
ditions was six (Y1-Y6). Thus, for the heterogeneous error
variance conditions, 17% or 33% of the variables were not
invariant in conditions of one or two heterogeneity, respective-
ly; for the heterogeneous error covariance conditions, 33%
(one pair) or 67% (two pairs) of the items were involved in
error covariances. For the condition in which the heterogene-
ity number was one, Y2 was selected as the heterogeneous
item when error variances were heterogeneous, and Y2 and
Y3 were selected as the correlated error items when error
covariances were heterogeneous. When the heterogeneity
number was two, Y2 and Y5 were selected as the heteroge-
neous error variance items, and two pairs (Y2 and Y3, Y4 and
Y5) were selected as the heterogeneous covariance items.

Group size Four levels of group size were considered: 100,
200, 500, and 1,000 in each group. A balanced group design
(i.e., equal sample sizes for the reference and focal groups)
was considered across simulation conditions.

Size of the population factor mean difference The effect size
of the population factor mean difference was manipulated to
have three levels in this study—O0, .1, and .5—which represent
no, small, and large factor mean differences, respectively.
These effect sizes had commonly been used in previous sim-
ulation studies (e.g., Barendse et al., 2010; Kim et al., 2012).
For factor mean difference testing, Type I errors were estimat-
ed when no mean difference was generated in the population;
power was estimated with small and large mean differences.

Measurement invariance tests

A series of measurement invariance tests (configural, metric,
and scalar) were conducted with MGCFA and MIMIC under
the simulated conditions. Of note is that the measurement in-
variance tests were conducted only for the conditions in which
the latent-factor mean difference was .1. We chose these con-
ditions because the size of the latent-factor mean difference (0,
.1, or.5) does not have an impact on measurement invariance
testing as long as the factor means are correctly specified (i.e.,
allowed to be different across groups). For the measurement
invariance test using MGCFA, we used likelihood ratio (LR)
tests for nested models. That is, a configural-invariance model
in which the factor loadings, intercepts, and residual variances
were relaxed between groups was compared to a metric-
invariance model in which the factor loadings were constrained
to be equal between groups. Similarly, scalar invariance was
tested by comparing the metric-invariance model and the
scalar-invariance model, in which the intercepts were addition-
ally constrained to be equal. It should be kept in mind that
MGCFA was a correctly specified model for the heterogeneous
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error variance condition, because error variances were allowed
to be different between groups. However, for the heterogeneous
error covariance condition, it is a misspecified model, because
MGCFA assumes independent error structures for both groups.
For the measurement invariance test using MIMIC, a
configural-invariance model was constructed by including
two paths (3; and w; in Eq. 8) for all items except the first one
for identification: a path from the grouping covariate to each
item, and a path from the interaction between the grouping
covariate and the latent factor to each item. Then, the metric-
invariance model was constructed by constraining all path co-
efficients from the interaction to the items (w;) at zero. The
scalar-invariance model was constructed with additional zero
constraints on the paths from the grouping covariate to all items
(ﬁj). Note that when configural-, metric-, and scalar-invariance
MIMIC models were fitted, the latent-factor mean difference
between two groups (y) was also simultaneously estimated.
Similar to the LR tests in MGCFA, these nested models were
compared sequentially (i.e., configural vs. metric, metric vs.
scalar) to determine the measurement invariance. We used the
Satorra—Bentler correction (Satorra & Bentler, 2001) for the LR
tests in MIMIC, because robust maximum likelihood (MLR)
was used for the model estimation.

The MIMIC model with Factor * Covariate interaction is
often estimated with MLR rather than maximum likelihood
(ML) estimation because a numerical integration algorithm is
required (i.e., TYPE = RANDOM and ALGORITHM =
INTEGRATION in Mplus). Because we generated the re-
sponse data from a multivariate normal distribution, we did
not expect any substantial difference between MLR and ML.
In the preliminary study, we compared the performance of ML
and MLR and did not find any notable differences for MIMIC
(e.g., the ML and MLR outputs with several replications were
identical). Thus, the choice between ML and MLR would not
impact the results of this study.

In addition to the LR tests, measurement invariance was
evaluated with Wald tests in MIMIC. In the configural-
invariance model, the statistical significance of a w; path co-
efficient indicates the lack of nonuniform or metric invariance
of the tested item; the statistical significance of a [3; path co-
efficient indicates a violation of uniform or scalar invariance
of the tested item. For parameterization of the models, we
fixed the first observed variable to be equal across groups,
and parameters of the other items were allowed to be estimat-
ed. Of note is that MIMIC was a misspecified model for het-
erogeneity of both error variances and covariances, because
MIMIC does not allow for modeling heterogeneity in errors.

Latent-factor mean tests
In addition to measurement invariance tests, in the present

study we further explored the accuracy of the latent-factor
mean differences across groups when the error structure was
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misspecified. To create misspecification in the error structure,
we constrained the error structures to be equal between groups
when they were heterogeneous in the population. In other
words, the latent-factor mean difference was tested assuming
that strict invariance was satisfied; that is, the error structures
were constrained to be equal between groups (i.e., with equal
error variances and no error covariances), in addition to the
equality of factor loadings and intercepts. For MIMIC, a
grouping covariate was included in the model to test a
latent-factor mean difference (v in Eq. 9). Because strict in-
variance was assumed, no other paths from the grouping var-
iable (i.e., 8.X; and wn;X; in Eq. 8) were included in the model.
In this model the heterogeneous error structure was the only
source of model misspecification, because the factor loadings
and intercepts were generated to be equal in the population.
The statistical significance of the  coefficient indicated a
statistically significant latent group mean difference. To inves-
tigate the behaviors of MGCFA in factor mean difference
testing under the same error structure misspecification, a
strict-invariance model was constructed (i.e., strict-
invariance MGCFA), as in MIMIC. Then the latent-factor
mean difference was evaluated by testing the statistical signif-
icance of the second group’s latent-factor mean, because the
first group’s mean was constrained to be 0 and the second
group’s mean represented the mean difference between the
groups. Thus, both strict MGCFA and MIMIC were consid-
ered as incorrectly specified models. Strict-invariance
MGCFA was examined because it has theoretical similarities
to MIMIC (Woods, 2009), and it was worthwhile to compare
their performance in terms of parameter estimation and model
fit indices. For both MGCFA and MIMIC, maximum likeli-
hood estimation was used for the model estimation.

In addition to the strict-invariance models, we fitted the
correctly specified MGCFA in order to establish the baseline
results for latent-factor mean estimation and model fit index
sensitivity. As this was a correctly specified model, the factor
loadings and intercepts were constrained to be equal between
groups. However, the error variances were freely estimated.
For the heterogeneous error covariances conditions, errors
were additionally allowed to be correlated for the designated
items for one group, as had been generated in the population.
Mplus 7 (Muthén & Muthén, 2012) was used for both gener-
ating the data and fitting the models. The Mplus program code
for the study can be obtained from the authors upon request.

Simulation analysis

Rejection rates We investigated how error structure
misspecification affected tests for metric and scalar invariance
when the factor loadings and intercepts were invariant in the
population. For simulation outcomes, we examined the rejec-
tion rates of metric and scalar invariance. The rejection rate of
metric invariance was computed as the proportion of

replications in which metric invariance was rejected at alpha
.05; the rejection rate of scalar invariance, as the proportion of
replications in which scalar invariance was rejected. For the
Wald test of MIMIC, the rejection rates were computed as the
proportions of replications in which any of the tested path
coefficients across five items (Y2-Y5) was flagged with sta-
tistical significance at alpha .01. The significance level was
adjusted to .01 (.05/5 items) in order to control for experiment-
wise Type I errors.

Relative bias, RMSE, and SE The relative biases of the latent-
factor mean difference were computed for MGCFA and
MIMIC, to investigate the accuracy of latent-factor mean dif-
ference estimation. In addition, the root mean squared error
(RMSE) and standard error (SE) of the parameter estimates
were examined. The relative bias and RMSE were computed
as

0,6
Relative Bias = R f: 1 g (10)

RMSE = {/R"! fil(é’i—a)z, (11)

where 6 and 6; represent the generated and estimated param-
eters for ith replication, respectively, and R represents the total
number of replications (i.e., R = 1,000). For the conditions in
which the generating parameter was 0, we simply computed
bias in the traditional fashion (i.e., R™' Y ;-0 ). A relative
bias above .05 is considered as represenfinlg biased estimates
of the parameters (Hoogland & Boomsma, 1998). The SE was
obtained by averaging the standard errors across 1,000
replications.

Power and Type | error We also evaluated the statistical infer-
ence of the latent-factor mean estimates. When the true popu-
lation effect size was 0, the Type I error rates of the latent-
factor mean difference tests were computed for MGCFA and
MIMIC. When the true population effect size was .1 or .5,
statistical power was computed. The level of significance of
the test was set at .05 across conditions. Power and Type |
error were computed by taking the proportions of a statistical-
ly significant group mean difference over replications.

Model fit indices In addition to measurement invariance and
latent-factor mean estimation, we also investigated the sensi-
tivity of the model fit indices of the strict-invariance models.
To investigate the sensitivity of the model fit indices of
MGCFA and MIMIC to misspecification of the error struc-
ture, commonly used model fit indices—namely, the chi-
square (x?), root mean square error of approximation
(RMSEA), comparative fit index (CFI), and standardized root
mean residual (SRMR) statistics—were examined. We
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applied the Hu and Bentler (1999) criteria for RMSEA,
SRMR, and CFI in the present study. That is, RMSEA greater
than .06, SRMR greater than .08, and CF1I less than .95 were
considered as representing poor model fit. Also, a chi-square p
value less than .05 was considered a poor model fit. We also
examined the fit of the configural-invariance models using the
same criteria, because configural invariance was violated in
the heterogeneous error covariance conditions. Note that eval-
uation of the configural-invariance model fit was conducted
only with MGCFA, because MIMIC does not have the flexi-
bility to relax the factor loadings, intercept, and error variances
simultaneously across groups.

Results

Simulation check with the correctly specified MGCFA
model

To establish the baseline results for the latent-factor mean
difference and model fit indices, we first fitted the correctly
specified MGCFA. The results showed that the latent-factor
group mean differences were estimated accurately and the
corresponding power and Type I error rates were well
established. The power rates reached up to 1.00, and Type I
error rates were controlled across conditions, ranging from .05
to .07. With regard to model fit indices, the results overall
showed good model fit. The average model fit values ranged
from .01 to .03 (RMSEA), .01 to.04 (SRMR), .98 to 1 (CFI),
and .45 to .49 (chi-square p value). The result table for the
correctly specified model is not reported, but it is available
upon request.

Measurement invariance tests

Table 2 shows the rejection rates of the measurement invari-
ance tests with MGCFA and MIMIC. When error variances
were heterogeneous, MGCFA controlled for the rejection rates
around .05, as expected, because the error variances were
allowed to be different in MGCFA (i.e., correctly specified
model). On the other hand, MIMIC was a misspecified model,
because it estimated a single set of error variances for both
groups. The rejection rates of MIMIC were slightly inflated
when metric invariance was tested with a large sample size
under large error structure heterogeneity (e.g., .13 for the SB
LR tests when the group size was 1,000 and there were two
large-size misspecified items). The rejection rates of the
scalar-invariance test were .05 or less across conditions.
When error covariances were heterogeneous, both
MGCFA and MIMIC were misspecified models. Both
MGCFA and MIMIC showed relatively high rejection rates
when metric invariance was tested. As the sample size and the
number and size of error covariance increased, the rejection
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rates increased considerably. In contrast, the rejection rates of
the scalar invariance tests were generally low, with values less
than or around .05, with some exceptions (i.e., when the group
size was 1,000 and the number of misspecified items was two
of large magnitude).

Latent-factor group mean difference

The results of latent-factor mean difference tests are presented
in Table 3. The table includes relative bias, RMSE, and Type [
error and power rates for MIMIC. Because relative bias and
RMSE were similar across the three factor mean difference
conditions, only those of the large effect size conditions are
reported. The SE results were very similar to the RMSE results
and not included in the table. The results for strict-invariance
MGCFA are not included because no notable difference be-
tween strict-invariance MGCFA and MIMIC was found. Note
that both models were misspecified in terms of the error
structure.

As is shown in Table 3, the latent-factor mean difference in
MIMIC was estimated accurately with minimal bias, regard-
less of the error structure misspecifications. The maximum
relative bias was — .03, which is less than 5% bias of the
population value. In addition, the statistical power and Type
I error rates were comparable to those of the correctly speci-
fied strong-invariance models. Type I errors were well-con-
trolled, ranging from .05 to .07 across conditions, and power
reached 1.00 when the effect size was large. As expected,
larger effect size and sample size resulted in higher power
across conditions.

Sensitivity of model fit indices

We computed sensitivity by taking the proportions of replica-
tions in which the fitted model was flagged as having poor
model fit. Thus, a sensitivity rate close to 1.00 indicates that
the model fit index was sensitive to the misspecification in the
error structure. Table 4 shows sensitivity of the model fit in-
dices for strict-invariance MGCFA and MIMIC across
conditions.

Three patterns emerged from the sensitivity rates (see
Table 4). In general, the model fit indices for MIMIC showed
less sensitivity than did those for MGCFA. In addition, for
both strict-invariance MGCFA and MIMIC, the model fit in-
dices were more sensitive to misspecification due to heteroge-
neous error covariances than to heterogeneous error variances.
Among the model fit indices, CFI and SRMR were less sen-
sitive than the RMSEA and chi-square tests. When heteroge-
neous error variances were present, the RMSEA and chi-
square of strict-invariance MGCFA were more sensitive to
the misspecification as the size and number of error
misspecifications increased, whereas MIMIC consistently
showed a good model fit across conditions, and the sensitivity
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Table 2  Rejection rates of metric and scalar invariance under error structure heterogeneity

MGCFA (LR test) MIMIC (SB Test) MIMIC (Wald Test)
Hetero Var. Hetero Cov. Hetero Var. Hetero Cov. Hetero Var. Hetero Cov.
Size Num N Metric ~ Scalar ~ Metric ~ Scalar  Metric ~ Scalar  Metric ~ Scalar ~ Metric  Scalar ~ Metric ~ Scalar
Small  One 100 .06 .05 .06 .05 .06 .00 .07 .00 .06 .03 .06 .04
200 .05 .05 .08 .05 .06 .00 .07 .00 .06 .05 .06 .05
500 .05 .04 .09 .04 .06 .00 .06 .00 .05 .04 .05 .04
1,000 .05 .05 17 .05 .07 .00 .09 .00 .07 .05 .09 .05
Two 100 .05 .05 15 .05 .06 .00 .07 .01 .06 .03 .08 .03
200 .05 .05 22 .06 .07 .00 .07 .00 .06 .05 .08 .05
500 .05 .05 52 .05 .07 .00 13 .00 .05 .04 A1 .04
1,000 .05 .04 .85 .05 .08 .00 22 .02 .07 .05 .20 .05
Large  One 100 .05 .05 .19 .05 .07 .01 .09 .01 .06 .03 .07 .04
200 .05 .05 24 .06 .07 .01 .10 .00 .06 .05 .09 .05
500 .05 .04 43 .04 .07 .00 13 .01 .06 .04 .10 .04
1,000 .05 .05 72 .06 .09 .01 .30 .03 .09 .05 22 .06
Two 100 .05 .05 .98 .07 .07 .00 15 .01 .06 .03 12 .03
200 .05 .05 1.00 .08 .08 .01 22 .02 .07 .05 .19 .05
500 .04 .04 1.00 .07 .09 .00 .52 .05 .07 .04 47 .05
1,000 .05 .04 1.00 12 13 .01 .85 26 1 .05 .82 .08

MGCFA = multiplegroup confirmatory factor analysis, MIMIC = multiple-indicator multiple-causes model, LR test = likelihood ratio test, SB test =
Satorra—Bentler corrected LR test, Hetero Var = heterogeneous error variance between groups, Hetero Cov = heterogeneous error covariance between
groups, Size = size of error structure heterogeneity, Num = number of heterogeneous error variance—covariance, N = sample size per group

Table 3 Accuracy of the estimated latent-factor difference and the corresponding power and Type I error for MIMIC

Heterogeneous error variances Heterogeneous error covariances

Size Num N Bias RMSE Power .5 Power .1 TI Bias RMSE Power .5 Power .1 TI
Small One 100 .00 15 .92 12 .07 .00 15 92 12 .07
200 .00 A1 1.00 17 .05 .00 A1 1.00 17 .05
500 .00 .07 1.00 .35 .06 .00 .07 1.00 34 .06
1,000 .00 .05 1.00 .59 .06 .00 .05 1.00 .59 .06
Two 100 .00 A5 .92 12 .07 —.01 15 92 12 .06

200 .00 11 1.00 17 .05 —.01 .10 1.00 .16 .05

500 .00 .07 1.00 35 .06 —-.01 .06 1.00 34 .06

1,000 .00 .05 1.00 .59 .06 -.01 .05 1.00 .58 .07

Large One 100 .00 15 .92 12 .06 .00 15 92 12 .07
200 .00 11 1.00 17 .05 .00 A1 1.00 17 .05

500 .00 .07 1.00 .34 .07 .00 .07 1.00 34 .07

1,000 .00 .05 1.00 .59 .07 .00 .05 1.00 .59 .07

Two 100 .00 15 .92 12 .07 -.03 15 92 12 .07

200 .00 A1 1.00 17 .05 -.03 A1 1.00 .16 .05

500 .00 .07 1.00 34 .07 -.03 .07 1.00 33 .07

1,000 .00 .05 1.00 .59 .07 -.03 .05 1.00 57 .06

MIMIC = multiple-indicators multiple-causes model, Size = size of error structure heterogeneity, Num = number of heterogeneous error variance—
covariance, N = sample size per group, Bias = relative bias, RMSE = root mean squared error, TI = Type I error, Power .1 = power under the effect size .1
conditions, Power .5 = power under the effect size .5 conditions. Bias and RMSE under the effect size .5 conditions are presented in this table
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Table 4  Sensitivity of the model fit indices of MGCFA and MIMIC

Heterogeneous error variances

Heterogeneous error covariances

MGCFA (df = 34) MIMIC (df = 14)

MGCFA (df = 34) MIMIC (df = 14)

N RMSEA CFI SRMR Chisq

RMSEA CFI SRMR Chisq

RMSEA CFI SRMR Chisq RMSEA CFI SRMR Chisq

Small One 100 .15 .01 .07 11 .05 .00 .00
200 .03 .00 .00 .14 .00 .00 .00

500 .00 .00 .00 39 .00 .00 .00

1,000 .00 .00 .00 .79 .00 .00 .00

Two 100 .22 .02 .13 17 .05 .00 .00

200 .08 .00 .00 30 .00 .00 .00

500 .01 .00 .00 75 .00 .00 .00

1,000 .00 .00 .00 .99 .00 .00 .00

Large One 100 .31 .04 23 24 .05 .00 .00
200 .17 .00 .01 46 .00 .00 .00

500 .05 .00 .00 95 .00 .00 .00

1,000 .01 .00 .00 1.00 .00 .00 .00

Two 100 .60 A8 .54 S1 .05 .00 .00

200 .59 .06 .15 .86 .00 .00 .00

500 .71 .01 .01 1.00 .00 .00 .00

1,000 .83 .00 .00 1.00 .00 .00 .00

.06 .47 .08 .06 .38 22 .00 .00 24
.05 42 .01 .00 .73 12 .00 .00 .50
.05 43 .00 .00 1.00 .03 .00 .00 93
.07 .38 .00 .00 1.00 .00 .00 .00 1.00
06 94 54012 .92 .56 .04 .00 .58
.05 .99 52 .00 1.00 .62 .00 .00 91
.05 1.00 .59 .00 1.00 .73 .00 .00 1.00
.07 1.00 .62 .00 1.00 .80 .00 .00 1.00
.06 1.00 99 34 1.00 .85 21 .00 .87
.05 1.00 1.00 .01 1.00 .96 2 .00 1.00
.05 1.00 1.00 .00 1.00  1.00 .04 .00 1.00
.07 1.00 1.00 .00 1.00  1.00 .01 .00 1.00
.06 1.00 1.00 .88 1.00  1.00 .88 .00 1.00
.05 1.00 1.00 .54 1.00  1.00 97 .00 1.00
.05 1.00 1.00 .08 1.00  1.00 1.00 .00 1.00
.07 1.00 1.00 .01 1.00  1.00 1.00 .00 1.00

MGCFA = multigroup confirmatory factor analysis; MIMIC = multiple-indicators multiple-causes; df = degrees of freedom; RMSEA = root mean square
error of approximation; SRMR = standardized root mean square residual; Chisq = chi-square fit statistic. The sensitivity is defined as the proportion of
replications in which model fit indices indicated poor fit. Poor fit criteria for model fit indices: RMSEA > .06, CFI < .95, SRMR > .08, and p value of x>

<.05

rates were very similar to those of the correctly specified mod-
el. When error covariance in one group was ignored, the
RMSEA and chi-square tests generally detected the model
misspecification, showing higher sensitivity to larger
misspecification. On the other hand, CFI only showed high
sensitivity rates for the conditions in which the size and num-
ber of error misspecifications were large and two, respectively,
and SRMR often failed to detect the misspecification, show-
ing good fit across conditions. Especially, both CFI and
SRMR in MIMIC were insensitive to the heterogeneity in
error variance—covariance when the size and number of error
misspecifications were small and one, respectively.

In addition, we also investigated the model fit results for the
configural-invariance MGCFA model in this study. Because a
heterogeneous covariance structure violates configural invari-
ance due to the unmeasured factor structure in one group, it is
worthwhile to examine the model fit of the configural-
invariance model when a covariance error structure is present.
Similar to in Table 4, RMSEA and chi-square, overall, showed
very sensitive results to the heterogeneous covariance struc-
ture, whereas CFI and SRMR showed somewhat mixed re-
sults. For example, the sensitivity values ranged from .69 to
1.00 for RMSEA, and from .49 to 1.00 for chi-square across
simulation conditions. CFI and SRMR, however, only showed
sensitive results for conditions in which the size and number
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of heterogeneous covariances were large and two, respectively
(e.g., the sensitivity rates ranged from .88 to 1 for CFI and
from .97 to 1 for SRMR). For the other conditions, the sensi-
tivity rates decreased substantially (e.g., the sensitivity rates
ranged from .00 to .21 for CFI and from .00 to .11 for SRMR).

Discussion

MGCFA and MIMIC are two widely used models for testing
measurement invariance and factor mean differences in ap-
plied research. Although a number of studies have investigat-
ed the efficacy of MGCFA and MIMIC for testing measure-
ment invariance and factor mean differences, little research
has been devoted to investigating the impact of
misspecification of the error structure. In this study, therefore,
we examined the impact of such violations on measurement
invariance testing. We also examined the accuracy of latent-
factor mean estimation, inference, and sensitivity of the model
fit indices for MGCFA and MIMIC when the invariance as-
sumption was violated for error variance—covariance across
multiple groups.

Our key findings in this study were as follows. First,
misspecification of the error structure—that is, misspecifying
heterogeneous error variances and covariances as invariant—
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did not make a substantial impact on the estimation and sta-
tistical inference of parameter estimates in the mean structure
(i.e., factor means and intercepts). Especially, we observed a
minimal impact of such misspecification on factor mean dif-
ference estimation and testing. Although the fitted models
were misspecified for the heterogeneous error variances or
covariances, both MGCFA and MIMIC accurately estimated
the latent-factor mean difference between the reference and
focal groups. Also, statistical inferences such as the power
and Type I error for the group mean difference were not af-
fected. Note that we examined conditions in which the popu-
lation latent-factor mean difference was varied (0, .1, and .5),
and no substantial differences were found across conditions.
As expected, statistical power increased as the latent-factor
mean difference increased. These findings imply that
misspecification of the error structures between groups is not
of great concern when researchers are estimating and testing
latent mean differences using MIMIC or MGCFA 2

In addition, we observed the impact of the misspecified
error structure on measurement invariance testing. This impact
was more evident for metric-invariance testing when error
covariance in one group was ignored. The rejection rates
reached 100% when the sample size was large and the size
of two error covariances was large (.40). The high rejection of
metric invariance might have happened because the heteroge-
neity in error variance and covariance transferred to the factor
loading difference when the error structure was constrained to
be equal, which appeared as metric noninvariance with little
impact on the mean structure (intercepts and means).
Although factor loadings were generated to be equal in the
population, we observed that the factor loadings were estimat-
ed strikingly differently between groups in the configural-
invariance model when the error structure was forced to be
homogeneous, which could be misinterpreted as an indication
of metric noninvariance in applied research settings.

We also examined the sensitivity of model fit indices to
misspecification of the error structure. The model fit indices
of MIMIC were less sensitive to the error structure
misspecification than were those of MGCFA, in general. For
both MGCFA and MIMIC, the model fit indices were gener-
ally more sensitive to heterogeneous error covariances rather
than variances. Among the model fit indices we examined,
CFI and SRMR showed relatively less sensitivity to the error
structure misspecification than did chi-square and RMSEA.
Particularly, SRMR in MIMIC was completely insensitive
and always showed good fit across conditions when the error
structure was misspecified. The insensitivity of SRMR in

2 We also found that the observed group mean difference was unbiased. The
observed group means were computed with the mean composite scores of six
observed variables. When we tested the observed group-mean difference using
t tests, Type I error and power rates were very close to those of MGCFA and
MIMIC, showing no impact of heterogeneous error structures on the observed
mean comparisons.

MIMIC was also reported in a previous model-fit statistics
study (Kim et al., 2012). This finding suggests that if the
heterogeneity of error variances—covariances across groups
is of concemn, it is recommended to use MGCFA to detect a
potential misspecification of the error structure. Beyond de-
tecting the error structure misspecification through model fit
evaluation, MGCFA is advantageous because it allows re-
searchers to model heterogeneous error structures between
groups, whereas modeling different error structures between
groups is not feasible in MIMIC.

We additionally conducted a simulation with conditions in
which both variance and covariance were heterogeneous
across groups. However, the results were almost identical to
those in the heterogeneous covariance conditions, which sug-
gests that the misspecification of heterogeneous error covari-
ances is more influential and also is detected better than
misspecification of heterogeneous error variances across
groups. In terms of measurement invariance, error covariance
in one group is considered as a violation of configural invari-
ance, whereas heterogeneous error variance is a violation of
strict invariance. The sensitive model-fit results for the
configural invariance model supported this finding as well.
This finding implies that the lack of configural invariance in
the error structure appears more consequential than is the lack
of strict invariance, although both turned out not to be related
to latent-factor mean estimation and testing.

To increase the generalizability of the study, we conducted
an additional simulation. We considered a condition in which
reliability was medium (w = .75). The medium size of reliabil-
ity was only considered for conditions in which the size of two
error variances or covariances was large, because we observed
the most evident result in these conditions. We still varied the
level of sample size for the additional simulation. From the
simulation, we found no substantial pattern between the two
levels of reliability. That is, the error structure misspecification
significantly affected the metric invariance test but not the
scalar invariance test. The rejection rates increased substan-
tially for metric invariance as the sample size increased for
both MGCFA and MIMIC, and this pattern was more evident
for the heterogeneous covariance condition. Also, the latent-
factor mean estimation and inference were accurate and reli-
able. These results indicate that the findings of the study can
be extended to medium-size reliability measurements.

Practically and theoretically, understanding the error struc-
tures and specifying correct error structures between groups is
essential in multiple-group analysis for two major reasons,
even though misspecification does not directly impact the la-
tent and even the observed group mean comparisons. First,
error covariance can be interpreted as the presence of an un-
measured factor. In other words, error covariance in one group
suggests that this group may have a different factor structure
than the other groups. Understanding the unmeasured factor in
one group, either substantive or nuisance, is an essential part
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of group comparisons. Second, metric invariance is less likely
to be supported when the error structure is considerably
misspecified between groups. This is problematic because
group heterogeneity in error variances—covariances is mani-
fested in factor loadings. For example, in the configural-
invariance model, the ignored error covariance in one group
was manifested as notable differences in the factor loadings.
In practical settings without knowledge of the true population
parameters, differences in the factor loadings between groups
observed in the configural-invariance model can be
misinterpreted as an indication of metric noninvariance rather
than of misspecification of the error structure (i.e., violation of
configural invariance through error covariance in one group).
Problematically, in subsequent metric-invariance testing, met-
ric invariance will possibly be rejected. Moreover, metric in-
variance is a precondition of scalar invariance; that is, scalar
invariance cannot be established without metric invariance.
Thus, a group mean comparison may be invalidated because
scalar invariance is considered a prerequisite for a valid group
mean comparison. That is, even though the misspecification
of the error structure does not impact the group mean compar-
ison, applied researchers will be less likely to proceed with the
comparison given the violation of metric invariance.

One positive finding is that some model fit indices are
sensitive to the error structure misspecification in the
configural-invariance model if the size and number of hetero-
geneity are large, which could lead to applied researchers
scrutinizing the source of model misfit. For applied re-
searchers, we recommend thoroughly investigating configural
invariance across groups using MGCFA. In this investigation,
we recommend using the RMSEA and chi-square model fit
indices to uncover possible differences in error structures for
multiple groups on the basis of simulation study results.
Modification indices could guide researchers to find the
source of model misfit when configural invariance is rejected,
although future research is called for to investigate the perfor-
mance of modification indices in detecting error covariance
misspecification. Also, if researchers have strong theoretical
evidence regarding nonzero error covariance for specific
items, we recommend specifying the error covariances using
MGCFA and testing for the equality of error structures be-
tween the groups. Theoretical consideration will be particular-
ly useful when the size and number of misspecification are
small, because the fit indices of the configural-invariance
model may not be informative as to the error structure
misspecification. Finally, if the research purpose is to test
measurement invariance and error covariance is found in only
one group, applied researchers can conclude that configural
invariance has been violated, and subsequent analyses will not
be executed. If testing and estimating the latent group mean
difference is of focal interest, we expect a minimal impact of
heterogeneous error variance and covariance on the results.
However, it should be kept in mind that no statistical impact

@ Springer

does not mean that the group mean difference will be theoret-
ically interpretable. Thus, the heterogeneity in the error struc-
ture, and particularly error covariance, should be theoretically
explained and justified.

There are several limitations to the present study. First, we
considered only the one-factor model across simulation con-
ditions. This study was conducted with a relatively simple
model, but more complex models including bifactor or two-
tier models can be considered in future research. Because
more complex models could be more challenging for estimat-
ing their parameters, the results might be different in various
situations. Second, in this study we did not manipulate differ-
ent sample sizes for the reference and focal groups (unbal-
anced design).? Given that unbalanced designs are more com-
mon in applied educational and psychological settings (e.g.,
Lubke & Dolan, 2003; Woods, 2009), we recommend inves-
tigating the potential impact of unbalanced group sizes being
paired with heterogeneous error structures in multiple-group
analysis in future studies. Third, although we found that
misspecification of the error structure minimally affects the
latent-factor mean estimates and inference, the simulation
study design was limited, and the results should not be gener-
alized to all situations. More studies should be conducted to
explore the impact of the error structure on MGCFA and
MIMIC with different simulation conditions. For example, it
would be interesting to investigate the impact of error struc-
ture misspecification with categorical observed variables.
Future research should conduct a study investigating how er-
ror structure misspecification can affect measurement invari-
ance tests and the latent mean estimates with the categorical
observed variables using weighted least squares means and
variance-adjusted estimation, given that categorical variables
are prevalent in applied settings.

In conclusion, we investigated the impact of misspecified
heterogeneous error variances—covariances in multiple-group
analysis, including measurement invariance testing and latent-
factor mean difference testing. We found that misspecification
in the error variance—covariance structure affects testing and
estimating the variance—covariance structure (i.e., factor load-
ings). In contrast, little impact was observed on the mean
structure (i.e., intercepts and latent-factor means). Thus, we
found that both the MGCFA and MIMIC approaches robustly
estimated the latent-factor mean difference and yielded correct
statistical inferences under the misspecification of error vari-
ance—covariance between groups. Strict invariance was also
mostly supported when it was true in the population.
However, metric invariance could be rejected under such

3 In a preliminary analysis of the simulation, we did not observe any remark-
able difference between balanced and unbalanced group size conditions in
terms of factor mean difference testing and estimation, and so we did not
include unbalanced conditions in the present simulation. However, full inves-
tigation of unbalanced designs across different research settings and with var-
ious simulation outcomes will be needed.
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misspecification. Thus, we suggest that MGCFA be preferred
when heterogeneous error structures are of concern, because
MGCFA allows for modeling heterogeneous error structures
across groups. It should also be kept in mind that the model fit
indices of MIMIC are not generally sensitive to misspecified
error structures.
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