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Abstract
The synthesis of standardized regression coefficients is still a controversial issue in the field of meta-analysis. The difficulty lies in
the fact that the standardized regression coefficients belonging to regressionmodels that include different sets of covariates do not
represent the same parameter, and thus their direct combination is meaningless. In the present study, a new approach called
concealed correlations meta-analysis is proposed that allows for using the common information that standardized regression
coefficients from different regression models contain to improve the precision of a combined focal standardized regression
coefficient estimate. The performance of this new approach was compared with that of two other approaches: (1) carrying out
separate meta-analyses for standardized regression coefficients from studies that used the same regression model, and (2)
performing a meta-regression on the focal standardized regression coefficients while including an indicator variable as a mod-
erator indicating the regression model to which each standardized regression coefficient belongs. The comparison was done
through a simulation study. The results showed that, as expected, the proposed approach led to more accurate estimates of the
combined standardized regression coefficients under both random- and fixed-effect models.
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The synthesis of standardized regression coefficients has re-
ceived a lot of attention over the last few decades (e.g., Becker
& Wu, 2007; Hanushek, 1974; Kim, 2011; Novick, Jackson,
Thayer, & Cole, 1972; Peterson & Brown, 2005; Stanley &
Jarrell, 1989), because standardized regression coefficients are
effect sizes commonly used in various domains, including
medicine (e.g., Nieminen, Lehtiniemi, Vähäkangas, Huusko,
& Rautio, 2013; Paul, Lipps, & Madden, 2006), psychology
(e.g., Pratt et al., 2009), and educational sciences (e.g.,
Bowman, 2012). By definition, a standardized regression co-
efficient (also called a beta weight) represents the estimated
number of standard deviations of change in the outcome var-
iable for one standard deviation unit change in the predictor,

while controlling for other predictors. The meta-analysis of
standardized regression coefficients has the potential to yield
a more accurate estimate of the effect of a predictor variable on
a dependent variable after controlling for other variables that
might also be related to the outcome variable.

Standardizing regression coefficients is especially conve-
nient in fields in which the dependent variable can be mea-
sured on several scales, since thanks to the standardization the
coefficients become comparable. For example, in the meta-
analysis by Nieminen et al. (2013), the relationship between
maternal exposure to polychlorinated biphenyls and the birth
weights of newborns was explored. They affirmed that beta
weights are Bnatural measures of interest^ (p. 3), not only
because the exposure levels in the original studies were mea-
sured in different units, but also because of many confounding
variables (e.g., smoking, age, body mass index of the mother,
etc.) that needed to be controlled for. Another example is the
meta-analysis by Yin, Schmidt, and Besag (2006), in which
the combination of standardized regression slopes was useful
because it permitted Baggregation and comparison across
states using different assessment tests^ (p. 53). Another exam-
ple is found in the meta-analysis by Ferguson (2015a), in
which the influence of video games on children’s and
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adolescent’s aggression, mental health, and other variables
was studied. In Ferguson’s words, BControlling for gender as
well as other theoretically critical factors—such as trait ag-
gression, family violence, peer delinquency, and mental
health—is essential,^ (p. 648) since these are potentially con-
founding variables. For these reasons, many researchers advo-
cate the use of standardized regression coefficients as effect
sizes (e.g., Ferguson, 2015b; Pratt et al., 2009). Nevertheless,
the use of beta weights as effect sizes also has its detractors
(see, e.g., Greenland, Maclure, Schlesselman, Poole, &
Morgenstern, 1991), because of beta weights’ incomparability
across studies when the same dependent variable has
dissimilar variances in different studies or when the regression
models from which the beta weights are taken include
different covariates.

Nowadays, many methods for synthesizing regression co-
efficients exist. Most of these methods are of one of two kinds:
univariate methods to combine regression coefficients for
each predictor separately, such as classical weighted least
squares methods (Hedges & Olkin, 1985; used by, e.g., Bini,
Coelho, & Diniz-Filho, 2001), and multivariate methods to
combine the vectors of regression coefficients, such as the
generalized least squares approach described by Becker and
Wu (2007). Unfortunately, all of these methods have some
limitations: (1) The multivariate approaches assume that the
meta-analyst Bknows^ in advance the covariance between the
beta weights for the predictors in a study’s model, whereas
primary studies rarely give information on covariances be-
tween the regression coefficients, and (2) no approach allows
for combining standardized regression coefficients that come
from regression models that include different covariates. A
recent method proposed by Yoneoka and Henmi (2017) ex-
tends the multivariate approach of Becker and Wu and allows
regression coefficients that come from different regression
models to be incorporated in the analysis. However, regres-
sion models with more than three covariates are difficult to
incorporate, and furthermore, this method requires all primary
studies to report the sample size, mean, and variance of all
covariates, the regression coefficients and their variances,
and the standard error of the regression; reporting all this in-
formation in all primary studies, however, seems unlikely.
Alternative approaches, if researchers have access to the raw
data of all included studies, are the iterative least squares
(Hanushek, 1974) and multivariate Bayesian (Novick et al.,
1972) approaches, but this situation is exceptional, since meta-
analysts of group-comparison experimental design studies can
normally count on having only the descriptive and inferential
statistics, not the raw data.

Recent methodological research has focused on synthesiz-
ing other effect sizes that are functions of the beta weights
rather than of the standardized regression coefficients them-
selves. For example, Peterson and Brown (2005) proposed
using an approximation of the bivariate Pearson correlation

coefficient based on knowledge of the standardized regression
coefficient, and then meta-analyzing the correlation coeffi-
cients instead of the beta weights. However, although this
approximation is based on a huge amount of real data, it is
based only on empirical data, and not on any statistical theory
or simulation study. Moreover, recent research (Aloe, 2015)
has shown that in many scenarios the Peterson and Brown
index does not approximate the bivariate correlation well. In
addition, this transformation of betas into correlation coeffi-
cients normally responds to a false perception that correlation
coefficients provide a more Bhomogeneous^ effect size than
do standardized regression coefficients, making them per-
ceived as better effect sizes to combine. However, correlation
coefficients can be as heterogeneous as beta weights, because
the correlation coefficients from different studies are obtained
with different samples, different measures, and so forth.

On the other hand, other authors have proposed the use of
other effect sizes from the correlation family, such as the
semipartial correlation, instead of the standardized regression
coefficient (Aloe & Becker, 2009, 2012). The semipartial cor-
relation coefficient represents the unique effect of the jth pre-
dictor on the outcome variable, after partialing out from Xj the
effects of all other predictors in the model. The context in
which semipartial correlations are used in primary studies is
not exactly the same one in which standardized regression
coefficients are used. Normally, researchers calculate the
(squared) semipartial correlation in primary studies when the
main interest is to estimate the amount of unique variance that
a predictor variable X explains of Y. In contrast, researchers
focus more on standardized regression coefficients when the
interest is in the effect that X has on Y, controlling for the
presence of other variables that could be related to the out-
come variable Y. Furthermore, because they refer to different
parameters, standardized regression coefficients and
semipartial correlations should not be combined in a single
analysis. Also note that semipartial correlations depend on
what predictors are partialed out of the focal predictor, X,
which means that the semipartial correlations reported from
various studies are not necessarily immediately comparable,
which is the same problem encountered with combining beta
weights.

Several approaches to pooling standardized regression co-
efficients are statistically correct. For instance, it is possible to
perform meta-analyses of standardized regression coefficients
(of the focal predictor) that arise from the same regression
model (i.e., doing meta-analysis separately for the slopes from
each model defined by a set of included predictors). A second
strategy was suggested by Aloe and Becker (2012), consisting
of coding an indicator or dummy variable that indicates the
presence or absence of a specific covariate or a set of covari-
ates in the regression model. By coding the presence of a
specific covariate/set of covariates as 0 and the absence as 1,
and then performing a meta-regression with these indicator
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variables as predictors, the estimated intercept can be
interpreted as the combined effect size when there are no co-
variates, whereas the regression coefficient(s) of the indicator
variable(s) would represent the expected change in the com-
bined effect size when the specific covariate(s) is/are included
in the regression model.

Although these approaches are feasible, the present study
aims to propose a new approach that starts from the following
idea: We can use the common information shared by the stan-
dardized regression coefficients from different models to im-
prove the precision of a focal pooled beta-weight estimate. By
Bcommon information shared,^ we refer to the underlying
correlation coefficients: Population standardized regression
coefficients from different regression models can be written
in terms of population correlation coefficients. Observed re-
gression weights therefore give information on the underlying
correlation coefficients, and therefore also on the other popu-
lation regression weights, even if they stem from other regres-
sion models. Using the new approach, we can get estimates of
the mean underlying correlation coefficients, but also of the
standardized regression weights of interest. This is a first ad-
vantage of the approach: The meta-analyst can decide which
effect size to report, on the basis of the specific goal of the
meta-analysis. This could, for instance, be the bivariate corre-
lation betweenX1 and Y, but also the standardized weight ofX1

after accounting for X2, or the weight of X1 after accounting
for X2 and X3. Another advantage is that we expect to get more
accurate estimates because more information will be used for
estimating a focal combined standardized regression coeffi-
cient, which is highly important, since a central tenet in the
discipline of meta-analysis is to increase the precision of the
effect size estimates through the accumulation of evidence. A
third advantage of the proposed method is that it does not
require that the primary studies report correlation coefficients:
Only the standardized regression coefficients and their stan-
dard errors are used as input. Because the approach is based on
the relation between the regressionweights and the underlying
correlation coefficients, we have named it the concealed cor-
relations meta-analysis approach. This approach is explained
in greater detail in the following section.

The concealed correlations meta-analysis
approach

Let Y, X1, …, Xj be random variables, where Y represents a
dependent variable and X1, …, Xj represent the j predictor
variables. Let us consider the example of a researcher who
wants to calculate the pooled effect that a predictor variable
X1 has on an outcome Y—that is, a combined estimate of the
standardized regression weight β1—and suppose j = 3. The
investigator finds 40 primary studies that used regression anal-
ysis to explore the effect of X1 on Y. Ten out of the 40 studies

explored the model Yi = β1(1)Xi1 + εi (Model 1), where i refers
to a study participant and βj(p) is the standardized regression
coefficient for Xj for model p. Ten studies included a covariate
in the model, X2, resulting in the within-study regression mod-
el Yi = β1(2)Xi1 + β2(2)Xi2 + εi (Model 2). Another ten studies
explored Model 3, Yi = β1(3)Xi1 + β3(3)Xi3 + εi, and the last ten
of the studies included the predictor and the other two covar-
i a t e s , r e s u l t i n g i n M o d e l 4 :
Yi = β1(4)Xi1 + β2(4)Xi2 + β3(4)Xi3 + εi. The error term, repre-
sented as εi, follows a normal distribution, εi ~ N 0;σ2

i

� �
:

The ordinary least squares estimates of the standardized re-
gression coefficients of X1 for the four models, b1(1), b1(2) ,
b1(3), and b1(4), are calculated with Eqs. 1–4, respectively:
b1 1ð Þ ¼ rY1; ð1Þ
b1 2ð Þ ¼

rY1−rY2r12
1−r212

; ð2Þ

b1 3ð Þ ¼ rY1−rY3r13
1−r213

; ð3Þ

b1 4ð Þ ¼
1−r223
� �

rY1 þ r13 r23−r12ð ÞrY2 þ r12r23−r13ð ÞrY3
1−r212−r213−r223 þ 2r12r13r23

; ð4Þ

where rY1, rY2, rY3, r12, r13, and r23 are the sample correlations
between the variables Y , X1, X2, and X3, respectively. The
sample correlations are the estimates of the population corre-
lation ρY1, ρY2, ρY3, ρ12, ρ13, and ρ23, respectively. From these
equations, we can see that the estimated standardized regres-
sion coefficient b1 refers to a different parameter when the
covariates included in the regression model are not the same.

Our proposal is to estimate the standardized regression co-
efficients of each of the four models (in this case, one com-
bined estimate for the each of the four parameters: β1(1), β1(2) ,
β1(3) and β1(4)), but doing so using a single model based on the
data from all studies. The main idea is to take advantage of the
common information that these four parameters contain in
estimating β1(1), β1(2), β1(3), and β1(4). From the example
above, we see that the four estimates of the regression weight
of X1 are based on the correlation rY1, and therefore contain
information about the population parameter ρY1. In the same
way, Eqs. 2 and 4 both contain the correlations rY2 and r12,
which represent the population parameters ρY2 and ρ12, and
Eqs. 3 and 4 contain the correlations rY3 and r13 (which rep-
resent the population parameters ρY3 and ρ13, respectively). If
we were to synthesize only the standardized regression coef-
ficients from the studies that used Model 1, we would then
ignore the information about parameter ρY1 contained in stud-
ies using Models 2, 3, and 4. Similarly, when we synthesize
only the standardized regression coefficients from fitting
Model 2 [b1(2)], then we ignore the information about param-
eter ρY1 contained in the first type of studies, as well as the
information about ρ12 and ρY2 contained in the fourth set of
studies (Model 4). To take advantage of all common informa-
tion that the beta weights share, we can first describe the
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distributions of the observed regression weights b in terms of
their underlying correlation coefficients ρ. These distributions
change as a function of the regression model. For instance,
following the previous example, we can say that b1(1) follows
an approximately normal distribution with mean β1(1) (which
is equal to the population correlation ρY1) and variance (1
− ρY1

2)2/nk, where nk is the sample size of study k. In the case
of b1(2), where the covariates X1 and X2 are included in the
model, b1(2) and b2(2) follow a multivariate normal distribution
described by Becker (1992):

b1 2ð Þ
b2 2ð Þ

� �
∼N

β1 2ð Þ
β2 2ð Þ

� �
;A ΣkA

0
� �

;

where β1(2)=
ρY1−ρY2ρ12

1−ρ212
and β2(2)=

ρY2−ρY1ρ12
1−ρ212

. The formulas for

obtaining matrices A and Σk can be found in Becker (1992).
Similarly, the standardized regression coefficients of Model 3
follow a multivariate normal distribution:

b1 3ð Þ
b3 3ð Þ

� �
∼N

β1 3ð Þ
β3 3ð Þ

� �
;A ΣkA

0
� �

;

where β1(3)=
ρY1−ρY3ρ13

1−ρ213
and β3(3)=

ρY3−ρY1ρ13
1−ρ213

. Finally, the beta

weights of Model 4 are distributed according the following
multivariate normal distribution:

b1 4ð Þ
b2 4ð Þ
b3 4ð Þ

2
4

3
5∼N

β1 4ð Þ
β2 4ð Þ
β3 4ð Þ

2
4

3
5;A ΣkA

0

0
@

1
A;

where

β1 4ð Þ ¼
1−ρ223
� �

ρY1 þ ρ13 ρ23−ρ12ð ÞρY2 þ ρ12ρ23−ρ13ð ÞρY3
1−ρ212−ρ213−ρ223 þ 2ρ12ρ13ρ23

;

ð5Þ

β2 4ð Þ ¼
1−ρ213
� �

ρY2 þ ρ13 ρ23−ρ12ð ÞρY1 þ ρ12ρ23−ρ13ð ÞρY3
1−ρ212−ρ213−ρ223 þ 2ρ12ρ13ρ23

;

ð6Þ
and

β3 4ð Þ ¼
1−ρ212
� �

ρY3 þ ρ12 ρ13−ρ23ð ÞρY2 þ ρ12ρ23−ρ13ð ÞρY1
1−ρ212−ρ213−ρ223 þ 2ρ12ρ13ρ23

:

ð7Þ

Once we have defined the distribution of the standardized
regression coefficients existing in our data and described the
expected means in terms of population correlation coeffi-
cients, we can proceed to estimate the parameters of interest
more precisely thanks to these known relationships. The pa-
rameter of interest can be either a standardized regression
coefficient of the focal predictor (i.e., β1(1), β1(2), β1(3), or
β1(4)) or the correlation coefficients (i.e., ρY1, ρY2, ρY3, ρ12,
ρ13, ρ23).

The estimation of the population standardized regression
coefficients and correlation coefficients can be done with any
program or procedure that allows the user to constrain the
relationships between the parameters that need to be estimated
(namely the βs and the ρs). For example, one option is to carry
out the estimation using software for Bayesian data analysis,
for instance the WinBUGS software (Lunn, Thomas, Best, &
Spiegelhalter, 2000). Another option is to use the PROC
NLMIXED procedure in SAS, which is what we used in the
present study. It is also possible to fit a random-effect model
rather than a fixed-effect model, allowing each study to esti-
mate its own population correlation coefficient ρY1. The vari-
ation between population correlation coefficients is reflected
in the estimated between-study variance (τ2), and its correct
estimation is highly relevant, because it is incorporated in the
random-effect weights and therefore has a direct influence on
the estimation of the combined effect size. An SAS syntax for
fitting the parameters of fixed- and random-effect models is
given in Appendix A.

Although this last approach makes sense conceptually, giv-
en the complexity of its implementation it is worth assessing
empirically how well it works and comparing its functioning
with alternative approaches. The purpose of this study was
therefore to compare the estimates obtained by three different
approaches. These approaches include (1) the concealed cor-
relations meta-analysis approach, (2) the approach in which
the standardized regression coefficients are combined sepa-
rately for each type of model, and (3) Aloe and Becker’s
(2012) approach using a single model that includes a categor-
ical variable distinguishing to which of the four types of
models a standardized regression coefficient belongs. We ex-
pected that the estimates obtained using the concealed corre-
lations meta-analysis method would be more accurate, since
we were using more information than in the second approach
and were explicitly modeling the relation between the regres-
sion weights, as apposed to the third approach.

Method

A simulation study was performed in order to evaluate the
parameter recovery of the new concealed correlations meta-
analysis approach and to compare it to both an approach in-
volving separate meta-analyses for model type and Aloe and
Becker’s (2012) single regression model approach. Next, we
compared these approaches using a real meta-analytic dataset.

Data generation

To evaluate the performance of these approaches, meta-
analytic datasets were generated under different scenarios,
using a fixed- or random-effect model to generate and analyze
the data, and varying the total number of studies (K = 10, 20,
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and 40) within the meta-analysis, the sample size of primary
studies (n = 50 and 200), and the population correlation matrix
from which data were generated. In a first step, raw scores for
Y, X1, X2, and X3 were randomly drawn from a multivariate
normal distribution for each study. In the fixed-effect case, the
raw data were drawn from a multivariate normal distribution
with mean (0, 0, 0, 0) and a correlation matrix of either

1 :5 :5
:5 1 :25
:5 :25 1

:5
:25
:25

:5 :25 :25 1

2
64

3
75 or

1 :25 :25
:25 1 :25
:25 :25 1

:25
:25
:25

:25 :25 :25 1

2
64

3
75. When

a random-effect model was considered, random variation
was only introduced in the correlation between the criterion
variable Y and the covariate of interest X1 (ρY1). Random de-
viations of the study-specific correlations from the overall
correlation were taken from a uniform distribution between
the values – .20 and .20, so the per-study ρY1 ranged between
either .30 and .70 or .05 and .45.

In a second step, each study’s dataset was analyzed using
the relevant regression model, and the standardized regression
weights and corresponding standard errors were saved. As is
summarized in Table 1, for a subset of the studies’ data, the
first model was used, in which only one variable was included
(X1). For other studies, we fitted the second model, in which Y
was regressed on two variables (X1 and X2). For a third set of
studies, Y was regressed on X1 and X3, and in the final set of
studies, we fitted a model with three predictor variables (X1,
X2, and X3). The expected standardized regression weights
were computed from the correlation matrices using the formu-
las given by Cooley and Lohnes (1971).

The analysis used afterward matched the way in which the
data were generated, meaning that if the data were generated
using a fixed-effect model, they were after analyzed using a
fixed-effect approach, and the same applied for random ef-
fects. Thus, in total there were 2 × 2 × 2 × 3 conditions (fixed
vs. random, three numbers of studies, two numbers of sample
sizes, and two population correlation matrices). For each of
these 24 conditions, 3,000 datasets were simulated. Table 1
describes the models that were used in these analyses.

Data analysis

Once the standardized regression coefficients were obtained,
we analyzed them according to the three different approaches.
For the concealed correlations meta-analysis approach, anal-
yses were done using the PROC NLMIXED procedure in
SAS (see Appendix A for the code).We followed the proposal
of Kalaian and Raudenbush (1996), to use Cholesky factori-
zation to make the transformed coefficients within studies
independent before analyzing them in a meta-analysis. In this
way, the standardized regression coefficients belonging to the
same study become independent (and their variance became
1), and therefore we could specify univariate distributions

(instead of a multivariate one, as proposed by Becker, 1992)
for the beta weights, simplifying the estimation procedure.
Kalaian and Raudenbush (1996) showed that this transforma-
tion does not affect the model parameters of interest in a meta-
analysis (i.e., the mean effect size, the moderator effects, or the
between-study covariance matrix).

For the approach in which the standardized regression coef-
ficients were combined separately for each model, classical
meta-analytic techniques were applied in order to obtain
precision-weighted average standardized regression coeffi-
cients (Hedges & Vevea, 1998). Meta-analyses in this approach
were performed using PROCMIXED from SAS, using restrict-
ed maximum likelihood estimation when a random-effect mod-
el was fitted (see Appendix B for the code). From now on, this
approach will be called the Bseparate meta-analysis approach.^

For the last approach, which will be called Bregression meta-
analysis,^ the regression coefficients of the focal predictor were
regressed on an indicator variable with four categories, which
was created with values of 1 through 4 representing Models 1
through 4, respectively. By dropping the intercept from this
model, we got estimates for the regression weight of the focal
predictor for the four types of models (i.e., b1(1), b1(2), b1(3),
b1(4)). This model specification is very similar to the proposal
of Aloe and Becker (2012), which consists of using a meta-
regression with two dummy variables that represent the pres-
ence (0) or absence (1) of the covariates X2 and X3 in the model.
The main difference between the method applied in this study
and the original proposal of Aloe and Becker (2012) is that in
the latter, the intercept of the meta-regression would be
interpreted as the combined effect size corrected for the effect
of covariates X2 and X3, whereas the estimated coefficients of
the dummy variables would be interpreted as the units of

Table 1 Overview of the regression models fitted in the studies

Case Studies m Models

1 (K=10) Studies 1 to 2 2 Yi = β1(1)Xi1 + εi
Studies 3 to 5 3 Yi = β1(2)Xi1 + β2(2)Xi2 + εi
Studies 6 to 8 3 Yi = β1(3)Xi1 + β3(3)Xi3 + εi
Studies 9 to 10 2 Yi = β1(4)Xi1 + β2(4)Xi2 + β3(4)Xi3 + εi

2 (K =20) Studies 1 to 5 5 Yi = β1(1)Xi1 + εi
Studies 6 to 10 5 Yi = β1(2)Xi1 + β2(2)Xi2 + εi
Studies 11 to 15 5 Yi = β1(3)Xi1 + β3(3)Xi3 + εi
Studies 16 to 20 5 Yi = β1(4)Xi1 + β2(4)Xi2 + β3(4)Xi3 + εi

3 (K =40) Studies 1 to 10 10 Yi = β1(1)Xi1 + εi
Studies 11 to 20 10 Yi = β1(2)Xi1 + β2(2)Xi2 + εi
Studies 21 to 30 10 Yi = β1(3)Xi1 + β3(3)Xi3 + εi
Studies 31 to 40 10 Yi = β1(4)Xi1 + β2(4)Xi2 + β3(4)Xi3 + εi

K = number of studies within the meta-analysis; m = number of studies
that explore each of the possible regression models. Because in the con-
dition in which K = 10 the number of studies is not divisible by 4, we
randomly assigned two studies to Models 1 and 4 and three studies to
Model 2 and 3.
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change in the effect size when a certain variable is excluded
from the regression model. On the basis of these coefficients,
we can derive those we would expect for the four types of
models (b1(1), b1(2), b1(3), b1(4)). If the effect of the absence of
both X2 and X3 were exactly equal to the sum of the effect of the
absence of X2 and the effect of the absence of X3, both models
would, however, be equivalent.

Evaluation of performance

For each condition, the fixed-effect and (co)variance parame-
ter estimates, as well as the standard error estimates from the
three approaches, were summarized across the 3,000 itera-
tions. Several aspects were considered when evaluating the
estimation of the aggregated standardized regression coeffi-
cients: the bias, relative bias (RB), precision, and mean
squared error (MSE) of the estimates. To evaluate the accuracy
of the estimation of the fixed effects, bias was approximated
by calculating the average of the deviations of the estimated
value from the true value. The precision of the standardized
regression coefficients was evaluated by looking at the stan-
dard deviations of the estimates: the lower the standard devi-
ation, the higher the precision of the estimate. Finally, theMSE
was approximated by calculating the average squared devia-
tion of the estimates from the true values. For evaluating the
estimation of the underlying correlation coefficients (only ob-
tained through the new approach), the bias and RB were also
calculated, but using the median instead of the average, be-
cause we obtained a few outlying correlation coefficient esti-
mates that had a great influence on the average but not on the
median estimates.

For evaluating the fixed-effect parameters’ standard error
estimates, we estimated the bias by subtracting the standard
deviation of the fixed-parameter estimates from the median
estimated standard error value. The median of the standard
errors was preferred over the mean because these parameters
tend to have skewed distributions (the same procedure had
been used in other simulation studies for evaluating standard
error estimates, as in Van den Noortgate, López-López,
Marín-Martínez, & Sánchez-Meca, 2014).

Afterward, the RB of the estimated beta weights, their stan-
dard errors, and the correlation coefficients were calculated by
dividing the estimated bias by the true value of the parameter
(or, for the standard errors, by dividing the estimated bias by
the standard deviation of the fixed parameter estimates). For
evaluating the RB values, we followed the cutoffs proposed
by Hoogland and Boomsma (1998): An RB is moderate but
acceptable if its value is between 5% and 10%, whereas an RB
is considered unacceptable if its value is above 10%.1

Finally, analyses of variance (ANOVAs) were conducted to
detect the extent to which simulation design factors were re-
lated to the precision of the estimates (i.e., the standard devi-
ation of fixed parameter estimates). From these analyses, we
looked at the value of eta-squared to know which simulation
conditions were more relevant.

Results

Bias and relative parameter bias

An important first result is that the standardized regression
coefficients were always estimated without relevant bias, in-
dependently of condition or procedure (Table 2).

Regarding the estimation of the correlation coefficients
(Table 3), we found that practically all median correlations
were close to the true values when the sample size of the
primary studies was 200.When the sample size of the primary
studies was smaller (n = 50), the correlations between the
criterion and the covariates were estimated without bias, but
some correlations between covariates were overestimated
when a fixed-effect model was fitted and the number of stud-
ies was small (K=10), and when a random-effect model was
fitted and the number of studies was large (K=20 or 40).

In the following section the precision andMSE of the fixed
parameter estimates will be discussed, as well as the estima-
tion of the standard errors. We start with the condition in
which a fixed-effect model was used to generate and analyze
the data, and continue with the case in which the correlation
between X1 and Y was generated with a random component,
and therefore a random-effect model was used.

MSE and relative standard error bias

Fixed-effect model estimates When a fixed-effect model was
used, the pooled beta weights for each model were estimated
more precisely through the concealed correlations meta-
analysis method, since the standard deviation of the estimates
was lower (mean = .039) than the standard deviation of the
estimates obtained when meta-analyses were performed sep-
arately or when a regression model was fitted (both with mean
= .044). In addition, the MSE was lower when the new ap-
proach was applied (Table 4). However, an ANOVA per-
formed on the true standard deviations showed stronger ef-
fects of the number of studies included in the meta-analysis
(η2= .32) and the sample size (η2= .51) than of the method
used (η2= .01). As expected, the more studies and the larger
their sample sizes, the higher the precision of the pooled beta
weights, and hence the smaller the standard deviation.

With respect to the RB of the standard error estimates, we
found no substantial RB when the correlations between the
criterion variable and the predictors were small (i.e., .25), and

1 These cutoffs are in absolute values. An RB below 5% was considered
ignorable.
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therefore in Table 5 only the results of the condition in which
the correlations between criterion and predictor variables were
large (i.e., .50) are shown. In this condition, no large differ-
ences between the approaches were observed: All procedures
substantially overestimated the standard error of b1(1). This
overestimation was likely due to the fact that b1(1) equals the
correlation coefficient between the criterion and the predictor
variable X1 (rY1), and the variance of correlation coefficient
estimates depends on the correlation’s value, which can lead
to biased estimates of their variances and standard errors
(Meng, Rosenthal, & Rubin, 1992). Therefore, we ran another
simulation (with just 1,000 iterations per condition) in which
the value of b1(1) was transformed to a Fisher’s Z score before
performing the three approaches (see the formulas on p. 231 of
Borenstein, 1994). These results are shown at the bottom of

Table 5: The standard error of the combined b1(1) increased,
and the relative standard error bias was below 10% for all
three approaches, meaning that the initial overestimation of
the standard error of b1(1) was likely related to the bias in the
estimation of the variances of the correlation coefficients. Also
in this case, in which b1(1) was transformed, the concealed
correlations meta-analysis approach led to smaller estimates
of the mean standard deviation of the mean estimate.
Furthermore, all standardized regression coefficients (i.e.,
b1(1), b1(2), b1(3), and b1(4)) were accurately estimated with
the new method, despite the use of Zb1 1ð Þ instead of b1(1) in
the analyses. Finally, the relative standard error biases of the
rest of the pooled beta weights were within the acceptable
thresholds (within ± 8%) in all conditions and with all
methods.

Table 3 Median estimates of the underlying correlation coefficients

True Value Fixed Effect Random Effects

K = 10 K =20 K=40 K =10 K =20 K=40

n = 50 n = 200 n = 50 n = 200 n = 50 n = 200 n = 50 n = 200 n = 50 n = 200 n = 50 n = 200

rY1 .500 .512 .504 .512 .503 .512 .503 .523 .511 .528 .511 .531 .512

rY2 .500 .514 .504 .513 .503 .512 .502 .519 .511 .524 .510 .528 .512

rY3 .500 .516 .504 .515 .503 .512 .504 .518 .509 .521 .512 .530 .510

r12 .250 .262 .257 .263 .252 .261 .251 .272 .267 .291 .271 .301 .273

r13 .250 .271 .254 .264 .252 .259 .253 .273 .269 .284 .276 .304 .270

r23 .250 .278 .258 .266 .253 .260 .252 .299 .262 .269 .257 .273 .256

rY1 .250 .263 .254 .259 .252 .255 .252 .250 .252 .259 .252 .277 .253

rY2 .250 .269 .254 .264 .252 .258 .251 .250 .250 .258 .251 .277 .254

rY3 .250 .267 .253 .265 .253 .254 .252 .248 .250 .261 .252 .304 .253

r12 .250 .301 .257 .274 .252 .252 .246 .232 .249 .262 .253 .262 .263

r13 .250 .281 .253 .269 .250 .238 .255 .225 .254 .273 .254 .266 .263

r23 .250 .371 .267 .288 .250 .259 .250 .406 .270 .304 .246 .263 .255

Values in bold indicate when the RB of the estimates exceeded 10%; K = total number of studies within the meta-analysis; n = sample size of primary
studies

Table 2 Average estimates of the pooled standardized regression coefficients

Values of Correlation Matrix TV Fixed Effect Random Effects

S-MA R-MA CC-MA S-MA R-MA CC-MA

.50–.25 Model 1 – b1(1) .500 .510 .507 .507 .524 .509 .509

Model 2 – b1(2) .400 .405 .405 .405 .410 .409 .409

Model 3 – b1(3) .400 .405 .405 .405 .408 .407 .407

Model 4 – b1(4) .333 .335 .337 .337 .333 .338 .339

.25–.25 Model 1 – b1(1) .250 .253 .253 .254 .252 .252 .253

Model 2 – b1(2) .200 .202 .202 .202 .201 .202 .202

Model 3 – b1(3) .200 .203 .203 .203 .202 .203 .203

Model 4 – b1(4) .166 .169 .169 .169 .169 .169 .170

TV= true value; S-MA = separate meta-analysis approach; R-MA = regression meta-analysis approach; CC-MA: concealed correlations meta-analysis
approach
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Random-effect model estimatesWhen a random-effect model
was applied, the new approach also showed a smaller standard
deviation (.056) than did separate meta-analyses (.074) or the
regression meta-analysis approach (.073), reflecting a gain in
precision. TheMSE was also smaller when the new approach
was used (Table 4). This effect was more pronounced than
when we used a fixed-effect model. The one-way ANOVA
indeed showed a substantial effect of the approach used on
the true standard error estimates (η2 = .12), in addition to
strong effects of the number of studies within the meta-

analysis (η2 = .63) and of the sample size (η2 = .15). Just as
when a fixed-effect model was fitted, the larger the sample
size and the number of studies included in the meta-analysis,
the smaller the standard deviation.

Regarding the RB of the standard error estimates, the sep-
arate meta-analysis approach exhibited relative standard error
bias above the recommended cutoffs when the number of
studies within the meta-analysis was small (K = 10), whereas
all relative standard error biases obtained with the regression
meta-analysis approach were within the recommended thresh-
olds (see Table 6). The concealed-correlations meta-analysis
approach yielded underestimated standard errors when the
sample size and the number of studies were both small and
when the sample size was large but only 10 or 20 studies were
included in the meta-analysis. We also performed an addition-
al simulation study under a random-effect model (1,000 iter-
ations per condition) to verify whether the transformation of
b1(1) to Fisher’s Z scores before running the analysis of the
three approaches had reduced the amount of RB, but the re-
sults remained similar. Therefore, the Fisher-transformed re-
sults are not included in the table.

Real dataset

To illustrate the concealed correlations meta-analysis ap-
proach, we used part of the data from the meta-analysis by
Yang, Aloe, and Feeley (2014). In this meta-analysis, the au-
thors aimed to assess the overall effects of the risk information
seeking and processing (RISP) model. Specifically, they were
using meta-analysis to explore the relationships among the
variables within the RISP model, including information

Table 5 Standard deviations of the beta weights estimates and relative bias obtained when a fixed-effect model was fitted and when the correlations between the
dependent variable and the covariates were set to .50

K Separate MA Regression MA Concealed MA
n = 50 n = 200 n = 50 n = 200 n = 50 n = 200
SD RSEB (%) SD RSEB (%) SD RSEB (%) SD RSEB (%) SD RSEB (%) SD RSEB (%)

Model 1–b1(1) 10 .077 13.21% .037 16.66% .077 13.21% .037 16.66% .071 9.75% .033 15.51%
20 .049 13.64% .024 14.83% .049 13.64% .024 14.83% .044 12.27% .022 14.33%
40 .035 12.74% .016 18.16% .035 12.74% .016 18.16% .031 11.73% .015 17.13%

Model 2–b1(2) 10 .065 2.68% .031 6.64% .065 2.68% .031 6.64% .058 2.72% .027 7.44%
20 .050 2.69% .024 5.44% .050 2.69% .024 5.44% .043 3.72% .021 6.84%
40 .035 4.13% .017 3.52% .035 4.13% .017 3.52% .029 6.58% .015 5.65%

Model 3–b1(3) 10 .064 3.21% .032 3.69% .064 3.21% .032 3.69% .058 4.09% .027 5.07%
20 .051 0.84% .025 2.61% .051 0.84% .025 2.61% .043 2.74% .021 5.32%
40 .037 – 1.14% .017 4.94% .037 – 1.14% .017 4.94% .029 2.44% .015 6.34%

Model 4–b1(4) 10 .077 – 0.64% .037 2.47% .077 – 0.64% .037 2.47% .062 – 1.49% .029 4.39%
20 .049 – 0.57% .024 0.37% .049 – 0.57% .024 0.37% .041 – 1.19% .020 2.14%
40 .035 – 1.73% .017 0.11% .035 – 1.73% .017 0.11% .029 – 1.62% .014 1.84%
K Fisher’s Z score for b1(1)

N=50 N=200 N=50 N=200 N=50 N=200
SD RSEB (%) SD RSEB (%) SD RSEB (%) SD RSEB (%) SD RSEB (%) SD RSEB (%)

Model 1–Zb1 1ð Þ 10 .105 3.09% .049 2.42% .105 3.09% .049 2.42% .085 4.07% .041 4.20%
20 .066 – 0.45% .031 2.18% .066 – 0.45% .031 2.18% .055 3.04% .026 6.48%
40 .046 – 0.17% .022 1.02% .046 – 0.17% .022 1.02% .038 6.09% .019 5.06%

RSEB = relative standard error bias; the values in bold indicate unacceptable relative standard error bias. K = number of studies within the meta-analysis; n =
sample size of primary studies; SD = approximation to the true standard deviation; MA = meta-analysis; CC-MA: concealed correlations meta-analysis

Table 4 Mean squared errors

Fixed Effect Random Effects

S-MA R-MA CC-MA S-MA R-MA CC- MA

Model 1–b1(1)
K=10 .0059 .0059 .0052 .0114 .0114 .0068
K=20 .0024 .0024 .0022 .0047 .0046 .0034
K=40 .0012 .0012 .0011 .0024 .0023 .0017

Model 2–b1(2)
K=10 .0042 .0042 .0035 .0085 .0085 .0055
K=20 .0025 .0025 .0020 .0051 .0050 .0032
K=40 .0013 .0013 .0009 .0026 .0026 .0015

Model 3–b1(3)
K=10 .0041 .0041 .0035 .0083 .0083 .0055
K=20 .0026 .0026 .0020 .0051 .0051 .0031
K=40 .0014 .0014 .0010 .0026 .0026 .0015

Model 4–b1(4)
K=10 .0061 .0061 .0043 .0134 .0134 .0062
K=20 .0025 .0025 .0018 .0055 .0055 .0041
K=40 .0013 .0013 .0009 .0028 .0028 .0014

K = number of studies within the meta-analysis; S-MA = separate meta-
analysis approach; R-MA = regression meta-analysis approach; CC-MA:
concealed correlations meta-analysis
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insufficiency, risk judgment, worry, informational subjective
norms, risk information seeking, systematic processing, and
so forth. For our illustration, we used a subset of ten studies.
Because the primary studies reported correlation matrices, we
computed the standardized regression coefficients, their stan-
dard errors, and the covariance between the beta weights using
the formulas of Cooley and Lohnes (1971).

The datasets from the primary studies were set to one of
four models, listed in Table 7. The focal predictor or the effect
we aimed to synthesize in this example was the standardized
regression coefficient for informational subjective norms
(ISN) as a predictor of risk information seeking (RIS). The
predictors in each of the four models were as follows:

Model 1: RIS = β1 · ISN,
Model 2: RIS = β1 · ISN + β2 · Current Knowledge (CK),

Model 3: RIS = β1 · ISN + β3 · Perceived Information
Gathering Capacity (PIGC),
Model 4: RIS = β1 · ISN + β2 ·CK + β3 · PIGC,

where ISN, CK, and PIGC constituted the predictor variables
X1, X2, and X3 respectively. A random-effect meta-analytic
model was fitted first. As is shown in Table 8, whereas the
separate meta-analysis and the regression meta-analysis ap-
proach led to similar estimates of the combined standardized
regression coefficients, the estimates obtained through the
concealed correlations meta-analysis approach differed. In
general, standard errors were smaller when the concealed cor-
relations meta-analysis approach was applied, except for the

Table 6 Standard deviations of the beta weights estimates and relative bias obtained when a random-effect model was fitted and when the correlations between
the dependent variable and the covariates were set to .50

Separate MA Regression MA Concealed MA

N=50 N=200 N=50 N=200 N=50 N=200

SD RSEB (%) SD RSEB (%) SD RSEB (%) SD RSEB (%) SD RSEB (%) SD RSEB (%)

Model 1–b1(1) 10 .114 – 18.1% .088 – 27.3% .114 0.4% .088 5.3% .098 – 12.84% .065 – 12.66%
20 .072 – 9.9% .057 – 5.6% .071 5.2% .056 6.4% .063 – 9.59% .047 – 14.58%
40 .052 – 6.6% .041 – 4.9% .050 7.1% .041 3.5% .042 – 3.19% .028 0.90%

Model 2–b1(2) 10 .094 – 14.9% .079 – 13.2% .094 0.4% .078 5.3% .081 – 11.94% .063 – 16.04%
20 .075 – 8.8% .059 – 3.1% .075 5.2% .059 6.4% .063 – 1.86% .049 – 18.53%
40 .053 – 4.1% .043 – 3.3% .053 7.1% .043 3.5% .044 – 8.45% .030 – 4.78%

Model 3–b1(3) 10 .097 – 15.0% .077 – 11.8% .097 – 6.7% .077 – 2.7% .084 – 14.58% .061 – 14.56%
20 .076 – 8.8% .060 – 3.9% .075 – 3.9% .060 – 1.3% .063 – 12.56% .048 – 15.68%
40 .053 – 4.6% .043 – 3.8% .053 – 1.3% .043 – 2.2% .045 – 9.35% .029 – 1.29%

Model 4–b1(4) 10 .119 – 27.5% .099 – 29.3% .119 – 1.2% .099 – 8.9% .087 – 11.81% .063 – 11.88%
20 .076 – 8.4% .062 – 4.6% .075 – 7.2% .062 – 5.8% .061 – 12.16% .045 – 11.10%
40 .055 – 5.9% .044 – 1.7% .055 – 7.7% .044 – 5.3% .042 – 6.90% .029 0.50%

The values in bold indicate an unacceptable relative standard error bias (RSEB). K = number of studies within the meta- analysis; SD = approximation to the true
standard deviation; MA = meta-analysis; CC-MA: concealed correlations meta-analysis

Table 8 Standardized regression coefficient estimates by model and
approach when both random- and fixed-effect models were fitted

Random-Effect Model
Separate MA Regression MA CC-MA
Est. SE τ2 Est. SE τ2 Est. SE τ2

Model 1 b1(1) .398 .025 .000 .397 .084 .013 .492 .038 .014
Model 2 b1(2) .582 .063 .011 .581 .068 .501 .046
Model 3 b1(3) .383 .080 .018 .384 .068 .500 .046
Model 4 b1(4) .660 .098 .018 .661 .082 .500 .046

Fixed-Effect Model
Separate MA Regression MA CC-MA
Est. SE Est. SE Est. SE

Model 1 b1(1) .398 .025 .398 .025 .416 .018
Model 2 b1(2) .626 .014 .626 .014 .610 .010
Model 3 b1(3) .430 .019 .430 .019 .456 .018
Model 4 b1(4) .699 .016 .699 .016 .638 .008
Model 1–Zb1 1ð Þ .421 .030 .422 .030 .456 .020

Est. = estimates; SE = standard errors; CC-MA: concealed correlations meta-
analysis; τ2 = between-studies variance. Because NLMIXED only gives
estimates of the between-studies variance of the correlation coefficients,
not of the standardized regression weights, τ2 is given only for the coef-
ficient of Model 1

Table 7 Summary of the studies used in the example using real data

Model n Regression Model

Model 1
Study 1 634 Yi1 = .404 · Xi1 + ei1
Study 2 456 Yi2 = .391 · Xi1 + ei2

Model 2
Study 3 828 Yi3 = .651 · Xi1 + .090 · Xi2 + ei3
Study 4 296 Yi4 = .441 · Xi1 − .002 · Xi2 + ei4

Study 5 804 Yi5 = .635 · Xi1 + .083 · X2i + ei5
Model 3
Study 6 500 Yi6 = .308 · Xi1 + .105 · Xi3 + ei6
Study 7 500 Yi7 = .294 · Xi1 + .028 · Xi3 + ei7
Study 8 736 Yi8 = .539 · Xi1 − .091 · Xi3 + ei8

Model 4
Study 9 645 Yi9 = .560 · Xi1 + .041 · Xi2 + .082 · Xi3 + ei9
Study 10 1007 Yi10 = .758 · Xi1 + .041 · Xi2 − .048 · Xi3 + ei10

n = sample size
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standard error for b1(1), which was lower when the studies
were combined separately. When a fixed-effect model was
fitted (bottom of Table 8), the results were more in line with
the three main results extracted from the simulation study.
First, the combined standardized regression coefficients were
similar across approaches. Second, the standard errors were
lower when all studies were analyzed using the concealed
correlations meta-analysis approach, reflecting again the gain
in precision. Third, when the standardized regression coeffi-
cients from Model 1 (b1(1)) were transformed into Fisher’s Z
scores, the standard errors obtained through the three ap-
proaches increased, but the estimate obtained through the
concealed correlations meta-analysis approach remained the
most precise. The conclusion of this meta-analysis is that ISN
significantly contributes to the explanation of RIS, and this
contribution is larger if the current-knowledge variable (X2)
is included in the regression model, as can be deduced from
Models 2 and 4.

Regarding estimation of the underlying correlation coeffi-
cients (Table 9), we saw that when a fixed-effect model was
fitted, some estimates were out of range (below - 1 or above
1), and therefore were constrained to – 1 or 1.When a random-
effect model was fitted, the estimates were within the accept-
able range, but the sign of the correlation between the criterion
variable Yand the predictor variable X2 was negative, whereas
in the real correlation matrices we see that none of the rY2
estimates were negative.

Discussion

In this article we have described, illustrated, and provided
SAS code for a new technique for combining standardized
regression coefficients in the context of meta-analysis. This
new approach, called concealed correlations meta-analysis,
not only allows researchers to use standardized regression
coefficients coming from studies that include different sets
of up to j = 3 covariates, but it also improves the precision
of the overall focal regression weight estimates, and increas-
ing the precision of effect size estimates is one of the main
goals in the meta-analytic discipline.

From the results of the simulation study, we can extract
some general conclusions: (1) The estimation of the combined

beta weights for each model is equally unbiased with all pro-
cedures, but (2) the estimates of the beta weights using the
concealed correlations meta-analysis approach are more pre-
cise than the estimates from doing either separate meta-
analysis for each type of model or regression analyses, since
the standard deviation and MSE are smaller. These findings
corroborate our initial hypothesis: By using information from
the beta weights of different kinds of models, the precision in
the estimates of the combined standardized regression coeffi-
cients increases. However, it should be noted that the pro-
posed approach slightly underestimates the standard errors
when a random-effect model is fitted, and overestimates the
standard errors when a fixed-effect model is fitted under some
circumstances. In the case of the fixed-effect model, the over-
estimations of the standard errors are similar in the three pro-
cedures and are corrected by transforming the standardized
regression coefficients of Model 1 into Fisher’s Z scores.
Therefore, the transformation of the beta weights of simple
regressionmodels into Fisher’s Z scores is highly recommend-
ed, independent of the approach used, because the standard
error estimates are more accurate. In the case of the random-
effect model, the new approach underestimates the standard
errors of some parameters, especially when the number of
participants within the primary studies is large, whereas the
estimates obtained through the regression meta-analysis ap-
proach exhibit RB within the recommended thresholds.
When the number of participants is 50, the relative standard
error bias obtained with the concealed correlations meta-
analysis approach is close to the limit of what we can consider
acceptable. Thus, although the proposed approach does not
work perfectly in this condition (n = 50), it does not seem to
work substantially worse than the other two approaches, and it
has the additional advantage of estimating the standardized
regression coefficients more precisely. An additional observa-
tion is that when a random-effect model was fitted, the RB of
the beta weights belonging to Model 1 did not decrease with
the transformation into Fisher’s Z scores.

Regarding the real-dataset analysis, a number of results are
worth discussing. When a random-effect model was fitted, the
standard error of the combined effect size was lower when a
separate meta-analysis approach was used, whereas we would
have expected the concealed correlations meta-analysis ap-
proach to lead to a lower standard error estimate. A probably
explanation is that the estimated between-study variance for
Model 1 was zero under the separate meta-analysis approach,
although some variation between studies was found under
Models 2, 3, and 4. If we combined the data for all models
together, as we did in both the concealed correlations meta-
analysis and regression meta-analysis approaches, there was
just one estimate of the between-study variance for ρY1 that
was based on all studies. Combining all data gives evidence
for between-study variance in ρY1. Because the standard error
of rY1 takes into account the additional uncertainty of the

Table 9 Estimated correlation coefficients

Random Effects Fixed Effect

rY1 .49 .42
rY2 –.18 –1.00
rY3 .18 .99
r12 –.41 –1.00
r13 .41 1.00
r23 –.99 –1.00
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population value due to the systematic between-study vari-
ance, the standard error was larger. Differences in the esti-
mates of the between-studies variance can also explain why
the fixed-effect estimates for the separate and combined ap-
proaches differed quite substantially. This was confirmed by
fitting a fixed-effect model, since the fixed-effect estimates
were more similar for the three approaches because the
weights used to calculate the combined beta weights were
the same.

An important advantage when using the concealed corre-
lations meta-analysis approach is that the researcher gets not
only more precise estimates of the standardized regression
coefficients, but also an estimation of the underlying correla-
tions between the variables. The researcher can then use the
effect size that is more suitable to the specific goal of the meta-
analysis. In the simulation study, we found that all correlation
coefficients were estimated accurately across all conditions
when the sample size of the primary studies was 200.
However, when the number of studies was ten and the sample
size of the primary studies was small, and especially under a
random-effect model, in some conditions the correlations be-
tween covariates were on average slightly overestimated.
Furthermore, when the average correlations were calculated,
we found that some of the correlations between the predictor
variables were out of their theoretical range. Some of these
estimation problems were reflected in the real-dataset exam-
ple, in which all the correlations between covariates were out
of range. Besides the expected underperformance due to the
small number of studies, there might have been other reasons
why the estimates were not accurate. For instance, in this
study we considered a scenario in which only the parameter
ρY1 varied over studies, and we assumed that all the other
underlying correlations did not vary across studies.
Nevertheless, not accounting for possible between-study var-
iability of correlation coefficients different from the focal one
can negatively affect the estimation of correlation coefficients.

The concealed correlations meta-analysis approach can be
extended in several ways. A first extension would be the in-
clusion of moderator variables to explain between-study var-
iance. Another extension would be the use of additional levels
of variation, to account for possible dependencies in the data
(Van den Noortgate et al., 2014). Finally, whereas in this arti-
cle we focused on four kinds of models, differing in whether
no, one, or two covariates were included, it is possible to
extend the approach to situations in which other covariates
might be included in some studies, or occasions in which the
regression models are not nested. We also would note that in
principle, adding a study that does not include the focal pre-
dictor but includes other predictors could further (indirectly)
improve the estimates of the correlation between the focal
predictor and the criterion (or a standardized regressionweight
of the focal predictor). At the same time, we see a risk: Studies
that do not include the focal predictor might systematically

differ from studies that include that predictor (e.g., in the kind
of population that is studied, the way the criterion variable is
defined, or the context). In that situation, including these kinds
of studies might induce bias when estimating the effect of the
focal predictor.

Although the new approach is promising, it is not free of
limitations. First, when there are too many predictors and/or
when too many different models appear in different studies,
deriving and coding the relation between the standardized
regression coefficients and the correlation coefficients can be-
come very cumbersome, which is similar to the problem faced
when using the method of Yoneoka and Henmi (2017). If we
had a model with four covariates, there would be ten correla-
tion coefficients, and all beta weights would be a function of
these ten correlation coefficients, so the formulas would be
longer and more complicated than the ones we specified in
this article. Therefore, the use of a more generic syntax should
be explored in the future. Second, adding additional covariates
could also lead to computational problems: If we have more
covariates, many more models that can potentially be com-
posed using these covariates, and therefore we would have
many more parameters to estimate. When there are too many
different models, it is likely that we would not have enough
studies available to estimate all the parameters. Third, for get-
ting (unique) estimates of all intercorrelations, the number of
different regression coefficients for which we have observed
data (eight, in our real example) has to be at least as high as the
number of unknown correlation coefficients (six, in the real
example). Thus, as the number of different covariates in-
creases among the models, the complexity of executing this
approach increases, as well. A fourth limitation is that the
approach assumes that the between-study variation in a corre-
lation coefficient is the same for all types of models. Although
this seems a reasonable assumption, it is unclear when this
assumption might be violated and what consequences it might
have for the results. Fifth, although the simulation study
showed that the median of the correlation estimates was quite
close to the true correlation, the real-data example (which
included only ten studies) illustrates that individual estimates
can be outside the theoretical range of – 1 to 1. Finally, an-
other limitation is that the simulated data structure was rel-
atively simple, in the sense that only ρY1 could vary over
studies, but all other correlations were considered fixed.
More complex but more realistic models could be formulat-
ed that account for between-study heterogeneity for other
correlations, as well. Given that these models include a
larger number of parameters, and that some of these are
variance parameters for correlations about which only a
subpart of the studies would give information, we expect
that many more studies would be required in order to accu-
rately and precisely fit these models. More simulation re-
search will be needed to explore the performance of such
models.
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Appendix A

All the codes within this appendix are specific to the example
shown in this article.

The data used to perform the analysis with the new
concealed correlations meta-analysis approach and its
disposition are shown below. The raw data are shown first,
and then transformed using Cholesky factorization.

Raw data

data RISP_model;
input study model estimate Stderr D1 D2 D3

D4 D5 D6 D7 D8 sample_size ;
datalines;

;run;

The value 1 in the dummy variables (D1 through D8) in-
dicates which standardized regression coefficients refer to the
same population parameter. In our data, eight different types
of standardized regression coefficients refer to eight different
parameters: b1(1), b1(2), b2(2), b1(3), b3(3), b1(4), b2(4), b3(4). The
number between brackets refers to the type of model to which

each beta weight belongs. In the overview of the regression
models fitted in the simulation study (Table 1), similar nota-
tion is used for the parameters β. The second variable (called
Model) also indicates the model to which each standardized
regression model belongs.

1 1 0.404 0.033 1 0 0 0 0 0 0 0 634

2 1 0.391 0.039 1 0 0 0 0 0 0 0 456

3 2 0.651 0.020 0 1 0 0 0 0 0 0 828

3 2 0.090 0.028 0 0 1 0 0 0 0 0 828

4 2 0.441 0.048 0 1 0 0 0 0 0 0 296

4 2 -.002 0.054 0 0 1 0 0 0 0 0 296

5 2 0.635 0.021 0 1 0 0 0 0 0 0 804

5 2 0.083 0.027 0 0 1 0 0 0 0 0 804

6 3 0.308 0.040 0 0 0 1 0 0 0 0 500

6 3 0.105 0.042 0 0 0 0 1 0 0 0 500

7 3 0.294 0.040 0 0 0 1 0 0 0 0 500

7 3 0.028 0.042 0 0 0 0 1 0 0 0 500

8 3 0.539 0.026 0 0 0 1 0 0 0 0 736

8 3 -.091 0.030 0 0 0 0 1 0 0 0 736

9 4 0.560 0.030 0 0 0 0 0 1 0 0 645

9 4 0.041 0.033 0 0 0 0 0 0 1 0 645

9 4 0.082 0.032 0 0 0 0 0 0 0 1 645

10 4 0.758 0.019 0 0 0 0 0 1 0 0 1007

10 4 0.041 0.023 0 0 0 0 0 0 1 0 1007

10 4 -.048 0.024 0 0 0 0 0 0 0 1 1007
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;run;

The following codes were used to run the concealed corre-
lations meta-analysis approach.

Transformed data (Cholesky factorization)
data RISP_model_transformed;
input study model estimate D1 D2 D3 D4 D5 D6 D7 D8 Stderr;
datalines;

Fixed-effect model

Proc nlmixed data= RISP_model_transformed qpoints=40 MAXITER= 1000 MAXFUNC=4000;
mean = (D1*RY1) +
(D2* (RY1-RY2*R12)/(1-(R12**2))) +
(D3*(RY2-RY1*R12)/(1-(R12**2))) +
(D4*(RY1-RY3*R13)/(1-(R13**2))) +
(D5*(RY3-RY1*R13)/(1-(R13**2))) +
(D6*((1-(R23**2))*RY1+(R13*R23-R12)*RY2+(R12*R23-R13)*RY3)/(1-(R12**2)-(R13**2)-
(R23**2)+2*R12*R13*R23))+
(D7*((1-(R13**2))*RY2+(R13*R23-R12)*RY1+(R12*R13-R23)*RY3)/(1-(R12**2)-(R13**2)-
(R23**2)+2*R12*R13*R23))+
(D8*((1-(R12**2))*RY3+(R12*R13-R23)*RY2+(R12*R23-R13)*RY1)/(1-(R12**2)-(R13**2)-
(R23**2)+2*R12*R13*R23));
model estimate ~ Normal(mean,Stderr**2);
estimate 'b1' RY1;
estimate 'b21' (RY1-RY2*R12)/(1-(R12**2));
estimate 'b22'(RY2-RY1*R12)/(1-(R12**2));
estimate 'b31' (RY1-RY3*R13)/(1-(R13**2));
estimate 'b33'(RY3-RY1*R13)/(1-(R13**2));
estimate 'b41' ((1-(R23**2))*RY1+((R13*R23-R12)*RY2)+((R12*R23-R13)*RY3))/(1-(R12**2)-(R13**2)-
(R23**2)+(2*R12*R13*R23));
estimate 'b42'((1-(R13**2))*RY2+((R13*R23-R12)*RY1)+((R12*R13-R23)*RY3))/(1-(R12**2)-(R13**2)-
(R23**2)+(2*R12*R13*R23));
estimate 'b43' ((1-(R12**2))*RY3+((R12*R13-R23)*RY2)+((R12*R23-R13)*RY1))/(1-(R12**2)-(R13**2)-
(R23**2)+(2*R12*R13*R23));
parms r12=.1 r13=.1 r23=.1;
bounds ry2>-1;
run;

1 1 12.12 30.01 0 0 0 0 0 0 0 1
2 1 9.83 25.15 0 0 0 0 0 0 0 1
3 2 37.46 0 54.83 19.42 0 0 0 0 0 1
3 2 3.41 0 0 37.86 0 0 0 0 0 1
4 2 9.41 0 21.35 5.48 0 0 0 0 0 1
4 2 -0.04 0 0 18.50 0 0 0 0 0 1
5 2 33.79 0 50.90 17.64 0 0 0 0 0 1
5 2 3.04 0 0 36.51 0 0 0 0 0 1
6 3 8.10 0 0 0 25.08 3.42 0 0 0 1
6 3 2.49 0 0 0 0 23.75 0 0 0 1
7 3 7.21 0 0 0 24.48 -0.52 0 0 0 1
7 3 0.65 0 0 0 0 23.40 0 0 0 1
8 3 22.47 0 0 0 39.88 -10.39 0 0 0 1
8 3 -2.96 0 0 0 0 32.34 0 0 0 1
9 4 21.48 0 0 0 0 0 37.59 11.21 -0.75 1
9 4 1.44 0 0 0 0 0 0 29.91 2.35 1
9 4 2.54 0 0 0 0 0 0 0 30.80 1
10 4 54.17 0 0 0 0 0 0 26.56 31.42 1
10 4 1.22 0 0 0 0 0 0 44.96 13.56 1
10 4 -1.94 0 0 0 0 0 0 0 39.77 1
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In the first command, mean, we define the formulas that
lead to each of the eight types of standardized regression co-
efficients. The variables RY1, RY2, RY2, R12, R13, and R23
refers to ρY1, ρY2, ρY3, ρ12, ρ13, and ρ23, respectively. In the
model statement, we specify the distribution of each of the
beta weights. In the estimate statements, the relationship be-
tween the standardized regression coefficients and the under-
lying correlation coefficients is specified. In the parms state-
ment, we give some initial values, and finally, with the bound
statement, we set some boundaries for the estimates.

The code for the random-effect model has two differences
from the previous code. First, in themean statement a random
component (u1) is added only to the correlation between the
criterion and the X1 variables, RY1, while the others correla-
tions are kept fixed. Second, the distribution of this random
component is specified in the random statement, and the esti-
mation of its variance (tau1) is the estimate of the between-
study variance of RY1.

Appendix B

All the codes within this appendix are specific to the example
showed in this article.

For performing the separate meta-analysis approach, the
precision was obtained through calculation of the inverse of
the variance. Then the code belowwas used four times, chang-
ing each time the content of the where statement of the PROX

Random-effect model

proc nlmixed data= RISP_model_transformed qpoints=40 MAXITER= 1000 MAXFUNC=4000;
mean = (D1*(RY1+u1)) +
(D2* ((RY1+u1)-((RY2)*(R12)))/(1-((R12)**2))) +
(D3*((RY2)-(RY1+u1)*(R12))/(1-((R12)**2))) +
(D4*((RY1+u1)-(RY3)*(R13))/(1-((R13)**2))) +
(D5*((RY3)-(RY1+u1)*(R13))/(1-((R13)**2))) +
(D6*((1-((R23)**2))*(RY1+u1)+((R13)*(R23)-(R12))*(RY2)+(R12*R23-R13)*(RY3))/
( 1 - ( ( R 1 2 ) * * 2 ) - ( ( R 1 3 ) * * 2 ) - ( ( R 2 3 ) * * 2 ) + 2 * ( R 1 2 ) * ( R 1 3 ) * ( R 2 3 ) ) ) +
(D7*((1-((R13)**2))*(RY2)+((R13)*(R23)-(R12))*(RY1+u1)+((R12)*(R13)-(R23))*(RY3))/
( 1 - ( ( R 1 2 ) * * 2 ) - ( ( R 1 3 ) * * 2 ) - ( ( R 2 3 ) * * 2 ) + 2 * ( R 1 2 ) * ( R 1 3 ) * ( R 2 3 ) ) ) +
(D8*((1-((R12)**2))*(RY3)+((R12)*(R13)-(R23))*(RY2)+((R12)*(R23)-(R13))*(RY1+u1))/
(1-((R12)**2)-((R13)**2)-((R23)**2)+2*(R12)*(R13)*(R23)));
model estimate ~ Normal(mean,Stderr**2);
random u1 ~Normal(0,tau1) subject = study;
estimate 'b1' RY1;
estimate 'b21' (RY1-RY2*R12)/(1-(R12**2));
estimate 'b22'(RY2-RY1*R12)/(1-(R12**2));
estimate 'b31' (RY1-RY3*R13)/(1-(R13**2));
estimate 'b33'(RY3-RY1*R13)/(1-(R13**2));
estimate 'b41' ((1-(R23**2))*RY1+((R13*R23-R12)*RY2)+((R12*R23-R13)*RY3))/
(1-(R12**2)-(R13**2)-(R23**2)+(2*R12*R13*R23));
estimate 'b42'((1-(R13**2))*RY2+((R13*R23-R12)*RY1)+((R12*R13-R23)*RY3))/(1-(R12**2)-
(R13**2)-(R23**2)+(2*R12*R13*R23));
estimate 'b43' ((1-(R12**2))*RY3+((R12*R13-R23)*RY2)+((R12*R23-R13)*RY1))/
(1-(R12**2)-(R13**2)-(R23**2)+(2*R12*R13*R23));
parms tau1=.02 r12=.1 r13=.1 r23=.1;
bounds r23>-1;
run
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MIXED procedure in SAS. For combining the standardized
regression coefficients belonging to Model 1 (b1(1)), the fol-
lowing where statement was used:

where model = 1 and D1=1;
For combining the standardized regression coefficients be-

longing to Model 2 (b1(2)):
where model = 2 and D2=1;
For combining the beta weights from Model 3 (b1(3)):
where model = 3 and D4=1;
and finally, for Model 4 (b1(4)):
where model = 4 and D6=1;
For instance, the following code was used for meta-

analyzing the beta weights belonging to Model 1.

Fixed-effect model

proc mixed data= RISP_model;
where model = 1 and D1=1;
class study;
weight prec;
model estimate=/SOLUTION ;
parms 1/hold = (1);
run;

Random-effect model

proc mixed data= RISP_model;
where model = 1 and D1=1;
class study;
weight prec;
model estimate=/SOLUTION ;
Random intercept /SUB=study;
parms .5 1/hold = (2);
run;

Appendix C

All the codes within this appendix are specific to the example
showed in this article.

For performing the regression meta-analysis approach
(Aloe & Becker, 2012), the following SAS codes were used.

Fixed-effect model

proc mixed data= RISP_model;
where D1=1 or D2=1 or D4=1 OR D6=1;
class model ;
weight prec;
model estimate= model/ noint SOLUTION;
parms 1/ hold = (1);
run;

Random-effect model

proc mixed data= RISP_model;
where D1=1 or D2=1 or D4=1 OR D6=1;
class study model;
weight prec;
model estimate= model /noint SOLUTION

ddfm=sat;
Random intercept /SUB=study;
parms .5 1/hold = (2);
run;
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