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Abstract

Human behavioral data often show patterns of sudden change over time. Sometimes the causes of these step changes are internal,
such as learning curves changing abruptly when a learner implements a new rule. Sometimes the cause is external, such as
people’s opinions about a topic changing in response to a new relevant event. Detecting change points in sequences of binary data
is a basic statistical problem with many existing solutions, but these solutions rarely seem to be used in psychological modeling.
We develop a simple and flexible Bayesian approach to modeling step changes in cognition, implemented as a graphical model in
JAGS. The model is able to infer how many change points are justified by the data, as well as the locations of the change points.
The basic model is also easily extended to include latent-mixture and hierarchical structures, allowing it to be tailored to specific
cognitive modeling problems. We demonstrate the adequacy of this basic model by applying it to the classic Lindisfarne scribes
problem, and the flexibility of the modeling approach is demonstrated through two new applications. The first involves a latent-
mixture model to determine whether individuals learn categories incrementally or in discrete stages. The second involves a
hierarchical model of crowd-sourced predictions about the winner of the US National Football League’s Most Valuable Player for

the 20162017 season.

Keywords Step change - Change points - Change detection - Bayesian inference - Spike-and-slab priors

All sorts of human behavior come in the form of binary re-
sponses: People choose to press a “thumbs up” or “thumbs
down” button, to book a window or an aisle seat, or to stay
home for dinner or dine out. The rates of these binary re-
sponses usually change over time, and sometimes change sud-
denly and significantly. A scandal can see the rate of “thumbs
up” responses for a celebrity or politician fall dramatically, a
bad experience in a window seat can shift the preference to an
aisle, and the probability of dining out may jump as the week-
end approaches.

As these examples make clear, the statistical problem of
detecting step changes in binary responses has applications
throughout the cognitive sciences. There is a substantial
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statistical literature on methods for detecting change points.
Many early methods relied on classic significance testing to
find changes, using standard parametric and nonparametric
tests (e.g., Pettitt, 1979; Venter & Steel, 1996). Bayesian ap-
proaches were also developed relatively early. A. F. M. Smith
(1975), for example, provided an analytic Bayesian solution to
a number of cases involving binomial and Gaussian distribu-
tions with a single change point. More recent Bayesian
methods have relied on computational approaches to infer-
ence. One approach is to use general methods—such as
reversible-jump Markov-chain Monte Carlo (MCMC)
methods (Green, 1995), product partition methods (Barry &
Hartigan, 1993), discrete-state Markov processes (Chib,
1998), and Gibbs sampling (Stephens, 1994)—and apply
them to change-point inference as a special case of the more
general capabilities the methods provide. Other computational
Bayesian approaches have been specifically developed for
change-point inference. For example, Fearnhead (2006) de-
veloped a clever recursive approach to MCMC computation
that allows efficient inference for large problems, and Adams
and MacKay (2007) developed a method for the online detec-
tion of change points.
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These methods do not seem, however, to be widely used in
cognitive modeling. In particular, computational Bayesian
methods for the simultaneous inference of the number of
change points and their location are rarely used. One barrier
to their adoption may be difficulty of implementation, since
the methods involve nontrivial algorithms. Another barrier
may be the difficulty of adapting or extending published
methods to specific psychological modeling problems.
Unless the substantive psychological problem takes exactly
the same statistical form as the existing solution—which often
involves technically convenient choices of simple sampling
distributions and conjugate priors—additional theoretical
and practical work is required. In this article, we provide a
Bayesian statistical approach to the multiple-change-point
problem that is designed to help address these barriers. Our
approach has the practical attraction of a simple implementa-
tion as a graphical model in standard JAGS software
(Plummer, 2003). Because of this implementation, the ap-
proach also has the theoretical attraction of making it relative-
ly easy to extend and adapt the basic change-point detection
model to specific cognitive modeling problems.

The structure of this article is as follows. First, we present the
basic statistical approach to inferring change points and its im-
plementation as a graphical model. We highlight the way in
which the model combines Bayesian model selection and pa-
rameter inference through careful specification of prior distribu-
tions. After a simple demonstration with simulated data, we
apply the model to the classic Lindisfarne scribes problem
(Silvey, 1958), showing that its inferences match those of
existing methods. We then demonstrate the flexibility of the
modeling approach in two case studies. The first case study
involves human category learning data and uses latent-mixture
modeling to examine whether learning curves show gradual or
step-wise change. The second case study involves crowd-
sourced data in which people made predictions about which
US National Football League (NFL) players would win the
Most Valuable Player (MVP) award. A hierarchical extension
to the model is shown to be able to track the current opinion of
the crowd and to make an accurate prediction about the winner.

A model for inferring change

Here the basic change-point model is presented, using some
simple illustrative data. After describing the data, we develop
the statistical model and detail its software implementation.
The remainder of the section demonstrates the model by ap-
plying it to illustrative data.

Illustrative data

Figure 1 show some illustrative data, involving binary re-
sponses for a set of m = 3 items made at n = 20 discrete

sequential times. For the ith item at the jth time u;; and v;; are
the number of responses for the two possibilities, with #; = u;;
+ v; being the total number of responses. Each panel corre-
sponds to an item, with circles showing the observed propor-
tion for one alternative over for that item over times.

The area of the circles is proportional to the total number of
responses at that time. These simulated data were designed to
capture some basic possibilities in step changes over time. The
proportion for item A is always around 0.7; item B changes
from 0.3 to 0.7 after the 11th time period; item C starts at 0.9,
changes to 0.1 after the 5th time period; then changes to 0.3
after the 14th time period. For all three items, the total number
of responses varies across the time periods.

Modeling assumptions

The core modeling assumptions are most easily introduced in
the context of a single item with u; responses for one alterna-
tive out of #; total responses for the jth time. It is assumes that
there are 6 <n change points 7, . . . , 75 that collectively
partition the times into § + 1 stages. The first stage includes
all the time periods, 1 <j < 711, the second stage includes all the
time periods, 71 <j < 7», and so on, until the final stage 75 <j <
n. The stage of at the jth time is w;=1, 2, ..., § and can be
determined by counting the number of change points 7
exceeded by the jth time, so that w; = Y, Z(j>7;), where Z
() is the indicator function. Once the stage for the at the jth
time is determined, the observed responses are simply
modeled as u;~Binomial (6, , 7;).

The key to our statistical approach to the change-point
inference problem is the prior employed for the change point
parameters. The number of change points § and their values
Ti, ..., Tg are able to be inferred jointly by using a spike-and-
slab prior (Mitchell & Beauchamp, 1988; Rouder, Haaf, &
Vandekerckhove, 2018). These priors are well developed in
statistics and are often useful for simultaneous model selection
and parameter inference. Specifically, for each potential
change point k=1, ..., 7, the model introduces an unordered
set of change points ’7';( and assigns the prior

n—1
n 1 1
2n—1"2n—-1""2n-1

T/,C~Categorical

This categorical prior places a spike at the value 7‘;{ = land

the slab across the remaining times le =2,...,n, so that the
prior mass given to a change point at the first time is the same
as the prior mass given to all subsequent times combined. The
insight is that, since inferring a change point at the first time
period does not contribute to defining a stage, it corresponds
to the inference that the change point does not exist. Thus,
there is a prior of one-half for each potential change point that
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Fig. 1 Illustrative binary opinion data for three items, each measured at 20 times. The circles show the proportions of responses for one alternative over
the other for each item at each time, and the area of each circle is proportional to the total number of responses at each time

it does not exist. The equal prior mass given to all subsequent
change point then corresponds to assuming that, if a change
point exists, it is equally likely to occur at any time. Thus, the
prior on 7';( simultaneously supports the model selection infer-
ence about whether or not a change point exists and the pa-
rameter inference about the time of the change conditional on
it existing.

The value v is a constant that sets the maximum number of
potential change points included in the inference.
Conceptually, setting v formalizes prior assumptions about
the number of change points. Specifically, since each le has
prior probability % of corresponding to a change point, the
prior probability of § change points follows the binomial dis-

1
tribution (v 9) 7 Thus, the maximum prior probability will

be given to the number of change points being half of v, and a
good guiding heuristic is to set -y to be about twice as large as
the number of change points expected.
The final part of the inference is to define the sorted se-
<...<T, of the 7, parameters. This sorting
imposes an order constraint to make the model identifiable, so
that 7, is the last potential change point in the time sequence,
7,1 is the second-to-last change point, and so on.

quence 7; < Tp <

Graphical model

A graphical model that follows these modeling assumptions,
and applies them to a set of items, is presented in Fig. 2.
Graphical models provide an intuitive formalism for
representing probabilistic generative models and are well suit-
ed to the application of computational methods for Bayesian
inference (Jordan, 2004; Koller, Friedman, Getoor, & Taskar,
2007; Lee & Wagenmakers, 2013). In graphical models, the
parameters, data, and other variables are represented by nodes
in a graph, and dependencies between them are represented by
the structure of the graph, with children depending on their
parents. Different types of nodes are used to indicate what
they represent, and we follow the conventions according
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to which observed data or variables are shaded while unob-
served parameters are unshaded, continuous values are cir-
cular while discrete values are square, and stochastic vari-
ables are single-bordered while deterministic variables are
double-bordered. In addition, we use encompassing plates
to indicate repetition in the graph structure. The graphical
model in Fig. 2 has an outer plate for items and an inner
plate for times.

The basic version of the model shown in Fig. 2 assumes
that each stage has the same rate for one response alternative
over the other, but that these rates differ independently across
stages. Thus, for the ith item there are change point parameters
7;=(Tq, . . ., T7) and rate parameters 8; = (0,1, . . ., 0; 4+ 1)
with uniform prior distributions over the range 0 to 1. The
relationship between the time j and the change points deter-
mine the stage w;;. The response count u;; then depends on the
rates, the stage, and the total number of responses #;. The
natural generative interpretation of the model is that the graph-
ical model shows how the observed counts for a given item at
a given time are produced by an underlying stage-dependent
rate.

Implementation

We implement the graphical model in Fig. 2 using
JAGS (Plummer, 2003), which is standard and free soft-
ware. JAGS automatically applies computational
methods for sampling from the joint posterior distribu-
tion of a model, allowing for fully Bayesian analysis.
Our implementation involves two JAGS scripts, run se-
quentially, with the output of the first providing input to
the second.

The first JAGS script implements the graphical model in
Fig. 2 and is listed below. The data are provided in matrices u
and t, giving the number of responses for one alternative and
the total number of responses for each item and each time
period. The other inputs are the number of items m, the num-
ber of times n, and the maximum number of possible change
points gamma.
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# Basic change detection on votes

modelq{
for (i in 1:m){
for (j in 1:n){
# response count data
uli, jl ~ dbin(thetali, wli, j11, t[i, jI)
# stage for time period
wli, j] = sum(wTmp[i, j, 1l:gamma]) + 1
for (k in 1:gamma){
wImp[i, j, k] = step(j - tauli, k])
}
}
# prior for rates
for (k in 1:(gamma+1)){
thetali, k] ~ dunif (0, 1)
}
# prior for change points
for (k in 1:gamma){
tauPrime[i, k] ~ dcat(alpha)
}
# order constraint
tauli, 1:gamma] = sort(tauPrime[i, 1:gamma])
¥
# spike-and-slab prior
alpha[1] = n/(2*%n - 1)
for (k in 2:n){
alphalk] = 1/(2%n - 1)

This script follows the graphical model closely. It uses
temporary variables wTmp to calculate the stage for each
item at each time period, tauPrime to implement the order
constraint on the change points, and alpha to define the
spike-and-slab prior for the categorical distribution on the
change points.

The joint posterior 7; | u;, t; provides the inference about
the number and location of the change points for the ith item.
Conceptually, the joint posterior is a probability mass distri-
bution over each possible set of change points. There are
many ways this joint posterior could be analyzed, but here
we focus on one approach that emphasizes finding an inter-
pretable set of change points." This is done by collapsing the
uncertainty in the joint posterior and using the single most
likely set of change points. This corresponds to the mode 7,
of the joint posterior distribution. Inferences about the rates
are then be conditioned on this mode, so that the inferred rates

kS *
correspond to 0, | T; .

! If we had different goals, other methods for handling the joint posterior might
be appropriate. For example, if our goals focused on the prediction of unseen
data, it would be better to use a Bayesian model-averaging approach and to
incorporate all the possible sets of change points given nonnegligible mass in
the posterior.

It is straightforward to identify the mode of the joint pos-
terior for tau and then to find the posterior distribution for
theta from those samples for which tau corresponds to this
mode. It is possible, however, that the modal tau would be
sampled relatively rarely, which means that the posterior dis-
tribution would not be well approximated. Thus, our imple-
mentation uses the first JAGS script only to find the posterior
mode for tau. That mode is then supplied as an observed
variable to the second JAGS script, listed below.

model{
for (i in 1:m){
# Data
for (j in 1:n){
# response count data
uli, jl = dbin(thetali, wli, jl1, tl[i, j1)
# stage for time period
wli, j1 = sum(wTmp[i, j, 1:gammal) + 1
for (k in 1:gamma){
wTmp[i, j, k] = step(j - tauli, k1)
}
}
# prior for rates
for (k in 1:(gamma+1)){
thetali, k] ~ dunif(0, 1)
}
}
}

C

This script is simply a reduced version of the graphical
model that assumes tau is known. Accordingly, the inferences
for theta are conditioned on the mode for tau.

Application to illustrative data

Figure 3 shows the results of applying the model to the illustra-
tive data. The bottom panels relate to the results of the first step in
the implementation and show the joint posterior 7; | u;, t;, based
on an upper bound of « = 3 change points. The resulting three-
dimensional joint posterior is shown for each item, with the
volume of each cube corresponding to the inferred posterior
mass. For item A, the mode is at T: = (1, 1, 1), corresponding
to the inference that there are no change points. For item B, the
mode is at T; = (1, 1, 11), corresponding to the inference that
there is a single change point at the 11th time period. For item C,
the mode is at T& =(1, 5, 14), corresponding to the inference that
there are change points at the Sth and 14th time periods.

The top panels relate to the results of the second step, in which
the rate for each stage is inferred. For each item, the data are again
shown by circles, with the inferences about the stages and their
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Fig. 2 Graphical model representation of the basic change-point model

rates superimposed by a broken line. These inferred rates corre-
spond to the posterior expectation of the appropriate rate param-
eter for each stage. For item A there is only one stage, and the rate
is always about 0.7. For item B the rate increases from about 0.3
to 0.7 at the change point at the 11th time period. For item C the
rate falls from about 0.85 to 0.1 at the 5th time period, then
increases to about 0.3 at the 14th time period. These patterns of
change are visually reasonable, given the data, and correspond to
the way in which the illustrative data were generated.

Application to Lindisfarne scribes’ problem

Blakeley (1949) discusses a philological problem involv-
ing the historical use of different s-forms for English verbs,
such as drives and driveth. The problem concerns a set of
texts known as the Lindisfarne Gospels, which vary in the
frequency of their use of these forms. The changes are
believed to reflect sequential changes in the scribes of the
texts, with each scribe producing some number of consec-
utive texts before being replaced by the next scribe. Ross
(1950) noted that this philological problem can be treated
as one of statistical inference, in which the goal is to infer
the how many scribes are involved and which texts they are
responsible for, as well as the underlying rates of use of the
different s-forms for each scribe. Silvey (1958) provided
an early attempt to apply statistical methods to make these
inferences, and A. F. M. Smith (1975) provided an impres-
sive early Bayesian approach.

We consider the same data used by A. F. M. Smith
(1975, Table 1), which give counts for each form for a
sequence of 13 texts. The results of applying the graphical
model in Fig. 2 are shown in Fig. 4. These results are based on
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setting v = 10 as an upper bound on the number of change
points.” Two change points are detected, after the fourth
and fifth texts. The overall inference is that a first scribe
produced Texts 1-4, a second scribe produced Text 5, and
a third scribe produced Texts 6—13. These results, both in
terms of the number of change points and their locations,
agree with those found by A. F. M. Smith (1975, Tables 4
and 5) using analytic methods.

Although it is comforting that our approach produces re-
sults that match analytic results for a simple problem, the real
advantage of the graphical model implementation is its flexi-
bility. It is straightforward to extend the basic model for infer-
ring change points beyond the case in which there is one fixed
binomial rate for each stage. The following two applications
aim to demonstrate these sorts of expanded modeling possi-
bilities, which allow the basic approach to be applied to a
broad range of cognitive modeling problems.

Application to category learning curves

In the first application, we consider human category learning
performance. The research question is whether learning curves
show gradual improvement or step change increases. This in-
ference problem has basic theoretical implications for the roles
of two competing accounts of human learning (Ashby &
Maddox, 2005; Kruschke, 2008). Gradual improvement is
consistent with various theories of associative learning or

2 Technical details: The JAGS results for this analysis, and for all of those that
follow, are based on six chains, each with 1,000 samples, collected after 5,000
burn-in samples and with thinning every 50th sample. Trace-plots and the
standard R measure (Brooks & Gelman, 1997) provided good evidence
of convergence.
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Fig. 3 Results of applying the model to the illustrative data. The top
panels show the model inferences for each item. The circles show the
response proportions for each item at each time period, and the area of
each circle is proportional to the total number of responses for the time

reinforcement learning, in which small changes are regularly
made to update how stimuli are related to categories. Step
change increase is consistent with various theories of
hypothesis-testing or rule-based learning, in which new sche-
ma are used to determine responding, leading to sudden and
potentially large improvements in performance.

Data

We use the data from J. D. Smith and Minda (1998, Exp. 3,
non-linearly-separable condition) and involved 16 participants
learning to categorize eight nonsense words into two categories

1.0 7
o 08— .
3 =
c 0.6 -
9 =sanl
IS
3 0.4 —
o
.
o 02—

period. The broken line shows the inferred rate over time, including one
change point for item B and two change points for item C. The bottom
panels show the joint posterior distribution for the 7 parameters for each
item, the mode of which determines the change points

based on trial-by-trial feedback. We analyze the learning per-
formance in terms of ten blocks with 56 balanced trials in total,
comprising seven presentations of each of the eight stimuli.
Thus, the basic data are, for each participant, a sequence of
counts over ten blocks of how many correct responses were
made out of 56 trials.

Graphical model

Figure 5 shows a latent-mixture model that extends the basic
change-point graphical model in Fig. 2. There are two compo-
nents to the latent mixture. One involves step changes in

\
13

Text Section

Fig. 4 Results of applying the model to a version of the Lindisfarne
scribes data. The circles show the proportions of one variant form over
another for each of the 13 sections of the text, and the area of each circle is
proportional to the total number of occurrences in that section. The

broken line shows the inferred rate of use of the variant form, including
change points, interpreted as changes to different scribes, between Texts 4
and 5, and between Texts 6 and 7
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Fig. 5 Graphical model representation of the latent-mixture extension of the change-point model

learning performance, with a sequence of increasing probabili-
ties of correct categorization. The other involves a gradual lin-
ear increase in performance, starting at chance-level perfor-
mance and bounded by perfect performance. The latent binary
indicator parameter z; determines whether the learning curve for

the ith participant is modeled by the step-change or linear-
increase mixture component. The step-change component fol-
lows the basic change-point model, inferring how many chang-
es there are in the rate of correct responses, at which blocks
these changes occur, and what the rate of correct responding is
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Fig. 6 Results of applying the latent-mixture model to the category
learning performance reported by J. D. Smith and Minda (1998, Exp. 3,
non-linearly-separable condition). Each panel corresponds to a
participant, labeled pl—p16, with circles showing their categorization
accuracy over ten blocks of trials. For participants classified as having
step-change performance, a broken line shows the inferred rate of
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accuracy over each stage, with the x-axis tick labels detailing the
change points. For participants classified as having linear-increase
performance, a solid line shows the pattern of change implied by the
inferred learning rate. Each panel also presents the Bayes factor (BF) in
favor of the inferred classification
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in each stage defined by the change points. The rates are
constrained to increase as the stages progress. The linear-
increase component assumes that the rate of correct
responding begins at 0.5 and then increases by [3; over each
block, until (possibly) the rate of correct responding becomes
perfect at 1. The learning rate [3; is specific to the ith partici-
pant and is given the prior 5~Uniform(0, 0.5), corresponding
to the assumption that performance increases over blocks and
can be perfect as early as the second block. The binary indi-
cator variable z; is given the prior z;~Bernoulli(}), corre-
sponding to the assumption that it is equally likely that each
participant will belong to the step-change or the linear-mixture
component.

The JAGS script below implements the graphical model in
Fig. 5. The key changes are that u[i,j] now has a binomial rate
that depends on the Z[i] latent indicator variable and that a
prior is set for each of these indicators in the new #model
indicator section of the script. The linear possibility for the
rate is implemented in the new #linear component section of
the script.

model{
for (i in 1:m){
for (j in 1:n){
# response count data follows latent mixture component
uli, j] ~ dbin(equals(z[i], O)*thetaline[i, j]
+ equals(z[i], 1)+*thetaRate[i, wli, j11, t[i, j1)
# stage for time period
wli, j1 = sum(wTmpli, j, 1:gammal) + 1
for (k in 1:gamma){
wTmp[i, j, k] = step(j - tauli, k1)
}
}
# prior for change points
for (k in 1:gamma){
tauPrime[i, k] ~ dcat(alpha)
¥
# order constraint
tauli, 1:gamma] = sort(tauPrime[i, 1:gamma])
}
# spike-and-slab prior
alpha[1] = n/(2%n - 1)
for (k in 2:n){
alpha(k] = 1/(2*n - 1)
}
# prior for rates
for (i in 1:m){
# mean rate for stages
for (k in 1:(gamma+1)){
thetaRateTmp[i, k] ~ dunif(0, 1)
}
# order comnstraint
thetaRate[i, 1:(gamma+1)] = sort(thetaRateTmp[i, 1:(gamma+1)])
}
# linear component
for (i in 1:m){
betal[i] ~ dunif(0, 0.5)
for (j in 1:n){
thetaLine[i, j] = min(0.99, betalil*(j-1) + 0.5)
}
}
# prior for model indicator
for (i in 1:m){
z[i] ~ dbern(0.5)
}
}

First, we use the full joint posterior inferred by this script to
find the modal latent indicator parameters z*. If this mode is
z; = 1, the participant is classified in the step-change mixture
component, whereas if the mode is z; = 0, the participant is
classified in the linear-increase mixture component. For partic-
ipants in the step-change component, the mode of the joint
posterior 7; | z;= 1, u;, t; of their change-point parameters, con-
ditional on assignment to the step-change component, is found.
Both the modal z; and 7; for each participant are then provided
as observed values for a second script that infers just the 6; or 3;
parameters for each participant, depending on their mixture
component classification. The second script is not shown, but
simply removes the sections that define priors for the z and tau
parameters. It is available as supplementary material.

Modeling results

Figure 6 shows the results of applying the latent-mixture model
to the J. D. Smith and Minda (1998) data, with the setting v=5.
The observed proportion of correct categorization decisions for
each participant over blocks is shown, together with a summary
of the inferences of the model for that participant. If the partici-
pant is classified as having step-change learning, the model in-
ferences take the form of a series of mean accuracies for the
stages, defined by the inferred change points. If the participant
is classified as having linear-increase learning, the model infer-
ences are a bounded line based on the learning rate parameter. In
each panel, the Bayes factor, derived from the posterior expec-
tation of the z; indicator parameters, is also shown (Lodewyckx
etal., 2011). Thus, for example, the Bayes factor for Participant
14 is 30 in favor of step-change learning, where the participant’s
accuracy improves from about 65% to about 90% at the sixth
block, whereas the Bayes factor for Participant 15 is 26 in favor
of linear-increase learning, where this participant’s accuracy im-
proves from 50% to about 90% over the blocks.

Overall, Fig. 6 shows exactly half the participants are in-
ferred to use each of the two learning possibilities. Sometimes
the certainty of these inferences, as quantified by the Bayes
factor, is relatively weak, especially for participants—such as
Participants 2, 6, 13, and 16—who show little evidence of
learning. This pattern of change in accuracy can be described
well by both learning possibilities, but the linear-increase one is
generally slightly preferred because it is simpler. For many
other participants, however, there is clear and interpretable ev-
idence for either step-change or linear-increase learning. The
learning trajectory for Participant 8, for example, shows a clear
step-change pattern, with a small increase on the second block
and then a large increase on the third block. Similarly,
Participant 7 shows a clear step-change pattern. They perform
near chance for the first four blocks, improve to about 60%
accuracy for the next two blocks, improve again to about
80% accuracy for the next three blocks, and finally reach
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near-perfect accuracy after one more increase at the final block.
The learning trajectory for Participant 10, on the other hand,
shows a steady increase until near-perfect accuracy is reached
for the last two blocks. Similarly, Participant 4 is inferred to
learn with a linear increase, but with a much greater learning
rate, reaching near-perfect performance on the third block.

We also applied the model to the other five conditions pre-
sented by J. D. Smith and Minda (1998). The results are avail-
able as supplementary information, and continue to show evi-
dence for some participants being better modeled by the step-
change account of learning than by the linearly increasing one.
We do not attempt to draw conclusions about the general prev-
alence or theoretical importance of step-changes based on these
results. Reaching these conclusions would require considering
a wider range of alternative models than the simple linearly
increasing account used here. What we have achieved, howev-
er, is to demonstrate that an account based on step changes can
be incorporated into the analysis of category learning curves
using the basic change-point model.

Application to crowd-sourced voting data

In the final application, we consider voting data from the
crowd-sourced opinion website www.ranker.com. This site
consists of tens of thousands of lists, each containing some
number of items. Users can rank the items and can up-vote or
down-vote each item at any time. The patterns of voting thus
provide a measure of crowd opinion about items as opinion
evolves over time. We consider voting data for a sporting
award—the Most Valuable Player (MVP) of the US National
Football League (NFL)—with the goal of detecting changes in
the crowd opinion for different players and using the current
opinion for each player at the time the award is determined as a
prediction of the winner.

Data

The data come from the ranker.com list “NFL players most
likely to be the 20162017 MVP.” This list was created on
November 18, 2016, and received 31,907 votes for 27
different players, up until Matt Ryan was announced as the
winner on February 4, 2017. We consider eight players out of
the 27, constituting the leading candidates for the MVP award.
These players all received a large number of votes on the
Ranker site’s list and include all of the award favorites
discussed in the media.

Graphical model
Because the crowd-sourced data involve different people voting

at different times, the basic model must be extended hierarchi-
cally to allow for variability around a mean group-level rate of
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positive opinion. Figure 7 shows the hierarchical graphical
model. The mean rate for the xth stage is u,, and the standard
deviation for the variation around this mean is o. This means
that the rate for the ith item at the jth time is 6;~Gaussian,
(s 1/0%), where the jth time is in the xth s‘cage.3

An assumption of this model is that the variability around the
mean is the same for each stage, consistent with the idea that
time-to-time fluctuation is a general property of different people
expressing opinions at different times and does not depend on
the rate of positive opinion itself, nor on the item being evalu-
ated. Obviously, it would be simple to consider an alternative
model in which there are different levels of heterogeneity in the
crowd opinion for different stages, different items, or both. The
specific prior chosen for o is based on its interpretation as the
period-to-period variability in the rate of up-voting that might
reasonably be expected. It assumes that the standard deviation
of this variability follows a positive-truncated Gaussian distri-
bution with a mean of 0 and standard deviation of 0.05. This
corresponds to expecting 0%—5% fluctuation over time periods
to be common, and fluctuations up to 10% being plausible.
Again, it would be simple to consider different assumptions.

The JAGS script below implements the graphical model in
Fig. 7. The key changes arising from the hierarchical extension
are the sampling of theta from a Gaussian defined by mu and
sigma and the introduction of priors on mu[i,j] and sigma.

model{
for (i in 1:m){
for (j in 1:n){
# response count data
uli, j1 ~ dbin(thetali, j1, t[i, j1)
# hierarchical up-vote rate for time period
thetali, j] ~ dnorm(muli, w[i, jl], 1/sigma~2)T(0, 1)
# stage for time period
wli, j1 = sum(wTmp[i, j, 1:gammal) + 1
for (k in 1:gamma){
wTmp[i, j, k] = step(j - tauli, kI)
}
}
# prior for mean rate of stages
for (k in 1:(gamma+1)){
muli, k] ~ dunif(0, 1)
}
# prior for change points
for (k in 1:gamma){
tauPrime[i, k] ~ dcat(alpha)
}
# order constraint
tauli, 1:gamma] = sort(tauPrime[i, 1:gamma])
}
# spike-and-slab prior
alpha[1] = n/(2*n - 1)
for (k in 2:n){
alphalk] = 1/(2%n - 1)
}
# prior for standard deviation
sigma ~ dnorm(0, 1/(0.05)°2)T(0,)

3 This is a truncated Gaussian distribution on the interval (0, 1), parametrized
in terms of a mean and a precision.
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Fig. 7 Graphical model representation of the hierarchical extension of the change-point model

As before, this script is used to find the mode of the change
points for each item from the joint posterior. These tau values
are used as input for a second script. The second script thus
makes inferences about the mean group opinion mu condi-
tioned on the mode for tau. The second script is not shown,
but it simply removes the sections that define priors for the tau
parameters. It is available in the supplementary material.

Modeling results

The results of applying the model to these eight players, with
the setting v = 5, are presented in Fig. 8. Each panel corre-
sponds to a player, and the player’s pattern of votes is shown
by circles. The line shows the inferred mean rate of up-voting,
with the dates and change points labeled. For example, in the
first panel, Aaron Rodgers is inferred to have a mean rate of
up-voting of about 35% until the 3rd of January, when the rate
increases to about 60%. There is then a two-day drop to about
10% from the 23rd to the 25th of January, before the rate
returns to around 50% until the final day. The large but brief
drop in the rate has a natural interpretation as an immediate
overreaction and then recalibration to Rodgers’ Green Bay
Packers team’s elimination from the playoffs on the 22nd of
January.

The inferred changes for the other players in Fig. 8
are similarly reasonable in terms of the voting data, and
interpretable in terms of real-world events affecting their
MVP chances. For example, the large drop in the rate
of up-voting for Derek Carr occurs at about the time he
suffered a season-ending injury. The two increases in
the rate of up-voting for Matt Ryan occur immediately
after playoff wins for his Atlanta Falcons team, in
which he performed especially well as the team’s

quarterback. Many of the players have an inferred
change point on the 3rd of January, immediately after
the regular season games were completed. We interpret
these changes as the crowd reevaluating the likely MVP
winner at the transition from the regular season to the
playoffs.

These data provide a good example of the real-world use-
fulness of tracking changes in the rate of up-voting. The best
prediction of the winner of the MVP award is the player with
the highest rate at the time the decision is made, at the end of
the voting period. If change points are detected in the rate of
up-voting, the measure of current opinion provided by our
model will differ from a standard measure of cumulative opin-
ion that simply measures the overall proportion of up-votes.
Formally, the current opinion is the final value of 1, for the ith
player, whereas a player’s cumulative opinion at the jth time is
i tik ) Lo ik

Figure 9 shows the cumulative and current opinion for all
eight players. The cumulative measure, in the top panel, ranks
Ryan in sixth place, behind Ezekiel Elliott, Dak Prescott, Tom
Brady, Sean Lee, and Aaron Rodgers. Elliott and Prescott were
both rookie players for the Dallas Cowboys and were widely
viewed as outstanding new talent in a high-profile franchise that
had a historically good regular season. A reasonable summary
of media coverage of their MVP prospects is that early excite-
ment faded to a more realistic assessment that rookie winners
are unlikely, especially given that both played for the same
team. Brady and Rodgers, in contrast, were probably the most
established and high-profile perennial favorites for the MVP
award. The current opinion measure, in the bottom panel,
which is simply the combination of the results for the indi-
vidual players shown in Fig. 8, correctly predicts Matt Ryan
as the winner, on the basis of the most recent opinion. It is
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Fig. 8 Model results for crowd-sourced binary voting time series data on
eight candidates for the NFL MVP award in the 2016-2017 season. Each
panel corresponds to a player. The circles show the proportions of up-
votes for each item on each day, and the area of each circle is proportional

interesting to note that Brady ranks second according to
current opinion, and it is probably fair to speculate that he
was regarded as the only other serious possible winner in
the days before the award was announced.

Discussion

Sudden changes in measured behavior occur often throughout
the cognitive sciences. At the individual level, people can
switch their strategies, have sudden insights, or change their
opinions. At the group level, different people can be assigned
to tasks, or relationships between people can change quickly
and drastically. Although step change is common, it presents a
data analysis and modeling challenge that is not naturally han-
dled by the default statistical methods used in the psycholog-
ical sciences. Changes that are gradual—such as steady in-
creases, smooth cycles, or random walks—are generally cap-
tured well by inherently continuous statistical models like re-
gression, in which small changes in the inputs lead to small
changes in the outputs. Modeling step change—requiring
identifying where change points occur and how behavior
changes as these points are crossed—presents a different sta-
tistical challenge.
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to the total number of votes on that day. The broken lines show the
inferred mean rates of up-voting over time, with the dates of change
points labeled

We have developed and demonstrated a method for
modeling step change that fits within a large statistical liter-
ature on the topic (Adams & MacKay, 2007; Barry &
Hartigan, 1993; Chib, 1998; Fearnhead, 2006; Stephens,
1994). A statistical attraction of the our approach is that it
allows for the number of change points to be inferred togeth-
er with the locations of the changes. The prior on the latent
parameters corresponding to change points combines model
selection with parameter estimation and provides a neat
Bayesian solution to the two related inference problems
of determining how many change points there are and
where they are located.

The statistical approach developed here does require setting
a value ~ that sets the maximum number of change points and
places a prior distribution on the number of change points.
This part of the model could be extended in two useful ways.
One possible extension would be to allow greater flexibility in
setting the relative mass of the marginal spike-and-slab priors
at the spike that corresponds to the absence of a change
point. The present use of one-half is a sensible default, but
other possibilities would allow for a broader range of prior
distributions over the number of change points to be
expressed. The other possible extension would be to treat
v as a dispersion hyper-parameter, much as in nonpara-
metric Bayesian models like Chinese restaurant processes
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Fig. 9 Two analyses of the crowd-sourced voting data for the NFL MVP
award in the 2016-2017 season. The top panel shows the cumulative
opinion for eight leading candidates. The bottom panel shows the
current opinion inferred by the hierarchical change-point model, based

(see Navarro, Griffiths, Steyvers, & Lee, 2006), and make
inferences about the number of change points in a more
flexible, hierarchical setting.

Whatever exact method is used for inferring the number
and location of change points, the attraction of our approach
lies in its ease of use and flexibility. The core change-point
model is implemented as a graphical model using JAGS and is
easily extended within that formalism and software to tackle a
diverse range of cognitive modeling problems that involve
step change. We presented two worked examples to demon-
strate this flexibility: one involving a latent-mixture extension
to accommodate change that could be either gradual or sud-
den, and another involving a hierarchical extension that allows
for homogeneity in the structure of the group data to be
incorporated.

A final attraction of our approach is more conceptual or
philosophical. The use of generative models here places the
focus on cognitive assumptions rather than statistical methods.

on the inference of change points in the mean rates of up-voting.
Cumulative opinion predicts Ezekiel Elliott as the MVP, whereas
current opinion correctly predicts Matt Ryan

The extended models of category learning and crowd opinions
are built by making assumptions about how the observed be-
havior is generated over time. Making different or additional
cognitive assumptions will lead naturally to a modified or
extended model. For example, as was alluded to earlier, a
category learning theorist might object to the exact assump-
tions in the linear-increasing account, and instead propose a
different model to compete against the step-change model to
explain individual behavior. Almost any model the theorist is
likely to propose could be quickly and simply implemented as
a graphical model within JAGS (Lee & Wagenmakers, 2013).
Once the generative model is finalized, its application to data
is automatically achieved using Bayesian methods. This
means that there are no methodological “degrees of freedom”
in the way that inferences about step change are made.
Different models will, of course, lead to different results, but
these differences can be understood in terms of the different
cognitive assumptions being made. We think this “psychology
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first” approach to data analysis is a productive one, since it
places the emphasis on being explicit about the theoretical
assumptions made and relegates statistical methods to their
appropriate service role of specifying the mechanics of
inference.

Author note I thank Irina Danileiko for help with the category learning
data, Ravi lyer for help with the ranker.com data, and Lucy Wu for help
developing the NFL MVP application. Supplementary material for this
article, including data and code, is available on the Open Science
Framework project page https://osf.io/mw3u2/.
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