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Abstract
Roles are one of the most important concepts in understanding human sociocognitive behavior. During group interactions, members
take on different roles within the discussion. Roles have distinct patterns of behavioral engagement (i.e., active or passive, leading or
following), contribution characteristics (i.e., providing new information or echoing given material), and social orientation (i.e.,
individual or group). Different combinations of roles can produce characteristically different group outcomes, and thus can be either
less or more productive with regard to collective goals. In online collaborative-learning environments, this can lead to better or worse
learning outcomes for the individual participants. In this study, we propose and validate a novel approach for detecting emergent roles
from participants’ contributions and patterns of interaction. Specifically, we developed a group communication analysis (GCA) by
combining automated computational linguistic techniqueswith analyses of the sequential interactions of online group communication.
GCAwas applied to three large collaborative interaction datasets (participantN = 2,429, groupN = 3,598). Cluster analyses and linear
mixed-effects modeling were used to assess the validity of the GCA approach and the influence of learner roles on student and group
performance. The results indicated that participants’ patterns of linguistic coordination and cohesion are representative of the roles that
individuals play in collaborative discussions.More broadly, GCAprovides a framework for researchers to explore themicro intra- and
interpersonal patterns associated with participants’ roles and the sociocognitive processes related to successful collaboration.
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There are many faces to our social identity. When individuals
engage in everyday interactions, they act in ways that are both
enabled and constrained by social structure: the social context,
history, structures of interaction, and attributes that individuals
bring to the interaction (Gleave, Welser, Lento, & Smith,
2009; Hare, 1994; Sapru & Bourlard, 2015). In this context,
social roles provide a valuable window into the underlying
sociocognitive structure of group interaction, and one that

researchers can use to differentiate individuals and explain
the consequences of an individual’s and of an overall group’s
behavior (Gleave et al., 2009; Mudrack & Farrell, 1995).

The concept of social roles has garnered significant inter-
disciplinary attention across several areas, including educa-
tion, social computing, and social and organizational psychol-
ogy. This has produced a burgeoning literature on social roles
in a variety of domains, including teams (Driskell, Driskell,
Burke, & Salas, 2017), workplace meetings (Sapru &
Bourlard, 2015), and collaborative interactions (Strijbos &
De Laat, 2010). Roles have been defined more strictly as
stated functions and/or responsibilities that guide individual
behavior, and as the behavioral patterns exemplified by indi-
viduals in social contexts (Chiu, 2000; Hare, 1994; Volet,
Vauras, Salo, & Khosa, 2017). This definition is reflected in
the two prominent perspectives on roles that appear in the
sociological and psychological literatures. The first empha-
sizes the behaviors associated with a specific appointment in
a group or organization. The most obvious examples falling in
this class are formal appointments, including employment po-
sitions, political offices, military ranks, academic degrees, and

Electronic supplementary material The online version of this article
(https://doi.org/10.3758/s13428-018-1102-z) contains supplementary
material, which is available to authorized users.

* Nia M. M. Dowell
ndowell@umich.edu

1 School of Information, University of Michigan, North Quad 4432,
105 S. State Street, Ann Arbor, MI 48109, USA

2 Ann Arbor, MI, USA
3 University of Memphis, Memphis, TN, USA

Behavior Research Methods (2019) 51:1007–1041
https://doi.org/10.3758/s13428-018-1102-z

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-018-1102-z&domain=pdf
https://doi.org/10.3758/s13428-018-1102-z
mailto:ndowell@umich.edu


other formal titles. However, this category also includes roles
in more ad hoc social situations, such as those that are explic-
itly teacher-assigned for the purposes of some exercise, or
implicitly embodied through prescripted interactions. In this
context, the role is a position to which a person is assigned and
then performs the behavior associated with that position
(Salazar, 1996). The second perspective, by contrast, con-
siders roles as a product of a specific interaction context,
consisting of patterns in the sociocognitive behaviors enacted
by people (Gleave et al., 2009). These roles are emergent in
that they develop naturally out of the interpersonal interaction,
without any prior instruction or assignment, and are defined
(characterized) by their behavioral proximity (similarities and
differences) to other interactional partners.

Several studies have emphasized the importance of roles in
group interactions (Dillenbourg, 1999; Hoadley, 2010;
Jahnke, 2010; Marcos-Garcia, Martinez-Mones, &
Dimitriadis, 2015; Sarmiento & Shumar, 2010; Risser &
Bottoms, 2014; Spada, 2010; Stahl, Law, Cress, &
Ludvigsen, 2014; Strijbos & De Laat, 2010; Volet et al.,
2017). Recent work on scripted or assigned roles has shown
that the assignment of specific roles facilitates collaborative
awareness (Strijbos,Martens, Jochems, & Broers, 2004), team
discourse and performance (Gervits, Eberhard, & Scheutz,
2016; Xie, Yu, & Bradshaw, 2014), and the depth of knowl-
edge co-construction by the group (De Wever, Keer,
Schellens, & Valcke, 2010; Gu, Shao, Guo, & Lim, 2015).
Although assigning roles to group members may produce
beneficial outcomes, there are concerns. First, the occurrence
of potentially dysfunctional group roles has been generally
neglected in the literature, with researchers choosing to focus
on those roles that are potentially most productive for the
group, as opposed to the roles that actually exist (Lehmann-
Willenbrock, Beck, & Kauffeld, 2016). Considering the prev-
alence of dysfunctional group behavior (e.g., the Bbad apple
phenomenon^; Felps, Mitchell, & Byington, 2006), deepen-
ing our understanding of such negative roles and their influ-
ence is crucial. This leads to the second concern, regarding
what is captured in role assignment research: Simply because
someone is assigned a role does not mean the person will not
deviate from said role. Are we, then, exploring roles as
intended or as enacted (Hoadley, 2010)? Finally, by
attempting to restrict an individual to a single role, one inhibits
role and group flexibility, which itself has potential advan-
tages. Doing so also disregards the dynamic and interactive
way in which roles are created, negotiated, and evolve among
group members during social interaction (Hoadley, 2010;
Lehmann-Willenbrock et al., 2016; Salazar, 1996).

Researchers have attempted to detect the emergence of
roles during online group interactions (Stahl et al., 2014).
The majority of these efforts have relied on predefined content
analysis coding schemes and complex taxonomies to deter-
mine what roles each individual occupies within the group

(e.g., Arvaja & Hämäläinen, 2008; Volet et al., 2017). For
instance, Strijbos and De Laat (2010) provided a valuable
conceptual framework of roles in group interactions. Their
framework distinguishes eight roles. Four of the roles are re-
served for large-group interactions: Pillar, Generator, Hanger-
On, and Lurker. However, the remaining four are particularly
relevant to small-group interactions: Captain, Over-Rider,
Free-Rider, and Ghost. The roles are differentiated along two
dimensions that cross orientation (individual, group) and ef-
fort (low, high). In the present analysis, the Strijbos and De
Laat framework helped guide some of the initial conceptual-
izations of the processes involved in participant roles.
However, as will be shown, we adopted an automated meth-
odological approach that afforded several new dimensions of
interaction. Particularly, although extensive knowledge has
been gleaned frommanual content analyses of emergent social
roles, several researchers have pointed out the inherent limi-
tations of this approach: These practices tend to obscure the
sequential structure, semantic references within group discus-
sion, and situated methods of interaction through which roles
emerge (Çakır, Zemel, & Stahl, 2009; Strijbos,Martens, Prins,
& Jochems, 2006; Suthers, Dwyer,Medina, &Vatrapu, 2010).
Moreover, manual coding methods are no longer a viable
option, with the increasing scale of online group interaction
data (Daradoumis, Martínez-Monés, & Xhafa, 2006).

The availability of such data represents a golden opportunity
to make advances in understanding social roles and role ecolo-
gies (Gleave et al., 2009). However, automatic approaches for
detecting emergent social roles are still relatively scarce in the
field of collaborative interactions. The attempts that have been
made have typically relied on social network analysis (SNA;
e.g., Capuano, Mangione, Mazzoni, Miranda, & Orciuoli,
2014; Marcos-Garcia et al., 2015; Stuetzer, Koehler, Carley, &
Thiem, 2013). In this context, social roles are characterized in
terms of behavioral regularities and network attributes, wherein
consistent behaviors resulting in persistent or recurrent interac-
tions between individuals in a social group are potential signals
of a meaningful social role (Gleave et al., 2009). One of the
advantages of such quantitative methods as SNA is that they
alleviate the human time requirement and the attendant subjec-
tivity issues inherent in manual content analyses. However,
these strictly structural measures have been criticized for being
only surface-level, because they do not capture the deeper-level
interpersonal sociocognitive and semantic information found in
the discourse interaction (Strijbos & Weinberger, 2010).
Automated natural language processing techniques could pro-
vide a productive path toward automated role detection, by ad-
dressing some of these limitations. Specifically, roles emerge
and are sustained through interaction (Hare, 1994; Salazar,
1996), and communication is the basis of any interaction.
Indeed, a focus on language and communication has proven
quite useful in other explorations of group interaction phenom-
ena (Cade, Dowell, Graesser, Tausczik, & Pennebaker, 2014;

1008 Behav Res (2019) 51:1007–1041



Cai et al., 2017; Dowell, Brooks, Kovanović, Joksimović, &
Gašević, 2017; Dowell, Brooks, & Poquet, 2018; Dowell,
Cade, Tausczik, Pennebaker, & Graesser, 2014; Dowell &
Graesser, 2015; Dowell et al., 2015; Graesser, Dowell, &
Clewley, 2017; Ho et al., 2016; Joksimović et al., 2015, 2018).
As such, language provides a powerful and measurable behav-
ioral signal that can be used to capture the semantic and
sociocognitive interaction patterns that characterize emergent
roles, as well as to study their influence on the outcomes of
group interactions.

Overview of the present research

The present research has two main objectives. The first is to
propose an automated methodology, group communication
analysis (GCA), for detecting emergent roles in group interac-
tions. The GCA combines computational linguistic techniques
with sequential interaction analyses of group communication.
TheGCAcaptures theoretically relevant sociocognitive process-
es that can be used to characterize the social roles individuals
occupy in group interactions. Tracking the communication dy-
namics during ongoing group interactions can reveal important
patterns about how individual and group processes emerge and
unfold over time. The second goal of this research is to explore
how the individual-level roles and overall group compositions
influence both student and group performance during collabo-
rative interactions. The concepts, methods, and ideas presented
in this research are at the intersection of collaborative learning,
discourse processes, data mining, and learning analytics. This
interdisciplinary research approach will hopefully provide in-
sights and help redefine the nature of roles in group interaction.
Specifically, the present research includes analyses of two large,
collaborative-learning datasets (Traditional CSCL: learner N =
854, group N = 184; SMOC: learner N = 1,713, group N =
3,297) and of one collaborative problem-solving dataset (Land
Science: learner N = 38, group N = 630) to address the research
questions outlined below. Although this investigation takes
place in the context of collaborative learning, the methodology
is flexible and could be applied in any computer-mediated social
interaction space that involves linguistic interactions between
participants.

Research questions

1. Can individual roles be identified through patterns of com-
munication and participation during collaborative interactions
of some specific type or context? We use three approaches to
evaluate this research question: (i) comparison to the prior
literature, (ii) extensive validation checks, and (iii) assessing
the influence of roles on individual and group outcomes.

2a. Do the patterns, if any, observed from Research
Question 1 generalize meaningfully to other collaborative in-
teractions of the same type or context?

2b. Do the patterns, if any, observed from Research
Question 1 generalize meaningfully to other collaborative in-
teractions of different types or contexts?

3a. How does an individual’s role influence individual and
group performance?

3b. How does group role diversity and composition influ-
ence individual and group performance?

The subsequent sections of the article are organized as fol-
lows. First, we provide the theoretical foundation for the GCA
measures, followed by a detailed technical description of the
construction of the measures. We then move into the method-
ological features of the present investigation, followed by the
details of the cluster analysis that was used to identify specific
individual roles in the communication patterns during collab-
orative interactions. Next, we discuss the linear mixed-effects
modeling used to assess the validity of the GCA approach and
the influence of roles on individual and group performance.
We conclude the article with a detailed discussion of the re-
sults in the context of theory, as well as a general discussion of
the theoretical, methodological, and practical implications for
group interaction research.

Group communication analysis (GCA)

Theoretical motivation for the GCA measures

Social and cognitive processes are the fabric of collaborative
learning. The ultimate goal of collaborative learning is the co-
constructed knowledge that results from the sharing of informa-
tion in groups during collaborative tasks (Alavi & Dufner,
2004; Dillenbourg & Fischer, 2007). Learning as a social pro-
cess is supported by several theoretical perspectives including
the social cognitive theory (Bandura, 1994), social-
constructivist framework (Doise, 1990), socio-cultural frame-
work (Vygotsky, 1978), group cognition models (Stahl, 2005),
situated cognition theory (Lave & Wenger, 1991), and
connectivism (Siemens, 2005). Research on the sociocognitive
aspects of computer-supported collaborative learning (CSCL)
have noted some of the important mechanisms (e.g., social
presence, explanation, negotiation, monitoring, grounding,
and regulating) and processes (e.g., convergence, knowledge
co-construction, meaning-making) that facilitate successful out-
comes (Dillenbourg, Järvelä, & Fischer, 2009).

The GCA framework incorporates definitions and theoretical
constructs that are based on research and best practices from sev-
eral areas in which group interaction and collaborative skills have
been assessed. These areas include computer-supported coopera-
tive work, team discourse analysis, knowledge sharing, individual
problem solving, organizational psychology, and assessment in
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work contexts (e.g., military teams, corporate leadership). The
framework further incorporates information from existing assess-
ments that can inform the investigation of social roles, including
the PISA 2015 CPS Assessment. Despite differences in orienta-
tion between the disciplines in which these frameworks have
originated, the conversational behaviors that have been identified
as valuable are quite similar. The following sections review the
theoretical perspectives and sociocognitive processes that were
the foundation of the GCA framework and the resulting metrics
(i.e., Participation, Internal Cohesion, Responsivity, Social
Impact, Newness, and Communication Density). In the presenta-
tion of the theoretical principles and sociocognitive processes
supporting the GCA metrics, empirical findings are presented
whenever possible as illustration and initial support. Table 1 pro-
vides a summary of the alignment of the GCA dimensions with
their associated theoretical and empirical support.

Participation

Participation is obviously a minimum requirement for col-
laborative interaction. It signifies awillingness and readiness
for participants to externalize and share information and
thoughts (Care, Esther, Scoular, & Griffin, 2016; Hesse,
Care, Buder, Sassenberg, & Griffin, 2015). Previous re-
search has confirmed that participation,measured as interac-
tion with peers and teachers, has a beneficial influence on

perceived and actual learning, retention rates, learner satisfaction,
social capital, and reflection (Hew, Cheung, & Ng, 2010; see
Hrastinski, 2008, for a review). Within collaborative groups,
individual students who withdraw their participation from group
discussion or only participate minimally can undermine learning,
either because of lost opportunities for collaboration or by pro-
voking whole-group disengagement (Van den Bossche,
Gijselaers, Segers, & Kirschner, 2006). In CSCL research, typi-
cal measures of student participation include the number of a
student’s contributions (Lipponen, Rahikainen, Lallimo, &
Hakkarainen, 2003), the length of posts in online environments
(Guzdial & Turns, 2000), or whether contributions are more
social (i.e., off-task) rather than focused on content ideas (Stahl,
2000). More recently, Wise, Speer, Marbouti, and Hsiao (2012)
argued that amore complete conception of participation in online
discussions requires attention not only to participants’ overt ac-
tivity in producing contributions, but also to the less public ac-
tivity of interacting with the contributions of others, which they
have termed Bonline listening behavior^ (Wise et al., 2012).
Taken together, this research highlights how individual partici-
pants may vary in the amount, type, and quality of participation
within a group. Therefore, participation is an important metric to
characterize the social roles participants occupy during group
interactions. In the present research, participation is conceptual-
ized as a necessary, but not a sufficient, sociocognitive metric for
characterizing the participants’ social roles.

Table 1 Alignment of GCA dimensions with theoretical and empirical support

GCA Dimensions Psychological &
Discursive Processes

Description/ Example
Behavioral Makers

Relevant Theoretical
Frameworks & Constructs

Empirical Evidence/
Theoretical Support

Participation Engagement General level of an individual’s
participation, irrespective of
the semantic content of this
participation

Activity theory; Social presence;
Socio-constructivist

Hesse et al., 2015;
Hrastinski, 2008;
Hew et al., 2010

Internal cohesion Monitoring and reflecting The tendency of an individual
to consistency or novelty in
their own contributions.

Self-regulation and metacognitive
processes

Chan, 2012; Zimmerman,
2001; Barron, 2000;
OECD, 2013

Responsivity Uptake and transactivity The tendency of an individual
to respond, or not, to the
contributions of their
collaborative peers

Meaning-making; Co-regulation;
Interactive alignment; Social
coordination; Knowledge
building; Common ground;
Knowledge convergence

Berkowitz & Gibbs,
1983; Teasley, 1997;
Hesse et al., 2015;
Suthers, 2006;
Volet et al. 2009;
Hesse et al., 2015

Social impact Productive or popular
communication

The tendency of a participant
to evoke responses, or not,
from their collaborative peers

Social coordination; Knowledge
building; Common ground;
Co-construction

Volet et al. 2009;
Hesse et al., 2015;
Suthers, 2006

Newness Novelty of information
shared

The tendency to provide new
information or to echo
previously stated information,
irrespective of the originator
of the information.

Monitoring; Information sharing Chi, 2009; Hesse et al.,
2014; Mesmer-Magnus
& Dechurch, 2009;
Kirschner et al., 2008

Communication
density

Concise communication The extent to which participants
convey information in a
concise manner

Common ground; Effective
communication

Gorman et al., 2003, 2004
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Internal cohesion, responsivity, and social impact

Simply placing participants in groups does not guarantee col-
laboration or learning (Kreijns, Kirschner, & Jochems, 2003).
For collaboration to be effective, participants must participate
in shared knowledge construction, have the ability to coordi-
nate different perspectives, commit to joint goals, and evaluate
their collective activities together (Akkerman et al., 2007;
Beers, Boshuizen, Kirschner, & Gijselaers, 2007;
Blumenfeld, Kempler, & Krajcik, 2006; Fiore & Schooler,
2004; Kirschner, Paas, & Kirschner, 2009; Roschelle &
Teasley, 1995). This raises an important question that has been
reoccurring theme in the CSCL literature: What makes collab-
orative discourse productive for learning? (Stahl & Rosé,
2013). This question has been studied with a related focus
and comparable results across several CSCL subcommunities.

Collaborative knowledge construction is understood as an
unequivocally interpersonal and contextual phenomenon, but
the role of an individual interacting with themselves should
also be taken into account (Stahl, 2002). Successful collabo-
ration requires that each individualmonitor and reflect on their
own knowledge and contributions to the group (Barron, 2000;
OECD, 2013). This points to the importance of self-regulation
in collaborative interactions (Chan, 2012; Zimmerman, 2001).
Self-regulation is described as an active, constructive process
in which participants set goals, and monitor and evaluate their
cognition, affects, and behavior (Azevedo, Winters, & Moos,
2004; Pintrich, 2000; Winne, 2013). During collaborative in-
teractions, this is necessary for individuals to appropriately
build on and integrate their own views with those of the group
(Kreijns et al., 2003; OECD, 2013). The process of individ-
uals engaging in self-monitoring and reflection may be
reflected in their internal cohesion. That is, a participant’s
current and previous contributions should be, to some extent,
semantically related to each other, which can indicate the in-
tegration and evolution of thoughts through monitoring and
reflecting (i.e., self-regulation). However, overly high levels
of internal cohesion might also suggest that a participant is not
building on or evolving his or her thoughts, but rather is sim-
ply reiterating the same static view. Conversely, very low
levels of internal cohesion might indicate that a participant
has no consistent perspective on offer to the group, is simply
echoing the views of others, or is only engaging at a nominal
or surface level. Therefore, we should expect productive roles
to exhibit a moderate degree of internal cohesion.

Participants must also monitor and build on the perspec-
tives of their collaborative partners in order to achieve and
maintain a shared understanding of the task and its solutions
(Dillenbourg & Traum, 2006; Graesser et al., 2016; Hmelo-
Silver & Barrows, 2008; OECD, 2013; Stahl & Rosé, 2013).
In the CSCL literature this shared understanding has been
referred to as knowledge convergence, or common ground
(Clark, 1996; Clark & Brennan, 1991; Fiore & Schooler,

2004; Roschelle, 1992). It is achieved through communication
and interaction, such as building a shared representation of the
meaning of the goal, coordinating efforts, understanding the
abilities and viewpoints of group members, and mutual mon-
itoring of progress toward the solution. These activities are
supported in several collaborative-learning perspectives
(e.g., cognitive elaboration, Chi, 2009; sociocognitive con-
flict, Doise, 1990; Piaget, 1993; co-construction, Hatano,
1993; Van Boxtel, 2004), each of which stresses different
mechanisms to facilitate learning during group interactions
(giving, receiving, and using explanations, resolving conflicts,
co-construction). However, all these perspectives are in align-
ment on the idea that it is the participants’ elaborations on one
another’s contributions that support learning.

These social processes of awareness, monitoring, and reg-
ulatory processes all fall under the shared umbrella of co-reg-
ulation. Volet, Summers, and Thurman (2009) proposed co-
regulation as an extension of self-regulation to the group or
collaborative context, wherein co-regulation is described as
individuals working together as multiple self-regulating
agents, all socially monitoring and regulating each other’s
learning. In a classroom study of collaborative learning using
hypermedia, Azevedo et al. (2004) demonstrated that collab-
orative outcomes were related to the use of regulatory behav-
iors. In this process, the action of one student does not become
a part of the group’s common activity until other collaborative
partners react to it. If other group members do not react to a
student’s contribution, this suggests that the contribution was
not seen as valuable by the other group members and would
be an Bignored co-regulation attempt^ (Molenaar, Chiu,
Sleegers, & van Boxtel, 2011). Therefore, the concepts of
transactivity and uptake (Table 1) in the CSCL literature are
important in this context of co-regulation and active learning,
in the sense that a student takes up another student’s contribu-
tion and continues it (Berkowitz & Gibbs, 1983; Suthers,
2006; Teasley, 1997). Students can engage in higher or lower
degrees of co-regulation through monitoring and coordinat-
ing. These processes will be represented in their discourse.

Monitoring and regulatory processes are, hopefully, exter-
nalized during communication with other group members. We
can capture the degree to which an individual is monitoring
and incorporating the information provided by their peers by
examining the semantic relatedness between the individual’s
current contribution and the previous contributions of their
collaborative partners. This measure is called responsivity in
the present research. For example, if an individual’s contribu-
tions are, on average, only minimaly related to those of peers,
we would say this individual has low responsivity. Similarly,
we can capture the extent to which a participant’s contribu-
tions are seen as meaningful or worthy of further discussion
(i.e., uptake) among peers by measuring the semantic related-
ness between the participant’s current contribution and those
that follow from their collaborative partners. This measure is
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called social impact in the present research. Participants have
high social impact to the extent that their contributions are
often semantically related to the subsequent contributions
from the other collaborative group members.

The collaborative-learning literature highlights the value of
students clearly articulating arguments and ideas, as well as
elaborating on and making connections between contribu-
tions. For instance, Rosé and colleagues’work has concentrat-
ed explicitly on such properties as transactivity (Gweon, Jain,
McDonough, Raj, & Rosé, 2013; Joshi & Rosé, 2007; Rosé et
al., 2008), as well as the social aspects and conversational
characteristics that facilitate the recognition of transactivity
(Howley & Mayfield, 2011; Howley, Mayfield, & Rosé,
2013a; Howley, Mayfield, Rosé, & Strijbos, 2013b; Wen,
Yang, & Rosé, 2014). Their research adopts a sociocognitive
view (Howley, Mayfield, Rosé, & Strijbos, 2013) that empha-
sizes the significance of publically articulating ideas and en-
couraging participants to listen carefully to and build on one
another’s ideas. Participants engaging in this type of activity
have the chance to notice discrepancies between their own
mental model and those of other members of the group. The
discussion provides opportunities to engage in productive
cognitive conflict and knowledge construction (Howley,
Mayfield, Rosé, & Strijbos, 2013a). Additionally, participants
benefit socially and personally from the opportunity to take
ownership over ideas and position themselves as valuable
sources of knowledge within the collaborative group
(Howley & Mayfield, 2011).

Newness and communication density

For collaboration to be successful, participants must engage in
effective information sharing. Indeed, one of the primary ad-
vantages of collaborative interactions and teams is that they
provide the opportunity to expand the pool of available infor-
mation, thereby enabling groups to reach higher quality solu-
tions than could be reached by any one individual (Hesse et
al., 2015; Kirschner, Beers, Boshuizen, & Gijselaers, 2008;
Mesmer-Magnus & Dechurch, 2009). However, despite the
intuitive importance of effective information sharing, a con-
sistent finding from research is that groups predominantly
discuss information that is shared (and so known to all partic-
ipants) at the expense of information that is unshared (known
to a single member) (Dennis, 1996; Stasser & Titus, 1985; see
Wittenbaum & Stasser, 1996, for a review). This finding has
been called bias information sharing or bias information
pooling in the collective information-sharing paradigm. It
shares some similarities with the groupthink phenomena
(Janis, 1983), which is the tendency for groups to drive for
consensus that overrides critical appraisal and the consider-
ation of alternatives. The collective preference for redundant
information can detrimentally affect the quality of the group
interactions (Hesse et al., 2015) and decisions made within the

group (Wittenbaum, Hollingshead, & Botero, 2004).
However, collaborative interactions benefit when the mem-
bers engage in the constructive discourse of inferring and
sharing new information and integrating new informationwith
existing prior knowledge during the interaction (Chi, 2009;
Chi & Menekse, 2015).

The distinction between given (old) information versus
new information in discourse is a foundational distinction in
theories of discourse processing (Haviland & Clark, 1974;
Prince, 1981). Given information includes words, concepts,
and ideas that have already been mentioned in the discourse;
new information involves words, concepts, and ideas that have
not yet been mentioned, which builds on the given informa-
tion or launches a new thread of ideas. In the present research,
the extent to which learners provide new information rather
than referring to previously shared information will be cap-
tured by a measure called newness.

In addition to information sharing, the team performance
literature also advocates for concise communication between
group members (Gorman, Cooke, & Kiekel, 2004; Gorman,
Foltz, Kiekel, Martin, & Cooke, 2003). This is one of the rea-
sons that formal teams, like military units, typically adopt
conventionalized terminology and standardized patterns of com-
munication (Salas, Rosen, Burke, Nicholson, & Howse, 2007).
It is suggested that this concise communication is possible when
there is more common ground within the team and when shared
mental models of the task and team interaction are present
(Klein, Feltovich, Bradshaw, & Woods, 2005). The communi-
cation density measure used in the present research was first
introduced by Gorman et al. (2003) in team communication
analysis, to measure the extent to which a team conveys infor-
mation in a concise manner. Specifically, the rate of meaningful
discourse is defined by the ratio of semantic content to number
of words used to convey that content. Using this measure, we
will be able to further characterize the social roles that partici-
pants take on during collaborative interactions.

Taken together, we see that the sociocognitive processes
involved in collaboration are internal to the individual but they
are also manifested in the interactions with others in the group
(Stahl, 2010). In particular, during group interactions, partici-
pants need to self-regulate their own learning and contributions,
and co-regulate the learning and contributions of their collabora-
tive partners. Reciprocally, the discourse of group members in-
fluences each participants’ ownmonitoring and cognition (Chan,
2012; Järvelä, Hurme, & Järvelä, 2011). The social roles ex-
plored in this research are not necessarily reducible to processes
of individual minds nor do they imply the existence of some sort
of group mind. Rather, they are characterized by and emerge
from the sequential interaction andweaving of semantic relations
within a group discourse. The artifacts of transcribed communi-
cation resulting from collaborative interactions provides a win-
dow into the cognitive and social processes that define the par-
ticipants’ social roles. Thus, communication among the group
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members can be assessed to provide measures of participation,
social impact, internal cohesion, responsiveness, newness, and
communication density. These measures, which make up the
GCA framework, define a space that can encompass many key
attributes of a collaborative group interaction. Because partici-
pants exhibit more or less internal cohesion, responsiveness, so-
cial impact, new information, and communication density, we
can associate them with a unique point in that space. As we will
show, these points tend to cluster into distinct regions, corre-
sponding to distinct patterns in behavioral engagement style
and contribution characteristics. As such, these clusters represent
characteristic roles that individuals take on during collaborative
interactions, and they have a substantial impact on the overall
success of those interactions.

Construction of the GCA and group
performance measures

Transcripts of online group conversations provide two
principal types of data (Foltz & Martin, 2009). First,
transcript metadata describe the patterns of interactions
among group members. This includes who the partici-
pants are, as well as the number, timing, and volume of
each of their contributions. Second is the actual textual
content of each individual contribution, from which we
can calculate the semantic relationships among the con-
tributions. This involves taking semi-unstructured log
file data, as depicted in Fig. 1, and performing various
transformations in order to infer the semantic relation-
ships among the individual contributions, as depicted in
Fig. 2.

Conversations, including collaborative discussions, com-
monly follow a statement–response structure, in which new
statements are made in response to previous statements (i.e.,
uptake; Suthers, 2010) and subsequently trigger further state-
ments in response (see Fig. 2). The structures of different
online communications and discussion systems provide dif-
ferent affordances to the analyst to attribute a specific contri-
bution as a response to some prior contribution. Regardless of
the structure of the system, participants may, in a single con-
tribution, refer to concepts and content presented in multiple
previous contributions, made throughout the conversation, by
either themselves or other group members. Thus, a single
contribution may be in response, to varying degrees, to many
previous contributions, and it may in turn trigger, to varying
degrees, multiple subsequent responses.

The analytical approach of the GCAwas inspired by anal-
ogy to the cross- and auto-correlation measures from time-
series analysis. Standard correlation measures how likely
two variables are to be related. Cross-correlation similarly
measures the relatedness between two variables, but with a
given interval of time (or lag) between them. That is, for var-
iables x and y, and a lag of τ, the cross-correlation would be the
correlation of x(t) with y(t + τ), across all applicable times, t, in
the time series. Standard correlation can be seen as a special
case of cross-correlation for which τ = 0, and auto-correlation
as a special case of one variable being correlated with itself,
shifted in time (τ ≠ 0). By plotting the values of a cross-
correlation at different values of τ (typically from 1 up to some
reasonably large value), one can identify whether there are any
statistically significant time-dependent relationships between
the variables being examined. Such cross-correlation plots are
commonly used in the qualitative exploration of time-series
data.

Fig. 1 Depiction of semi-unstructured log file data, a typical artifact of CSCL interactions.
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Although we might apply standard auto- and cross-
correlation in order to examine the temporal patterns in
when participants contribute, we are primarily interested
in understanding the temporal dynamics of what they con-
tribute, and in what the evolution of the conversation’s
semantics can teach us about the group’s collaboration.
To this end, a fine-grained measure of the similarity of
participants’ contributions is needed to capture the
multiresponsive and social impact dynamics that may be
present in collaborative interactions. There are different
techniques for calculating the semantic similarity between
two contributions. Two popular methods are content word
overlap (CWO) and latent semantic analysis (LSA). Each
has its own strengths and weaknesses (Hu, Cai, Wiemer-
Hastings, Graesser, & McNamara, 2007); however, these
methods typically produce comparable results. In this re-
search, similarity is measured using LSA. The semantic
cohesion of contributions at fixed lags in the conversations
can be computed much in the same way that cross-
correlation evaluates correlation between lagged variables.
Various aggregations of this auto- and cross-cohesion form
the basis of the GCA’s responsivity measures.

In addition to the GCA measures, the identification
of topics covered in the group discussion affords us an
objective measure of the overall group performance that
is independent of the individual student performance
(i.e., pre- and post-test scores). In the sections below,
we describe the technical details of the construction of
each of the GCA measures and of the group perfor-
mance measure (i.e., topic relevance).

Participation measures

The chat logs of a group discussion can be thought of as a
sequence of individual contributions (i.e., verbal expres-
sions within a conversational turn). In this sense, the
boundaries of a contribution are defined by the nature of
the technology that mediates the group discussion. A sin-
gle contribution is a single message transmitted from one
user to a group of others by way of a messaging service,

or a single posting by a single user to a discussion forum.
There may be multiple speech acts within a single contri-
bution, but these will be treated as a single contribution.
Furthermore, a single user may transmit further contribu-
tions, immediately subsequent to their first, but these will
be treated as separate contributions. So, the primary unit
of analysis is a single contribution from a single user.

Let C represent the sequence of contributions, with ct
representing the tth contribution in the sequence. Let
n = |C| denote the length of the sequence. Since contri-
butions represent turns in the discussion over time, the
variable t will be used to index individual contributions
and will also be referred to as Btime.^ The values of t
will range from 1 to n:

t∈ℤ ; 1≤ t≤n ð1Þ

Let P be the set of participants in the discussion, of size
k = |P|. Variables a and b in the following will be used to
refer to arbitrary members (participants) in this set. To
identify the contributor (or participant) who originated
each statement, we define the following participation func-
tion, as depicted in Eq. 2:

pa tð Þ ¼ 1; if contribution ct was made by participant a∈P
0; otherwise:

�
ð2Þ

The participation function for any participant, a, effectively
defines a sequence,

Pa ¼ pa tð Þf gnt¼1 ¼ pa 1ð Þ; pa 2ð Þ; pa 3ð Þ;…; pa nð Þf g ð3Þ

of the same length, n, as the sequence of contribu-
tions C, which has the value 1 whenever participant a
originated the corresponding contribution in C, and 0
everywhere else. Using this participation function, it is
relatively simple to define several useful descriptive
measures of participation in the discussion. The number
of contributions made by any participant is

Pak k ¼ ∑n
t¼1pa tð Þ ð4Þ
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The sample mean participation of any participant is the
relative proportion of his or her contributions out of the total,

pa ¼
1

n
Pak k ð5Þ

and the sample variance in that participation is

σ2a ¼
1

n−1
∑n

t¼1 pa tð Þ−pa
� �2

ð6Þ

If every participant contributed equally often, say by taking
turns in round-robin fashion, then, for every participant,

Pak k ¼ n
k

ð7Þ

This, in turn would result in mean participation scores of

pa ¼
1

n
∙
n
k
¼ 1

k
ð8Þ

which will naturally get smaller for larger groups (larger k). To
adjust for different levels of equal participation, we use the
following measure1 to characterize individual participation:

p̂̂a ¼ pa−
1

k
ð9Þ

This gives the mean participation above or below what we
might expect from perfectly equal participation. In the case in
which every participant contributes equally (Eq. 7), this mea-
sure would be 0. A participant who contributed more than the
equal-participation amount would have a positive score, one
who contributed less, a negative score. We refer to this as the
group-relative mean participation.

We can, equivalently, represent the sequences of all partic-
ipant as a k × n matrix, M, by stacking the k participation
sequences as rows, in any arbitrary ordering (such that i is
an index over participants). Under this representation, the
(i,j)th entry of the matrix is the jth contribution of participant i:

Mij ¼ pi jð Þ; i∈P; 1≤ j≤n ð10Þ

By the definition of contributions given above, each con-
tribution ct was originated by one and only one participant, so
the participation function, pt, will take on a value of 1 for
exactly 1 participant at each time t, and be 0 for all other

participants. It follows, therefore, that the sum of each column
in the matrix (10) would be exactly 1.

Since each participation sequence is, in effect, a time series
of participant contributions, our goal of characterizing the in-
teractions between participants is a problem of characterizing
their corresponding participation time series. The field of
time-series analysis gives us tools that we can either use di-
rectly or adapt to our needs. Specifically, we can make use of
the cross-correlation between any two participants a and b:

ρa;b τð Þ ¼ 1

n−1ð Þσa � σb
∑n

t¼τþ1pa tð Þ � pb t−τð Þ−n � pa � pb ð11Þ

where the variable τ,

τ∈ℤ ; τ ≥0 ð12Þ

is some interval of time (or Blag^) between the initial con-
tribution of b and then some subsequent contribution of a. A
lag-1 cross-correlation between two participants will give a
measure of how frequently one participant contributes imme-
diately after the other participant. A lag-2 cross-correlation
will give a measure of the responsiveness of the one partici-
pant after a single intervening contribution. One can qualita-
tively examine temporal patterns in any pair of participants’
contributions by plotting this function for some reasonable
number of lags. By looking at these plots for all pairs of users,
one can examine the patterns for the entire group.

Latent semantic analysis

LSA represents the semantic and conceptual meanings of in-
dividual words, utterances, texts, and larger stretches of dis-
course based on the statistical regularities between words in a
large corpus of natural language (Landauer, McNamara,
Dennis, & Kintsch, 2007). The first step in LSA is to create
a word-by-document co-occurrence matrix, in which each row
represents a unique word and each column represents a
Bdocument^ (in practice, this typically means a sentence, par-
agraph, or section of an actual document). The values of the
matrix represent counts of how many occurrences there are of
each word in each document. For example, if the word Bdog^
appears once each in Documents 1 and 9 and twice in
Document 50, and is considered the first word in the dataset,
then the value of 1 will be in cells (1, 1) and (1, 9), and the
value of 2 in cell (1, 50). The occurrence matrix will then be
weighted. Each row is weighted by a value indicating the
importance of the corresponding word. Functional words (or
Bstop words^) that occur with nearly even frequency across all
documents receive small weights, since they are less useful at
distinguishing documents. By contrast, words that have very
different occurrences across the documents, and hence indi-
cate more meaningful content terms, get higher weights. The
most widely used weighting methods are term-frequency

1 During the review, it was observed that this measure does not correctly put
the participation on a common scale across conversations of different sizes. A
more correct adjustment would be

p̂̂a ¼
pa−

1

k
1

k

¼ kpa−1

This gives a measure of the individual level of participation, above or below
equal participation, in units of equal participation, and is comparable across
groups of different sizes.
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inverse document-frequency (TF-IDF) and log-entropy. A
principal component analysis (PCA) is then performed on
the weighted matrix by means of singular-value decomposi-
tion (SVD) matrix factorization. PCA is a procedure that al-
lows one to reduce the dimensionality of a set of data such that
it minimizes distortions in the relationships of the data. In the
context of LSA, PCA allows us to reduce the word-by-
document matrix to approximately 100–500 functional di-
mensions, which represent in compact form the most mean-
ingful semantic relationships between words. The SVD pro-
cedure also yields a matrix that can be used to map the words
from the original text corpus into vectors in a semantic space
described by these semantic dimensions (i.e., LSA space).

When building an appropriate LSA space, it is necessary to
have a corpus that broadly covers the topics under investiga-
tion. The Touchstone Applied Science Associates (TASA) cor-
pus is a good example of a comprehensive set of tens of thou-
sands of texts across numerous subject areas and spanning a
range of levels of complexity (grade levels), which is suitable
for building a general semantic space. In some instances, how-
ever, researchers desire a more custom corpus covering a spe-
cific domain, which was the case in the present research. The
source corpora used in this research were conversational tran-
scripts of collaborative interactions that are not large enough to
construct an LSA space. Furthermore, these transcripts refer to
ideas and concepts that are not explicitly described in the tran-
scripts. To obtain an appropriate representation of the semantic
space, we needed to include external material that would cover
the topics of the conversations. One way to handle this prob-
lem was to enrich the source corpus with additional material
that could provide appropriate background knowledge for key
terms represented in the conversational transcripts (Cai, Li, Hu,
& Graesser, 2016; Hu, Zhang, Lu, Park, & Zhou, 2009). The
process began with collecting a Bseed^ corpus of representa-
tive material (Cai, Burkett, Morgan, & Shaffer, 2011). In the
present research, this included the chat transcripts for each
dataset and the associated assigned reading material for the
students. This was done separately for each of the three
datasets (described in the Method section), to produce a cus-
tom, domain-specific seed corpus. This seed corpus was then
scanned for key terms, which were used to scan the Internet for
documents (i.e., Wikipedia articles) on the topics mentioned in
the seed corpus. The identified documents were used to create
an expanded LSA space that was more comprehensive than the
underlying transcripts on their own. For details on the extended
LSA spaces for each of the corpora used in this research, please
see the supplementary material.

By translating text from the corpus into numerical vectors, a
researcher can then perform any number of mathematical op-
erations to analyze and quantify the characteristics of the text.
One key operation is to compute the semantic similarity be-
tween any two segments of text. In the context of interactive
chat, the similarity contributions ct and cu (where u, like t, is an

index over time), can be computed by first projecting them
into the LSA space, yielding corresponding document

vectors d
!

t and d
!

u. The projection is done by matching each
word or term that occurs in the contribution, and locating the
normalized term-vector for that word (calculated by the SVD
process). These vectors are added together to get a vector cor-
responding to the entire contribution. If any term does not
occur in the LSA space, it is ignored, and so does not contrib-
ute to the resulting vector. However, the construction of the
space is such that this is very rare. Then, the cosine similarity of
textual coherence (Dong, 2005), is computed on the document

vectors d
!

t and d
!

u, as described in equation 13. The cosine
similarity ranges from – 1 to 1, with identical contributions
having a similarity score of 1, and completely nonoverlapping
contributions (no sharedmeaning) having a score of 0 or below
(although, in practice, negative text similarity cosines are very
rare).

cos d
!

t; d
!

u

� �
¼ d

!
t � d!u

d
!

t

��� ��� � d
!

u

��� ��� ð13Þ

The primary assumption of LSA is that there is some under-
lying or Blatent^ structure in the pattern of word usage across
contexts (e.g., turns, paragraphs or sentences within texts), and
that the SVD of the word-by-document frequencies will approx-
imate this latent structure. The method produces a high-
dimensional semantic space intowhichwe can project participant
contributions and measure the semantic similarity between them.

Using this LSA representation, students’ contributions dur-
ing collaborative interactions may be compared against each
other in order to determine their semantic relatedness, and
additionally, assessed for magnitude or salience within the
high-dimensional space (Gorman et al., 2003). When used to
model discourse cohesion, LSA tracks the overlap and transi-
tions of meaning of text segments throughout the discourse.

Using this semantic relatedness approach, the semantic sim-
ilarity score of any pair of contributions can be calculated as the
cosine of the LSA document vectors corresponding to each
contribution. This works well as a measure of similarity be-
tween pairs of contributions. However, it must be aligned with
the participation function in order to get a measure of the rela-
tionship between those participants in the discussion. As we
demonstrated above, the participation function can be used to
select pairs of contributions related to a specific participant-
participant interaction, and will screen out all other pairs of
interactions. We therefore define a semantic similarity function:

sab t; uð Þ ¼ pa tð Þ � pb uð Þ � cos d
!

t; d
!

u

� �
ð14Þ

This represents the semantic similarity for contributions ct
and cu only when contribution ctwas made by participant a and
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cuwas made by participant b; otherwise, it is 0 [because, in this
case, either pa(t) or pb(u), or both, would be 0]. This product
will form the foundation of several novel measures to charac-
terize different aspects of participant involvement in the group
discussion: the general participation, responsivity, internal co-
hesion, and social impact. These measures, described below,
will be aligned and compared with Strijbos and De Laat’s
(2010) conceptual framework to identify participants’ roles.

Cross-cohesion

This measure is similar in construction to the cross-correlation
function, in that it assesses the relatedness of two temporal
series of data to each other, at a given lag τ, though it relies
on semantic cohesion rather than correlation as the fundamen-
tal measure of relatedness. This measure captures how respon-
sive one participant’s contributions are to another’s over the
course the collaborative interactions. Cross-cohesion is de-
fined by averaging the semantic similarity of the contributions
of the one participant to those of the other when they are
lagged by some fixed amount, τ, across all contributions:

ξab τð Þ ¼
0; Pab τð Þk k ¼ 0

1

Pab τð Þk k ∑
n
t¼τþ1sab t−τ ; tð Þ; Pab τð Þk k≠0

8<
: ð15Þ

It is normalized by the total number of τ-lagged contribu-
tions between the two participants, as expressed in Eq. 16:

pab τð Þk k ¼ ∑n
t¼τþ1pa t−τð Þ � pb tð Þ ð16Þ

We use the Greek letter ξ (xi) to signify the cross-cohesion
function. We refer to ξab(τ) as the Bcross-cohesion of a to b at τ^
or as the Bτ-lagged cross-cohesion of a to b.^ The cross-cohesion
function measures the average semantic similarity of all τ-lagged
contributions between two participants. As such, it gives an in-
sight into both the degree and rapidity to which one participant
may be responding to the comments of another. The first partic-
ipant, denoted by a, is that user whose prior contribution poten-
tially has influenced a subsequent comment. The second partic-
ipant, denoted by b, is that user whose contribution potentially
responds to some part of the initiator’s contribution. In this way,
cross-cohesion can give a measure of the average semantic up-
take between participants at a given time-scale. The cross-
cohesion at 1 represents the degree of uptake observed in
the immediately previous contribution. The propensity for
uptake to contributions after one intervening contribution
is characterized by the 2-lagged cross-cohesion matrix, and
so on. In the special case that the first and the second
participants are the same, we may refer to this as the
autocohesion function, in similar fashion to the autocorre-
lation function. The autocohesion function measures con-
sistency over time in the semantics of a single participant’s
contributions. The most similar work to date (Samsonovich,

2014) has made use of the standard cross-correlation function
applied to time series of numeric measures computed from
natural language, and then draws inferences from these as to
the nature of social interactions. However, the use of semantic
similarity as the base measure of relatedness, in lieu of corre-
lation, is, to our knowledge, entirely novel.

Responsivity

Cross-cohesion at a single lag may not be very insightful on its
own, in that it represents a very narrow slice of interaction. By
averaging over a wider window of contributions, we can get a
broader sense of the interaction dynamics between the participants.

For a conversation with k = |P| participants, and given some
arbitrary ordering of participants in P, we can represent cross-
cohesion as a k × kmatrix X(τ), such that the element in row i,
column j is given by the cross-cohesion function ξij(τ). We
refer to this matrix as Bτ-lagged cross-cohesion matrix,^ or
Bcross-cohesion at τ.^ The rows of the matrix represent the
responding students, who we refer to as the respondents. The
columns of the matrix represent the initiating participants,
referred to as the initiators. We define responsivity across a
time window as follows:

R wð Þ ¼ 1

w
∑w

τ¼1X τð Þ ð17Þ

This will be referred to this as Bw-spanning responsivity^
or Bresponsivity across w.^ An individual entry in the matrix,
rab(w) is the Bw-spanning responsivity of a to b^ or the
Bresponsivity of a to b across w.^ These measures form a
moving average of responsivity across the entire dialogue.
The window for the average consists of a trailing subset of
contributions, starting with the most current and looking back-
ward over a maximum of w prior contributions. The charac-
teristics of an individual participant can be obtained by aver-
aging over their corresponding rows or columns of the w-
spanning responsivity matrix, and by taking their correspond-
ing entry in the diagonal of the matrix. For details on the
spanning window calibration used for the datasets in the pres-
ent research, please see the supplementary material.

Internal cohesion Internal cohesion is the measure of how
semantically similar a participant’s contributions are with their
own previous contributions during the interaction. The partic-
ipant’s Bw-spanning internal cohesion^ is characterized by the
corresponding diagonal entry in the w-spanning responsivity
matrix:

raa wð Þ ð18Þ

The internal cohesion is effectively the average of the
autocohesion function of the specified participant over
the first w lags.
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Overall responsivity Each row in the w-spanning responsivity
matrix is a vector representing how the corresponding partic-
ipant has responded to all others. To characterize how respon-
sive a participant is to all other group members’ contributions
during the collaborative interactions, we take the mean of
these row vectors (excluding the participant of interest):

ra wð Þ ¼ 1

k−1
∑k

i¼1;i≠arai wð Þ ð19Þ

This is referred to as the Bw-spanning responsivity of a,^ or
just the Boverall responsivity of a,^ for short.

Social impact Each column in the w-spanning responsivity
matrix is a vector representing how contributions initiated by
the corresponding participant have triggered follow-up re-
sponses. In a similar fashion to the overall responsivity de-
scribed above, a measure of each individual participant’s so-
cial impact can be calculated by averaging over these column-
vectors (excluding the participant of interest):

ia wð Þ ¼ 1

k−1
∑k

j¼1; j≠arja wð Þ ð20Þ

This is referred to as the Bw-spanning impact of a,^ or just
the Bsocial impact of a,^ for short.

LSA given–new Participants’ contributions can vary in how
much new versus given information they contain (Hempelman
et al., 2005;McCarthy et al., 2012). Note that, for the purposes of
the present research, we were more interested in a measure of the
amount of new rather than given information provided by par-
ticipants. This is motivated by the fact the responsivity measures
already capture the social equivalent of Bgivenness,^ which is
more relevant in the contexts of group interactions. Establishing
howmuch new information is provided in any given contribution
can bemeaningful to the dynamics of the conversation, as well as
to characterize the ways in which different participants contrib-
ute. Following the method of Hu et al. (2003), the given infor-
mation at the time of contribution t is a subspace of the LSA
spanned by the document vectors of all previous contributions:

Gt ¼ span d
*

1; d
*

2;…; d
*

t−1

n o
ð21Þ

The semantic content of the current contribution can then
be divided into the portion already given by projecting the
LSA document vector for the current contribution onto the
subspace defined in Eq. 22:

g*t ¼ ProjGt
d
*

t

� �
ð22Þ

There is also the portion of semantic content that is new to
the discourse, which we can explore by projecting the same

document vector onto the orthogonal complement of the given
subspace, as defined in Eq. 23:

n*t ¼ ProjG⊥
t

d
*

t

� �
ð23Þ

This is the portion perpendicular to the given subspace. Of
course, the semantic content of the contribution is completely
partitioned by these projections, so

d
*

t ¼ g*t þ n*t ð24Þ

To get a useful measure of the total amount of new seman-
tic content provided in any given contribution, we take the
relative proportion of the size of the new vector to the total
content provided:

n ctð Þ ¼ n*t
�� ��

n*t
�� ��þ g*t

�� �� ð25Þ

This given–new value ranges between 0 (all given content,
nothing new) to 1 (all new content).

NewnessWe can characterize the relative new content provid-
ed by each individual participant by averaging over the given–
new scores of this participant’s contributions:

Na ¼ 1

Pak k ∑
n
t¼1pa tð Þ � n ctð Þ ð26Þ

Communication density Another meaningful measure in-
volves calculating the average amount of semantically mean-
ingful information provided in a contribution. This measure
was first established by Gorman et al. (2003) in their work
examining team communication in a synthetic military avia-
tion task. This measure differs from the given–new measure in
that it is entirely calculated from the contribution ci and its

corresponding LSAvector, d
!

i, and does not consider any prior
contributions. The communication density is defined in Eq. 27:

Di ¼ dik k
cik k ð27Þ

where ‖di‖ is the norm of the LSA vector and ‖ci‖ is the
length of the contribution in words. Thus, communication
density gives the per-word amount of semantic meaning for
any contribution. To characterize the communication density
of a particular participant, we must calculate the average den-
sity over all this participant’s contributions:

Da ¼ 1

Pak k ∑
n
t¼1pa tð Þ � Dt ð28Þ

The six measures that comprise the GCA are summarized
in Table 2.
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Topic modeling

The cohesion-based discourse measures described above cap-
ture important intrapersonal and interpersonal dynamics, but
an additional data-mining technique is needed to capture the
themes and topics of the collaborative discussions. The iden-
tification of covered topics is of particular interest for the
present analyses, because it affords an assessment of the over-
all group performance that is independent of the individual
student performance (i.e., pretest and posttest scores). Latent
Dirichlet allocation (LDA; Blei, Ng, & Jordan, 2003), more
commonly known as topic modeling (Steyvers & Griffiths,
2007), is a method of deriving an underlying set of topics from
an unlabeled corpus of text.

Topic modeling allows researchers to discover the common
themes in a large body of text and to what extent those themes
are present in individual documents. Topic modeling has fre-
quently been used to explore collaborative-learning contexts
(e.g., Cai et al., 2017). In this research, LDA topic models
were used to provide an inference mechanism of underlying
topic structures through a generative probabilistic process.
This generative process delivers a distribution over topics
for each document in the form of a proportion. This distribu-
tion can be used to find the topics most representative of the
contents of that document. These distributions can also be
considered as data for future analyses, as every document’s
distribution describes a document-topic Bfingerprint.^ For this
research, the topic model corpus for each of the three datasets
(described in the Method section) consisted of the extended
corpora produced with the Bseed method^ described earlier
(see the Latent Sematic Analysis section above). A topic mod-
el was then generated for each of these extended corpora. The
identified topics were inspected to identify which topics might
be considered Boff-task^ for the corresponding collaborative
activity (details of this are described in the Methods section).
Thus, the topics were divided into two groups, namely domain
content relevant and irrelevant.

Topic relevance The measure of group performance was op-
erationalized as the amount of on-topic discussion. To develop
a meaningful measure of relevant or Bon-task^ discussion, we

begin with the set of all topics, Q, constructed as described
above. The topic score,

tq ctð Þ ð30Þ

gives the proportion of contribution ct that covers topic q ∈
Q. These proportions sum to 1 for any contribution:

∑
q∈Q

tq ctð Þ ¼ 1 ð31Þ

The set of all topics will be manually partitioned into two
subsets, Q′ and Q°:

Q ¼ Q
0
∪Q°;Q

0
∩Q° ¼ ∅f g ð32Þ

Q′ represents those topics considered Brelevant^ or Bon-
task^ for the corresponding collaborative activity, andQ° con-
sists of all other Boff-task^ topics (see theMethod section).We
can then construct a measure of the relative proportion of on-
task material in each contribution by summing over the topic
scores for topics in Q′:

T
0
ctð Þ ¼ ∑

q∈Q0
tq ctð Þ ð33Þ

We can get a measure of the degree to which the entire
group discussion was on- or off-task by averaging T′ for all
contributions across the entire discussion:

T
0 ¼ 1

n
∑n

t¼1T
0
ctð Þ ð34Þ

Method

The GCAmeasures (as summarized in Table 2) were comput-
ed for each of three independent collaborative interaction
datasets. The first was a Traditional Computer-Supported
Collaborative Learning (CSCL) dataset. It is important to note
that the Traditional CSCL dataset was the primary dataset
used in the analyses. The second was a synchronous massive
online course (SMOC) dataset called SMOC. The third was a

Table 2 Collaborative interaction process measures from the GCA

Measure Equation Description

Participation (9) Mean participation of any participant above or below what you would expect from equal participation in a
group of the size of theirs

Overall responsivity (19) Measure of how responsive a participant’s contributions are to all other group members’ recent contributions

Internal cohesion (18) How semantically similar a participant’s contributions are with the participant’s own recent contributions

Social impact (20) Measure of how contributions initiated by the corresponding participant have triggered follow-up responses

Newness (26) The amount of new information a participant provides, on average

Communication density (28) The amount of semantically meaningful information
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collaborative-learning and problem-solving dataset collected
from a virtual internship game called BLand Science.^ In the
present research, the SMOC and Land Science datasets are
used to address the external generalizability research question.
The three datasets are described below.

Traditional CSCL dataset

Participants The participants were enrolled in an introductory-
level psychology course taught in the fall semester of 2011 at a
university in the American Southwest. Although 854 students
participated in this course, someminor data loss occurred after
removing outliers and those who failed to complete the out-
come measures. The final sample consisted of 840 students.
Females made up 64.3% of this final sample. In all, 50.5% of
the sample identified as Caucasian, 22.2% as Hispanic/Latino,
15.4% as Asian American, 4.4% as African American, and
less than 1% identified as either Native American or Pacific
Islander.

Course details and procedure Students were told that they
would be participating in an assignment that involved a col-
laborative discussion on personality disorders, as well as sev-
eral quizzes. Students were told that their assignment was to
log onto an online educational platform specific to the
University at a specified time (Pennebaker, Gosling, &
Ferrell, 2013). Students were also instructed that, prior to log-
ging onto the educational platform, they should read certain
assigned material on personality disorders.

After logging onto the system, students took a ten-item,
multiple choice pretest quiz. This quiz asked students to apply
their knowledge of personality disorders to various scenarios
and to draw conclusions based on the nature of the disorders.
After completing the quiz, they were randomly assigned to a
chatroom with one to four classmates, also chosen at random
(average group size was 4.59), and instructed to engage in a
discussion of the assigned material. The group chat began as
soon as someone typed the first message and lasted for exactly
20 min, when the chat window closed automatically. Then
students took a second set of ten multiple-choice question
posttest quiz. Each student contributed 154.0 words on aver-
age (SD = 104.9) in 19.5 sentences (SD = 12.5). As a group,
discussions were about 714.8 words long (SD = 235.7) and
90.6 sentences long (SD = 33.5).

Group performance measure The group performance was op-
erationally defined as the proportion of topic-relevant discus-
sion during the collaborative interaction, as described in Eq.
34. As a reminder, the corpus used for the topic modeling was
the same extended corpus (created using the seed method
described earlier) used for creating the custom LSA spaces
(Cai et al., 2011).

The topic modeling analysis revealed 20 topics, of which
eight were determined to be relevant to the collaborative in-
teraction task. Interjudge reliability was not used to determine
the relevant topics. Instead, two approaches were used to de-
termine the most relevant topics and to validate a topic rele-
vance measure for group performance. The first was the fre-
quency of the topics discussed across all the groups and indi-
vidual students, wherein more frequently discussed topics
were viewed as more important. Second, correlations between
the topics and student learning gains were used to help vali-
date the importance of the topic. Once the important topics
were determined, an aggregate topic relevance score was com-
puted by summing up the proportions for those topics (Eq.
33). The top ten words for each of the relevant topics are listed
in the supplementary material.

SMOC dataset

Participants The participants were 1,713 students enrolled in
an online introductory-level psychology course taught in the
fall semester of 2014 at a university in the American
Southwest. Throughout the course, students participated in a
total of nine different computer-mediated collaborative inter-
actions on various introductory psychology topics. This re-
sulted in a total of 3,380 groups, with four to five students
per group. However, 83 (2.46%) of the 3,380 chat groups were
dropped because they contained only a single participant.

Course details and procedure The collaborative interactions
took place in a large online introductory-level psychology
course. The structure of the class followed a synchronous
massive online course (SMOC) format. SMOCs are a varia-
tion of massive open online courses (MOOCs; Chauhan,
2015). MOOCs are open to the general public and typically
free of charge. SMOCs are limited to a total of 10,000 stu-
dents, including those enrolled at the university and across the
world, and are available to all participants at a registration fee
of $550 (Chauhan, 2015).

The course involved live-streamed lectures that required
students to log in at specific times. Once students were
logged onto the university’s online educational platform,
students were able to watch live lectures and instructional
videos, take quizzes and exercises, and participate in col-
laborative discussion exercises. Students interacted in col-
laborative discussions via web chat with randomly selected
classmates. Once put into groups, students were moved
into a chat room and told they had exactly 10 min to dis-
cuss the assigned material (readings or videos). This 10-
min session began at the moment of the first chat message.
At the end of the discussion, students individually took a
ten-item, multiple choice quiz that asked students to apply
their knowledge of the assigned material to various scenar-
ios and to draw conclusions.
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Land Science dataset

Participants A total of 38 participants interacted in 19 collab-
orative problem-solving simulation games. Each game
consisted of multiple rooms, and each room involved multiple
chat sessions. There were a total of 630 distinct chat sessions.
Of the 38 participants, n = 29 were student players, n = 13
werementors, n = 10were teachers, and n = 1 was a nonplayer
character (NPC). For the purposes of detecting the social roles
of players, only the players’ and the mentors’ chat was ana-
lyzed with the GCA. One of the rationales for exploring this
dataset was to evaluate the generalizability of the GCA meth-
od across a range of different types of collaborative tasks.
Specifically, unlike the collaborative-learning datasets de-
scribed above, Land Science is a collaborative problem-
solving environment.

Details and procedure Land Science is an interactive virtual
urban-planning internship simulation with collaborative prob-
lem solving (Bagley & Shaffer, 2015; Shaffer, 2006; Shaffer
& Graesser, 2010). The goal of the game is for students to
think and act like STEM professionals. Players are assigned
an in-game role as an intern with a land-planning firm in a
virtual city, under the guidance of a mentor. During the game,
players communicate with other members of their planning
team, as well as with a mentor who sometimes role plays as
a professional planning consultant. Players are deliberately
given different instruction and resources; they must success-
fully combine skills within small teams in order to solve the
collaborative problems.

Detecting social roles

The following analyses focus on addressing the main ques-
tions raised in the Overview of the Present Research, above.
The analysis started with the Traditional CSCL dataset, which
was immediately partitioned into training (84%) and testing
(16%) datasets. Descriptive statistics for the GCA measures
from the training data are presented in Table 3.

The data were normalized and centered to prepare them for
analysis. Specifically, the normalization procedure involved
Winsorizing the data on the basis of each variable’s upper
and lower percentile. Density and pairwise scatter plots for
the GCAvariables are reported in the supplementary material.
A cluster analysis approach was adopted to discover commu-
nication patterns associated with specific learner roles during
collaborative interactions. Cluster analysis is a common data
mining technique that involves identifying subgroups of data
within the larger population who share similar patterns across
a set of variables (Baker, 2010). Cluster analysis has been
applied in previous studies of social roles (e.g., Lehmann-
Willenbrock et al., 2016; Risser & Bottoms, 2014) and has
proven useful in building an understanding of individuals’
behaviors in many digital environments more broadly (del
Valle & Duffy, 2007; Mirriahi, Liaqat, Dawson, & Gašević,
2016; Wise et al., 2012). Prior to clustering, multicollinearity
was assessed through inflation factor (VIF) statistics and col-
linearity was assessed using Pearson correlations. The VIF
results support the view that multicollinearity was not an issue
with VIF > 7 (Fox &Weisberg, 2010). There was evidence of
moderate collinearity between two variables, newness and
communication density. However, further evaluation showed
that collinearity did not impact the clustering results. For more
details on collinearity and cluster tendency assessments,
please see the supplementary material.

In principle, any number of clusters can be derived
from a dataset. So, the most important decision for any
analyst when making use of cluster analysis is to deter-
mine the number of clusters that best characterizes the
data. Several methods have been suggested in the litera-
ture for determining the optimal number of clusters (Han,
Pei, & Kamber, 2012). A primary intuition behind these
methods is that ideal clusterings involve compact, well-
separated clusters, such that the total intracluster variation
or total within-cluster sum of squares (wss) is minimized
(Kaufman & Rousseeuw, 2005). In the present research,
we used the NbClust R package, which provides 26 indi-
ces for determining the relevant number of clusters
(Charrad, Ghazzali, Boiteau, & Niknafs, 2014). It is be-
yond the scope of this article to specify each index, but
they are described comprehensively in the original article
of Charrad et al. An important advantage of NbClust is
that researchers can simultaneously compute multiple in-
dices and determine the number of clusters using a major-
ity rule, wherein the proposed cluster size that has the best
score across the majority of the 26 indices is taken to be
optimal. Figure 3 reveals that the optimal number of clus-
ters, according to the majority rule, was six for a k-means
clustering. Note that two- and four-cluster solutions were
also inspected and compared. In-depth coverage of those
models and their evaluation may be found in the supple-
mentary material.

Table 3 Descriptive statistics for GCA measures

Measure Minimum Median M SD Maximum

Participation – 0.26 – 0.01 0.00 0.10 0.35

Social impact 0.00 0.18 0.18 0.05 0.43

Overall responsivity 0.00 0.18 0.18 0.05 0.50

Internal cohesion – 0.06 0.18 0.18 0.09 0.58

Newness 0.00 0.48 0.78 1.25 18.09

Communication density 0.00 0.21 0.34 0.51 6.45

Mean (M). Standard deviation (SD).
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Cluster analysis

K-means was used to group learners with similar GCA pro-
files into clusters. Investigation of the cluster centroids may
shed light on whether the clusters are conceptually distin-
guishable. The centroids are representative of what may be
considered typical, or average, of all entities in the cluster.
With k-means, the centroids are in fact the means of the points
in the cluster (although this is not necessarily true for other
clustering methods). In the context of GCA profiles, we may
interpret the centroids as behavior typical of a distinct style of
interaction (i.e., roles). The centroids for the six-cluster k-
means solution are presented in Fig. 4. It is worth noting that
since the clustering was performed on normalized data, 0 in
this figure represents the population average for eachmeasure,
whereas positive and negative values represent values above
or below that average, respectively.

We see some interesting patterns across the six-cluster so-
lution. Cluster 1 (N = 143) was characterized by learners who

had the highest participation andmid-range newness and com-
munication density, but lower scores across all other mea-
sures. These individuals could be considered key members
due to the sheer volume of their posting. However, the degrees
to which these individuals were responding to others (i.e.,
overall responsivity) and influencing the other group mem-
bers’ subsequent posts (i.e., social impact) are suggestive of
behavior that was ineffective, or perhaps superficial, to the
group interaction goals. Their discourse appears to have been
more in response to themselves than to other group members,
since they exhibit relatively higher internal cohesion than re-
sponsiveness. This relationship suggests that these learners
may occasionally have had an influence similar to that of the
Over-Riders described in Strijbos and De Laat’s (2010) frame-
work. The overall pattern of Cluster 1 highlights a theme in
the literature, which suggests that high-volume members may
not always be supportive in online interactions (Benamar,
Balagué, & Ghassany, 2017; Nolker & Zhou, 2005). Nolker
and Zhou raised the issue of separating high-contributing in-
dividuals into two classes, based on whether their conversa-
tional patterns were supportive of the collaboration or the
prevailing social climate. These high-participating individuals
in Cluster 1, who did not effectively contribute to productive
group conversation as a whole, are labeled asChatterers in the
present research.

The learners in Cluster 2 (N = 153) were among the highest
participators; they exhibit high social impact, responsiveness,
and internal cohesion, but coupled with the lowest newness
and communication density. Learners in these clusters were
investing a high degree of effort in the collaborative discus-
sion and displayed self-regulatory and social-regulatory skills.
This pattern is labeled the Drivers in the present research.

Cluster 3 (N = 88) is characterized by learners who had the
lowest participation. However, when they did contribute it
appears to have built, at least minimally, on previously

Fig. 3 Frequencies for recommended numbers of clusters using k-means, ranging from 2 to 10, based on the 26 criteria provided by theNbClust package.
Here we see that eight of the 26 indices proposed six as the optimal number of clusters in the Traditional CSCL dataset.

Fig. 4 Centroids for the six-cluster solution across the GCA variables.
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contributed ideas and moved the collaborative discourse for-
ward (i.e., moderately positive social impact and responsive-
ness). This cluster is labeled as Followers.

Cluster 4 (N = 117), labeled as Lurkers, is characterized by
some of the lowest values across all GCA measures. Lurkers
have been defined differently in the literature, ranging from
nonparticipators to minimal participators (Nonnecke &
Preece, 2000; Preece, Nonnecke, & Andrews, 2004). The dis-
tinction between a Ghost and a Lurker is not clear, and the
terms appear to be interchangeable, although Strijbos and De
Laat (2010) do make a distinction based on group size. There
were two reasons that motivated us to prefer the term Lurker,
rather than Ghost, in the present research. First, the GCA
methodology would not be able to detect an individual who
did not participate at all (because there would not be a log file
for those students), which suggests that the learners in these
clusters did contribute at least minimally. Second, past re-
search has labeled the Ghost and Lurker roles predominantly
on the basis of the amount of contribution that a student
makes. However, the GCA captures participation as well as
the sociocognitive characteristics of those contributions.
Again, since these measures are normalized, the very low
values for this cluster centroid does not suggest that these
students had no social impact or were completely unrespon-
sive to others. Rather, it suggests that these students expressed
far less, as compared to the population average. Lurking be-
havior sometimes involves some level of engagement, but at
other times little engagement, so it is associated with both
positive and negative outcomes in the literature (Preece et
al., 2004). Therefore, Lurker appeared to be the most appro-
priate label for Cluster 4.

Learners occupying Cluster 5 (N = 91) exhibited high in-
ternal cohesion but low scores on all the other GCAmeasures.
This cluster is labeled as Socially Detached, because the pat-
tern appears to capture students who were not productively
engaged with their collaborative peers, but instead focused
solely on themselves and their own narrative.

In Cluster 6 (N = 126) we see learners with low participa-
tion, but when they did contribute, they attended to other
learners’ contributions and provided meaningful information
that furthered the discussion (i.e., high internal cohesion, over-
all responsiveness, and social impact). It is interesting to note
that these students were not among the highest participators,
but their discourse signaled a social positioning that was con-
ducive to a productive exchange within the collaborative in-
teraction. This pattern is suggestive of a student who is en-
gaged in the collaborative interaction but takes a more
thoughtful and deliberative stance than do the Drivers. As
such, we refer to this cluster as Influential Actors in this re-
search. Overall, the six-cluster model appears, at least upon an
initial visual inspection, to produce theoretically meaningful
participant roles. We then proceeded to evaluate the quality
and validity of this model.

Clustering evaluation and validation

The literature has proposed several cluster validation indexes
that quantify the quality of a clustering (Hennig, Meila,
Murtagh, & Rocci, 2015). In principle, these measures pro-
vide a fair comparison of clustering and aid researchers in
determining whether a particular clustering of data is better
than an alternative (Taniar, 2006). Three main types of cluster
validation measures and approaches are available: internal,
stability, and external. Internal criteria evaluate the extent to
which the clustering Bfits^ the dataset based on the actual data
used for clustering. In the present research, two commonly
reported internal validity measures (Silhouette and Dunn’s
index) were explored, using the R package clValid (Brock,
Pihur, Datta, & Datta, 2008). Silhouette analysis measures
how well an observation is clustered and it estimates the av-
erage distance between clusters (Rousseeuw, 1987).
Silhouette widths indicate how discriminating the candidate
clusters are by providing values that range from a low of – 1,
indicating that observations are likely placed in the wrong
cluster to 1, indicating that the clusters perfectly separate the
data and no better alternative clustering can be found. The
average silhouette (AS) for the six-cluster model was positive
(AS = .31), indicating the students in a cluster had higher
similarity to other students in their own cluster than to students
in any other cluster. Dunn’s (1974) index (D) evaluates the
quality of clusters by computing a ratio between the interclus-
ter distance (i.e., the separation between clusters) and the
intracluster diameter (i.e., the within-cluster compactness).
Larger values of D suggest good clusters, and a D larger than
1 indicates compact separated clusters (Dunn, 1974). Dunn’s
index for the six-cluster model was D = .5, indicating that this
clustering had moderate compactness.

Stability is another important aspect of cluster validity. A
clustering may be said to be stable if its clusters remain intact
(i.e., not disappear easily) when the dataset is changed in a
nonessential way (Hennig, 2007). Although there may be
many different conceptions of what constitutes a
Bnonessential change^ to a dataset, the leave-one-column
out method is commonly applied. The stability measures cal-
culated in this way compare the results from clustering based
on the complete dataset to clusterings based on removing each
column, one at a time (Brock et al., 2008; Datta & Datta,
2003). In the present context, this corresponds to the removal
of one of the GCA variables at a time. The stability measures
are the average proportion of nonoverlap (APN), the average
distance (AD), the average distance between means (ADM),
and the figure of merit (FOM). Each of these measures was
calculated for each reduced dataset (produced by dropping
one column), and their average was taken as the measure for
the dataset as a whole. The APN ranges from 0 to 1, whereas
the AD, ADM, and FOM all range from 0 to infinity. For each
of these measures, smaller scores indicate a better, more stable
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clustering. The stability scores for the six-cluster solution sug-
gest that the clusters were quite stable across the four mea-
sures, with APN = .22, AD = 0.97, ADM = 0.31, and FOM =
0.37.

Cluster coherence

It is important to also evaluate the coherence of the clusters in
terms of their underlying GCA variables. This can help to
establish that the identified clusters do in fact represent distinct
modes in the distr ibution of the GCA measures.
Consequently, the six-cluster model was further evaluated to
determine whether learners in the cluster groups significantly
differed from each other on the six GCA variables. The mul-
tivariate skewness and kurtosis were investigated using the R
package MVN (Korkmaz, Goksuluk, & Zararsiz, 2015),
which produces the chi-square Q–Q plot (see the
supplementary material), and a Henze–Zirkler (HZ) test statis-
tic, which assesses whether the dataset follows an expected
multivariate normal distribution. The results indicated the
GCA variables did not follow a normal distribution, HZ =
5.06, p < .05. Therefore, a permutational multivariate analysis
of variance (MANOVA; or a nonparametric MANOVA) was
to evaluate the between-cluster GCAvariable means. The per-
mutational MANOVA, implemented in the Adonis routine
of the VEGAN package in R (Oksanen et al., 2016), is a robust
alternative to both the traditional parametricMANOVA and to
ordination methods for describing how variation is attributed
to different experimental treatments or, in this case, cluster
partitions (Anderson, 2001). The Adonis test showed a sig-
nificant main effect of the clusters, F(5, 712) = 350.86, p <
.001. These results support the models’ formation and ability
to organize learners on the basis of differences in their collab-
orative communication profiles.

The analyses then proceeded through ANOVAs, followed
by Tukey’s post hoc comparisons to identify significant dif-
ferences in the participants’ scores on the six GCA variables
between the clusters. Levene’s test of equality of error

variances was violated for all the GCA variables, so a more
stringent alpha level (p < .01) was used when identifying
significant differences for these variables (Tabachnick &
Fidell, 2007, p. 86). The ANOVA main effect F values, along
with the means and standard deviations for the GCAvariables
across each cluster, are reported in Table 4 for the six-cluster
model. The ANOVA revealed significant differences among
clusters for all six of the GCAvariables at the p < .0001 level
for the six-cluster model. Tukey’s HSD post hoc comparisons
for the six-cluster model are shown in Table 5, where we can
see that the observed differences in GCA profiles across the
clusters were, for the majority, significantly distinct in both
models.

Model generalizability

Internal generalizability When performing unsupervised clus-
ter analyses, it is important to know whether the cluster results
generalize (e.g., Research Question 2a). In the present research,
a bootstrapping and replication methodology was adopted to
see whether the observed clusters would generalize meaning-
fully to unseen data (Dalton, Ballarin, & Brun, 2009; Everitt,
Landau, Leese, & Stahl, 2011). First, the internal generalizabil-
ity was evaluated for the six-cluster model from the Traditional
CSCL dataset. Specifically, a bootstrapping approach was used
to assess the Bprediction strength^ of the training data. The
prediction strength measure assesses how many groups can
be predicted from the data, and how well (Tibshirani &
Walther, 2005). Following the prediction strength assessment,
a replication model was used to evaluate whether the training
data cluster centroids can predict the ones in the testing data. If
the six-cluster structure found using k-means clustering is ap-
propriate for the Traditional CSCL data, then the prediction for
the test dataset, and a clustering solution created independently
for the test dataset, should match closely.

The prediction strength of the training data was ex-
plored using the clusterboot function in the R pack-
age fpc (Hennig, 2015). This approach uses a bootstrap

Table 4 Six-cluster model means and standard deviations for the six GCA variables

GCA Measures Cluster 1:
Chatterers
n = 143

Cluster 2:
Driver
n = 153

Cluster 3:
Follower
n = 88

Cluster 4:
Lurker
n = 117

Cluster 5:
Detached
n = 91

Cluster 6: Influential
Actor
n = 126

F value

M(SD) M(SD) M(SD) M(SD) M(SD) M(SD)

Participation 0.64 (0.23) 0.60 (0.24) – 0.66 (0.28) – 0.63 (0.27) – 0.37 (0.36) – 0.44 (0.32) 285.70***

Social impact – 0.50 (0.31) 0.51 (0.33) 0.15 (0.47) – 0.66 (0.23) – 0.29 (0.39) 0.63 (0.25) 200.50***

Overall responsivity – 0.48 (0.31) 0.38 (0.38) 0.21 (0.46) – 0.61 (0.24) – 0.28 (0.36) 0.56 (0.28) 157.70***

Internal cohesion – 0.30 (0.37) 0.39 (0.31) – 0.59 (0.21) – 0.65 (0.17) 0.29 (0.31) 0.55 (0.23) 210.30***

Newness – 0.12 (0.14) – 0.10 (0.14) – 0.31 (0.14) – 0.30 (0.13) – 0.25 (0.15) – 0.28 (0.12) 15.83***

Communication
density

– 0.09 (0.14) – 0.13 (0.16) – 0.29 (0.15) – 0.26 (0.15) – 0.23 (0.16) – 0.31 (0.12) 15.01***

ANOVA df = 5, 712; *** p < .0001.
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resampling scheme to evaluate the prediction strength of a
given cluster. The algorithm uses the Jaccard coefficient,
a similarity measure between sets. The Jaccard similarity
between two sets Y and X is the ratio of the number of
elements in the intersection of Y and X over the number
of elements in the union of Y and X. The cluster predic-
tion strength and stability of each cluster in the original
six-cluster model is the mean value of its Jaccard coeffi-
cient over all the bootstrap iterations. As a rule of thumb,
clusters with a value less than 0.6 should be considered
unstable. Values between 0.6 and 0.75 indicate that the
cluster is measuring a pattern in the data, but there is
not high certainty about which points should be clustered

together. Clusters with values above about 0.85 can be
considered highly stable and have high prediction strength
(Zumel, Mount, & Porzak, 2014). The prediction strength
of the Traditional CSCL training data was evaluated using
100 bootstrap resampling iterations.

The final cluster pattern produced by the 100 bootstrap
resampling iterations for the six-cluster model are reported
in Fig. 5. As can be seen in this figure, the observed pattern
was identical to the original six-cluster model, albeit with a
different ordering of the clusters. The ordering of clusters in
the k-means algorithm is arbitrary, so the pattern of the GCA
variables within each cluster was of most importance. The
Jaccard similarity values showed very strong prediction for

Table 5 Tukey HSD p values for the pairwise comparisons for the GCA measures across the six-cluster solution

Cluster Comparison GCAVariables

Participation Social Impact Overall Responsivity Internal Cohesion Newness Communication Density

2 vs. 1 p = .04 p < .001 p < .001 p < .001 p = .83 p = .06

3 vs. 1 p < .001 p < .001 p < .001 p < .001 p < .001 p < .001

4 vs. 1 p < .001 p < .001 p < .001 p < .001 p < .001 p < .001

5 vs. 1 p < .001 p = .008 p = .05 p < .001 p < .001 p < .001

6 vs. 1 p < .001 p < .001 p < .001 p < .001 p < .001 p < .001

3 vs. 2 p < .001 p < .001 p = .66 p < .001 p < .001 p < .01

4 vs. 2 p < .001 p < .001 p < .001 p < .001 p < .001 p < .01

5 vs. 2 p < .001 p < .001 p < .001 p = .58 p < .05 p < .001

6 vs. 2 p < .001 p = .07 p < .001 p < .001 p < .001 p < .001

4 vs. 3 p = .93 p < .001 p < .001 p = .99 p = 1.00 p = .99

5 vs. 3 p < .001 p < .001 p < .001 p < .001 p = .56 p = .50

6 vs. 3 p < .001 p < .001 p < .001 p < .001 p = .99 p = 1.00

5 vs. 4 p < .001 p < .001 p < .001 p < .001 p = .61 p = .78

6 vs. 4 p < .001 p < .001 p < .001 p < .001 p = 1.00 p = .98

6 vs. 5 p = .99 p < .001 p < .001 p < .001 p = .72 p = .37

Fig. 5 Final six-cluster pattern produced by the 100 bootstrap resampling iterations of the Traditional CSCL training data, which was identical to the
original k-means six-cluster model pattern depicted in Fig. 4.
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all six clusters, with .96, .95, .91, .96, .91, and .96 for Clusters
1–6, respectively.

The next analyses focused on evaluating the generalizabil-
ity of the observed clusters in the training data to the testing
data. First, six-cluster k-means analyses were performed on
the held-out Traditional CSCL test data (N = 136).
Descriptive statistics for the test data GCA variables are re-
ported in the supplementary material. The centroids for the
six-cluster k-means solution for the Traditional CSCL test data
are illustrated in Fig. 6. The observed pattern of the six-cluster
solution for the testing data appears, at least visually, to be
similar to the one observed for the training data.

Next, we focused on quantifying the observed overlap be-
tween the testing and training cluster analyses. Specifically,
the cluster centers from the training dataset were used to pre-
dict the clusters in the test data for the six-cluster model. This
analysis was performed using the cl_predict function in
the R clue package (Hornik & Böhm, 2016). Cross-
tabulations of the predicted and actual cluster assignments
for the Traditional CSCL testing dataset are reported in
Table 6. The rows in the table correspond to the clusters spec-
ified by the k-means clustering on the testing data, and the
columns correspond to the predicted cluster memberships
from the training data. In a perfect prediction, large values
would lie along the diagonal, with zeroes off the diagonal; this
would indicate that all samples that belonged to Cluster 1 had
been predicted by the training data as belonging to Cluster 1,
and so forth. The form of this table can give us considerable
insight into which clusters were reliably predicted. It can also
show which groups are likely to be confused and which types
of misclassification are more common than others. However,
in this case we observed almost perfect prediction of the six-
cluster model, with few exceptions.

Two measures were used to evaluate the predictive accura-
cy of the six-cluster model on the Traditional CSCL training
clusters: the adjusted Rand index (ARI) and a measure of

effect size (Cramer’s V) for the cluster cross-tabulation. ARI
computes the proportion of the total of n

2

� �
object pairs that

agree—that is, that are either (i) in the same cluster according
to Partition 1 and the same cluster according to Partition 2 or
(ii) in different clusters according to Partition 1 and in different
clusters according to Partition 2. The ARI addresses some of
the limitations of the original Rand index by providing a con-
servative measure that penalizes for any randomness in the
overlap (Hubert & Arabie, 1985). The ARI was calculated
between: (a) the test data clustering membership and (b) the
predicted cluster membership given by the training data. The
predictive accuracy of the training data is considered good if it
is highly similar to the actual testing data cluster membership.
The degree of association between the membership assign-
ments of the predicted and actual cluster solutions was ARI
= .84 for the six-cluster model. ARI values range from 0 to 1,
with higher index values indicating more agreement between
sets. The measure of effect size for the cross-tabulation re-
vealed Cramer V = .92, which is considered very strong asso-
ciation (Kotrlik, Williams, & Jabor, 2011). Given these

Fig. 6 Traditional CSCL testing data centroids for the six-cluster solution across the GCA variables.

Table 6 Cross-tabulations of the predicted and actual cluster
assignments for the six-cluster model on the Traditional CSCL testing
dataset

Testing
Clusters

Training Predicted Clusters

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

Cluster
6

Cluster 1 32 0 0 0 0 0

Cluster 2 2 29 0 0 0 0

Cluster 3 0 0 15 2 1 0

Cluster 4 0 0 0 18 0 0

Cluster 5 4 0 0 1 13 0

Cluster 6 0 0 0 0 0 19
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results, the six-cluster solution was judged to be robust and
well-supported by the data.

A similar replication approach was adopted to evaluate the
generalizability within the SMOC and Land Science datasets.
Descriptive statistics for the GCA measures in the SMOC
training (N = 9,463)/testing (N = 2,378) and Land Science
training (N = 2,837)/testing (N = 695) datasets are presented
in Table 7. First, a six-cluster model was constructed on the
SMOC and Land Science training datasets. The patterns of
the six-cluster models are depicted in Fig. 7 for the SMOC
training dataset, and in Fig. 8 for the Land Science training
dataset.

The analysis proceeded by evaluating the internal general-
izability for the SMOC and Land Science datasets separately.
This analysis was performed by using the cluster centroids
from the SMOC and Land Science training datasets to predict
the clusters in the test data for the six-cluster model. These
analyses were also performed using the cl_predict func-
tion in the R clue package (Hornik & Böhm, 2016). Cross-
tabulations of the predicted and actual cluster assignments for
the SMOC and Land Science testing dataset are reported in
Tables 8 and 9, respectively. We see from these tables that
there appears to be good agreement for the predicted cluster
assignments in the six-cluster models. We can quantify the
agreement using ARI and Cramer V, provided by the flexclust
package. For the SMOC and Land Science datasets, ARI = .90
and ARI = .86, respectively. Again, the ARI values range from
0 to 1, with higher index values indicating more agreement
between sets. This suggests that the six-cluster model exhib-
ited slightly higher predictive agreement between the training
and testing data cluster assignments for the SMOC than for the

Land Science dataset. However, both the SMOC and Land
Science datasets had high effect sizes, with Cramer V = .95
and .92, respectively. Taken together, the six-cluster solutions
were judged to be supported by both the SMOC collaborative
interaction data and the Land Science collaborative problem-
solving data, with the six-cluster model having only minimal-
ly better internal generalizability.

External generalizability The practice of predictive modeling
defines the process of developing amodel in a way that we can
understand and quantify the model’s prediction accuracy on
future, yet-to-be-seen data (Kuhn & Johnson, 2013). The pre-
vious analyses provided confidence in the six-cluster models’
ability to generalize to unseen data within the same dataset.
However, the ultimate goal is to evaluate how well the iden-
tified student roles (i.e., clusters) are representative of interac-
tion patterns across various types of collaborative interactions.
This step is critical, because the robustness and accuracy of the
models across datasets will determine the usefulness of the
GCA for broader research applications. Thus, the next analy-
ses assess the generalizability of these clusters across the three
collaborative interaction datasets (i.e., Research Question 2b).
Specifically, the clusters centers from each dataset were used
to predict the clusters in the other training datasets, wherein all
possible combinations were evaluated. Again, two measures
were used to evaluate the predictive accuracy of the clusters,
ARI and a measure of effect size, Cramer V, for their cross-
tabulation. Table 10 shows the ARI and Cramer V results for
the computed cross-tabulation evaluations of the six-cluster
models. The columns in Table 10 correspond to the predictor
dataset, whereas the rows correspond to the predicted dataset.

Table 7 Descriptive statistics for GCA measures in the SMOC and Land Science training and testing datasets

Measure Min Med M SD Max

Train Test Train Test Train Test Train Test Train Test

SMOC

Participation – 0.44 – 0.49 0.00 0.00 0.00 0.00 0.11 0.11 0.45 0.42

Social impact – 0.14 – 0.05 0.15 0.15 0.16 0.16 0.10 0.10 1.00 1.00

Overall responsivity – 0.30 – 0.04 0.15 0.15 0.16 0.16 0.11 0.11 1.00 1.00

Internal cohesion – 0.43 – 0.17 0.12 0.12 0.13 0.14 0.12 0.12 1.00 1.00

Newness 0.00 0.00 0.65 0.65 0.84 0.83 0.83 0.76 17.39 7.73

Communication density 0.00 0.00 0.19 0.19 0.26 0.26 0.30 0.26 10.56 3.32

Land Science

Participation – 0.50 – 0.49 – 0.01 – 0.03 0.00 0.00 0.14 0.15 0.78 0.49

Social impact – 0.10 – 0.05 0.12 0.12 0.13 0.12 0.09 0.08 0.90 0.74

Overall responsivity – 0.12 – 0.04 0.11 0.11 0.13 0.12 0.10 0.09 1.00 1.00

Internal cohesion – 0.21 – 0.17 0.11 0.11 0.13 0.12 0.13 0.12 1.00 1.00

Newness 0.00 0.00 0.60 0.59 1.10 1.11 2.33 2.15 70.27 27.39

Communication density 0.00 0.00 0.18 0.18 0.38 0.36 0.94 0.72 31.27 10.45

Mean (M). Standard deviation (SD).
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The first insight to take away from Table 10 is that the
predictive accuracy (ARI) is lower for all datasets than in the
previously reported internal generalization evaluations. This
overall drop in predictive accuracy is to be expected with
evaluating external data. Although the accuracy is lower than
in the internal evaluations, the ARI results are still quite high
for the majority of the predictions. Specifically, we see that the
SMOC dataset has the lowest agreement predicting clusters in
the Traditional CSCL and Land Science. However, Land
Science had the highest agreement for predicting the
Traditional CSCL data, and was on a par with the
Traditional CSCL when predicting the SMOC dataset.

Student roles and learning Unlike the internal criteria ex-
plored in the section above, external criteria are independent
of the ways clusters are obtained. External cluster validation
can be explored by either comparing the cluster solutions to
some Bknown^ categories or by comparing them to meaning-
ful external variables—that is, variables not used in the cluster

analysis (Antonenko, Toy, & Niederhauser, 2012).
Furthermore, the practical impact of the identified social roles
may be felt at multiple of levels of granularity, and we there-
fore must test for their impact at multiple levels. In the present
research, the usefulness of identifying learners’ roles in col-
laborative learning was explored through two analyses of the
data: (a) the influence of student roles on individual students’
performance and (b) the influence of student roles on overall
group performance (Research Questions 3a and 3b).

The multilevel investigation conducted in the present re-
search also addressed a frequently noted limitation found in
collaborative-learning research. CSCL researchers encounter
issues regarding the differing units of analysis in their datasets
(Janssen, Erkens, Kirschner, & Kanselaar, 2011). That is, col-
laborative interactions can be analyzed at the level of the
group, the individual student, and of each student-student in-
teraction. For example, in the present research, some variables
of interest were measured at the individual learner and inter-
action levels (e.g., student learning gains, participation,

Fig. 7 SMOC training data centroids for the six-cluster solution across the GCA variables.

Fig. 8 Land Science training data centroids for the six-cluster solution across the GCA variables.
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internal cohesion, social impact, overall responsivity, new-
ness, communication density, and social roles identified by
the cluster analysis), whereas other variables were measured
at the group level (e.g., group diversity, group composition,
and group performance). Several researchers have empha-
sized the need to conduct more rigorous, multilevel analyses
(Cress, 2008; De Wever, Van Keer, Schellens, & Valcke,
2007; Stahl, 2005; Suthers, 2006). However, collaborative-
learning studies have usually focused on only one of these
levels (Stahl, 2013). As a result, little consideration has been
given to how these levels are connected, despite its being well-
recognized that such connections are crucially important to
both understanding and orchestrating learning in
collaborative-learning environments (Stahl, 2013). To avoid
this problem, a series of models were constructed to explore
both the influence of group-level constructs on individual
student-level learning, as well as individual student-level con-
structs on group performance.

A student-level performance score was obtained for each
student by calculating their proportional learning gains, for-
mulated as in (Hake, 1998):

%PostTest−%PreTestð Þ
100−%PreTestð Þ ð35Þ

The correlations between learning gains and the six
GCA variables in the Traditional CSCL dataset are report-
ed in Table 11.

A mixed-effects modeling methodology was adopted for
these analyses, due to the nested structure of the data (e.g.,
students within groups; Pinheiro & Bates, 2000). Mixed-
effects models include a combination of fixed and random
effects, and can be used to assess the influence of the fixed
effects on dependent variables after accounting for the random
effects. Multilevel modeling handles the hierarchical nesting,
interdependency, and unit of analysis problems that are inher-
ent in collaborative-learning data. This is the most appropriate
technique for investigating data in CSCL environments (De
Wever et al., 2007; Janssen et al., 2011). Table 12 provides an
overview of the mixed-effects models used to explore such
potential multilevel effects across the six-cluster solution.

In addition to constructing the fixed-effects models, null
models with the random effects (the student nested in the
group or the group) but no fixed effects were also constructed.
A comparison of the null random-effects-only model with the
fixed-effect models allowed us to determine whether social
roles and communication patterns predicted student and group
performance above and beyond the variance attributed to in-
dividual students or groups. The Akaike information criterion
(AIC), log likelihood (LL), and likelihood ratio test were all
used to evaluate the overall fits of the models. Additionally,
the effect sizes for each model were estimated using a pseudo-
R2 method, as suggested by Nakagawa and Schielzeth (2013).
For mixed-effects models, R2 can be divided into two parts:
marginal (R2m) and conditional (R

2
c). Marginal R2 is associat-

ed with variance explained by fixed factors, whereas condi-
tional R2 can be interpreted as the variance explained by the
entire model, namely random and fixed factors. Both the mar-
ginal and conditional parts convey unique and relevant infor-
mation regarding the model fit and variance explained. The
nlme package (Pinheiro et al., 2016) was used to perform all
the required computations. All analyses were on the
Traditional CSCL dataset, because it was the base corpus for
the cluster analyses and had the most consistent individual and
group performance measures.

Influence of student roles on individual student performance
To evaluate the effects of roles at the purely individual level,
two linear mixed-effects models were compared: (a) Model 1
from Table 12, with learning gains as the dependent variable,
social roles as independent variables, and student nested with-
in group as the random effects, and (b) the null model, with
random effects only and no fixed effects. The likelihood ratio
tests indicated that the six-role model, with χ2(5) = 11.55, p =
.04, R2

m = .02, R2
c = .95, yielded a significantly better fit than

the null model. A number of conclusions can be drawn from
these statistics. First, the roles in the six-cluster model were
able to add significantly to the prediction of the learners’

Table 8 Cross-tabulations of the six-cluster model predicted and actual
cluster assignments for the SMOC testing dataset

Testing
Clusters

Predicted Clusters

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

Cluster
6

Cluster 1 517 17 4 0 1 15

Cluster 2 0 469 14 0 0 0

Cluster 3 0 5 475 1 0 10

Cluster 4 1 0 1 208 0 4

Cluster 5 0 0 6 6 198 0

Cluster 6 1 0 0 3 7 415

Table 9 Cross-tabulations of the six-cluster model predicted and actual
cluster assignments for the Land Science testing dataset

Testing
Clusters

Predicted Clusters

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

Cluster
6

Cluster 1 137 0 0 0 1 1

Cluster 2 0 90 3 9 4 0

Cluster 3 1 12 81 0 0 0

Cluster 4 11 0 2 106 0 0

Cluster 5 0 0 0 0 98 0

Cluster 6 0 0 0 0 1 138
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performance, beyond the variance attributed to student and
group membership. Second, social roles, individual partici-
pant, and group features explained about 95% of the predict-
able variance, with 2% of the variance being accounted for by
the social roles.

The social roles that were predictive of individual stu-
dent learning performance for the six-cluster model are
presented in Table 13. The reference group was the
Driver role, meaning that the learning gains for the other
roles are compared against the Driver reference group.
Four of the six roles exhibit significant differences in stu-
dent learning gains, as compared to the Driver role. Here
we see that learners who took on more socially responsible,
collaborative roles, such as the Driver, performed signifi-
cantly better than did students who occupied the less so-
cially engaged roles, including Lurker and Chatterer. There
was no significant difference between the performance of
the Drivers and the Influential Actor and Socially Detached
roles, suggesting that these are the more successful roles in
terms of student learning gains.

It is important to note that the observed difference in
learning gains across the social roles was not a result of
the students simply being more prolific, because the
Influential Actor and Socially Detached learners per-
formed on a par with the Drivers but were among of the
lower participators in the group. The profile for the
Socially Detached learners showed mid-range values for
responsivity and social impact, as compared to their inter-
nal cohesion scores. However, the Influential Actor pro-
file illustrated that when these students did make contri-
butions, they were very responsive to the other group

members (i.e., high overall responsivity), as well as being
semantically connected with their own previous contribu-
tions (i.e., high internal cohesion). Furthermore, their con-
tributions were seen as relevant by their peers (i.e., high
social impact). These findings reflected a more substan-
tive difference in social awareness and engagement for the
Drivers and Influential Actors than for the Chatterers, be-
yond the surface-level mechanism of simply participating
often. Taken together, these results show that the identi-
fied roles are externally valid—not just because of a sig-
nificant relationship to the external measure of learning,
but also because we can make theoretically meaningful
predictions from the roles associated with characteristic
behaviors.

Incorporating group-level measures

Two groups of models were constructed to assess the
influence of group composition on group performance
and individual student learning gains. The first set of
models (i.e., Models 2 and 3 from Table 12) assessed
the influence of group role diversity on student learning
gains and group performance, respectively. The second
set of models (i.e., Models 4–6 and 7–9 from Table 12)
dove deeper, to explore the influence of group compo-
sitions, as measured by the proportional occurrence of
each of the roles, on student learning gains and group
performance, respectively. As a reminder, group perfor-
mance was operationally defined as the amount of
topic-relevant discussion during the collaborative inter-
action (Eq. 34).

Table 11 Correlations between learning and GCAvariables in the traditional CSCL dataset

Learning Gains Participation Social Impact Overall Responsivity Internal Cohesion Newness

Participation .10**

Social impact .10* .07

Overall responsivity .10* – .01 .69***

Internal cohesion .13*** .21*** .57*** .52***

Newness .06 .62*** .05 – .03 .11**

Communication density .04 .54*** – .11*** – .18*** – .05 .91***

*** p < .001. ** p < .01. * p < .05.

Table 10 ARI and Cramer’s V results for the cluster model computed cross-tabulation tables

Six-Cluster Model W3 Training SMOC Training Land Science Training

ARI Cramer V ARI Cramer V ARI Cramer V

W3 training data .84 .92 .66 .89 .76 .86

SMOC training data .70 .78 .90 .95 .69 .79

Land Science training data .69 .83 .66 .78 .86 .92
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The proportional occurrence (frequency) of each role with-
in any group can be a helpful measure for determining group
composition. For a group G, it can be formally defined as

p̂̂G rð Þ ¼ #users of role r in G
size of G

Group compositions was operationalized using a measure of
role diversity based on entropy. Entropy is a measure at the core
of information theory quantifying the amount of Bsurprise^
possible in a probability distribution. At the extremes, entropy
ranges from values of 0 for distributions in which a single
outcome is always the case [i.e., P(X = x) = 1.0], to a maximum
value when the probability of all outcomes is equal (i.e., a
uniform distribution). The entropy of roles in a group will then
be 0 for groups in which all participants take on the same role,
and greater for groups with a greater diversity of roles. Role
diversity for a group is calculated as

H Gð Þ ¼ − ∑
r∈Roles

p̂̂G rð Þ∙log p̂̂G rð Þð Þ

Correlations between group performance, student learning
gains, role diversity, and the proportional occurrences of each
role are reported in Table 14. No relationship was observed
between student learning gains and group performance, so this
was not probed further. Quite small relationships were ob-
served between role diversity (M = 1.04, SD = .26) and both

student learning gains and group performance. However,
when these relationships were further explored, the likelihood
ratio tests indicated that the full diversity models for student
learning gains and group performance did not yield a signifi-
cantly better fit than the null model, withχ2(1) = 0.39, p = .52,
R2

m = .001, R2c = .96, and χ2(1) = 0.26, p = .62, R2
m = .002,

R2
c = .88, respectively.
The second set of analyses involved a more fine-grained

investigation of the influence of (the proportional occurrence
of) positive and negative roles on student learning gains and
group performance. Six linear mixed-effects models were
constructed, where three of the models were student-level
(i.e., Models 4–6 from Table 12), and the other three were
group-level (i.e., Models 7–9 from Table 12). Particularly,
we constructed a productive-roles model, with the proportion-
al occurrence of Drivers, Influential Actors, and Socially
Detached learners as the independent variable, and an unpro-
ductive-roles model, with the proportional occurrence of
Chatterers, Followers, and Lurkers as the independent vari-
able. Null models were constructed for both the student- and
group-level analyses. For the six models below, the first three
had student learning gains as the dependent variable, whereas
the next three had group performance as the dependent
variable.

For the student-level analyses, the likelihood ratio tests
indicated that neither the productive-roles model nor the
unproductive-roles model yielded a significantly better fit than
the null model, with χ2(3) = 2.62, p = .45, R2m = .004, R2

c =
.96, and χ2(3) = 2.75, p = .43, R2m = .004, R2

c = .96, respec-
tively. When we combined this with the previous finding that
social role did influence individual learning, this suggests that
it is less important that productive roles be present in one’s
group than that the individual be enacting a productive role.

For the group-level analysis, the likelihood ratio tests indi-
cated that that both the productive-roles and the unproductive-
roles models yielded significantly better fits than the null mod-
el, with χ2(3) = 23.62, p < .0001, R2

m = .15, R2c = .90, and
χ2(3) = 20.92 p < .001, R2

m = .13, R2c = .89, respectively.
Several conclusions can be drawn from this model compari-
son. First, the proportional occurrences of both productive and
unproductive roles were able to significantly improve predic-
tions of group performance, above and beyond the variance

Table 12 Overview of mixed-effects models exploring learning across the six-cluster solution

Model
Number

Dependent
Variable

Level of Dependent
Variable

Independent Variable Level of Independent
Variable

Random Variable(s)

1 Learning gains Student Social roles Student Student nested in group

2 Learning gains Student Role diversity Group Student nested in group

3 Performance Group Role diversity Group Group

4–6 Learning gains Student Proportional occurrence roles Group Student nested in group

7–9 Performance Group Proportional occurrence roles Group Group

Table 13 Descriptive statistics for student learning gains across the six
roles, and mixed-effects model coefficients predicting differences in in-
dividual student performance across clusters

Role Six-Cluster Model

M SD β SE

Driver 0.21 0.89 0.21** 0.07

Chatterer 0.02 0.88 – 0.19* 0.10

Lurker – 0.11 0.79 – 0.32** 0.11

Follower – 0.08 0.92 – 0.29** 0.12

Socially Detached 0.03 0.83 – 0.18 0.11

Influential Actor 0.09 0.84 – 0.12 0.10

* p < .05. ** p < .01. *** p < .001. Mean (M). Standard deviation (SD).
Fixed-effect coefficient (β). Standard error (SE).
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attributed to the group. Second, for all models, the proportion-
al occurrence of different social roles, combined with group
features, explained about 89% of the predictable variance in
group performance, with 28% of the variance being accounted
for by the proportional occurrence of different social roles.
Table 15 shows the social roles that were predictive of group
performance for both the productive-roles and unproductive-
roles models.

As is shown in Table 15, groups with greater proportions of
learners who took on more socially responsible, collaborative
roles (namely, Drivers and Influential Actors) performed sig-
nificantly better than groups with greater proportions of less
socially engaged roles (Lurkers and Chatterers). These find-
ings mirror the pattern that we observed for individual student
learning and social roles.

Discussion

Detecting roles

In the Detecting Social Roles section, we explored the extent
to which the characteristics of collaborative interaction dis-
course, as captured by the GCA, diagnostically reveal the
social roles students occupy, and if the observed patterns are

robust and generalize. The GCA was applied to two large,
collaborative-learning datasets, and one collaborative
problem-solving dataset (learner N = 2,429, group N =
3,598). Participants were then clustered on the basis of their
profiles across the GCA measures. The cluster analyses iden-
tified roles that have distinct patterns in behavioral engage-
ment style (i.e., active or passive, leading or following), con-
tribution characteristics (i.e., providing new information or
echoing given material), and social orientation. The six-
cluster model revealed the following roles: Drivers,
Influential Actors, Socially Detached learners, Chatterers,
Followers, and Lurkers.

The findings present some methodological, conceptual and
practical implications for the group interaction research, edu-
cational data mining and learning analytics communities. The
GCA represents a novel methodological contribution, capable
of identifying distinct patterns of interaction representative of
the social roles students occupy in collaborative interactions.
The natural language metrics that make up the GCA provide a
mechanism to operationalize such roles, and provide a view
on how they are constructed and maintained through the
sociocognitive processes within an interaction. We expect
the GCA to provide a more objective, domain independent,
and deeper exploration of the micro-level inter- and intra-
personal patterns associated with social roles. Moreover, as

Table 14 Correlations between student learning gains, group performance, role diversity, and the proportional occurrence of six roles

Measure Student Level Group Level Measures

Learning
Gains

Group
Performance

Diversity Prop.
Chatterers

Prop.
Driver

Prop.
Follower

Prop.
Lurker

Prop. Socially
Detached

Group Performance .00

Diversity – .02 – .03

Prop. Chatterers – .03 – .28*** .03

Prop. Driver .03 .28*** – .12*** – .77***

Prop. Follower – .01 .02 .12*** – .31*** .29***

Prop. Lurker – .05 – .28*** – .04 .47*** – .49*** – .46***

Prop. Socially Detached – .01 – .13*** .23*** .16*** – .43*** – .29*** .07

Prop. Influential Actor .05 .32*** – .16*** – .47*** .28*** – .11** – .52*** – .37***

*** p < .001. ** p < .01. * p < .05.

Table 15 Descriptive statistics for group performance across the six roles, and mixed-effects model coefficients for predicting the influences of
productive and unproductive roles on group performance

Role Productive Roles Model Role Unproductive Roles Model

M SD β SE M SD β SE

Prop. Driver 0.27 1.05 1.15** 0.41 Prop. Chatterers – 0.27 0.92 – 1.05* 0.46

Prop. Socially Detached – 0.18 0.79 0.42 0.52 Prop. Follower 0.03 0.94 – 1.02* 0.55

Prop. Influential Actor 0.37 1.04 1.27** 0.39 Prop. Lurker – 0.32 0.94 – 1.42* 0.52

N = 148. * p < .06. ** p < .01. Mean (M). Standard deviation (SD). Fixed-effect coefficient (β). Standard error (SE).
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the methodology is readily automated, substantially larger cor-
pora can be analyzed with the GCA than is practical when
human judgments are required to annotate the data.

The identified social roles (i.e., clusters) underwent strin-
gent evaluation, validation, and generalization assessments.
The bootstrapping and replication analyses illustrated that
the roles generalize both within and across different collabo-
rative interaction datasets, indicating that these roles are robust
constructs across different experimental contexts. Given the
extent of these evaluations, we feel that the roles identified can
be considered as robust and stable constructs in the space of
small group interactions, and that the GCA measures capture
the critical sociocognitive processes necessary for identifying
such roles.

The present research has built upon the framework of
Strijbos and De Laat (2010) by adding several new dimen-
sions of interaction. Interestingly, the GCA revealed roles that
do not entirely overlap with those observed in Strijbos and De
Laat’s. In this respect, we have been able to build upon their
results and to provide insights beyond what their framework
revealed. The identification of these additional roles may
serve as a useful conceptual addition for future research fo-
cusing on the social roles within multiparty communication.
For instance, only one of Strijbos and De Laat’s roles, the
Over-Rider, appeared similar to a group (i.e., the Chatterers
in the present research) in the six-cluster model for the
Traditional CSCL dataset. However, the other roles did not
appear to align with the labels suggested Strijbos and De
Laat’s framework. This is likely due to the fact that the GCA
includes more and different dimensions than are represented
in the previous framework.

Roles and learning

In the Student Roles and Learning section above, we investi-
gated the practical value of the of the identified roles, and
whether they were meaningfully related to student learning
gains and group performance. Overall, the results suggest that
the roles that learners occupy influences their learning, and
that the presence of specific roles within a group can be either
more or less beneficial for the collaborative outcome.
Furthermore, we established the connection between the
individual-level and group-level outcomes is affected by the
same productive or unproductive roles. Taken together, these
discoveries show that not only are the identified roles related
to learning and to collaborative success, but that this relation-
ship is theoretically meaningful, which provides external
validity.

This analysis yielded two important contributions to the
collaborative-learning literature. Firstly, the multilevel
mixed-effects models applied in this chapter are rarely applied
in CSCL research; however, they are the most appropriate
statistical analysis for this nested structure data CSCL data

(De Wever et al., 2007; Janssen et al., 2011; Pinheiro &
Bates, 2000). Furthermore, these models impose a very strin-
gent test of the influence of roles on group and individual
performance by controlling for the variance associated with
each participant and group. As such, the use of mixed-effects
models provides confidence in the robustness of the findings.
Second, the multilevel investigation addressed a frequently
noted limitation found in collaborative-learning research. As
Kapur, Voiklis, and Kinzer (2011, p. 19) wrote:

It is worth reiterating that these methods should not be
used in isolation, but as part of a larger, multiple grain
size analytical program. At each grain size, findings
should potentially inform and be informed by findings
from analysis at other grain sizes—an analytical ap-
proach that is commensurable with the multiple levels
(individual, group) at which the phenomenon unfolds.
Only then can these methods and measures play an in-
strumental role in the building and testing of a process-
oriented theory of problem solving and learning.

Some of the most noteworthy of the present discoveries
concern the influence of roles on student learning and group
performance. For the individual student learning models, we
saw that socially engaged roles, like Driver, significantly
outperformed less participatory roles, like Lurkers. This
finding might be expected. However, other findings
emerged that were less intuitive. For instance, we found that
Influential Actor and Socially Detached leaners performed
comparably well with the Drivers (although not quite as
high), but were among of the lower participators in the
group. This suggests the difference in learning gains across
the social roles is not simply a result of the students being
more prolific. Clearly, engagement with or mastery of the
material can be manifested not only through greater quanti-
ty, but also greater quality, of participation. The Influential
Actors were highly responsive and had high social impact
and internal cohesion, but lower scores for newness and
communication density. However, the most defining feature
of the Socially Detached learners was their high internal
cohesion because they exhibited relatively mediocre scores
across the other GCA measures. Something interesting starts
to emerge when these profiles are juxtaposed with the
Chatterers. The Chatterers were the highest participators,
but had lower learning gains, responsivity to peers, social
impact, and mediocre internal cohesion than those in other
groups. Together, this highlights that participating a lot is far
less important than is the nature of that participation (i.e.,
the intra- and interpersonal dynamics as captured by the
internal cohesion, responsivity, and social impact measures).
That is, the quality of conversation, more than the quantity,
appears to be the key element in the success for both groups
and individuals.
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The influence of the roles on group performance was also
investigated. We started by looking at the influence of the
overall diversity of roles on group performance. Here, we
were interested in seeing if groups that are comprised of, for
example, six different roles performed better than those that
were comprised of all Influential Actors. This was motivated
by the group interaction literature, which suggests that diver-
sity can be a major contributor to the successfulness of col-
laborative interactions. The findings for diversity in the liter-
ature have explored several different types of diversity, includ-
ing personality, prior knowledge, gender, and other individual
traits (Barron, 2003; Fuchs, Fuchs, Hamlett, & Karns, 1998).
These analyses did not reveal any significant influence of role
diversity on student or group performance, suggesting, per-
haps, that diversity in roles is not an important type of diver-
sity. It is important to note that the attributes explored in pre-
vious work have primarily focused on Bwhat^ students bring
to the group, rather than how students engage in the group.
This could possibly explain why diversity in roles was not as
important as the other types of diversity in the literature.

We then dove deeper into an investigation of group com-
position as given by the proportional occurrence of each role.
The findings here were considerably more promising, and
largely mirrored those found for the individual students, with
a few exceptions. In particular, we observed that the presence
of Socially Detached learners within a group did not signifi-
cantly influence the group performance. This is most likely
because, although they may be successful students individu-
ally, they do not engage meaningfully with their peers, and so
have little impact on the group. These findings have implica-
tions for optimal group composition, suggesting that groups
should not simply comprise high-participating members, but
should include a combination of both low and high participa-
tors. However, what is perhaps even more important is that the
group include members that are both aware of the social cli-
mate of the group interaction and invested in the collaborative
outcome.

Another difference between the influence of roles on
groups and individual performance pertains to the effect sizes.
The influence of roles within a group appears to have a more
potent influence on group performance (explaining 26%–28%
of the variance) than does the influence of taking on a partic-
ular role on student performance (explaining only 2% of the
variance). This illustrates the substantial impact that even a
few members can have on a group, and the importance of
diligent orchestration for optimal group composition.

Comparison to other group discourse modeling
approaches

In addition to introducing and validating the GCA, we must
also appropriately situate it within the literature with compar-
isons to other group discourse modeling approaches—namely,

to the contingency graph (Suthers, 2015; Suthers & Desiato,
2012), epistemic network analysis (ENA; Shaffer et al., 2009),
and cohesion network analysis (CNA; Dascalu, McNamara,
Trausan-Matu, & Allen, 2018). First, the contingency graph is
used as the basis for representing transcriptions and highlights
contingencies between events. The contingency graph relies
on (a) events that can be traced to the interaction with the
CSCL environment and (b) contingency relationships when
one or more events enable a subsequent event. Some of the
GCA measures share similarities with the contingency graph.
Particularly, GCA places the same importance on the temporal
and sequential nature of discourse, and the resulting GCA
measures of responsivity, internal cohesion, social impact re-
flect in an automated manner the underlying contingency ap-
proach of capturing the micro-relations between situated dis-
course acts by participants, which are identified and then ag-
gregated into interactional relations.

Second, Shaffer et al.’s (2009) ENA is rooted in a specific
theory of learning: the epistemic frame theory, in which the
collection of skill, knowledge, identity, value, and epistemol-
ogy (SKIVE) forms an epistemic frame. A main theoretical
assumption of ENA is that the connections between the ele-
ments of epistemic frames are critical for learning, not their
presence in isolation. The online ENA toolkit allows users to
analyze chat data by comparing the connections within the
epistemic networks derived from chats. ENA visualization
displays the clustering of learners and groups and the network
connections of individual learners and groups. ENA requires
coded data, which has traditionally relied on hand coded
datasets or classifiers that rely on regular expression mapping.
In contrast, GCA model is grounded in computational text
analysis and semantic models that can facilitate a deeper un-
derstanding of discourse and the cohesive links among text
segments. As such, GCA could be extended by utilizing the
metrics and visualizations provided by ENA.

Dascalu et al.’s (2018) CNA forms an interesting alterna-
tive approach, which expands upon network analysis by ex-
plicitly considering semantic cohesion while modeling the
interactions between participants. GCA shares some similar
methodological inspiration with CNA, in that both GCA and
CNA are grounded in semantic analysis that can facilitate
understanding the cohesive links among text segments.
However, the underlining theoretical and practical motiva-
tions of these approaches differ, and consequently the four
metrics from CNA, and six metrics from GCA are not closely
aligned. For example, CNA provides an Importance or Impact
score, which in name appears similar to the GCA’s Social
Impact measure. CNA’s cumulative importance score is de-
rived from a mixture of both topic coverage and the existing
cohesive links between contributions. By contrast, GCA is
focused on capturing the intra- and inter-personal dynamics
that reside in the discourse interactions between participants
over time. Thus, GCA extracts sociocognitive process

1034 Behav Res (2019) 51:1007–1041



measures, such as responsivity, internal cohesion, and social
impact. CNA employs SNA methods to produce visually
compelling sociograms. We feel that GCA could benefit from
similar visualizations, especially those that illustrate the dis-
course dynamics and the resulting sociocognitive roles.

Conclusion and limitations

A primary objective of this research was to propose and
validate a novel automated methodology, group commu-
nication analysis, for detecting emergent roles in group
interactions. The GCA applies automated computational
linguistic techniques to the sequential interactions of on-
line collaborative interactions. The GCA involves com-
puting six distinct measures of sociocognitive interaction
patterns (i.e., Participation, Overall Responsivity, Social
Impact, Internal Cohesion, Communication Density, and
Sharing of New Information). The automated natural lan-
guage metrics that make up the GCA provide a new and
useful view on how roles are constructed and maintained
in collaborative interactions.

There are some notable limitations to the variables selected
for inclusion in the GCA. Particularly, the present research
focused only on sociocognitive variables; however, several
other collaborative interaction characteristics would likely
provide valuable additional information as we attempt to char-
acterize roles. For instance, the affective characteristics of in-
dividuals and groups have been shown to play a very impor-
tant role in learning (Baker, D’Mello, Rodrigo, & Graesser,
2010; D’Mello & Graesser, 2012; Graesser, D’Mello, &
Strain, 2014). There has also been evidence suggesting the
importance of microbehavioral measures, such as keystrokes,
click streams, response time, duration, and reading time mea-
sures, and these could provide additional information
(Antonenko et al., 2012; Azevedo, Moos, Johnson, &
Chauncey, 2010; Mostow & Beck, 2006). Finally, although
we used the measure of topic relevance as an independent
measure of group performance (i.e., separate from student
learning gains) in the present work, this is arguably a feature
that could provide valuable information for understanding so-
cial roles in group interactions. These limitations will be ad-
dressed in subsequent research.

One of the central contributions of the GCA can also be
viewed as a limitation. One of the benefits of the preconceived
categories involved in manual content analyses is that these
coded categories afford a Bgold standard^ external validation.
For instance, if these roles were identified through manually
coded categories, then the cluster analysis results could be
compared against the human-annotated Bgold standard.^ By
pursuing a purely automated computational linguistic meth-
odology, wewere able to explore a substantially larger number
of collaborative interactions than could be analyzed with

manualmethods. Furthermore, given the complex and dynam-
ic nature of the discourse characteristics that are calculated in
the construction of the GCA, it would be extremely difficult
and time consuming, if not impossible, for human coders to
capture such multifaceted discourse characteristics. However,
external cluster validation can be achieved either by compar-
ing the cluster solutions to some Bgold standard^ categories or
by comparing them to meaningful external variables
(Antonenko et al., 2012). In the present research, we success-
fully took the latter approach, by showing that the identified
roles are related to both individual student learning and group
performance in general, and that the relationship is theoreti-
cally meaningful. Furthermore, even Bgold standard^ human
coding schemes must be validated and tested for robustness.
We feel that the tests of cluster stability, coherence, and inter-
nal consistency that we applied to our model are at least as
extensive and rigorous as any interrater reliability study of a
manual coding schema.

This research serves as an initial investigation with the
GCA into understanding why some groups perform better
than others. Despite some limitations, this research has pro-
vided some fruitful lines of research to be pursued in future
work. Most significantly, the GCA provides us with a frame-
work to investigate how roles are constructed and maintained
through the dynamic sociocognitive processes within an inter-
action. Individual participants’ patterns of linguistic coordina-
tion and cohesion, as measured by the GCA, can diagnostical-
ly reveal the roles that individuals play in collaborative dis-
cussions. As a methodological contribution, therefore, we ex-
pect that the GCA will provide a more objective, domain-
independent means for future exploration of roles than has
been possible with manual coding rubrics. Moreover, as a
practical contribution, substantially larger corpora of data
can be analyzed with the GCA than when human time is
required to annotate the data. Furthermore, the empirical find-
ings of this research will contribute to our understanding of
how individuals learn together as a group and thereby advance
the cognitive, social, and learning sciences.
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