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Abstract
When (meta-)analyzing single-case experimental design (SCED) studies by means of hierarchical or multilevel modeling,
applied researchers almost exclusively rely on the linear mixed model (LMM). This type of model assumes that the residuals
are normally distributed. However, very often SCED studies consider outcomes of a discrete rather than a continuous nature,
like counts, percentages or rates. In those cases the normality assumption does not hold. The LMM can be extended into a
generalized linear mixed model (GLMM), which can account for the discrete nature of SCED count data. In this simulation
study, we look at the effects of misspecifying an LMM for SCED count data simulated according to a GLMM. We compare
the performance of a misspecified LMM and of a GLMM in terms of goodness of fit, fixed effect parameter recovery, type I
error rate, and power. Because the LMM and the GLMM do not estimate identical fixed effects, we provide a transformation
to compare the fixed effect parameter recovery. The results show that, compared to the GLMM, the LMM has worse
performance in terms of goodness of fit and power. Performance in terms of fixed effect parameter recovery is equally good
for both models, and in terms of type I error rate the LMM performs better than the GLMM. Finally, we provide some
guidelines for applied researchers about aspects to consider when using an LMM for analyzing SCED count data.

Keywords Generalized linear mixed model · Linear mixed model · Single-case experimental design ·
Monte Carlo simulation

Introduction

A single-case experimental design (SCED) is an experi-
mental design where one subject, participant, or case is
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observed repeatedly over time, resulting in a time series.
During this time series, one or more dependent variables
are measured under different levels in order to assess the
effect of the particular treatment or intervention (Onghena
& Edgington, 2005). Often the time series includes at least
one baseline phase and one treatment phase. Studies using
an SCED design frequently report results of a small number
of multiple cases. When generalizing the results of several
SCED studies in a meta-analysis, the data of interest is then
of a hierarchical nature: measurements are nested within
cases, which in turn are nested within studies. This hierar-
chical nesting of the data can be taken into account elegantly
by using hierarchical or multilevel modeling for statistical
analysis (Van den Noortgate & Onghena 2003a, b, 2008).

In the basic multilevel model for meta-analysis of SCED
data as proposed in previous research (Raudenbush & Bryk
2002; Moeyaert et al., 2014; Shadish et al., 2008, 2013; Van
den Noortgate & Onghena 2007), the observed scores for
each case are assumed to be normally distributed around
their expected value. However, Shadish and Sullivan (2011)
have reported that the outcome variables measured in SCED
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studies are very often of a discrete rather than continuous
nature, and for these discrete outcomes the assumption
of conditional normality does not hold. To account for
both the hierarchical and the count nature of SCED data,
two frameworks can be combined: linear mixed modeling
(LMM) (Hox, 2010; Gelman & Hill, 2009; Snijders &
Bosker, 2012) and generalized linear modeling (GLM)
(Gill, 2001; McCullagh & Nelder, 1999). Both frameworks
have proven to provide very flexible tools. From their most
basic forms, they expand into more specialized models in
a clear and simple manner. Combining both frameworks
results in a generalized linear mixed model (GLMM) (Hox,
2010; Gelman & Hill, 2009; Snijders & Bosker, 2012;
Jiang, 2007), which is specified by (1) a distribution for
the random effects, (2) a linear combination of predictor
variables, (3) a function linking this linear predictor to
the expected value of the response variable conditional on
the random effects, and (4) a distribution for the response
variable around this expected value. GLMMs can be very
well customized to the particular type of data at hand, i.e.,
count data in SCED meta-analyses (Shadish et al., 2013).

One downside of the GLMM framework is that it is rel-
atively complex to understand. Customizing a generalized
linear mixed model requires a more general mathematical
understanding of both the GLM and the LMM framework.
Even though efficient estimation methods are available in
many popular software packages (Zhou et al., 1999; Bates
et al., 2015; Molenberghs et al., 2002) and even though
these models have proven their robustness and their power
(Abad et al., 2010; Capanu et al., 2013; Yau & Kuk, 2002),
they might be somewhat intimidating for social scientists to
apply. Another difficult aspect of the GLMM framework is
that the more sophisticated the model, the more information
is needed to make sure the GLMM estimation converges (Li
& Redden, 2015; Abad et al., 2010). However, in SCED
contexts typically a relatively small number of data points
is available (Shadish & Sullivan, 2011) and this might result
in less reliable GLMM estimates (Nelson & Leroux, 2008).

For an assessment of the current use of GLMMs in
SCED contexts, we have access to data collected for a
recent review conducted by the same team of authors of this
simulation study (Jamshidi et al., 2017). This systematic
review includes 178 systematic reviews and meta-analyses
of SCED studies from the last three decades and includes
a description of their study characteristics. Of the included
studies, only 22 (12%) used hierarchical or mixed modeling
and 19 of those were published after 2010. Only about half
of these studies reported the type of measurement scale of
the dependent variable, but those that did reported almost
exclusively rates, percentages, or counts. Yet all of these
22 studies used an LMM rather than a GLMM. Together
with the aforementioned issues of the complexity of the
GLMM, this observation encourages us to look deeper into

the consequences of misspecifying SCED count data with
an LMM (which assumes normally distributed outcomes).

To this end, a simulation study is conducted in which
count data with a hierarchical structure are generated
according to a two-level GLMM, assuming a Poisson distri-
bution of scores within the phases. The simulated datasets
are analyzed by fitting the GLMM used for data generation,
as well as by fitting a two-level LMM that assumes normal-
ity of the scores within phases. The main aim of this study is
to investigate whether the GLMM, as the theoretically cor-
rectly specified model, outperforms the LMM across all
conditions, and, if not, in which conditions the LMM per-
forms well enough (or better).

As to the conditions in which the LMM leads to accept-
able performance, we have two hypotheses. First, if the
expected count responses in the baseline and/or treatment
phase are relatively high, the LMMmight perform relatively
better than when the expected counts are small due to better
normal approximations of Poisson distributions with larger
expected values (Stroup, 2013). Second, if the sample size
is small, the LMM might perform relatively better than the
GLMM due to the GLMM being a too complex model to
estimate when information is sparse (Hembry et al., 2015).

Various simulation conditions are taken into account.
These conditions differ in the number of cases, the
number of measurements within cases, the average baseline
response, the average effect size and the true variance
component values. To analyze the performance of the model
fits, we look at common goodness of fit criteria, fixed
effect parameter recovery, the Type I error rate and the
power. The goal is to provide applied researchers with
recommendations on the required criteria (e.g., the required
sample size or the required average count in the baseline
and/or treatment phase) for reliable analysis of count data
with simpler LMMs.

Methodology

For simplicity, the simulation in this study will only take
into account two levels (measurements nested within cases).
The model used to simulate the SCED count data is a
GLMM with an underlying Poisson distribution and a log
link function:

Yij ∼ Poisson
(
λij

)

log
(
λij

) = β0j + β1jDij
{

β0j = γ00 + u0j
β1j = γ10 + u1j

⎛

⎝
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⎞
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⎡
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where i = 1, . . . , I indicates the measurement occasion
and j = 1, . . . , J the case. The variable Dij is a dummy
variable indicating the phase of the experiment: Dij equals
0 if the measurement was taken during the baseline phase,
while Dij equals 1 if the measurement was taken during
the treatment phase. The random effects u0j and u1j have
respective variances σ 2

u0 and σ 2
u1, and their covariance is

σu01. In this GLMM, γ00 represents the average of the
logarithm of the baseline level, and γ00 represents the
logarithm of the treatment effect across the J cases.

Two models are used to analyze the simulated data: one
GLMM identical to the one used to generate the data in
Eq. 1, and one two-level LMM as defined below:

Yij ∼ N
(
μij , σe

)

μij = β∗
0j + β∗

1jDij
{

β∗
0j = γ ∗

00 + u∗
0j

β∗
1j = γ ∗

10 + u∗
1j

⎛

⎝
u∗
0j

u∗
1j

⎞

⎠ ∼ MVN

[ (
0
0

)
,

( (
σ ∗

u0

)2
σ ∗

u01

σ ∗
u01

(
σ ∗

u1

)2

) ]

. (2)

Simulation conditions

Design parameters

We refer to I , the number of measurements per case, and to
J the number of cases, as ‘design parameters’ because they
influence the single-case experimental design implemented
in the simulation. A common practice in SCED research
is to vary the length of the baseline phase (Shadish &
Sullivan, 2011), so the time point on which the treatment
or intervention is introduced is different over cases. This
is a so-called multiple baseline design and it is the design
implemented in this simulation study. In an SCED context, I
will typically be quite small and often J will be even smaller
(Shadish & Sullivan, 2011). This might have a significant
influence on the fit of the LMM and especially of the
GLMM, since the latter, more complex model can be more
difficult to estimate if the number of data points is small
(Nelson & Leroux, 2008). For many measurements and
cases, the fit to the simulated data is expected to be good.
The number of measurements I will be defined as either
8, 12, or 20. These values were deliberately chosen to be
somewhat smaller than common numbers of measurement
occasions, as reported by Moeyaert and et al. (2013) and
based on Ferron et al. (2010) and Shadish and Sullivan
(2011) and Swanson and Sachse-Lee (2000). This was done
in order to test the hypothesis on better relative performance
of the LMM with small sample sizes. The number of cases,
J , will be defined as either 4, 8, or 10. These values are
also close to the values for J chosen in Moeyaert and et al.

(2013), which were based on recommendations of Barlow
and Hersen (1984) and Kazdin and Kopel (1975) and on the
review by Shadish and Sullivan (2011), but the values in this
study were chosen to be more spread apart. This was done
to have a slightly larger range in levels when considering J

as a factor in the analysis of the simulation results. For all
combinations of I and J , a list of starting point values (i.e.,
the first measurement that is part of the treatment phase)
is defined. This list has length J and contains the starting
point i ∈ [1, I ] for every case j . These starting points were
chosen so that they were evenly distributed among different
cases and so that both the baseline and the treatment
phase contained a substantial number of measurements.
Table 1 provides a summary of the design parameter
combinations and their corresponding lists of starting point
values.

Model parameters

In the GLMM (1) used for generating data, the raw
data points Yij are generated by random sampling from
a Poisson

(
λij

)
distribution. For sufficiently large values

of λij , however, the normal distribution with mean λij

and variance λij is a good approximation to the Poisson
distribution (Johnson et al., 2005). This leads to a hypothesis
stating that for the GLMM generated data with sufficiently
large λij s, the LMM (2) might result in a relatively better fit.
To verify this hypothesis, the simulation conditions need to
distinguish between generated data that are ‘highly discrete’
in nature (smaller λij values) and generated data that
have a more ‘continuous’ nature (larger λij values) due to
good approximations by the normal distribution. With two
phases (baseline and treatment) and two characterizations
(highly discrete or approximately continuous in nature), we
obtain four conditions based on the the responses (Table 2).
Without loss of generality, this study only includes one

Table 1 Timing of intervention for simulated cases

I J Starting point values

8 4 (3, 4, 5, 6)

12 4 (3, 6, 6, 9)

20 4 (5, 10, 10, 15)

8 8 (2, 2, 3, 3, 5, 5, 6, 6)

12 8 (3, 3, 5, 5, 7, 7, 9, 9)

20 8 (5, 5, 8, 8, 12, 12, 15, 15)

8 10 (2, 2, 3, 3, 4, 4, 5, 5, 6, 6)

12 10 (3, 3, 5, 5, 6, 6, 7, 7, 9, 9)

20 10 (5, 5, 8, 8, 10, 10, 12, 15, 15)

Note. I indicates the number of measurements, J indicates the number
of cases. The starting point values indicate the first measurement that
is part of the treatment phase
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Table 2 Categorization of the average baseline response and treatment
response

Average Baseline Response Average Treatment Response

Highly discrete (HD) Highly discrete (HD)

Highly discrete (HD) Approximately continuous (AC)

Approximately continuous (AC) Approximately continuous (AC)

combination of a phase with a highly discrete average
response and a phase with an approximately continuous
average response, i.e., the second combination listed in
Table 2.

The aim of this section is to define values for the
nominal fixed effects parameters (γ00 and γ10) and variance
components (σ 2

u0, σ 2
u1 and σu01) in such a way that they

cover the three combinations of interest listed in Table 2.
Thus, the question is the following: how do the values for
the model parameters γ00, γ10, σ 2

u0, σ 2
u1 and σu01 affect

the model’s average response, i.e., E
(
λij

)
? From the linear

expression for λij in the GLMM (1) it follows that

λij = exp
(
β0j + β1jDij

)

= exp
(
β0j

)
exp

(
β1jDij

)
.

Thus, in the baseline phase E
(
λij

)
equals E

[
exp

(
β0j

)]

and in the treatment phase E
(
λij

)
equals E

[
exp

(
β0j

)

exp
(
β1j

)]
. An expansion of these expected values of

exponentials of β0j and β1j can be obtained based
on properties of the multivariate lognormal distribution.
Since

(
u0j , u1j

)ᵀ is sampled from a multivariate normal
distribution,

(
β0j , β1j

)ᵀ also follows a multivariate normal
distribution. Therefore, exp (β) = [

exp
(
β0j

)
, exp

(
β1j

)]ᵀ

follows a multivariate lognormal distribution, of which the
elements k of the mean vector of exp (β) equal

E
[
exp (β)

]
k

= exp

(
μk + 1

2
�kk

)
(3)

and the elements kl of the covariance matrix of exp (β)

equal

Var
[
exp (β)

]
kl

= exp

[
μk + μl + 1

2
(�kk + �ll)

]

× [
exp (�kl) − 1

]
. (4)

So, if β = (
β0j , β1j

)ᵀ ∼ MVN (μ, �) with μ =
(γ00, γ10)

ᵀ and

� =
(

σ 2
u0 σu01

σu01 σ 2
u1

)
,

we have that

E
[
exp

(
β0j

)] = exp

(

γ00 + σ 2
u0

2

)

(5)

E
[
exp

(
β1j

)] = exp

(

γ10 + σ 2
u1

2

)

(6)

Var
[
exp

(
β0j

)] = E
[
exp

(
β0j

)]2

× [
exp (σu0) − 1

]
(7)

Var
[
exp

(
β1j

)] = E
[
exp

(
β1j

)]2

× [
exp (σu1) − 1

]
(8)

Cov
[
exp

(
β0j

)
, exp

(
β1j

)] = E
[
exp

(
β0j

)]
E
[
exp

(
β1j

)]

× [
exp (σu01) − 1

]
(9)

Equation 5 describes the average baseline response. By
combining Eq. 5, Eq. 6 and the formula for the expected
value of the product of two dependent variables, an
expression for the average treatment response can be
derived:

E
[
exp

(
β0j

)
exp

(
β1j

)] = E
[
exp

(
β0j

)]
E
[
exp

(
β1j

)]

+Cov
[
exp

(
β0j

)
, exp

(
β1j

)]

= E
[
exp

(
β0j

)]
E
[
exp

(
β1j

)]

× [
1 + exp (σu01) − 1

]

= E
[
exp

(
β0j

)]

×E
[
exp

(
β1j

)]
exp (σu01) (10)

An important point to notice here is that the expected
treatment response E

[
exp

(
β0j

)
exp

(
β1j

)]
is not merely

equal to the expected baseline response E
[
exp

(
β0j

)]
times

E
[
exp

(
β1j

)]
. Equation 10 shows the influence of the σu01

parameter.
These derivations illustrate how the average baseline and

treatment responses depend on the model parameters in a
not very straightforward way. The average baseline response
depends in a non-linear way on not only γ00 but also σ 2

u0.
The average treatment response depends in a non-linear
way on all five model parameters γ00, γ10, σ 2

u0, σ 2
u1 and

σu01 together. Therefore, in this simulation study, nominal
values for Eqs. 5 and 6 are chosen rather than values
for the γ00, γ10, σ 2

u0, σ 2
u1 model parameters directly. This

makes managing the categorization of conditions in the
Table 2 categories easier. Summarizing the choice of values
for E

[
exp

(
β0j

)]
, E

[
exp

(
β1j

)]
and σu01, the conditions

and their categorizations are listed as ‘highly discrete’ or
‘approximately continuous’ in Table 3.

After having defined values for E
[
exp

(
β0j

)]
and

E
[
exp

(
β0j

)
exp

(
β1j

)]
in Table 3, the choice of σ 2

u0 and
σ 2

u1 values will uniquely determine the corresponding val-
ues for γ00 and γ10 as shown in Eqs. 5 and 6. Since there are
no particular restrictions for values of γ00 and γ10, the focus
will now be on well defining values for the variance com-
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ponents σ 2
u0 and σ 2

u1. These variance components have an
influence on the variance of E

[
exp

(
β0j

)]
and E

[
exp

(
β1j

)]

as shown in Eqs. 7 and 8. Note that in Table 3, deliberate
choices of values were made for these expected values
because they should cover all categories. If the variance
of exp

(
β0j

)
and exp

(
β0j

)
exp

(
β1j

)
is large, however, a

relatively high amount of generated β 's will yield values
of exp

(
β0j

)
and exp

(
β0j

)
exp

(
β1j

)
, which do not fall into

the foreseen categories from Table 3. This is due to positive
skewness of the lognormal distribution when the underly-
ing normal variance (i.e., σ 2

u0 and σ 2
u1) is larger. Therefore,

two values are defined for both σ 2
u0 and σ 2

u1:
[
log (1.35)

]2

and
[
log (1.50)

]2. According to Eqs. 7 and 8, the corre-

sponding variances for σ 2
u0 = σ 2

u1 = [
log (1.50)

]2 equal:

Var
[
exp

(
β0j

)] = E
[
exp

(
β0j

)] [
exp (σu0) − 1

]

= E
[
exp

(
β0j

)] [
exp (log (1.50)) − 1

]

= 1

2
· E [

exp
(
β0j

)]

Var
[
exp

(
β1j

)] = E
[
exp

(
β1j

)] [
exp (σu1) − 1

]

= 1

2
· E [

exp
(
β1j

)]
.

So the variances will equal 35% (σ 2
u0 = σ 2

u1 = [
log (1.35)

]2)

or 50% (σ 2
u0 = σ 2

u1 = [
log (1.50)

]2) of the expected values.
A final condition to check is whether the choices of

values for the variance components yield a positive semi-
definite covariance matrix. This is equivalent to making sure
that the correlation between β0j and β1j is between −1 and
1, or that |σu01| ≤ |σu0σu1|. Checking this restriction for
the largest value of σu01 (i.e., σu01 = log(1.05)) and the
smallest values of σu0 and σu1 (i.e., σu0 = σu1 = log(1.35)),
one can verify that this condition is indeed met:

|σu01| ≤ |σu0σu1| ⇔ log(1.05) ≤ [
log (1.35)

]2 .

Analysis

Goodness of fit

To assess the goodness of fit of the GLMM and the LMM,
the Akaike information criterion (AIC, Akaike (1998)) and
the Bayesian information criterion (BIC, Schwarz (1978)
and Claeskens and Jansen (2015)) are used. In every
iteration of the simulation, the AIC and the BIC of the
GLMM and the LMM fits are computed. Next, a relative
AIC and BIC score is calculated by taking the relative
difference of the LMM and GLMM goodness of fit criteria
(resp. denoted as AICL or BICL for LMM and AICG or

BICG for GLMM):

SAIC = AICL − AICG

AICG
(11)

SBIC = BICL − BICG

BICG
(12)

The motivation behind these scores is that they provide
a comparison between the LMM and GLMM in one
score, and that these scores in turn are comparable across
conditions. This facilitates representation of the goodness of
fit results in a clear and compact figure later in the analysis.
When SAIC < 0 or SBIC < 0, the LMM fit results in a
lower AIC or BIC and this would lead to the conclusion
that the LMM provides a better fit than the GLMM. The
reverse finding, i.e., SAIC > 0 or SBIC > 0, would lead
to the conclusion that the GLMM provides a better fit than
the LMM. Per condition, the mean SAIC and SBIC are each
calculated over all iterations.

Fixed effect parameter recovery

In SCED research, the main interest is usually in the
treatment effect and its size (Van den Noortgate & Onghena,
2008). When analyzing SCED data with the classical
continuous linear mixed model as expressed in Eq. 2, the
corresponding parameter of interest is γ ∗

10. This parameter
expresses the average increase or decrease in baseline
response across cases after the treatment or intervention.
Note that this is an additive change: the average baseline
response changes from

E
(
μij |Dij = 0

) = γ ∗
00

to

E
(
μij |Dij = 1

) = γ ∗
00 + γ ∗

10

in the treatment phase. Thus, the fixed effect γ ∗
10 expresses

the average difference between the expected baseline
response and the expected treatment response. However, the
GLMM fixed effect parameter γ10 cannot be interpreted
in the same way. Indeed, interpretation of γ10 is not as
straightforward. Equations 5, 6 and 10 show how the
expected treatment response does not even merely equal the
expected baseline response times exp (γ10) because of the
influence of the variance components.

This observation leads to the following complication in
this simulation study. Data are generated from the GLM
model as defined in Eq. 1, with a nominal value for γ10.
Afterwards, the LMM as defined in Eq. 2 is fit, which yields
an estimate γ̂ ∗

10. However, this γ̂ ∗
10 will not be comparable

with the nominal γ10, since γ10 and γ ∗
10 are two different

parameters and they do not express the same concept.
To address this complication, two approaches are pro-

posed. Both approaches provide a transformation of the
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parameters of one of the models into a new parameter. This
new parameter is comparable to the fixed effect parameter
of the other model and therefore a fixed parameter recovery
assessment can be conducted based on the new parameter
estimate from the first model and the fixed effect parameter
estimate from the second model. Note that a general
investigation of transformations of effect sizes based on the
LMM to effect sizes based on the GLMM and vice versa
is not within the scope of this paper, though this might be
interesting for future research.

The first approach consists of a transformation of the
GLMM parameters into a new parameter �G, which
expresses an effect size comparable to the fixed effect γ ∗

10
of the LMM. By comparing the estimate for �G from
the GLMM and the estimate for γ ∗

10 from the LMM we
can assess the fixed effect parameter recovery. The second
approach is analogous, but uses the LMM as a starting point
instead. Based on a transformation the LMM parameters,
it introduces a new fixed effect parameter �L and this �L

is subsequently compared to γ10 to assess fixed parameter
recovery.

The first metric � is defined as the additive effect of the
treatment. This additive effect should express the difference
of the average baseline response and the average treatment
response:

� = E (Tx) − E (B) (13)

For the GLMM, Eqs. 5 and 10 can be used to define a �G

parameter:

�G = E
[
exp

(
β0j

)
exp

(
β1j

)
exp (σu01)

] − E
[
exp

(
β0j

)]

= exp

(

γ00 + σ 2
u0

2

)[

exp

(

γ10 + σ 2
u1

2
+ σu01

)

− 1

]

(14)

The parameter �G can be computed for every condition
using the parameters used in data generation and substitut-
ing them into Eq. 14. The estimator �̂G can be estimated
for each simulated dataset by substituting the estimated
parameters into Eq. 14:

�̂G = exp

(

γ̂00 + σ̂ 2
u0

2

)[

exp

(

γ̂10 + σ̂ 2
u1

2
+ σ̂u01

)

− 1

]

(15)

For the LMM, a �L parameter is defined analogously:

�L = E
(
β0j + β1j

) − E
(
β0j

)

= E
(
β0j

) + E
(
β1j

) − E
(
β0j

)

= E
(
β1j

)

= γ ∗
10 (16)

The parameter �L can be computed for every condition
using the parameters used in data generation and substitut-
ing them into Eq. 14. The estimator �̂L can be estimated for
each simulated dataset by γ̂ ∗

10:

�̂L = γ̂ ∗
10 (17)

The second metric � is defined by the following
expression based on the expected baseline and treatment
responses and on the variance in the baseline and in the
treatment:

� = log

⎡

⎣
(
E (Tx)

E (B)

)2
√

E (B)2 + Var (B)

E (Tx)2 + Var (Tx)

⎤

⎦ (18)

For the GLMM, it can be shown that the above expression
equals γ10. These calculations are provided in Appendix A.
Thus a �G parameter is defined as:

�G = γ10 (19)

The parameter �G can be computed for every condition
using the parameters used in data generation and substitut-
ing them into Eq. 19. The estimator �̂G can be estimated for
each simulated dataset by γ̂10:

�̂G = γ̂10 (20)

For the LMM, according to Eq. 2 we have that

E (B) = γ ∗
00

Var (B) = (
σ ∗

u0

)2

E (Tx) = γ ∗
00 + γ ∗

10

Var (Tx) = (
σ ∗

u0

)2 + (
σ ∗

u1

)2 + 2σ ∗
u01.

Thus a �L parameter is defined as follows:

�L = log

[(
γ ∗
00+γ ∗

10

γ ∗
00

)2

×
√√√√

(
γ ∗
00

)2+(
σ ∗

u0

)2
(
γ ∗
00+γ ∗

10

)2+(
σ ∗

u0

)2+(
σ ∗

u1

)2+2
(
σ ∗

u01

)

⎤

⎦

(21)

The parameter �L can be computed for every condition
using the parameters used in data generation and substitut-
ing them into Eq. 19. The estimator �̂L can be estimated
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for each simulated dataset by substituting the estimated
parameters into Eq. (21):

�̂L=log

[(
γ̂ ∗
00 + γ̂ ∗

10

γ̂ ∗
00

)2

×
√√√√

(
γ̂ ∗
00

)2+(
σ̂ ∗

u0

)2
(
γ̂ ∗
00+γ̂ ∗

10

)2+(
σ̂ ∗

u0

)2+(
σ̂ ∗

u1

)2+2
(
σ̂ ∗

u01

)

⎤

⎦

(22)

For each of these parameters � and �, the relative bias (RB)
and the mean squared error (MSE) are calculated.

Inference

In SCEDmeta-analysis, researchers are interested in finding
out if there is an effect of a treatment or intervention. This is
expressed in an effect size: a metric indicating the direction
and the size of the effect. In multilevel modeling of SCED
meta-analytical data, typically the fixed effects are chosen
as effect sizes (i.e., γ10 in a GLMM (1) and γ ∗

10 in a LMM
(2)). Because the data in this simulation study are simulated
according to the GLMM in Eq. 1, the parameter of interest

here is γ10. The binary hypotheses on which inference in the
GLMM setting is based, are:

H0 : γ10 = �G = 0

Hα : γ10 = �G �= 0

We calculate the proportion of rejections of the null
hypothesis per condition, i.e., the proportion of GLMMs
estimated yielding a p value smaller than the significance
level α for the γ̂10 estimate. In conditions where the nominal
γ10 equals 0, this proportion equals the type I error rate.
In conditions where the nominal γ10 does not equal 0, this
proportion equals the power.

For the LMM however, p values are calculated based on
a different set of hypotheses:

H0 : γ ∗
10 = �L = 0

Hα : γ ∗
10 = �L �= 0

Again, we calculate the proportion of null hypothesis
rejections per condition. We have to interpret this proportion
based on the nominal �G value (14), since �L should
estimate the same additive treatment effect. In conditions
where the nominal �G equals 0, the proportion of rejections

Table 4 Simulation condition factors summary

Parameter Value Motivation

γ00 log (2) − σ 2
u0
2 Average baseline response highly discrete:

E
[
exp

(
β0j

)] = 2

log (4) − σ 2
u0
2 Average baseline response highly discrete:

E
[
exp

(
β0j

)] = 4

log (20) − σ 2
u0
2 Average baseline response approximately normal:

E
[
exp

(
β0j

)] = 20

γ10 0 To test H0 : γ10 = 0

− σ 2
u1
2 To test H0 : γ ∗

10 = 0 ⇔
[(

γ10 = − σ 2
u1
2

)
∧ (σu01 = 0)

]

log (3.5) − σ 2
u1
2 Larger average multiplicative effect:

E
[
exp

(
β1j

)] = 3.5

σ 2
u0

[
log (1.35)

]2 Var
[
exp

(
β0j

)] = 35% · E [
exp

(
β0j

)]

[
log (1.50)

]2 Var
[
exp

(
β0j

)] = 50% · E [
exp

(
β0j

)]

σ 2
u1

[
log (1.35)

]2 Var
[
exp

(
β1j

)] = 35% · E [
exp

(
β1j

)]

[
log (1.50)

]2 Var
[
exp

(
β1j

)] = 50% · E [
exp

(
β1j

)]

σu01 0 To test H0 : γ ∗
10 = 0 ⇔

[(
γ10 = − σ 2

u1
2

)
∧ (σu01 = 0)

]

log (1.05) Small influence on multiplicative effect:

exp (σu01) = 1.05

I 8

Common SCED values12

20

J 4

Common SCED values8

10
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per condition equals the type I error rate. In conditions
where the nominal �G does not equal 0, this proportion
equals the power. Note that according to Eq. 14 we have that

�G = 0 ⇔
[(

γ10 = −σ 2
u1

2

)

∧ (σu01 = 0)

]

.

This expression will be the motivation for the choice of
values for γ10 and σu01.

The p values for the LMM are computed based on the
approximate Wald F-test with Satterthwaite denominator
degrees of freedom (Gumedze & Dunne, 2011; Satterth-
waite, 1946). The underlying p values for the GLMM are
computed based on an approximate Wald Z-test. The choice
of Z-test for inference based on the GLMMwas due to prac-
tical constraints with lme4 (Bates et al., 2015), the package
we used for simulation in R (R Core Team, 2017). We elab-
orate on this further in Appendix B. The significance level
α is set to .05.

Simulation conditions

All design and model parameters and their choice of
values have been summarized in Table 4, together with a
motivation based on the calculations and analyses described
in the previous paragraphs. The total number of conditions
equals 3 × 3 × 2 × 2 × 2 × 3 × 3 = 648. For �G

(Eq. 14), which depends on all five model parameters (γ00,
γ10, σ 2

u0, σ 2
u1 and σu01), the particular choice of values for

these parameters (see Table 4) resulted in 22 unique nominal
parameter values. For �G (Eq. 19), which depends on γ10
and on σ 2

u1, this resulted in (2 × 2) + 1 = 5 unique nominal
parameter values. The 22 �G nominal parameter values
range from 0 to 53.5. The (rounded) �G nominal parameter
values equal −.0822, −.0450, 0, 1.1706, and 1.2077. To
keep a balance between feasibility and precision with as
many as 648 conditions, we generate N = 2000 datasets
per condition. With this number of simulated datasets, a

condition with a true type I error rate of .05 would have
an estimated type I error rate with a standard error of√

.05×.95
2000 = .0049, and because we will analyze the results

across multiple conditions rather than within individual
conditions, the analyses will be based on multiples of 2000
datasets.

Recall that for fixed parameter recovery, the relative bias
and the MSE will be analyzed. Two careful considerations
have to be made in order to obtain meaningful results for
the relative bias and the MSE. First, since �G can take on
negative nominal parameter values, the sign of the relative
bias will be influenced when dividing by these nominal
parameter values. Therefore we opt to calculate a modified
relative bias by dividing the bias by the absolute value of the
nominal parameter value:

θ̂i − θ

|θ |
Second, the MSE is relative with respect to the nominal
parameter value, which makes MSEs difficult to compare
when the range of nominal parameter values is large (as it
is for �G). Therefore we opt to calculate a relative MSE by
dividing the MSE by the squared nominal parameter value:

MSE
(
θ̂i

)

θ2

Summary of results

To address the previously stated research objectives, we will
compare the LMM and GLMM results and discuss their
performance in terms of goodness of fit (SAIC (Eq. 11) and
SBIC (Eq. 12)), fixed effect parameter recovery (quantified
by the MSEs and relative bias of the � and � estimators),
type I error rate and power. We studied the effect of the
following design factors: baseline-treatment category (as
defined in Table 3), effect size category (as defined in

Table 5 Eta-squared values (η2) for association of design factors with outcomes

SAIC SBIC MSE � MSE � RB � RB � Type I error rate Power

Model .0004 .0002 .0853 .0833 .3909 .0325

I .0230 .0141 .0099 .0177 .0045 .0442 .0296 .0003

J .0572 .0396 .0976 .0809 .0080 .0050 .0478 .0137

Baseline-treatment category .6188 .6510 .0304 .0553 .0011 .0388 .2487 .0022

Effect size .0645 .0589 .2453 .3288 .0438 .2464 .8835

Model:I .0001 .0001 .0004 .0007 .0034 .0000

Model:J .0005 .0001 .0136 .0005 .0658 .0121

Model:(Baseline-treatment category) .0001 .0002 .0021 .0039 .0421 .0000

Model:(Effect size) .0002 .0001 .0306 .0910 .0072

.7635 .7636 .3844 .4833 .1892 .5139 .8283 .9515
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Table 3), number of measurements I and number of cases
J . We choose to study the effect of the baseline treatment
and the effect size categories rather than the effect of
the individual model parameters γ00, γ10, σ 2

u0, σ 2
u1 and

σu01, because (1) they are more easily interpretable, (2)
they relate directly to the research questions stated in this
study, and (3) simulation conditions were generated using
these categories rather than the individual parameters. To
assess which impact these factors have on the performance
outcomes, we conduct an ANOVA analysis and calculate η2

values. The results are shown in Table 5. To avoid discussing
trivial effects, we will only discuss factors that explain at
least 14% of the variance in the outcome variables (results
shown in bold in Table 5). The cutoff value of 14% is based
on the rule of thumb suggested by Cohen (1988). However,
we choose to include the factor Model in all of our results
because of our explicit interest in assessing the performance
of the LMM by using the GLMM’s performance results as
a benchmark.

For graphical purposes, the baseline-treatment categories
from Table 3 are denoted as follows in the graphical results:
a highly discrete average baseline response and a highly
discrete average treatment response is denoted as cate-
gory ‘HD-HD’ (from ‘highly discrete - highly discrete’), a
highly discrete average baseline response and an approxi-
mately continuous average treatment response is denoted as
category ‘HD-AC’ (from ‘highly discrete - approximately
continuous’) and finally an approximately normal average
baseline response and an approximately normal average

treatment response is denoted as category ‘AC-AC’ (from
‘approximately continuous - approximately continuous’).

Software

We use the open-source R software (R Core Team, 2017)
to generate and analyze the SCED count data. The LMM
and the GLMM are estimated through the lmer() and
glmer() functions, respectively, both available in the lme4
package (Bates et al., 2015). Using the default argument
settings, the lmer() function provides restricted maximum
likelihood (REML) estimates for the LMM parameters and
the glmer() function provides estimates based on a Gauss–
Hermite quadrature approximation of the log-likelihood
function. In Appendix B, we provide some R code samples
and explain how we obtained and analyzed the LMM and
GLMM estimates.

Results

Goodness of fit criteria

Previously, a relative AIC score SAIC and a relative BIC
score SBIC were defined (see Eqs. 11 and 12). Analysis
results for both scores are very similar, thus only results for
the SAIC scores are reported in this paper. From Table 5,
we see that most of the variability in SAIC is associated
with the baseline-treatment category. Figure 1 shows the

−0.025

0.000

0.025

0.050

0.075

0.100

HD−HD HD−AC AC−AC

Baseline − Treatment Category

S
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IC

Fig. 1 Mean AIC scores SAIC. Baseline-treatment categories are based on Table 3
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distribution of all SAIC scores for each of the baseline-
treatment categories. By definition, a negative value of SAIC
indicates that the LMM fit results in a lower AIC than the
GLMM fit, and thus the LMM performs relatively better.
Figure 1 shows that this is almost never the case, except
for some observations within the AC-AC category. A closer
look at the conditions that yielded negative mean SAIC
scores learns that those scores only occur when J = 4 or
when I = 8 and J = 8, indicating that only when the
data are approximately normal and information is sparse,
the GLMM no longer outperforms the LMM in terms of
goodness of fit. This is due to both the fact that the GLMM
is more complex to estimate and to the fact that count data
with higher expected values are better approximated by a
normal distribution, which makes the LMM’s assumption
of normally distributed residuals and therefore a normally
distributed dependent variable more plausible.

Fixed effect parameter recovery

For the statistics �G (Eq. 14), �L (Eq. 16), �G (Eq. 19) and
�L (Eq. 21), a simple linear regression analysis is conducted
to study the relation between the LMM and the GLMM
estimators for � and �. The fitted model predicts the
LMM estimate based on the GLMM estimates. A significant
regression equation was found for both the � and the �

estimates, with anR2 of .9986 (�L = 0.0225+1.0042·�G)
and .9963 (�L = −0.0066 + 1.0088 · �G), respectively.
This is an important result because it allows for comparison
between the GLMM and the LMM based on their parameter

estimates. Now that it is clear that there is a way to compare
the fixed effect estimations of the GLMM and the LMM, the
next step is to assess which model provides the best fixed
effect estimator. To assess the quality of the �G, �L, �G

and �L as estimators, the relative bias and the relative MSE
of all four are analyzed. Note that conditions where � = 0
or � = 0 were left out in order to be able to calculate a finite
relative bias and relative MSE.

For the relative bias of the � estimates, we see from
Table 5 that none of the design factors is associated with an
η2 value higher than our cutoff value of 14%. The total η2

for the relative bias of � equals 0.1892. Because we have
corrected for all factors on which we defined our simulation
conditions in the ANOVA analysis, this low total of η2

values indicates that most of the variation in relative bias
of � must be due to sampling error. Across all conditions,
the relative bias of � ranges from −0.035 to 0.38 with a
median of 0.00097, indicating that for many conditions, �

is unbiased. The factors with higher η2 values in Table 5
give an indication as to which factors affect biasedness in
the � estimates. In Fig. 2, the relative bias is shown across
different levels of two factors with relatively high η2 values,
i.e., model and effect size. The LMM is the model which
estimates � directly and its associated estimator �L is less
biased than the GLMM’s �G estimator. This is especially
true when the effect size is small, although even then the
relative bias of �G is still reasonably small.

The relative bias of � is mostly associated with the size
of the effect (η2 = .2464 in Table 5) and is shown in
Fig. 3. Again, the model which cannot directly estimate the
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Fig. 2 Relative bias of the �G and �L estimators. Effect size categories are based on Table 3
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Fig. 3 Relative bias of the �G and �L estimators. Effect size categories are based on Table 3

statistic, i.e., LMM, appears to be most biased. The relative
bias of �L goes up to 40% when the effect size is small.
Remarkably, the relative bias for � is highest for small effect
sizes, and slightly lower when the effect size is zero. For
large effect sizes, however, both the LMM and the GLMM
estimators have very little bias. Looking deeper into the high
relative bias observed in conditions where the effect size is

small to zero, we see in Fig. 4 that the higher relative biases
are associated with conditions where J is small and, to a
lesser extent, with conditions where the underlying data are
highly discrete. These observations hold true for both �L

and �G.
From Table 5 we see that the relative MSE values hardly

depend on the underlying model. The effect size category
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Fig. 4 Relative bias of the �G and �L estimators for conditions where the effect size is small to zero. Baseline-treatment categories are based on
Table 3
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Fig. 5 Relative MSE of the �G and �L estimators for conditions where the effect size is small to zero. Baseline-treatment categories are based
on Table 3

has the largest association and a closer look to the MSE
values reveals that the relative MSE values for both �

and � are highest when the effect size is small to zero.
These conditions are investigated further in Figs. 5 and 6.
We compare across different levels of baseline-treatment

category and number of cases J because those factors yield
the second and third highest η2 values in Table 5. When J

is small and/or when the underlying data are more discrete
in nature (as in the HD-HD category), the relative MSEs are
higher. Since the GLMM and the LMM have very similar
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Fig. 6 Relative MSE of the �G and �L estimators for conditions where the effect size is small to zero. Baseline-treatment categories are based on
Table 3
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Table 6 Overall mean relative bias and relative mean squared error for
the � and � parameter estimates

Parameter Model Relative MSE Relative bias

�̂a GLMM 7.5580 .0434

LMM 7.1689 .0025

�̂b GLMM 6.2523 .0246

LMM 5.9945 .0825

aOverall means are based on 540 conditions in which � �= 0
bOverall means are based on 432 conditions in which � �= 0

relative MSEs no matter the baseline-treatment category, we
cannot conclude that the LMM’s relative MSE’s improve
(relative to those of the GLMM) when the underlying data
become more continuous.

To summarize the results of the relative bias and the
relative MSEs of the � and � parameter estimates, Table 6
shows the overall means of both measures. This table
confirms again that the relative MSE is very similar for
both models, but it also shows a slight disadvantage for the
model which cannot directly estimate the parameter. The
latter observation is more clear for the relative bias, as was
also clear from Figs. 2 and 3.

Inference

Because the type 1 error rates are calculated as the
proportion rejections in conditions where the nominal effect
is zero, and because in that case the effect size factor
variable only has one level, effect size was left out in the
ANOVA analysis. Based on the η2 values in Table 5, we
look further into how the baseline-treatment category has an
effect on the type 1 error rate (η2 = .2487). From Table 7,
it is clear that the type I error rate of the GLMM is higher
than that of the LMM. In conditions where the underlying
data are highly discrete, the type I error rate of the GLMM
improves, but a closer look to the data revealed that the type
I error rate of the LMM is consistently closer to the nominal
α = .05 than the type I error rate of the GLMM.

The power naturally depends mostly on the effect size
(η2 = .8835, Table 5), because power generally increases

Table 7 Type I error rates

Type I error rate

Baseline-treatment category GLMMa LMMb

HD - HD .07 .04

AC - AC .12 .05

aH0 : � = 0
bH0 : � = 0

Table 8 Proportion rejections in function of �

Power

J = 4 J = 8 J = 10

� GLMMa LMMb GLMMa LMMb GLMMa LMMb

−0.0822 .13 .04 .11 .05 .11 .05

−0.045 .10 .03 .09 .04 .08 .04

1.1706 .99 .43 1.00 .89 1.00 .91

1.2077 1.00 .56 1.00 .93 1.00 .95

aH0 : � = 0
bH0 : � = 0

Note. The p values were obtained through an approximate Wald F-
test with Satterthwaite denominator degrees of freedom (LMM) and
an approximate Wald Z-test (GLMM) with α = .05

for larger, more noticeable effects. The impact of all other
factors falls below our 14% cutoff for η2. However, to study
what sample sizes are needed to reach an acceptable power

Table 9 Proportion rejections in function of �

Power

J = 4 J = 8 J = 10

� GLMMa LMMb GLMMa LMMb GLMMa LMMb

0.0921 .06 .02 .06 .03 .06 .03

0.1 .07 .02 .07 .03 .07 .03

0.1713 .09 .03 .07 .04 .07 .04

0.1842 .08 .03 .07 .04 .07 .04

0.1967 .06 .02 .05 .03 .05 .04

0.2 .09 .03 .09 .04 .08 .04

0.2799 .08 .02 .06 .03 .06 .04

0.3427 .11 .03 .09 .04 .08 .04

0.3935 .08 .02 .07 .04 .07 .04

0.5598 .11 .03 .08 .04 .08 .05

0.9212 .15 .04 .10 .04 .10 .05

1 .17 .05 .13 .05 .12 .05

1.7135 .17 .04 .11 .05 .10 .05

1.9673 .15 .04 .10 .04 .09 .05

2.7992 .16 .04 .11 .05 .09 .05

5 .98 .46 1.00 .87 1.00 .90

5.35 .98 .38 1.00 .87 1.00 .91

10 1.00 .54 1.00 .92 1.00 .93

10.7 .99 .44 1.00 .90 1.00 .93

50 1.00 .63 1.00 .95 1.00 .96

53.5 1.00 .50 1.00 .93 1.00 .96

aH0 : � = 0
bH0 : � = 0

Note. The p values were obtained through an approximate Wald F-
test with Satterthwaite denominator degrees of freedom (LMM) and
an approximate Wald Z-test (GLMM) with α = .05
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level, we also consider the number of cases J as a factor
when analyzing the power of � in Table 8 and of � in
Table 9. Our choice of J rather than I (the number of
measurements) is based on the higher η2 value in Table 5
(η2 = .0137 for J versus η2 = .0003 for I ). From Tables 8
and 9, we can indeed see that the power increases as the
sample size increases. For large (absolute) values of � and
�, the power approaches 1. Comparing the two models, we
see that the power of the GLMM is consistently higher than
that of the LMM for both � and �. However, the power of
the LMM reaches the commonly accepted 80% threshold
(Cohen, 1988) when J ≥ 8 in conditions where the effect is
large (� ≥ 5 or |�| ≥ 1.1706). When J = 4 the power of
the LMM stays below .63 (�) or .56 (�) even for the largest
effects.

Discussion

With this simulation study, we wanted to see whether the
GLMM consistently outperforms the LMM, and, if not,
in which cases the LMM has an acceptable performance.
Three aspects of both models have been considered to assess
their performance: goodness of fit, fixed effect parameter
recovery, and inference.

In terms of goodness of fit, the LMM does in general not
perform as well as the GLMM. In Fig. 1, a vast majority
of the SAIC scores lies above 0, indicating that the AIC
of the GLMM is generally lower than the AIC of the
LMM according to Eq. 11. Only when the baseline and
treatment average responses are relatively high and when
the number of cases is very small (J = 4) does the
LMM achieve a goodness of fit comparable to that of the
GLMM. In conditions with very sparse information, the
more complex GLMM has a disadvantage compared to the
LMM. Additionally, the LMM has the advantage that the
baseline and treatment phase averages of the underlying
count data are high and that the LMM therefore provides a
good normal approximation of the data.

To assess the performance of both models in terms
of fixed effect parameter recovery, we compared their
parameter estimators �̂G vs. �̂L and �̂G vs. �̂L. The most
important measure of quality of an estimator is the MSE
because it encompasses both the bias and the variance.
A qualitative estimator should have an MSE as small as
possible, i.e., a bias of zero and a small variance. From
Table 6 and from Figs. 5 and 6 it is clear that the MSEs of
the estimators of both models are on average very alike, with
a slight advantage for the model which can directly estimate
the parameter (i.e., the LMM for � and the GLMM for �).

In terms of inference, the first step in comparing the
performance of the LMM with the GLMM is to look
at the type I error rate. As seen in Table 7, the type I

error rate of the LMM is better under control than the
rate when using the GLMM. Although this might seem
surprising, similar good behavior of less complex albeit
misspecified (generalized) linear mixed models on small
sample data has been observed (Bell et al., 2014). The
more complex models, even though theoretically better fit
to model the data, might function poorly when making too
many estimates from too few pieces of information (Muth
et al., 2016). Since the type I error rate of the LMM is under
control, the next step is to look at its power. From Tables 8
and 9 it is clear that the LMM does not obtain the same
power as the GLMM, not even for large effects. Only when
the effect size and the number of cases J are large (� ≥ 5
or � ≥ 1.1706, and J ≥ 8) does the power of the LMM
reach a level of 80%. This was true for all values of I (the
number of measurements) considered in our simulation.

For applied research, a crucial next question is when is
it acceptable to use an LMM to analyze single-case count
data? In terms of goodness of fit, the LMM only yields
acceptable AICs (i.e., AICs as low or lower than those of
the GLMM) if the count data are well approximated by a
normal distribution in both the baseline and the treatment
phase and if the sample size (and especially the number of
cases J ) is very small. However, even in those conditions the
LMM obtains a goodness of fit that is only 10% worse than
that of the GLMM (Fig. 1). If this is considered acceptable,
we recommend using the LMM in situations where the
estimated effect size and the number of cases are reasonably
large (J ≥ 8), to ensure an acceptable power and unbiased
fixed effect estimates.

When it comes to selecting an effect size to express
the fixed effect, applied researchers need to determine
whether they have a specific interest in either the additive
effect expressed by � or the effect expressed by �. It
makes sense to opt for the additive effect as expressed by
� because it is more easily interpretable. Moreover, its
estimate �̂ is readily available from the applied LMM as
it does not need any transformation. Since this simulation
study has provided some quantitative evidence of the good
performance of the �L estimator in terms of relative bias
and relative MSE, the use of the LMM to model single-
case count data to obtain an estimate for � would not be
discouraged, even though it is an overly simplified model.
Inference based on �L is valid, because the type I error rate
of �L is under control and behaves well in all conditions.
Again, caution is advised when doing inference based on
�L if the effect size or the number of cases is small, since
then the power might not be acceptable.

When practitioners want to estimate the effect size �, it
is preferable to use the GLMM to avoid the manipulations
required to get the �L estimate from the LMM (as illustrated
in Appendix B). The GLMM will result in a slightly higher
bias for �, but a lower MSE, compared to modeling a
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LMM and estimating �. Even when using the GLMM to
estimate �, however, there might be up to 10% relative
bias in the estimates for some conditions, particularly when
the effect size is not large and the amount of data for
estimation is limited. When the sample sizes increase (i.e.,
the measurement series gets longer and the number of
participants increases), this bias disappears.

If practitioners decide to model SCED count data using
the GLMM with a Poisson distribution (Eq. 1), they need
to be aware of the assumptions associated with the Poisson
distribution (Winkelmann, 2008). First of all, the length
of time intervals or session during which the counts are
measured has to be the same across the entire time series.
Applied researchers might do this already intuitively to
make counts comparable over sessions, or based on good
practices recommended by single-case handbooks (Ayres &
Gast, 2010). In case the time series includes sessions of
different lengths, the GLMM (1) can be adjusted to account
for this by including an offset (Casals et al., 2015). As such,
the outcome modeled is a rate rather than a count.

Another assumption to be taken into account when
modeling a Poisson distribution is that the rate of
occurrence across each time interval or session has to
be constant; that is, the probability of occurrence of
the measured event should be constant throughout each
time interval. This assumption might be violated when
an observed participant is disturbed by an external event
or factor during a measuring session and when this
disturbance has a temporary impact on the measured
outcome. For example, when measuring problem behavior
in a classroom environment, an observed participant might
show temporarily increased problem behavior when a
classmate initiates a fight with the participant during a
measuring session. To lessen the likelihood of external
factors impacting the rate of occurrence, practitioners can
try to keep the length of measuring sessions short.

A final assumption of the Poisson distribution is
that the events occurring in different time intervals
should be independent. This assumption is violated when
autocorrelation is present in the data. Practitioners can try to
avoid this from happening by making sure their measuring
sessions are far enough apart in time.

The results presented in this study have limitations
inherent to all simulation studies, i.e., they are conditional
on the simulation design and parameter values used.
Because this study is the first of its kind, we have used
the most basic GLMM design to simulate data and all
simulation conditions were exclusively based on sample
size and nominal parameter values. Naturally, there is
much more to a GLMM design than these two aspects,
and the many GLMM design extensions could all provide
starting points for further exploration of the impact of
model misspecifications for count data. These extensions

include: (1) using alternative probability distributions to
sample the dependent variable from, such as the binomial or
other discrete distributions (to model discrete proportions or
percentages), zero-inflated distributions and distributions fit
for over-dispersed data; (2) specifying a specific covariance
structure and as such modeling autocorrelation, rather
than using an unstructured covariance matrix like in this
study; (3) simulating data with variable exposure (i.e., the
frequency of the behavior of interest is not tallied across
the same period of time at each measurement occasion);
(4) including linear or non-linear trends in the simulated
data and in the fitted models; (5) using different single-case
design types, e.g., alternating treatments or phase changes
with reversal, rather than the multiple baseline AB design
used in this study; and (6) simulating unbalanced data.

We focused mainly on the average treatment effect
when comparing the results of the LMM and the GLMM
estimations. This is in line with common practice, where
applied researchers who are combining SCED count data
are usually primarily interested in the average treatment
effects (as expressed by � and� in this study), rather than in
the individual treatment effects or the variance components.
Moreover, just like average treatment effect estimations,
individual effect and variance component estimations are
not comparable between the LMM and the GLMM.
Attempting to compare them would involve a similar and
arguably even more complex method of transformation as
illustrated for � and �. This is beyond the scope of this
study.

Finally, we want to point out that inference results of
the GLMM are based on an approximate Wald Z-test,
which is likely to misspecify the sampling distribution of
the Wald statistic as normal, especially in small samples.
As explained in Appendix B, this was due to a lack of
available procedures in the lme4 package in R. In SAS, the
PROC GLIMMIX procedure does include the option to set
different degrees of freedom approximations to adjust for
small sample sizes. It would be very useful to reanalyze
our simulated datasets in SAS to see whether the inference
results lead to substantially different conclusions from the
conclusions we drew based on the R p values.

Conclusions

This simulation study showed that the GLMM in general
does not substantially outperform the LMM, except in terms
of the goodness of fit criteria. For the small sample sizes that
we have considered, and which are common to SCED count
datasets, we have found that the LMM does equally well as
the GLMM in terms of fixed effect parameter recovery. In
terms of inference, the type I error rates of the LMM are
more under control than those of the GLMM. The power
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of the LMM is generally lower than the power of the
GLMM, but the LMM might provide acceptable power for
SCED samples with a sufficient number of cases. This sim-
ulation provided some evidence that the GLMM might not
necessarily be the better choice when it comes to very sparse
SCED count data due to the model being too complex to
estimate. Evidence for relatively better performance of the
LMM if the expected count responses in baseline and/or
treatment phases are relatively high was not so clear. Based
on our results, we have provided some guidelines for applied
researchers. Reviewers or meta-analysts using mixed mod-
eling to combine SCED studies should be well aware of the
effects of misspecifying their mixed model for discrete data.
Their model choice should be well considered based on the
type of raw data included and on the sample sizes.

Appendix A

Derivation of the �G statistic

For the GLMM, Eqs. 5, 10 and 7 can be used to define a �G

statistic because they express E (B), E (Tx) and Var (B) res-
pectively. Additionally, we need an expression for Var (Tx),
which will be derived first before going on to define a �G.
Recall that Var (Tx) equals Var
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The first step is to expand the first covariance term on
the right-hand side by using the fact that

[
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The third term on the right-hand side of Eq. 23 can be
expanded as follows based on Eq. 9.
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Substituting Eqs. 24 and 25 into Eq. 23, one obtains:
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All the required expressions for deriving the �G statistic
are now available and they are summarized below:
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When substituting the above expressions into Eq. 18 for
�, one obtains:
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Appendix B

R code samples

The SCED count data are stored in an R data frame
my data, with columns i indicating the measurement, j

indicating the case, D indicating the phase (0 for baseline
and 1 for treatment) and Y containing the dependent
variable’s outcomes. We use the lmer() and glmer()
functions from the lme4 package. The model is specified
by a formula object as used in other regression functions
in R, with the addition of a definition of the random part.

The GLMM (Eq. 1) and the LMM (Eq. 2) have two
coefficients: an intercept (denoted as 1 in the R formula) and
the phase variable D. The expression 1 + D defines the
fixed part of the model: the expected value for Y is modeled
by a mean intercept (1) and a mean treatment effect (D). The
expression (1 + D | j) states that both the intercept
and the treatment effect can vary randomly over cases. As
part of the analysis of the results we first calculate the AIC
and BIC of the fitted model objects LMM and GLMM:

Next, we retrieve the fixed effect estimations γ̂00 and γ̂10
from the GLMM and γ̂ ∗

00 and γ̂ ∗
10 from the LMM:

The variance component estimations (σ̂u0, σ̂u1 and σ̂u01

from the GLMM and σ̂ ∗
u0, σ̂

∗
u1 and σ̂ ∗

u01 from the LMM) are
retrieved as elements from the estimated covariancematrix�:
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With the fixed and random effect parameter estimations
we can calculate �̂G (15), �̂L (17), �̂G (20) and �̂L (22).

Finally, we retrieve the p values for the fixed effects. The
lme4 package does not by default include small sample
adjustments for (G)LMMs like the Satterthwaite method of
approximating the degrees of freedom. For the LMM, the
lmerTest package (Kuznetsova et al., 2017) provides the
calcSatterth function which returns p values based on
an approximate Wald F-test with Satterthwaite degrees of

freedom. For GLMMs, no R package providing small sam-
ple adjustments is currently available and therefore we rely
on the approximate Wald Z-test. The associated p values are
readily available when applying the summary method on
the glmerMod object. The coef method returns a matrix
with rows for each fixed coefficient and columns contain-
ing the estimates, standard errors, z values, and p values.
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