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Abstract
The validity of studies investigating interventions to enhance fluid intelligence (Gf) depends on the adequacy of the Gf measures
administered. Such studies have yielded mixed results, with a suggestion that Gf measurement issues may be partly responsible.
The purpose of this study was to develop a Gf test battery comprising tests meeting the following criteria: (a) strong construct
validity evidence, based on prior research; (b) reliable and sensitive to change; (c) varying in item types and content; (d)
producing parallel tests, so that pretest–posttest comparisons could be made; (e) appropriate time limits; (f) unidimensional, to
facilitate interpretation; and (g) appropriate in difficulty for a high-ability population, to detect change. A battery comprising
letter, number, and figure series and figural matrix item types was developed and evaluated in three large-N studies (N = 3,067,
2,511, and 801, respectively). Items were generated algorithmically on the basis of proven item models from the literature, to
achieve high reliability at the targeted difficulty levels. An item response theory approach was used to calibrate the items in the
first two studies and to establish conditional reliability targets for the tests and the battery. On the basis of those calibrations, fixed
parallel forms were assembled for the third study, using linear programming methods. Analyses showed that the tests and test
battery achieved the proposed criteria. We suggest that the battery as constructed is a promising tool for measuring the effec-
tiveness of cognitive enhancement interventions, and that its algorithmic item construction enables tailoring the battery to
different difficulty targets, for even wider applications.
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General fluid ability (Gf) is Bat the core of what is normally
meant by intelligence^ (Carroll, 1993, p. 196), and has been
shown empirically to be synonymous with general cognitive
ability (g), at least within groups with roughly comparable
opportunities to learn (Valentin Kvist & Gustafsson, 2008).
Gf has been viewed as an essential determinant of one’s ability
to solve a wide range of novel real-world problems (Schneider
& McGrew, 2012). Perhaps because of its association with
diverse outcomes, there has been a longstanding interest in
improving Gf (i.e., intelligence) through general schooling

(Cliffordson & Gustafsson, 2008), direct training (Stankov,
1986), diet (Korol, 2002), cognition-enhancing drugs
(Dinges & Weaver, 2003; Ramos & Arnsten, 2007), and var-
ious other means (e.g., Kyllonen, Roberts, & Stankov, 2008;
Simons et al., 2016). The failure of some earlier efforts to
improve intelligence significantly (e.g., Venezuela’s Project
Intelligence; Herrnstein, Nickerson, de Sánchez, & Swets,
1986) led to a languishing of enthusiasm for improving Gf,
despite occasional successes (e.g., Stankov, 1986). But a study
by Jaeggi, Buschkuehl, Jonides, and Perrig (2008) reenergized
the debate over the improvability of fluid intelligence.

The promise of Gf enhancement has drawn considerable
attention in the scientific community, as is shown by the many
attempted replications of Jaeggi et al.’s (2008) working mem-
ory training (Au et al., 2015; Melby-Lervåg, Redick, &
Hulme, 2016). Additionally, non-working-memory interven-
tions, such as novel problem solving (e.g., Stine-Morrow,
Parisi, & Morrow, 2008; Tranter & Koutstaal, 2008), video
game training (e.g., Basak, Boot, Voss, & Kramer, 2008), and
neurostimulation (e.g., Sellers et al., 2015), have been exam-
ined (Simons et al., 2016).
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The evidence for the efficacy of Gf-enhancing interven-
tions has been mixed. Several studies have replicated Jaeggi
et al.’s (2008) findings (e.g., Jaeggi, Buschkuehl, Shah, &
Jonides, 2014; Jaeggi et al., 2010; Jaušovec & Jaušovec,
2012; Karbach & Kray, 2009), but others have not (e.g.,
Chein & Morrison, 2010; Harrison et al., 2013; Redick et
al., 2013). Some meta-analyses have shown that working
memory training has small but significant effects on Gf (Au
et al., 2015; Karbach & Verhaeghen, 2014; Schwaighofer,
Fischer, & Bühner, 2015), but others have concluded that
evidence for training effects can be traced to pretreatment
differences, the use of passive (vs. active) control groups,
and other design weaknesses (Dougherty et al., 2016;
Melby-Lervåg et al., 2016; Shipstead, Redick, & Engle,
2012).

A recent review (Simons et al., 2016) provided several
recommendations for evaluating the effectiveness of interven-
tions designed to improve Gf. Among these were the use of
reliable, multiple measures, pretesting to ensure comparability
between the treated and control groups, and the computing of
the posttest–pretest differences for the treated versus control
groups. We concur, and here we note several features of a Gf
measure that are desirable in a study designed to evaluate the
effects of a treatment to enhance Gf. These are summarized
below.

Tests should be valid measures of Gf

The interpretation of findings from Gf enhancement research
depends on how Gf is measured, both prior to and following
an intervention. Carroll’s (1993) reanalysis of factor analytic
studies of cognitive abilities identified Gf as one of eight
second-stratum factors and identified three main types of tasks
within the reasoning domain: deductive, inductive, and quan-
titative reasoning, with inductive reasoning having the highest
average correlations with the other two categories, suggesting
its centrality (Schneider & McGrew, 2012; Wilhelm, 2005).
Carroll (1993, Table 6.1, pp. 215–216) showed that matrices
and series tasks were the most studied tasks of all reasoning
tasks. In this study, we focused on matrices and series tasks.

Tests should be reliable and sensitive
to change

It is useful to have reliable Gf scores for evaluating interven-
tion effects. Reliability limits validity; a test with low reliabil-
ity is a poor indicator of the target construct (Gf). Low reli-
ability reduces the possibility of examining potential modera-
tors of change in pre–post designs. Although unreliable tests
can be used to measure change (e.g., effect size estimates are
not related to reliability) the interpretation of that change is

ambiguous if the instrument used to measure change is unre-
liable. Consequently, sensitivity-to-change measures pro-
posed in the clinical literature to enable interpretable change
are directly related to reliability (Eisen, Ranganathan, Seal, &
Spiro, 2007; Jacobson & Truax, 1991). In this study, we
targeted rxx’ = .90 as our reliability target for the various Gf
measures, in line with the reliability of commercial instru-
ments used in high-stakes decision making (e.g.,
Educational Testing Service [ETS], 2016).

There should be multiple measures,
with varied content

A common strategy for Gf-focused enhancement studies has
been to use only a single measure to assess Gf, such as
Raven’s Progressive Matrices (Basak et al., 2008; Chein &
Morrison, 2010; Duthie et al., 2002; Hayes, Petrov, &
Sederberg, 2015; Jaeggi et al., 2008; Jaeggi et al., 2010).
The limits of any single test as an indicator of a latent factor
have long been recognized, prompting a call in Gf enhance-
ment studies for expanding Gf measurement to different rea-
soning problem types and stimulus domains (Buschkuehl &
Jaeggi, 2010; Hayes et al., 2015; Jaeggi et al., 2014; Jaeggi et
al., 2010; Schneider & McGrew, 2012; Shipstead et al., 2012;
Sternberg, 2008; von Bastian & Oberauer, 2013). Here we
developed series and matrices items based on verbal, quanti-
tative, and spatial content, requiring only simple transforma-
tion rules.

There should be parallel tests for pretest
and posttest administration

In repeated testing, it is desirable to administer parallel test
forms to ensure that the measurement instruments and their
resulting scores are comparable and scores can be placed on a
common scale (Kolen & Brennan, 1995). Parallel (in contrast
to identical) forms would prevent item-learning effects from
confounding Gf enhancement findings.

Tests should have appropriate time limits

Many Gf enhancement studies have downplayed the impor-
tance of time limits, which can affect number and percentage-
correct scores (Moody, 2009; Redick et al., 2013), affect the
construct being measured (Gs; McGrew, 2009), and threaten
the validity of the test as a measure of Gf (e.g., Basak et al.,
2008; Harrison et al., 2013; Jaeggi et al., 2010; Rae, Digney,
McEwan, & Bates, 2003; Redick et al., 2013; Stephenson &
Halpern, 2013). Here we provided relaxed time limits to
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ensure a power test, based on the speed–power literature
(Bridgeman et al. 2003; Kyllonen & Zu, 2016).

Individual tests should be unidimensional

Unidimensionality in item responses is an important quality
for a test designed to measure a construct, for several reasons.
Violations of unidimensionality can (a) render score interpre-
tations ambiguous, (b) reduce internal consistency estimates
of reliability, (c) make it more difficult to develop parallel
forms, or equate forms, (d) lessen comparability between ex-
aminees presenting similar scores as they may achieve them
by solving items reflecting different dimensions, and (e) com-
plicate the use of item response theory modeling, which as-
sumes unidimensionality. However, violations of unidimen-
sionality are commonplace. Essential unidimensionality
(Stout, 1987) is a less restrictive form in which the weight of
the dimensions (in a total score composite) is consistent for
scores across the range of abilities tested. The important issue
is to avoid large, systematic deviations from unidimensional-
ity that would jeopardize score interpretation and detract from
our ability to equate or create parallel forms.

Tests should be difficult enough to avoid
ceiling effects

Ceiling effects are especially problematic in pre–
post intervention designs, in which the aim is to identify
significant increases in cognitive ability. A goal for this
study was to produce a test with an adequate measurement
range that would allow for sensitivity to changes within
individuals (Embretson, 1991), particularly for a high-
ability adult population. We did this for several reasons:
(a) our targeted population was high-ability; (b) we
wished to avoid posttest ceiling effects; (c) our item
modeling strategy enabled the creation of easier items
through the elimination of processing steps or the reduc-
tion of memory burden, so an easier test would be a spe-
cial case of the test we developed; (d) in the test admin-
istered, we randomized item order due to the design, but
in practice the test could be made easier by ordering the
items from easy to difficult; and (e) because the test ad-
ministration was in a low-stakes setting, we could expect
score increases of approximately 0.5 standard deviations
or more with even modest performance incentives (Liu et
al. 2012). For this study, we sought to provide reasonably
precise measurement at a range of ability up to 3.5 stan-
dard deviations above the mean of a population of
American third and fourth-year undergraduate students,
using highly educated samples.

Purpose of the study

We aimed to develop a Gf test battery that met the aforemen-
tioned requirements for detecting Gf change. We used item
response theory methods to create a test battery that incorpo-
rated a variety of tasks (e.g., series, matrices) and used item
types from the three major Gf content domains (verbal, nu-
merical, and spatial). Parallel forms were also developed using
test-equating methods (Kolen & Brennan, 1995), in order to
enable the attribution of postintervention gains to the treat-
ment rather than to form difficulty differences.

All items, instructions, scoring keys, item statistics, and
other supplementary information for all items and tests de-
scribed in this article are available online (MITRE/ETS,
2016). Additional information can also be obtained in a sup-
plementary technical paper (Weeks, Kyllonen, Bertling, &
Bertling, 2017).

Study 1: Series battery development (number,
letter, and arrow)

We developed a battery of fluid ability tests based on series
reasoning, for several reasons. First, series measures are ex-
cellent measures of Gf, among the best that have been evalu-
ated (Carroll, 1993). Series completion tests have been includ-
ed in many cognitive abilities batteries (Jäger et al., 2006;
Thorndike & Hagen, 1971; Thurstone & Thurstone, 1941),
including in the ETS Kit of Factor-Referenced Cognitive
Tests (Ekstrom, French, Harman, & Dermen, 1976), and as
an item type (called pattern identification) of the Analytic
section of ETS’s Graduate Record Examination (GRE)
(Bridgeman & Rock, 1993; Emmerich, Enright, Rock, &
Tucker, 1991).

Second, series tests can be constructed with different con-
tent (verbal, numerical, and spatial) using overlearned stimu-
lus elements, such as letters of the alphabet and low value
integers whose relationships are also overlearned, such as
identity, successor, and predecessor. The effects of differential
education and culture are likely minimized due to the use of
simple rules applied to an overlearned stimulus set assuming
that participants are highly familiar with the Roman alphabet
and with numbers. Third, an extensive information-processing
literature on series tests provides automatic item-generation
models.

Series item models

Simon and Kotovsky (1963; Kotovsky & Simon, 1973) pro-
posed an initial framework for letter series, and Holzman,
Pellegrino, and Glaser (1983) proposed a similar one for num-
ber series. Consider the series item, 2 4 6 7 9 11 12 14 __. The
components of the framework are relations detection
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(determining the relationship between contiguous elements;
here + 2 or + 1), discovery of periodicity (finding the length
of the period within the longer series; here 3), completion of
the pattern description within the period (identifying relations
between elements within a period; here + 2), and
extrapolation (use the pattern description to fill in the blank;
here, because the blank is the third position of a period, + 2
gives 16).

Simon and Kotovsky (1963) developed a pattern descrip-
tion language (PDL) to define the information processing re-
quirements for solving series problems. Holzman et al. (1983)
examined the importance of variables derived from the PDL
on problem difficulty (e.g., the length of the item description,
period length), and found that working memory placekeepers
(WMP; i.e., the number of occasions during a processing se-
quence on which a number or relationship had to be remem-
bered) accounted for most of the variance in item difficulty
(Myors, Stankov & Oliphant, 1989; Stankov & Cregan, 1993;
Stankov & Myors, 1990).

Overview of Study 1

We aimed to produce two parallel forms of series items, each
consisting of a letter (L), number (N), and arrow (A) series
test, as well as a composite (C) test with items from all three
content tests. Each test was to be of a length sufficient for a
reliability of ≥ .90. On the basis of prior research, we estimated
that this would require approximately 30–40 items on each
test.

We administered subsets of items to participants in order to
estimate item difficulty (b) and item discrimination (a) using
the two-parameter logistic (2PL) item response theory model
(Birnbaum, 1968).1 We created item subsets using a balanced
incomplete block design similar to those used in large-scale
assessments, then used missing data imputation methods to
estimate item parameters.

From this calibrated item pool, our goal was to assemble
two parallel forms using automated test assembly (ATA)
methods (van der Linden, 2005). The main issues we ad-
dressed in Study 1 were (a) whether we could generate Gf
series items from information-processing descriptions that
would satisfy the criteria of providing reliable measurement

across a wide ability range; and (b) whether we could find
evidence that such measures were valid indicators of Gf as
shown by correlations with demographics and self-reported
SAT and ACT scores.

Method

Participants

We contracted Qualtrics Labs, Inc., a supplier of participant
panels for survey research, to provide 2,000 participants (at
$24.50/each), and host the online assessment on their servers.
Participants were targeted to have the following educational
statuses (400 for each): (a) third- or fourth-year undergradu-
ates, (b) bachelor’s degree holders without a master’s degree,
(c) master’s degree students, (d) master’s degree holders with-
out a doctorate, and (e) doctorate degree holders. The partic-
ipants had to be U.S. citizens, and psychology degree holders
were excluded. Educational status levels were distributed
evenly across the survey forms.

For Study 1, we also conducted a supplemental study, in
which we recruited an additional 1,036 examinees from
Qualtrics Labs, Inc., with demographic characteristics similar
to those from the main study. A subset of these examinees (n =
157) were respondents who participated in Study 1 but took
forms that included arrow and letter series items only.

Measures

We wrote approximately 100 items for each of the three con-
tent domains—letter (L), number (N), and arrow (A)—vary-
ing in expected difficulty. We selected a subset of 80 items for
administration after item reviews by the authors (different au-
thors reviewed different items based on experience and exper-
tise) and by cognitive interviews with research assistants (i.e.,
we showed items to research assistants and asked them to
think aloud to ensure proper understanding of the task). (We
developed an additional 50 number series items.) All of the
tasks in Study 1 and in all studies were programmed for the
Qualtrics Research Suite survey platform.

Letter series (LS) LS items were created by varying (a) series
length (7 to 16), (b) period length (2, 3, 4), (c) period position
of the blank (1, 2, 3, 4), (d) operators (repeat, + 2), (e) WMP
level (1, 2, 3, or 4), (f) letter starting values (A through Z), and
(g) the requirement (yes, no) to recycle through the alphabet
due to successor relationships on Y and Z (i.e., Y + 2 = A).
Examinees were asked to type in the missing letter (a to z).
Combinations of design factors (nonexhaustive) created 16
pattern description language (PDL) patterns (i.e., item
models), which were sampled from to form one 16-item
mini-test. Eachmini-test comprised the same 16 PDL patterns,

1 Because some of our items were multiple-choice (figural matrices, and letter
and arrow series offering limited choices) and therefore allowed guessing,
reviewers asked about the use of the three-parameter logistic model (3PL),
an item response theory model that includes a guessing parameter. However,
the identifiability of the 3PL is considered an Bopen problem^ (San Martín,
González, & Tuerlinckx, 2015, p. 466). Model identification problems result
in problems with consistent and unbiased parameter estimation and parameter
interpretation. For this reason, the 2PL is often preferred in operational testing,
such as in the OECD’s (2017) Program for International Student Assessment
(PISA) and Educational Testing Service’s Graduate Record Examination
(Robin, Steffen, & Liang, 2014).
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but across mini-tests, the same pattern created a different item
because same-PDL-pattern items varied in starting letters, se-
ries length, blank period position, and recycling requirement.
Five LS mini-tests were developed (L1 to L5).

Arrow series (AS)AS items were analogous to LS items except
that the content, instead of the alphabet, was a set of arrows,
pointing in the eight cardinal directions (north, northeast, east,
southeast, south, southwest, west, northwest). Examinees
were asked to type in the missing arrow (using a key indicat-
ing a mapping of cardinal directions to the numbers 1 to 8).
Successor relationships were defined as 45-deg rotations of
arrow positions; thus north + 3 = southeast. Similarly to the
number series (NS), AS items were created by varying (a)
series length (six to 14), (b) period length (2, 3, 4), (c) period
position of the blank (1, 2, 3, 4), (d) operators (repeat, + 2, +
3), (e) WMP level (1, 2, 3, or 4), and (f) starting values (north,
northeast, . . . , northwest). As with NS items, there were 16
PDL patterns (each generating seven to 16 items), and items
were drawn from the patterns to create five 16-item mini-tests
(N1 to N5).

Number series (NS) NS items were generated on the basis
of the item models from Bertling (2012) (although the
models we used were modified from Bertling’s). The pe-
riod length was always 1, and series consisted of eight
elements (integers) with the 9th missing. Examinees were
asked to type in the missing integer. Series were generated
by applying one or more operators to the current element,
in a particular order. Operators were (a) adding or
subtracting a constant (+ 1, – 1, + 2, – 2); (b) adding or
subtracting a checksum1 (sum of the digits of the element;
e.g., 11 => 2); (c) adding or subtracting a checksum2
(sum of the digits across the current and previous ele-
ments in the series; e.g., 29, 39 => 23); (d) adding the
current with the previous element, as in a Fibonacci se-
ries; and (e) treating either the first element alone or the
first two elements as the starting values from which to
compute the next series element. For example, the series
6, 4, 1, 5, 6, _ could be generated by treating the first two
elements as the starting values, then applying a combina-
tion of the Fibonacci and checksum1 rules (1 is the check-
sum1 of 10 [= 6 + 4], 5 is the sum of 4 + 1, 6 is the sum
of 1 + 5, and the sixth element would be the checksum1
of 6 + 5, which would be 2 [i.e., the checksum1 of 11]).
Each mini-test consisted of 16 item models from varying
the design factors, and we created five instances per item
model (instances varied on the constant and the one or
two starting elements). For the supplemental study, addi-
tional NS items were generated from some of the easier
item design combinations (due to the first batch being too
difficult). These were assembled into three 20-item mini-
tests.

Design

Items were assembled into same-content mini-tests (either let-
ter, number, or arrow). Mini-tests consisted of 16 items (item
instantiations based on 16 distinct PDL patterns) plus two
attention check items (total 18 items per mini-test). There were
five mini-tests (five instantiations) for each content area (a
total of 15 mini-tests, L1–L5, A1–A5, N1–N5). We created
15 forms, using a balanced incomplete blocks design with
each form comprising three mini-tests in either two or three
content areas (e.g., a form with L1 + L2 + A1; or a form with
L1 + A1 + N1). Each participant was administered one form
that consisted of 54 items altogether.

The supplemental study was designed to provide better NS
items, so in it we presented only NS items. It comprised three
20-item NS mini-tests (based on 18 PDL patterns and two
attention check items) distributed across four forms. One
mini-test included a subset of the NS items from the main
study (Study 1) that served as items to link the data from the
main and supplemental studies.

Procedure

After registering, respondents linked to the online testing site
and were randomly assigned one of 15 (54-item) forms. The
mini-tests consisted of either LS, NS, or AS items. For each of
the three mini-tests within a form, respondents were given
instructions, two or three sample items, and the rules
governing the series. In each test there were six simple items
that served as attention checks (e.g., for LS, A B C D E F __).
Participants who failed two of the attention check items were
excluded from the sample by the participant panel supplier
and were not counted toward the number of participants.

On average, the session took about 40 min; participants
who completed the session in under 20 min were eliminated
from the sample (this limit was originally set to under 30 min,
but it was lowered after the first 872 participants because too
many were screened out).

Results

Missing data treatments

Missing item responses were not permitted by the software,
except for timing out due to item time limits (60 s for all
items). Fewer than 1% of responses were in this category,
and they were coded as missing in the data file (and then
treated in a pairwise or casewise manner, depending on the
analysis). For the purposes of computing marginal reliability,
a planned missing data analysis was conducted based on the
incomplete block design. Specifically, a multiple-imputation
(MI) approach was used, yielding ten datasets. These datasets
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were analyzed separately, and parameter values were obtained
as the average across the ten analyses (this is described below
in the Reliability section below).

Removing items on the basis of descriptive statistics

We first computed proportions correct (P+) and point-biserial
correlations (rbs) for all items. The mean P+ values were .56,
.44, and .09 for LS, AS, and NS, respectively (see Table 1).
The difficulty of the NS items led us to also develop the
supplemental study, which added new items, raising the P+
mean to .14. The mean rbs values were .47, .32, .25, and .42
for LS, AS, NS (main), and NS (supplemental), respectively.
We then excluded all items with P+ values less than .05 or rbs
less than .10 and conducted further analyses only on the re-
maining items. We also excluded items on the basis of re-
sponse time, using the procedures described next.

Removing items on the basis of timing

Study 1 (main study) set item time limits at 1 min for all items,
by giving a warning to complete at that time. There was no
separate test time limit. Table 2 shows the proportions of in-
dividuals who failed to complete each item on the tests under
the 1-min time limit. It can be seen that on average, 98%–99%
of test takers completed all the LS and AS items, but half the
test takers failed to complete the NS items. This resulted in a
rewriting of the NS items for the supplemental study. In the
supplemental study, the per-item time limit for NS items was
raised to 2 min. These revisions resulted in completion rates

similar to those found with LS and AS. For all subsequent
analyses, items were excluded if fewer than 75% of the exam-
inees were able to complete them in less than 60 s for LS and
AS, 90 s for NS, and 120 s for figural matrix items (Study 2).

Establishing item and test time limits for future use

One purpose of this study was to establish item- and test-level
time limits for the final, fixed test forms, to be used in Study 3.
Because of the planned missing design used in Study 1, no
individual actually took the final assembled forms, and thus it
was not possible to identify the total time required to complete
them. An expected total time was computed on the basis of the
item response times. First, the response times for various
quantiles (e.g., 75th percentile) were determined for each item.
Figure 1 presents boxplots showing these values for each item
in each test. Summing the response times across items at a
given percentile (e.g., the 75th percentile) provided an expect-
ed response time for an examinee who consistently responded
to each item in the same relative amount of time (e.g., at the
75th percentile of the item response times). If item response
times across examinees were perfectly correlated, this would
be an appropriate estimate of an examinee’s total time. If re-
sponse times across items were completely independent, then
a better estimate would be the average (e.g., closer to the 50th
percentile). The correlation in fact was r = .29, and thus the
75th percentile was likely a conservative (i.e., high) estimate
of the total time required to finish the test (i.e., the actual 75th
percentile on an intact form was likely to be a lower elapsed
time value).

Dimensionality

We conducted principal components analyses (PCA) of item
responses for each test (LS, AS, NS) separately and jointly,
from the tetrachoric correlation matrices. For all three tests,
scree plots suggested a large first component, and additionally
one or two minor dimensions. We computed Akaike and
Bayesian information criteria (AIC and BIC, respectively) fit
statistics for each of the models, shown in Table 3. Whereas

Table 1 Descriptive statistics (Study 1 and Study 2)

Test Statistic Min Q1 Median Q3 Max Mean SD

Letter Series (Study 1)

P+ .24 .45 .57 .68 .86 .56 .16

rbs .20 .41 .47 .52 .61 .47 .09

Arrow Series (Study 1)

P+ .09 .30 .44 .60 .88 .44 .20

rbs .01 .26 .33 .39 .51 .32 .10

Number Series (main)

P+ .00 .03 .05 .13 .54 .09 .09

rbs – .03 .10 .21 .39 .66 .25 .19

Number Series (supplemental)

P+ .00 .07 .11 .17 .71 .14 .12

rbs .12 .24 .40 .59 .76 .42 .19

Figural Matrix (Study 2)

P+ .06 .23 .34 .47 .78 .36 .17

rbs .07 .34 .40 .48 .60 .40 .10

P+ = proportions correct; rbs = point-biserial correlations; Q1 = 25th
percentile; Q3 = 75th percentile.

Table 2 Fail-to-complete statistics by test (Study 1)

Min Q1 Median Mean Q3 Max

LS .000 .005 .010 .012 .013 .030

AS .000 .013 .013 .016 .018 .035

NS (main) .000 .503 .670 .504 .672 .674

NS (supplemental) .000 .000 .023 .023 .045 .045

Values indicate the proportion of test takers failing to complete items on
the test. Thus, for LS, the mean across items was .012 failing to complete,
but for the worst item, .030 failed to complete. AS = arrow series; NS =
number series; LS = letter series; FM = figural matrices; Q1 = 25th
percentile; Q3 = 75th percentile.
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AIC suggested two-factor solutions, BIC suggested one factor
for LS, AS, and perhaps NS. For the combined set, there also

was one major dimension and two minor dimensions. Several
confirmatory factor analyses (CFA) were also fit to the item
data: (a) a correlated primary factors model (LS, AS, NS), and
(b) a bifactor model with an additional general factor (g, LS,
AS, NS), where g was constrained to be independent of the
correlated primary factors (for both models, means were set to
zero and factor variances set to one; this assumes examinees
taking each form are randomly equivalent). For the primary
abilities analysis, test intercorrelations were .77, .61, and .57,
for (LS, AS), (LS, NS), and (AS, NS), respectively. The test
intercorrelations for the bifactor analysis were lower, at .47,
.31, and .19, respectively. BIC fit statistics suggested that the

Table 3 Fit statistics (Study 1 and Study 2)

Statistic Model LS AS NS FM

AIC 1 factor 32,766 35,090 37,893 80,925

2 factor 32,702 34,915 37,199 80,866

BIC 1 factor 33,610 35,933 39,279 82,138

2 factor 33,958 36,169 39,277 82,673

LS = letter series; AS = arrow series; NS = number series; FM = figural
matrix (Study 2)
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Fig. 1 Boxplots (mean with 25th and 75th percentiles) of item response times (in seconds) for Studies 1 and 2



bifactor model provided a better fit than the primary abilities
model (74,723 vs. 74,027).

IRT analysis

We fit a two-parameter logistic (2PL) item response theory
(IRT) model (Birnbaum, 1968) to the item responses for the
remaining items. We did this separately for LS and AS, and
using marginal maximum likelihood estimation via a multi-
group extension of the 2PL (Bock & Zimowski, 1997) using
the software program IRTPRO (Cai, Thissen, & du Toit,
2011). For the NS category, items from both the Study 1 main
study and the supplemental study were calibrated concurrently
using the same multigroup approach. These analyses resulted
in an item bank with a final set of items and their parameters
(discrimination, a, and difficulty, b).

Test forms using mixed-integer automated test
assembly (ATA)

To assemble Test Forms I and II, we used a mixed-integer
automated test assembly (ATA) approach (Diao & van der
Linden, 2011; van der Linden, 2005). The mixed-integer
linear-programming (MILP) solver lp_solve version 5.5
was called from the statistical language R (R Core Team,
2016) using the lpSolveAPI interface (Konis, 2016). Forms
were assembled for each domain separately (LS, AS, NS),
and then a subset of items identified for each domain was
used to assemble a composite test (C). Forms were assem-
bled using the item bank from the IRT estimation.
Extremely high-difficulty items (> 5 logits) were excluded
from the pool of candidate items. ATA then proceeded by
identifying two sets of items (to populate Forms I and II)
with equivalent test information functions (TIF) (to ensure
comparable reliabilities) and test characteristic curves
(TCC) (to ensure comparable difficulty and discrimina-
tion). To achieve a reliability of > .90, for the letter and
arrow skill areas 30 unique items were identified for each
form; for number series 30 unique and five common items
were identified (35 items total) for each form.

To create parallel composite (C) tests, item parameters were
first reestimated using the combined set of LS, AS, and NS
items identified via ATA in the previous stage, to place all
items regardless of domain on a common scale. There was
some multidimensionality in the items when they were
modeled together; however, items with low discrimination
or high difficulty on the composite scale were excluded from
the pool of candidate items. The same ATA approach de-
scribed above was then used to create the composite tests, with
the added constraint that 15 letter, 15 arrow, and 10 number
items be included on each C form.

Reliability

We usedmultiple imputation via the EM algorithm to generate
ten sets of item responses for the combined (final) set of letter,
arrow, and number items. The imputation was done using the
Amelia II package in R (Honaker, King, & Blackwell, 2011).
The imputed data were used to estimate the expected abilities
for each examinee (on the tests for which they took items) and
to compute expected marginal reliabilities.

Scaling

With the 2PL, there is not a one-to-one correspondence be-
tween observed scores and scale scores. We obtained scale
scores using Thissen and Orlando’s (2001) expected a
posteriori (EAP) scoring method using IRTPRO. To make the
interpretation of the scale scores more intuitive, we transformed
them to a z score metric (with associated percentiles). The mean
for each scale was set to correspond with expected performance
for first-year college students (based on expected change in
SAT scores from first to fourth year, see Liu, 2011). Since the
mean does not correspond to the empirical mean, this is a mod-
ified z score. Figure 2 presents the score distributions.

Validity

We computed polyserial correlations between LS, AS, NS,
and education (.07, .07, .06), and Pearson correlations be-
tween Gf scores and self-reported SAT verbal (.11, .11, .10),
SAT math (.24, .24, .23), and ACT (.26, .27, .28) scores.
Although these correlations were lower than might have been
expected, it is possible that this may at least partly have been
due to the range restriction of the highly selected sample and
to the unreliability of self-reports of SAT and ACT scores.

Discussion

We found that using series-generation rules from the
information-processing literature, and employing item response
theory and a planned missing data design, it was possible to
develop parallel test forms that achieved psychometric targets
of high reliability (greater than .90), goodmeasurement across a
wide range of ability from the expected first-year college stu-
dent to 3.5 standard deviations above that level, essential uni-
dimensionality, and validity evidence supporting the use of the
developed measures as indicators of Gf. We also developed a
procedure for setting item time limits that would make an
unspeeded test, using response time percentiles. The calibrated
item banks and test forms derived from our analyses here were
validated in Study 3, with a sample that was administered intact
forms along with an additional marker Gf test.
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Study 2: Figural matrix test development

Progressive matrices, particularly Raven’s Progressive
Matrices, has long been considered one of the best measures
of general cognitive ability (Carpenter, Just, & Shell, 1990;
Carroll, 1993; Diehl, 2002; Embretson, 2002; Snow,
Kyllonen, & Marshalek, 1984). Matrix tests appear in the
WAIS-III and WAIS-IV IQ tests, the most widely used indi-
vidually administered intelligence tests today.

Information-processing analyses of the Progressive
Matrices tests (Carpenter et al., 1990; Diehl, 2002;
Embretson, 1998, 2002) have suggested the following
components, which are similar to the series item models:
(a) find correspondences across columns or rows (e.g., find
elements, such as shapes or bars, across columns that are
constant or systematically varying); (b) compare adjacent
corresponding elements; and then (c) induce the element

transformation rules (e.g., identity, rotation, size change)
based on similarities and differences between these adja-
cent corresponding elements. Problems thus can be made
more difficult by making element identification difficult
and by increasing the number of elements or rules neces-
sary to keep track of in working memory. For this study, we
manipulated these factors in order to create a set of figural
matrices items.

Our figural matrix items presented eight options in a
multiple-choice format. One option was correct, and the other
seven were created as variants on the correct option, with
either one element or one transformation differing from the
correct option.

As in Study 1, and employing a similar strategy, our goal
was to create two parallel forms of items. Each test form was
to be of a length sufficient for a reliability of ≥ .90, which we
estimated would be about 30 items.
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Method

The study was conducted in two waves (Studies 2a and 2b).
The first wave was designed to check on the appropriateness
of the item difficulties; the second wave excluded items with
poor psychometrics characteristics, and introduced a set of
new items.

Participants and measures

All participants from Study 2 were recruited from Qualtrics
Labs, Inc., using a procedure similar to Study 1’s. We recruit-
ed samples of 499 and 2,012 test takers for Studies 2a and 2b,
respectively.

For Study 2a, we initially wrote 122 matrix items varying
in expected difficulty, from 20 item models (i.e., six items per
item model) and a balance of graphical families. All tasks in
Study 2 were programmed for the Qualtrics Research Suite
survey platform.

The 20 item models were based on the following four sets
of rules: (a) addition of elements across rows and columns, (b)
rotation of elements clockwise or counterclockwise, (c) posi-
tion changes of elements within a given cell of a matrix, and
(d) distribution of elements across rows and columns of a
matrix. Rules were applied both horizontally (i.e., from the
left column to the right column) and vertically (i.e., from top
row to the bottom row). Up to three rules could be combined
in any given item, and these rule combinations defined an item
model. To create different items within an item model family,
various graphical elements such as circles, triangles, and seg-
mented lines were used; these graphical elements in various
combinations were referred to as graphical families. Items
were developed by applying one of 26 unique graphical fam-
ilies to one of the 20 item models. Response alternatives were
created by altering a rule applied to one or more of the ele-
ments in the solution figure (e.g., addition vs. rotation; clock-
wise vs. counterclockwise rotation).

The item developers and reviewers were different authors
of this article. From a careful review by reviewers (not the
authors), a subset of 100 items was selected for administration
for Study 2a. Items were divided into four forms designed to
be equivalent with respect to theoretical difficulty and the
representation of item rules and graphical families

Following Study 2a data collection (N = 499), 20 items
were excluded because they were too easy or too hard (P+ <
.05 or P+ > .95), had poor discrimination (rbs < .10), or had a
median response time of more than 1 min. New items were
written to replace these and were administered with the 80
retained Study 2a items in Study 2b (a total of 100 items).
The item design for Studies 2a and 2b was the same, which
allowed for pooling of the administrations in order to estimate
item parameters. The 80 items retained from Study 2a were
administered in the same position on each of the four forms.

The newly developed Study 2b items were located in the po-
sitions originally occupied by the problematic items; the new
items were written and positioned in order to maintain equiv-
alence in the theoretical difficulty and item rule and graphical
family representation.

Design

Items were assembled into four forms, eachwith 33 items: two
attention check items, 21 unique items, and ten items that were
administered on one other form. There were 20 individual
common items across all forms, which appeared in the same
position.

Procedure

The registration and administration procedures were similar to
those in Study 1. For both Studies 2a and 2b, each examinee
completed one randomly assigned form. All the participants
were given 55 min to complete the test, followed by a demo-
graphic questionnaire and a postsurvey asking about their on-
task motivation.

Results and discussion

We used the same missing data treatment as used in Study 1.
We also conducted a PCA of the item responses, based on
tetrachoric correlation matrices. A scree plot indicated two
or three dimensions, but examination of the item loadings
did not suggest any consistent relationship with item rules or
graphical families. As in Study 1, we fit the item data and
estimated item parameters using marginal maximum likeli-
hood estimation via a multigroup extension of the 2PL
(Bock & Zimowski, 1997) using the software program
IRTPRO (Cai et al., 2011). We used procedures similar to
those in Study 1 to create two assembled forms of progressive
matrices items.

We conducted a reliability analysis using the same ap-
proach as in Study 1, except that reliability was only computed
for each form. The expected marginal reliability for each of
the assembled forms was .98. We followed the same proce-
dure for developing score scales as was used in Study 1.

Validity

The correlations (with standard errors of the correlations) be-
tween the figural matrices and educational attainment, self-
reported SAT Verbal, SAT Math, and ACT scores were – .01
(.02), .03 (.03), .13 (.03), and .07 (.03), respectively, which are
slightly lower than the ones we found in Study 1.
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Establishing item and test time limits for future use

For Study 2, we increased the item time limit to 2 min, due to
the complexity of figural matrix items as compared to the
series items. We used the same procedure as in Study 1 to
set item-specific time limits in preparation for Study 3. The
expected total response times were approximately 21, 32, and
48 min (all responses), or 23, 32, and 43 min (correct re-
sponses only), at the 50th, 75th, and 90th completion-time
percentiles, respectively. That is, 90% of the examinees would
be expected to complete the test in 48 min (either form), and
75% in 32 min or less. A standard criterion for establishing
that a test is unspeeded is that virtually all examinees complete
at least three-fourths of the test (e.g., Rindler, 1979;
Swineford, 1974). Assuming time needed to complete the test
is linear with the percentile then using the methodology we
used to establish a total test time limit based on the summed
75th per item time percentiles achieves the unspeeded
criterion.

Assembling parallel forms with certain psychometric prop-
erties and suggested time limits as we did here was based on
statistical estimates, because no one participant actually took
all the figural matrix items developed. In Study 3 we assem-
bled parallel fixed forms based on the results from Studies 1
and 2 and administered these forms to other participants.

Study 3: Validation study

Studies 1 and 2 involved a planned missing design, and only
statistical estimates of item parameters and timing information
could be made. In Study 3 we prepared fixed test forms to
verify that the estimated statistical and psychometric parame-
ters would hold when items were administered to a common
sample. A second purpose of this study was to administer an
independent marker test of Gf, Cattell’s (1949; Cattell, Krug,
& Barton, 1973) Culture Fair Intelligence Test, Form 3
(CFIT), and to compute correlations with scores on that
measure.

Method

We followed Studies 1 and 2 in targeting an online panel of
800 test takers for data collection. Approximately 100 were
eliminated due to not completing the tests or to completing the
tests too quickly, but recruiting continued until the target of
800 was met.

On the basis of the results from Studies 1 and 2, we assem-
bled test forms. We also administered a standard Gf marker
test, Form 3 of the CFIT (Cattell et al., 1973). Forms differed
by varying the order in which the figural matrices (FM),

number series (NS), letter series (LS), arrow series (AS), and
CFIT tests were administered.

Test time limits were set on the basis of the time-limit
estimation procedures implemented in Studies 1 and 2. The
overall time limit was approximately 180 min, with 30 min
each for the letter (LS) and arrow series (AS), 45 min each for
number series (NS) and figural matrices (FM), and 12.5 min
(the manual specified time limit) for the CFIT. Item-specific
time limits were also imposed as follows: 1 min for LS and AS
items, 1.5 min for NS items, and 2 min for FM items. As part
of the administration, test takers were given the opportunity to
take breaks between tests; however, we imposed forced breaks
of 5 min after every second test. As a final component of the
study design, we used attention check items in combination
with a timing threshold of 23 min per form (equal to 1/3 of the
median expected total time) to exclude participants who pro-
vided too rapid responses (these examinees were eliminated
from the sample by the participant panel supplier prior to any
analysis, and they were not included in the sample count).

Prior to taking the items for a given test, examinees were
given instructions and a few example items of low to average
difficulty. At the end of the assessment, they were asked to
complete a background questionnaire that included demo-
graphic information and examinees’ SAT, ACT, and GRE
scores as in Studies 1 and 2.

Results

Item analysis

No items from the FM, NS, LS, or AS tests were identified as
being too hard or too easy (i.e., having extremely low or high
P+ values below .05 or above .95). Nor did any of the items
have extremely low or negative biserial correlations.
However, four of the CFIT items were too hard (i.e., P+ <
.05), and an additional three of these items had negative
biserial correlations. All seven of these items were removed
prior to further analyses.

To evaluate whether the statistical properties of the tests
obtained in the present study were consistent with those found
in Studies 1 and 2, we conducted an evaluation of item fit. We
estimated item parameters for each of the four tests using the
data collected for the present studies, then used the Stocking–
Lord (1983) method to place the items and the ability esti-
mates onto the previously established scales. The linking co-
efficients obtained in this process showed that the mean abil-
ities for Study 3 on each test were lower (and less variable)
than the means for Studies 1 and 2. However, none of the
transformed item parameter estimates differed significantly
from those estimated in the previous studies. We also found
no evidence for fatigue effects by conducting analyses of var-
iance on percentages correct for the five test positions.
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Reliability

The observed IRT marginal reliabilities for the tests were .89,
.89, .95, and .88 for AS, NS, LS, and FM, respectively (the
CFIT reliability was .92). For NS and LS, the observed reli-
abilities were only slightly lower than the expected reliabil-
ities, based on Study 1 (.90 and .96, respectively); however,
for AS and FM, the differences between the observed and
expected reliabilities were notably larger (.95 and .98, respec-
tively), for unknown reasons.

Dimensionality

A PCA suggested that there was one large and several minor
components. A unidimensional model, two EFA models, and
three CFA models were also fit for the combined set of items.
One CFA model was a simple structure model in which the
items from each test loaded on a separate dimension. One
bifactor model included a general factor and specific factors
for each of the five tests. Another bifactor model included two
specific factors. For all of the models, the means were
constrained to be zero, and the factor variances for all groups
were constrained to unity.

On the basis of BIC fit statistics, the worst-fitting model
was the simple structure model, followed by the five-specific
bifactor model (see Table 4). The unidimensional model fit
better than the EFA two-factor model but did not appreciably
differ from the EFA three-factor model. An examination of the
loadings from the EFA two-factor model showed that the ar-
row, matrix, and CFIT items loaded predominantly on a single
factor, perhaps reflecting their common spatial content,
whereas the number and letter items loaded predominantly
on the other factor. On the basis of these findings, the two
specific factors in the two-specific bifactor model were (a)
NS and LS items loading on one and (b) AS, FM, and CFIT
items on the other. The two-specific bifactor model was the
best-fitting model. These results suggest a single dominant
general factor that extended across all five tests, but that spa-
tial versus nonspatial dimensions were associated with the
tests, as well.

Timing information

Table 5 suggests that the majority of examinees were able to
respond to the items in a reasonable amount of time. Note that
response times were not collected for individual items on the
CFIT; items were administered in item sets in order to main-
tain consistency with how the test is typically administered in
the paper-and-pencil format.

We also noted some extremely short minimum times. We
encouraged examinees to provide adequate effort; for exam-
ple, a very fast test completion time (AS < 4.5 min, NS < 5
min, LS < 5 min, FM < 7 min) would be followed by a
warning, and successive warnings led to removal from the
testing session. The minimum times in Table 5 correspond to
these fast responders. No data were available on the CFIT
regarding response times prior to this study, so no minimum
times were specified for CFIT.

Test level descriptive statistics

Using the item parameters from Studies 1 and 2, EAP scores
were estimated for each examinee on each of the tests (new
item parameters for the CFIT were estimated using the 2PL).
These values are reported on a modified z-score metric in
which the expected performance for first-year college students
was set to 0 (SD = 1), for interpretability (Table 6).

Table 7 presents disaggregated results by demographics.
Because the data were scaled so that the mean standard devi-
ation was 1, it was possible to compute approximate effect
sizes as the difference between the subgroup means.

Relationship to external validation measures

All tests correlated strongly with the CFIT (Table 8), provid-
ing strong evidence of convergent validity and supporting the
tests developed here as measures of Gf. We also computed
correlations of the Gf measures with educational attainment
(polyserial correlations) and with SAT and ACT scores
(Pearson correlations). It can be seen that the correlations

Table 5 Item completion times (in seconds) (Study 3)

Percentile AS NS LS FM

Low High Low High Low High Low High

5th 2.34 7.58 3.49 16.65 2.73 9.48 2.25 7.17

50th 10.59 24.82 15.57 60.95 11.59 43.35 14.34 46.68

75th 15.61 39.33 30.89 89.04 16.34 59.99 24.81 73.2

90th 23.99 56.42 56.47 90.01 24.35 60.01 41.36 104.16

Values are the range (low, high) of item completion times for different
items at various completion time percentiles. Thus, low values are low
time intensity items. AS = arrow series; NS = number series; LS = letter
series; FM = figural matrices.

Table 4 Model fits for all tests combined (Study 3)

Model BIC

Unidimensional 133,036

EFA – 2 factors 133,802

EFA – 3 factors 132,964

Simple structure 145,424

Bifactor – 5-specific 134,740

Bifactor – 2-specific 132,500

518 Behav Res (2019) 51:507–522



between Gf and other measures (a) were not that high in gen-
eral, but (b) were generally highest for SAT Quantitative and
for education level.

General discussion

Research on enhancing fluid intelligence has grown in popu-
larity recently. However, many current efforts suffer from
weaknesses in how fluid ability is measured. The purpose of
this study was to develop a battery of Gf tests that could be
used in studies designed to improve fluid ability. For this
purpose, we designed a battery that was on average reliable,
would provide precise measurements across a wide range of
abilities, offer true parallel forms for pre–post administration,
include multiple types of tests that sampled from a range of
content domains and methods, and provide time limits that
would enable the measurement of level of ability not con-
founded by speededness. We employed item response theory
methods to create a test battery specifically designed for pre-
and post-intervention administration in intervention-focused

studies. The results, based on administering items to over
6,300 highly educated individuals, ranging from current up-
perclassmen to Ph.D. holders, showed that the battery
consisting of four different tests was highly reliable (each test
had a reliability of > .90) and yielded clear evidence for the
battery’s construct validity as a measure of Gf. As such, the Gf
battery represents a promising tool for measuring the effec-
tiveness of cognitive enhancement interventions.

We developed four tests based on information-processing
models from the literature. In Studies 1 and 2, based on data
from 4,500 college students and advanced graduates in an
online panel, we assembled two parallel forms for each test.
In Study 3 we administered the four tests and an additional Gf
marker test (the CFIT) in a spiraled design (in order to avoid
test position effects) to 802 online panel participants equally
divided across advanced education levels. We found that the
four tests in the battery performed psychometrically as we had
predicted from Studies 1 and 2, with reliabilities around .90,
covering a range of difficulty, and having high ceilings and
good measurement precision across an ability range from col-
lege students to advanced graduates and beyond.

Factor analyses indicated a strong general factor across the
tests, and additionally, a spatial versus nonspatial secondary
factor. This finding suggests that the battery might be useful
both as a means to assess overall effects of an intervention
designed to enhance general fluid/inductive reasoning ability,
and also to evaluate the differential effects of an intervention
designed to target the enhancement of spatial versus nonspa-
tial abilities.

Because automatic item generation procedures were used
to develop the items for this study, it would be possible to
modify a targeted difficulty level in order to create a test that
could be easier or more difficult than the tests in the battery
assembled here. In this study we identified a number of key
construct-relevant difficulty factors for each of the four tests

Table 7 Test scale scores by subgroup (Study 3)

Letter Arrow Number FM CFIT

Gender Male 0.96 0.98 0.88 0.97 0.97

Female 0.95 0.88 0.73 0.92 1.03

Education 3rd/4th Yr. College 0.77 0.87 0.58 0.89 0.97

College Graduate 0.79 0.78 0.62 0.75 0.76

Masters Student 0.84 0.90 0.65 0.91 0.90

Master’s Degree 1.16 0.99 1.00 1.10 1.11

Doctorate Degree 1.22 1.11 1.19 1.10 1.24

Age 18–25 0.86 1.01 0.65 1.01 1.05

26–40 0.85 0.82 0.72 0.83 0.80

41–60 1.14 1.05 0.99 1.06 1.08

61 and over 1.13 0.88 1.03 1.01 1.18

Within-cell standard deviations ranged from 0.70 to 1.19, with a mean of
1.0. FM = figural matrices; CFIT = Culture Fair Intelligence Test.

Table 8 Correlations among Gf tests, education level, and college
admissions test scores (Study 3)

AS NS LS FM CFIT

Education level .09 .25 .18 .10 .12

SAT Quantitative .14 .17 .16 .12 .03

SAT Verbal – .07 – .03 – .03 .01 – .09

ACT – .02 .07 .00 .01 – .05

AS .64 .74 .72 .73

NS .57 .66 .64 .54

LS .68 .61 .64 .66

FM .64 .57 .59 .64

CFIT .66 .49 .61 .58

Disattenuated correlations among Gf scores are reported in the upper
triangle. AS = arrow series; NS = number series; LS = letter series; FM
= figural matrices; CFIT = Culture Fair Intelligence Test.

Table 6 Scale scores for Gf tests (Study 3)

Min Q1 Median Mean Q3 Max

AS – 1.22 0.20 0.87 0.93 1.49 4.03

NS – 0.74 0.22 0.73 0.81 1.32 3.76

LS – 0.71 0.16 0.97 0.96 1.72 3.23

FM – 1.43 0.37 0.90 0.95 1.52 4.89

CFIT – 1.56 0.34 0.98 1.00 1.66 4.37

Test scores scaled to a mean of 0 for expected performance of a 1st-year
college student (SD = 1). Min = lowest score by an individual; Q1 = 25th
percentile; Q3 = 75th percentile; Max = highest score by an individual.
AS = arrow series; NS = number series; LS = letter series; FM = figural
matrices; CFIT = Culture Fair Intelligence Test.
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and used those factors to generate items with predicted diffi-
culty levels. This strategy generally was successful, as is
shown by the fact that the items developed from the models
achieved the targeted difficulty levels. However, additional
item analyses could be conducted to identify and quantify
the effects of the various difficulty factors implemented here
more precisely, for the purposes of creating a test battery at a
different targeted difficulty level.

In summary, renewed interest in cognitive ability
enhancement—which is evident in increased scholarly activ-
ity, the presence and profitability of commercial offerings, and
government investment—demands increased attention to is-
sues of research design and measurement integrity (Shipstead
et al., 2012). Previous studies have produced mixed results. In
response to the psychometric shortcomings of these studies,
our intention was to create a test battery specifically designed
for pre- and postintervention administration in intervention-
focused studies. The resulting battery could be implemented
in future Gf intervention studies.
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