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Abstract
This article proposes an optical measurement of movement applied to data from video recordings of facial expressions
of emotion. The approach offers a way to capture motion adapted from the film industry in which markers placed on
the skin of the face can be tracked with a pattern-matching algorithm. The method records and postprocesses raw facial
movement data (coordinates per frame) of distinctly placed markers and is intended for use in facial expression research
(e.g., microexpressions) in laboratory settings. Due to the explicit use of specifically placed, artificial markers, the procedure
offers the simultaneous measurement of several emotionally relevant markers in a (psychometrically) objective and artifact-
free way, even for facial regions without natural landmarks (e.g., the cheeks). In addition, the proposed procedure is fully
based on open-source software and is transparent at every step of data processing. Two worked examples demonstrate
the practicability of the proposed procedure: In Study 1(N = 39), the participants were instructed to show the emotions
happiness, sadness, disgust, and anger, and in Study 2 (N = 113), they were asked to present both a neutral face and the
emotions happiness, disgust, and fear. Study 2 involved the simultaneous tracking of 14 markers for approximately 12 min
per participant with a time resolution of 33 ms. The measured facial movements corresponded closely to the assumptions of
established measurement instruments (EMFACS, FACSAID, Friesen & Ekman, 1983; Ekman & Hager, 2002). In addition,
the measurement was found to be very precise with sub-second, sub-pixel, and sub-millimeter accuracy.

Keywords Measurement of facial movement · Emotion expression · Optical measurement · Video data analysis ·
Open-source software

Facial expression represents one crucial component of an
emotion (Scherer, 2005). In the large corpus of research
on emotional facial expression, three major measurement
methods have been established, (a) the Facial Action Coding
System (Ekman & Friesen, 1978; Ekman, Friesen, & Hager,
2002), (b) Electromyography (Fridlund & Cacioppo, 1986;
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Tassinary, Cacioppo, & Vanman, 2007), and (c) Automatic
Facial Expression Recognition (AFER) systems (Corneanu,
Oliu, Cohn, & Escalera, 2016). All three methods suffer
from certain drawbacks, which will be outlined in the
following. The aim of the present paper is to propose the
blenderFace method, which offers a way to overcome the
disadvantages of the established methods and provides a
way to take very accurate direct measurements of facial
movement at high spatial and temporal resolutions.

The necessity for a newmeasurement method
for facial expressions

The measurement of facial movement via the Facial Action
Coding System (FACS; Ekman & Friesen, 1978; Ekman,
Friesen, & Hager, 2002), or the Maximally Discriminative
Facial Movement Coding System (MAX; Izard, 1983), as
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well as the emotional interpretation of facial movements
via the Emotional Facial Action Coding System (EMFACS;
Friesen & Ekman, 1983), the Facial Action Coding System
Affect Interpretation Dictionary (FACSAID; Ekman &
Hager, 2002), or the Affect Expression Identification
System (AFFEX; Izard, Dougherty, & Hembree, 1983) have
emphasized the rating of mostly static facial expressions
(Cohn & Schmidt, 2004; Tcherkassof, Bollon, Dubois,
Pansu, & Adam, 2007). In a FACS coding, one or more
trained FACS coders have to judge the extent of facial
muscle movement from mostly a still picture for virtually
all facial muscles on a 5-point Likert scale. The extent
of movement is graded from A to E for the specific
facial muscles and denoted as numbered Action Units
(AUs). Although it is possible to rate the dynamics of
facial expressions in an image sequence, this technique
has turned out to be very time consuming (Cohn &
Schmidt, 2004). Further drawbacks of a FACS rating with
subsequent emotional interpretation are (a) that only easily
discoverable but not minor, subtle facial movements can be
detected and can therefore be rated, (b) the measurement
accuracy of an ordinal 5-point rating scale might not be
accurate enough to adequately represent the emotional
dynamics of facial expression, whereas facial expression
measured at a higher resolution might reveal new findings
(e.g., microexpressions; Ekman & Friesen, 1969), (c) the
ratings and the subsequent emotional interpretations may
be subjected to a rating bias (e.g., Horstmann, 2002). In
addition, in this line of research, the stimuli used to elicit
a facial expression have mostly been instructional, whereas
natural emotion-eliciting situations or experimental settings
with induced emotions have rarely been investigated
(Reisenzein, Studtmann, & Horstmann, 2013). Therefore,
this line of research has raised questions about the
ecological validity of the FACS and the generalizability of
the results (Motley & Camden, 1988; Russell, 1994).

The second measurement method represents the mea-
surement of emotionally relevant facial muscles via elec-
tromyogram (EMG; Fridlund & Cacioppo, 1986; Tassinary
et al., 2007). Fridlund and Cacioppo proposed the deduction
of 11 emotion-specific facial muscles. According to their
proposals, a pair of electrodes1 should be placed above and
parallel to each emotionally relevant muscle fiber, accom-
panied by a ground electrode placed on the upper forehead.
However, due to the physical size of the electrodes and
the conductibility of the skin, crosstalk with neighboring
muscle groups is possible, for example, the measurement
of the corrugator supercilii may be confounded by activ-
ity from the depressor supercilii and procerus (Fridlund
& Cacioppo, 1986). Although the EMG method can be

1This procedure maximizes selectivity for the deduced muscle fiber
(Fridlund & Cacioppo, 1986).

applied to measure dynamic activity in the specific mus-
cles used to produce a facial expression, in many cases, the
data are highly aggregated in subsequent data processing
procedures: In the beginning, the muscle activity is sam-
pled at a high frequency (usually between 10 and 2500
Hz), passed through several filters (e.g., to filter the power
supply frequency), optionally integrated or smoothed (e.g.,
via a moving average), and often split into a pre-stimulus-
onset phase and a post-stimulus-onset phase, averaged per
phase and then statistically tested. In the end, this leads
to a loss in dynamic information aside from an increase
in the familywise error rate (Hochberg & Tamhane, 1987).
Moreover, in many cases, the activity of only one or two
muscles is deduced. This is problematic for the interpreta-
tion of emotional facial expressions because first, a single
muscle may be involved in several emotional states. For
example, according to EMFACS (Friesen & Ekman, 1983),
AU1 (frontalis, pars medialis) may be involved in the
emotions fear, sadness, and surprise, or AU4 (corrugator
supercilii) may indicate sadness, fear, or anger. Therefore,
in many cases, emotion specificity is difficult to deter-
mine, and an interpretation regarding valence is preferred.
Second, a facial expression might not be shown in a pro-
totypical manner. For example, in a natural, spontaneous
facial expression, the emotion might be shown in only some
parts of the face (Porter & Brinke, 2008, 2010). Therefore,
depending on the position of the electrodes, an emotional
expression might not be successfully detected. Besides, the
measurement of facial expression via EMG is subject to
several practical implications, such as the probably disturb-
ing sensation of electrodes and cables on the facial skin
and the need for an electromagnetically shielded laboratory
(Fridlund & Cacioppo, 1986).

The third and most recent method for measuring facial
expressions relies on the analysis of video data by applying
automatic facial expression recognition (AFER) algorithms.
Computer vision research in this area has reached a mature
state and has provided fascinating results (for an overview,
see Corneanu, Oliu, Cohn, & Escalera, 2016). Most AFER
procedures include four steps (face detection in a pic-
ture or footage, detection of natural landmarks, emotion
relevant feature extraction [e.g., mouth corner detection],
and expression recognition) and are implemented in both
open-source software (e.g., OpenFace; Baltrušaitis, Robin-
son, & Morency, 2016; Menpo; Alabort-i-Medina, Anton-
akos, Booth, Snape, & Zafeiriou, 2014; IntraFace; De la
Torre, Chu, Xiong, Vicente, Ding, & Cohn, 2015; Computer
Expression Recognition Toolbox; CERT; Bartlett, Little-
wort, Wu, & Movellan, 2008; Littlewort, Whitehill, Wu,
Fasel, Frank, Movellan, & Bartlett, 2011) and commercial
software (e.g., Affectiva, 2017; Emotient Inc., 2016; Kairos,
2017; Noldus Information Technology, 2017; RealEyes,
2017). The AFER procedures have been able to achieve a
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reliable and valid classification of emotional expressions
from footage and images, close to or even better than
humans (Littlewort, Bartlett, & Lee, 2009; Terzis, Moridis,
& Economides, 2010). Despite the fact that the AFER
procedures achieve a very good correct classification rate,
these procedures have drawbacks from a epistemological
and psychometric perspective and may be problematic for
psychological facial expression research for the following
reasons: (a) Most AFER procedures return highly aggre-
gated output, either through basic emotion classification
or AU activation estimates. In most cases, the classifica-
tion is performed by artificial neural networks that have
been trained by one or more preclassified training sam-
ples. This means that only preclassified categories can be
detected. For example, an immanent assumption is that
the classification categories and the corresponding training
samples are correct, but this assumption may be arguable,
for example, regarding the number of prototypical expres-
sions involved in basic emotions (Jack, Garrod, & Schyns,
2014) or regarding whether basic emotions have a proto-
typical appearance (Crivelli, Jarillo, Russell, & Fernández-
Dols, 2016a; Crivelli, Russell, Jarillo, & Fernández-Dols,
2016b; Elfenbein, Beaupré, Lévesque, & Hess, 2007;
Jack, Garrod, Yu, Caldara, & Schyns, 2012). Therefore,
AFER procedures bear the risk of being plagued by circular
reasoning because classifications will always be consistent
with the predetermined classes, and thus the procedures will
not be able to detect prototypical facial expressions other
than the ones they were trained to detect.2 (b) In addition,
when AFER algorithms are applied to classify emotions, they
suffer from the shortcoming that the intensities of emotion
expressions are not measured, although there are approaches
that can do this (Corneanu et al., 2016). In the case of AU
activation classification, the output represents a downgrade
in the scale of measurement from metrically measured 2D or
3D facial movement to a nominal scale, which is therefore
accompanied by a loss in information and accuracy (e.g.,
AU 12 represents the lip corner puller, AU 15 represents the
lip corner depressor). (c) Despite the fact that the classifica-
tion rates of AFER algorithms are very good (Littlewort et
al., 2009; Terzis et al., 2010), and the commonly used sup-
port vector machines (SVMs) have a strong mathematical
basis, translating the classification rules of AFER algo-
rithms into a format that can be comprehended by humans is
a complex procedure. For example, when an SVM is used as
a classifying algorithm, the coordinates of an n-dimensional
hyperplane must be interpreted semantically. Therefore, the
AFER algorithm output may be used descriptively (e.g., the
occurrence or nonoccurrence of a specific emotion) rather

2However, it should be mentioned that recent unsupervised learning
approaches have attempted exactly this, with the goal of jointly
learning feature extraction and classification (cf. Corneanu et al.,
2016).

than analytically (e.g., to test various hypotheses about mea-
sured facial movement). (d) Most AFER procedures also
allow lower level output in the sense of coordinates of
tracked fiducial points/natural landmarks (e.g., the corners
of the mouth or the eyes). This information is gathered
during the face segmentation phase and is needed to be
able to classify facial expressions of emotion. These nat-
ural landmarks are determined, for example, by exploiting
color and texture information along with ellipsoid fitting or
via face saliency maps (Corneanu et al., 2016). Therefore,
AFER algorithms try to match a predetermined pattern onto
each frame of the footage or image. Because this is a rel-
atively robust3 but not always very accurate and reliable
method, a confidence level is computed. This confidence
level is estimated by the tracking algorithm and represents
the confidence in the current landmark detection. However,
the tracker and subsequently the computed confidence level
are not bound to any external, ”true” criteria in a psycho-
metric sense. Therefore, the confidence level can take on
high values, even when the classifications are completely
wrong (Evtimov, Eykholt, Fernandes, Kohno, Li, Prakash,
& Song, 2017; Sharif, Bhagavatula, Bauer, & Reiter, 2016),
thus causing potentially misleading results. (e) In addition,
AFER algorithms rely on tracking the natural landmarks of
the face (e.g., corners of the eyes and mouth, eyebrows), but
there are procedures that allow researchers to model parts
of the face that lack natural facial features (e.g., Wood, Bal-
trušaitis, Morency, Robinson, & Bulling, 2016), for exam-
ple, the analysis-by-synthesis approach. The basic idea used
in this approach is that it replicates (a subaspect of) a given
entity and iteratively minimizes the differences between the
replica and the target entity. The process of replication and
the replica aid the understanding of the entity. For example,
Wood et al. (2016) estimated a 3D model (along with light
conditions, skin tone, etc.) for a part of the face that lacks
natural landmarks and minimized the difference between
the original image and the 3D-rendered image by adapting
the 3D model in an iterative process. However, this approach
does not represent the measurement of facial movements in
facial areas that do not have facial landmarks (e.g., move-
ment of the skin on the checks), but it represents a synthesis
which estimates the part of the facial surface iteratively
to minimize the differences in visual appearance. (f) For
commercial AFER software, in most cases, the emotion
classifier algorithm that makes a decision about an emotion
(and its intensity) is part of the secrecy of the business and
is therefore unknown. This means that the interpretation and
a conclusive assessment of the results remain arguable and
do not conform to open science requirements.

3If natural landmarks are hidden (e.g., if a hand moves in front of
the mouth), the ellipsoid fitting algorithm finds and tracks the natural
landmarks when they become visible again.
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Aims of the present research

The aim of the present research was to develop a new
measurement method for psychological facial expression
research that avoids the disadvantages and combines the
advantages of established methods while keeping the
procedure simple and clear. This method should meet the
following requirements: (a) The new method should allow
a very accurate, metric-level procedure for measuring raw,
uninterpreted (e.g., in the sense of prototypical emotions, or
AUs) facial movements. The measurement of facial areas
that lack natural landmarks must be accurate and reliable.
The data generated by the measurement procedure must
ideally be free from measurement artifacts and trustworthy
in the sense of psychometric objectivity (i.e., via visual
transparency and the comprehensibility of the measurement
procedure). The measured raw facial movement data can
later be analyzed by applying various statistical analyses
for testing different theoretical approaches in describing
the facial movement. (b) The measurement of the temporal
dynamics of facial movements should be possible for
approximately 10 min of video footage per participant
and sample sizes of around 100 participants.4 (c) The
simultaneous measurement of facial movements for the
whole face should be possible, without handicapping the
participating subject to a greater extent (e.g., via cables)
and being as unobtrusive as possible to the participant in
order to facilitate the measurement of facial movements in
natural settings. (d) The measurement procedure must be
flexible enough to be easily adapted to various research
questions/experimental settings and also be extensible by
providing various interfaces at different levels of data
processing, for example, via the use of open-source
software. Although very sophisticated solutions for partial
aspects of the proposed measurement procedure have been
developed (e.g., building an individual facial surface; Jeni,
Cohn, & Kanade, 2015; Suwajanakorn, Kemelmacher-
Shlizerman, & Seitz, 2014, or the scaling of virtual objects;
Ham, Lucey, & Singh, 2014), these approaches could
not be integrated because they are used to achieve a
different aim (e.g., a photorealistic 3D representation of
the facial surface), have technical requirements that do not
fit into our experimental setting (e.g., a moving camera
with an inertial measurement unit5), do not support our
aim of directly measuring facial movements, or are very

4This argument mainly refers to FACS coding because it is possible
with EMG or AFER procedures anyway. However, it should also be a
prerequisite for the proposed procedure.
5If the camera and the head move, the separation between head and
camera movement would be possible only with the help of a static
background that would have to be modeled as well. However, taking
the background into account would complicate the measurement
procedure.

difficult to integrate into the rest of the measurement
workflow.

The blenderFacemethod

The basic idea is simple because it adopts an approach
developed by the film industry: Around 1990, when
computers were powerful enough to allow the rendering
of animated 3D faces of figures, film directors were
confronted with the problem that scripted facial movements
of the 3D-figures (e.g., the direction, extent, and speed of
the movement of virtual facial muscles6) did not appear
authentic and plausible to human perception. This problem
was solved by employing a motion-capturing procedure:
Markers were placed on the head and on emotionally
relevant positions of an actor’s face, and the face was
recorded while the person was acting. Subsequently, the
movements of the markers were digitally tracked and
transferred onto the virtual face of a 3D figure. In principle,
the proposed procedure follows this idea; however, it is
aimed solely at measuring facial movements.7 In contrast
to the expensive equipment used in the film industry,
a single standard webcam and the open-source software
Blender (www.blender.org) are all that is needed to apply
the suggested procedure. The proposed approach uses a
3D model to represent head movements and face topology
and is therefore not subject to measurement bias due to
head movements. In addition, the proposed method is
deliberately based on markers that are applied to the face
(i.e., markers painted on the skin), opposed to the naturally
available landmark fitting procedures of AFER algorithms,
as applied for example in OpenFace (Baltrušaitis et al.,
2016). The use of applied markers means that movements of
the facial skin can be measured very precisely and reliably
even in parts of the face that are far from the available
natural facial markers (e.g., on the cheeks). Furthermore, the
proposed measurement procedure satisfies all requirements
mentioned earlier: (a) very accurate measurement at (b)
high temporal resolution for an arbitrary time period
(e.g., 10 min) with (c) the simultaneous measurement of
movements for the whole face and with (d) an open and
flexible procedure.

For the postprocessing of the measured data (e.g.,
visualization, standardization, plausibility checks), we
developed the open-source blenderFace package for the
free and open-source R statistical programming language
(R Core Team, 2016). In the following, we describe the

6In fact, the MPEG-4 standards ISO/IEC 14496-1 & 2 contain facial
animation parameters, similar to the action units used in FACS.
7The subsequent transfer of (aggregated) human facial movements
onto a virtual 3D face is possible (e.g., for emotion recognition
studies). However, it is not a central concern of this paper.

www.blender.org
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proposed procedure in principle. For a detailed description,
see the supplemental material of this article, especially
the documents “Step by Step Instructions.pdf ” for the
tracking procedure with Blender, and the vignette from
the blenderFace package “blenderFace.pdf ” on how
to postprocess facial movement data. The supplemental
material also includes an example video and training video
clips as well as example Blender data files.

Tracking setup

Illumination Because the proposed procedure is an optical
measurement, a well-illuminated, shadow-less face and
head is essential. Shadows may change the visual pattern,
which should be tracked, and thus may cause the Blender
pattern recognition algorithm to fail and to abort tracking.
This does not constitute a complete fail because Blender
is easily instructed to use an updated pattern; however,
it decelerates the tracking procedure and requires manual
intervention.8 It is also advisable to use a flicker-free LED
illumination and to switch off neon tubes because neon
tubes flicker according to their power supply frequency,
which may interfere with the webcam shutter frequency
and lead to a small but noticeable up-and-down sliding of
tracked markers, however, not impairing the blenderFace
method in general.

Camera There are no special requirements for a camera.
Any existing lens distortion, e.g., from a wide-angle lens,
can be corrected in later steps of the blenderFace method.
The camera must be firmly mounted (e.g., on top of the
computer monitor) to record the face of the participant from
a frontal view. We successfully used a Logitech C910, a
Logitech C920 Webcam, and a Mobius Actioncam with
resolutions of 640 × 480 pixels (px), 1280 × 720 px and
1920 × 1080 px at 24 and 30 frames per second (fps).
The higher the resolution of the camera, the more accurate
the measurement of facial movements, however, at the cost
of a larger video clip file size. Moreover, the final video
clip file size also depends on video length and the type of
compression that is chosen for the video clip file.

Regarding the optimal frame rate, according to the
Nyquist–Shannon sampling theorem (Shannon, 1949), a
signal should be recorded at twice the frequency of the
maximal frequency that is to be measured. For practical
reasons, for example due to noise and measurement errors,
the rate should be 4 to 6 times that high (Fridlund &
Cacioppo, 1986). Because the fastest facial movements

8With unlimited time resources, the markers could also be set manually
for each frame, even if no marker is visible (more a guess than a
measurement). This would also result in a “successful tracking”, but
probably at the expense of a decrease in model fit.

are in a range of approximately 250–300 ms (Dimberg,
Thunberg, & Grunedal, 2002; Porter & Brinke, 2008; Yan,
Wu, Liang, Chen, & Fu, 2013), a framerate of 24 or
30 fps is still more precise by a factor of ˜10 and can
therefore be considered sufficient to measure even rapid
facial movements. To achieve a high and reliable video
quality, automatic adaption of the frame rate, aperture, etc.
should be disabled or held constant by the webcam driver
configuration. In addition, the video should be optimally
saved in a lossless format or at high data rates in order
to prevent compression artifacts in the video clip and to
increase tracking speed in a later step of this procedure.

Synchronization Options for and the expense of synchro-
nizing the recorded footage with external events (e.g., the
beginning and the ending of the stimulus presentations)
depend to a large extent on experimental and laboratory
settings. From the technical side, Blender is capable of
processing time codes (e.g., from time-code capable cam-
eras) or building time-code proxies, which may be used in
combination with time-code-capable stimulus presentation
software or data-recording devices (e.g., EEG). However,
in many cases, the technical expense of using a time-code
or beacon synchronization may be more than is necessary,
and a burn-in of a time stamp with the option of addi-
tional information (e.g., the subject number, action markers,
stimulus presentation episodes) inserted into the video data
stream should be sufficient. As a fallback, it has been shown
to be advantageous to have a mirror or a second moni-
tor behind a participant’s back, thus recording the stimuli
as well. This provides a simple yet effective, reliable, and
technically easy way to synchronize the presentation of
the stimuli.

Characteristics of the participants In general, there are
no restrictions on the identification of participants who
are suitable for undergoing the measurement procedure.
Table 1 presents an overview of the reasons that participants
had to be excluded from the studies presented in this
paper. Problems may occur when the markers that need
to be tracked are drawn on the participants’ skin: The
markers should be placed in a way that prevents them from
disappearing into skin folds during expression of emotion
(e.g., in the fold of a smile). Heavily made up or bearded
participants are also difficult to track because the markers
might not be clearly visible. However, this does not mean
that such participants must be completely excluded, but
marker tracking needs more corrections and manual work
to ensure that the markers are tracked correctly. Facial
markers that are visible through participants’ glasses are
more problematic because they appear in a biased position.
This leads to a higher tracking error because lens distortion
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Table 1 Reasons and number of participants excluded from data analysis in studies 1 and 2

Study 1 Study 2

N recruited 55 150

No / too weak / wrong markers 7 0

Extreme head movements (e.g., shaking with laughter, asking the investigator, “fidgety” participant) 4 12

Recording issues (e.g., footage over- or underexposed, cast shadows, technical problems) 3 19a

Contrary to instructions, participant’s hand covers the markers during large parts of the recording 2 2

Extreme / no head movement during parallax phase; facial movement during parallax phase 0 2

The participant was heavily bearded 0 1

The participant wore large glasses 0 1

N analyzed 39 113

Note. Number of participants in Studies 1 and 2 who had to be excluded from the analysis for the reasons given in the table
aIn Study 2, we switched off the neon tubes to avoid the flickering of the video recording. However, this led to the footage being overexposed /
underexposed in the early morning and late evening hours

by glasses is not considered in Blender’s optical model.9

Therefore, markers that are visible through glasses should
not be tracked. No further standardization procedures (e.g.,
a fixed distance between the camera and the face at
the beginning of the measurements) are required for the
participant.

Markers For the proposed procedure three types of markers
are needed: (a) static markers on the head of the
participant to track head movements and disentangle these
movements from movements that are part of emotional
facial expressions, (b) surface markers to estimate the
individual’s facial surface, and (c) emotion markers to
finally track the emotionally relevant facial movements. To
measure head movements, 12 static head markers (Blender
needs a minimum of eight) that must be visible in all frames
in the video clip are recommended to track. These markers
must be mounted in a fixed position, for example, on a cap
or on the headphones (see Fig. 1) and tracked throughout
the video. If some markers are hidden by parts of the face
or the head (e.g., during extreme head turns), it is possible
to track additional static head markers that overlap for a few
frames with existing static head markers at the beginning
and end of that episode. In addition, to ensure a reliable and
accurate three-dimensional tracking of head movements, the
static head markers must be placed on different levels of the
depth of the head (e.g., some on the forehead and some at
the depth-level of the ears).

A pattern of 68 surface/emotion markers on the
participant’s skin (cf. Figs. 1 and 2) is needed to allow
a precise measurement of facial movement. Markers,
irrespective of type, should be easily recognizable as a

9Although it would be possible to model the level of distortion caused
by the glasses in Blender, in our opinion, the end does not justify the
means as the necessary effort would be too great.

relatively stable pattern by the Blender pattern recognition
algorithm over the sequence of the frames of the video clip.
This is best achieved by a large contrast in shape, brightness,
and color compared with the background. In the studies
presented in this paper, we used colored glue dots on a cap
and a headphone for static, distinct, and quickly drawn black
fluid eyelid-liner dots on the facial skin for surface/emotion

Fig. 1 Participant with glue dots as static markers on a cap and
headphone and black fluid eyelid liner dots as surface- and emotion
markers painted on the facial skin
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Fig. 2 Positions of proposed facial surface and facial emotion markers.
The left part of the figure shows a 2D projection and the right part a
3D projection of the markers on the face. In the left part of figure, grey

markers represent the facial surface markers needed to estimate the
individual’s facial surface; black markers additionally represent facial
emotion markers that may be associated with the AUs from the FACS

markers were used, which can reliably be recognized as a
stable pattern by Blender’s tracking algorithm (see Fig. 1).
This preparation step was completed in approximately 2 min
per participant in our studies.10

Parallax phase To accurately estimate the three-dimensio-
nal surface of the participant’s face, the 68 surface markers
(see grey dots in left part of Fig. 2) are needed on the par-
ticipant’s face to allow for a stable and reliable assessment
in three dimensions.11 It is sufficient to track the surface
markers for only a short episode (e.g., 100 – 200 frames)
to estimate an individual’s facial surface. It is important

10At the beginning of data collection the research assistant needed
about 5 min to prepare the test subjects; after some practice, at the end,
it was less than 1 min.
11In general, the number of facial surface markers is arbitrary, but the
suggested number of 68 markers has been confirmed to allow a good
approximation of an individual’s facial surface. As an alternative to an
individual mask, it is also possible to use a standard facial surface or
even a plane as a general projection surface for the emotion markers.
However, this occurs at the cost of a loss in measurement accuracy.

that during this episode, no facial movement is shown and
that the episode contains parallax of the head. Parallax is
displacement in the apparent position of an object viewed
along two different lines of sight. To be able to use
images from the video clip to estimate the three-dimensional
surface of the face, at least two images from different lines
of sight are needed. In our case, this is the head with the face
viewed from two slightly different perspectives.

Therefore, a short parallax phase at the beginning or
the end of the video is needed to generate parallax for
the face in order to provide an individual estimate of the
three-dimensional facial surface: We instructed participants
to direct the tips of their noses toward the camera lens
and toward the middle of the right border of the computer
screen for 3 s at each head position. In general, any brief
episode in the footage that shows a slight head movement
with no facial expression can be used. Therefore, a suitable
parallax episode may also be found for participants who do
not comply with the parallax phase instructions. However,
participants who do not show any head movement at all
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(during the parallax phase or in any other phase) or always
show a facial movement during the parallax phase have to
be excluded from the tracking procedure. An inappropriate
parallax phase (very slight head movements or facial
movement during the parallax phase) will result in a high
value for the solve error and will thus result in an imprecise
3D model and an inaccurate estimation of head movement.

The estimated individual facial surface is needed to
provide a projection surface for the emotionally relevant
markers. Surface markers at emotionally relevant positions
on the face can be used not only for facial 3D surface
estimation, but also tracked for the emotionally relevant
episodes from the video clip. The emotionally relevant
episodes are the sections of the video clip that are
of substantial interest. This can be, for example, a
social interaction or several phases of an experiment in
which different stimuli are presented. The movement of
these emotion markers represents the outcome of this
measurement procedure and can be interpreted emotionally
(see the black dots in the left part of Fig. 2). Therefore,
emotion markers have to be tracked only for the episodes for
which researchers want to measure emotional expression.

Tracking procedure

In this section, we describe the general blenderFace method
of tracking the static markers on the head, the facial markers
used to generate an individual 3D model of a participant’s
face, and the emotion markers. This procedure ensures
that the movement of the markers is measured with high
precision and independently of head movements. At the end
of this section, raw motion data as well as scaling data are
exported for further standardization and statistical analyses.

Starting with Blender version 2.61, the Movie Clip Editor
provided a motion tracking module that relies on a visual
pattern recognition algorithm. In this algorithm, one or more
key visual patterns (markers in our case) have to be defined
on a start frame. In the sequence of follow-up frames, these
key patterns are searched for in a predefined search area.

Tracking head movements In the first step of the tracking
procedure, the static head markers have to be tracked to
obtain information about head movements. In addition,
the 68 facial surface markers must be tracked for the
short parallax phase of the video clip. Subsequently, from
the parallax displacement of the tracked markers for the
different frames of the video clip, 3D coordinates for
each tracked marker, along with the Blender’s virtual
camera movement, are computed in the Blender 3D space.
In contrast to the setting in reality, in which the head
and the (neutral) face turns in front of a static camera,
in Blender, the movement is reattributed to the camera.
Therefore, in Blender’s 3D space, head movements are

Fig. 3 Blender screenshot: the orange pyramid in the upper left
represents the camera; the black line represents the movement of the
camera in front of the grey static facial mask; the orange circles on the
mask represent the tracked emotion markers projected from the camera
onto the facial mask (blue dotted lines)

transformed into virtual camera movements and the head
remains in a static position (see Fig. 3). For example, a
head turning upward is represented as a camera moving
downward, and a head turning to the left is represented
as a camera moving to the right. This reattribution is
optically,12 logically, and mathematically equivalent to the
original movement. Because of the simultaneous estimation
of the 3D coordinates of the tracked markers, along
with Blender’s virtual camera movement, they both are
represent as one “marker coordinates/camera track” unit
in Blender. This has three advantages for our purpose:
(a) This “marker coordinates/camera track” unit can be
moved to the origin of Blender’s 3D coordinate system
without affecting the proportions. This is important in
later steps of the blenderFace method because it facilitates
the exporting of meaningful coordinates. (b) The “marker
coordinates/camera track” unit can easily be rescaled, also
without affecting the proportions. This is used in later
steps of the blenderFace method to rescale the “marker
coordinates/camera track” unit, for example, into mm. (c)
Due to the reattribution of the movement to the camera
the virtual head is static and does not move in Blender’s
virtual coordinate system. As a consequence, the emotion
markers that are tracked later will no longer be affected by
head movements, and this also simplifies the exporting of
emotion marker movements in later steps of the blenderFace
method.

The overall accuracy of this “marker coordinates/camera
track” unit estimation is made available in Blender’s
solve error parameter. The solve error represents the mean

12Ignoring the background.
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deviation of the marker position on the basis of the parallax
computation from the actual tracked marker position in the
video clip. The solve error should be below 0.3, which
means a mean deviation of a third of a pixel between
model-based tracks and the tracked markers on the video
clip.13

Building the individual facial surface In the second step, the
individual 3D surface of the participant’s face is built on
the basis of the 3D coordinates of the 68 surface markers.
First, the facial surface is constructed by connecting four
markers at a time to form rectangles (see the connection
lines between the facial surface markers in the left part of
Fig. 2). Subsequently, this rough approximation of the facial
surface by the rectangles is interpolated and smoothed to
closely fit the participant’s real facial surface. Afterward,
the tip of the nose in the facial surface is centered at the
origin of Blenders 3D coordinate system.

Tracking emotion markers In a third step, the facial
emotion markers must be tracked for the emotionally
relevant episodes from the video clip. The movement of
these markers is also exported into Blender’s 3D space,
namely as a projection from the moving camera onto
the static facial surface (Fig. 3). The movement of these
markers on the facial surface represents the movement of the
markers painted on the participants’ skin. A python script
uses Blender’s application programming interface (API)
to access the 3D coordinates of the emotion markers per
frame, exports the coordinates, and saves them in a comma-
separated values file (CSV) for each participant for further
data processing.

Scaling and standardization procedures Because coordi-
nates in Blender are represented in Blender’s default unit of
measurement, the so-called Blender Unit (BU), two individ-
ual scaling procedures must be followed in a fourth and last
step to allow the Blender data to be rescaled into meaningful
measurement units. In principle, 1 BU roughly represents 1
meter in the real world.14 However, the process of taking
the data from the tracks of the video clip and transform-
ing them into Blender’s 3D space cannot be controlled and
is therefore relatively arbitrary. Therefore, a BU measure-
ment of a real-world object of known size is needed for
the rescaling. In practice, the diameter of a glue dot on a
participant’s headphone with a known diameter of—in our

13Unfortunately, this value is not mentioned in the blender doc-
umentation but only in tutorials (e.g., DVD Training 9: Track,
Match, Blend! (https://store.blender.org/product/track-match-blend/)
or on websites (e.g., https://blender.stackexchange.com/questions/
53435/solve-error-high-with-good-track).
14https://www.blender.org/manual/glossary/index.html

case—8 mm is measured in BUs. With this measurement
of distance, it is possible to rescale the marker movement,
originally measured in BUs, into mm. The second standard-
ization procedure addresses the problem of comparing the
facial expressions of participants with different face sizes,
for example, a child’s face with an adult’s face. To prevent
an effect of a potential bias in face size on the extent of facial
movement, the eye–eye distance must be measured and
used to rescale movement along the x-axis. Accordingly, the
eye–mouth corner distance is used to rescale the movement
along the y-axis. This allows marker movements to be rep-
resented in a “standardized” face so that comparisons of the
movement can be made across individuals.

The complete tracking of 14 emotion markers from a 12-
min video clip takes approximately 40 min.15 In addition, it
meets all the requirements described earlier when we argued
for the necessity of a new method for measuring emotional
facial expression.

Postprocessing of blender data

The data generated by the proposed Blender tracking
procedure are saved in a CSV file for each participant
and need to be postprocessed in order to be analyzed
statistically. Because the amount of data and the resulting
file size can get quite large,16 and also so that we would have
a standardized postprocessing procedure, we developed
the blenderFace package17 for the R language (R
Core Team, 2016). The blenderFace package serves
to (a) concatenate the single CSV files into one R-data
file, (b) rescale the data into mm or into a standardized
face, (c) center the marker movement at the onset of
stimulus presentation, (d) plot raw and aggregated data
for plausibility and descriptive checks, (e) compute higher
order variables of movement, such as the angle and the
median distance of a marker movement, and (f) makes
use of several CPU cores, if available, to speed up

15This assessment is related to the video quality (including lighting,
marker quality, head movements) of the sample video in the
supplemental material. In the case of poor illumination, poorly
visible markers, strong head movements, and so forth, more manual
corrections are necessary and the processing time of a video clip is
extended.
16For example, if 14 markers are tracked in a 12 min video of a
participant, there will be 14 marker * 3 dimensions * 12 min * 60 s *
33 fps = 997920 data points per participant. Blender internally stores
the data points as a “float” data type. In the CSV file, each data
point is saved with 20 characters (including decimal points and value
separators, but ignoring negative signs and NAs). If each character
of a data point is represented by one byte (assuming an 8-Bit ASCII
character set), the tracked video clip of a participant results in a 997920
* 20 = 19.96 MB CSV file.
17https://github.com/axzinker/blenderFace

https://store.blender.org/product/track-match-blend/
https://blender.stackexchange.com/questions/53435/solve-error-high-with-good-track
https://blender.stackexchange.com/questions/53435/solve-error-high-with-good-track
https://www.blender.org/manual/glossary/index.html
https://github.com/axzinker/blenderFace
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the postprocessing. Examples of these functions will be
presented in the sections describing Studies 1 and 2. For
a detailed view of the procedures, see the vignette of
the blenderFace package. In the following, the general
principles of the functions are described.

Concatenating Blender’s CSV data The first step in postpro-
cessing is to concatenate the Blender data for each partici-
pant into one large data file that can be analyzed more easily.
The appropriate function in the blenderFace package
performs plausibility checks for example, it tests whether
unique marker names have been used in the CSV files and
also integrates the data when different numbers of markers
have been tracked for the participants.

Rescaling into meaningful measurement units In a second
step, the Blender data, which are scaled in BUs, need to
be rescaled into more meaningful units of measurement.
The blenderFace package contains two functions to
perform a rescaling into either mm or a standardized face.
In principle, the rescaling is performed via the rule of
proportion.

To rescale into mm, we use the measurement in BUs of an
object for which the dimensions in the real world are known.
In the Blender tracking procedure, the diameter of an 8-mm
glue dot is used. If the individual measurement of this glue
dot diameter in BUs was 0.03, for example, the proportions
would be constituted as follows:
glue dot size in BU

glue dot size in mm
= value in BUs to be scaled

outcome value in mm

0.03

8
= value in BUs to be scaled

outcome value in mm
After adequately solving this equation, it is possible to
rescale the x-, y-, and z-coordinates of the markers into mm.

Rescaling the Blender data into a standardized face
follows a similar procedure. We define the standardized
face as a two-dimensional square of length 1. According
to general proportional features of the face, the eye–eye,
and the eye–mouth distances are each set to be 1/3 of head
width and head height, respectively. The individual eye–eye
distance18 and eye–mouth corner distance were measured
in the preceding Blender tracking procedure and are then
used to rescale the x-axis and the y-axis, accordingly. For
example, if the individual eye–eye distance in BU is 0.4, the
rule of proportion is constituted as

0.4

1/3
= value in BUs to be scaled

standardized outcome value

for the x-axis. The y-axis is scaled accordingly. However,
we restrained from rescaling the z-axis because we were

18In fact, the pupil–pupil distance is measured while the participant
looks directly into the camera.

not able to find a convincing scale factor. For example, the
distance between the eyes is largely stable in proportion
to the head and body size, because this distance is needed
for stereoscopic vision. This is not the case for the height
of the nose (which might be used to rescale the z-axis)
because the height of the nose differs significantly between
individuals and may be influenced by the climate zone
that an individual’s ancestors came from (Noback, Harvati,
& Spoor, 2001). The z-axis may be considered in later
versions of the blenderFace package; however, for the
statistical analyses and two dimensional plots presented
in the following, no z-axis is needed. The reason is that
according to test runs only a negligible amount of variability
in facial expression movements takes place along the z-
axis. Therefore, ignoring the z-axis provides computational
efficiency with presumably very little loss of information.
Moreover, the z-values are predetermined by the facial
surface on which the markers move. Therefore, using the
3D facial surface as a projection surface has the function
of preventing a projection bias that, for example, a flat
projection surface would produce.

Centering data at the beginning of an emotionally relevant
episode Because individual faces differ in their size and
topology, it is not possible to draw the markers at the
exact same standardized position of the face for each
participant. If uncorrected, between-persons differences in
drawn marker positions would introduce unsystematic error
into the measurement procedure. This means that if we
aggregated uncorrected raw data across participants, the
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Fig. 4 Relationship between CPU cores used and the duration in
minutes for the emotional episodes centering process for different
processors. All calculations were done in RAM without swapping.
The data set used for centering contained 113 participants, 14 emotion
markers, and eight emotional episodes per participant
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Fig. 5 Raw data plot of centered marker movements of a standardized
face per emotionally relevant episode and aggregated over participants.
For each stimulus episode (posing happiness, sadness, disgust and

anger), four symmetrical facial markers were plotted on the forehead,
the cheeks, the nasolabial area, and on the mouth corners

variability in start positions of a marker would bias the start
positions of the movement. Therefore, it is necessary to
center the markers at the onset of each emotionally relevant
episode. This is possible because it is not the absolute
position of the marker on the face that is of interest but the
marker’s movement in reaction to a presented stimulus.

Depending on the experimental settings (e.g., the number
of subjects, the number of experimental conditions, the
number of tracked emotion markers, the length of the
tracked footage), the raw data set containing the tracked

markers can become relatively large.19 To center the
emotionally relevant episodes of the raw data set, the
corresponding R function can use several CPU cores to
speed up the centering process. To estimate how long the
centering process might take, Fig. 4 shows the relationship

19For example, the raw R data file from Study 2 with 113 participants,
eight experimental conditions and 14 emotion markers was tracked for
approximately 12 min per participant and had a file size of 240 MB.
See also footnote 16.
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between the CPU cores that were used and the duration of
the centering process in minutes for different processors.

In principle, the centering is performed by selecting
the values of the stimulus onset frame for the x-, y-,
and z-axes of a marker per presented stimulus per
subject. Subsequently, these values are subtracted from
the corresponding values of the following frames for the
duration of the episode in which the stimulus is presented.
For example, if the onset frame for the stimulus episode
“posing disgust” of Subject 37 for the x-values of the marker
position contains “−14, 5” this value is subtracted from
the x-axis values of all frames within the stimulus episode
“posing disgust”.

Visual representation of the data A visual representation
of the data at different levels of aggregation offers a quick
check of plausibility and also allows possible outliers and
artifacts to be detected (e.g., markers disappearing in skin
folds, markers hidden by a hand that is moved in front of
the face, tracks jumping between two different positions
because of two highly probable matching patterns, etc.). To
keep things simple, all plot functions commonly ignore the
z-axis, for the reasons given above.

The blenderFace package offers functions to plot (a)
individual or aggregated raw data or marker movement on
a standardized face to get an impression of overall marker
movement and detect markers that may contain outliers
(e.g., Fig. 5), (b) individual median movement per marker

Fig. 6 Plot of the centered median movement of the right cheek marker
(Cheek R) for the “disgust” stimulus episode for each individual as
denoted by the subject number. Movement is scaled to the standardized
face. The x- and y-axes of the plot have the same range so that the
plotted angle reflects the correct direction of movement

to detect individuals with unusual marker movement (e.g.,
Fig. 6), (c) x- and y-movement of (symmetrical painted)
markers per frame to identify frames with suspicious
marker movement (e.g., Fig. 7), and (d) individual or
aggregate median movement per stimulus episode with
quartile ellipses to get an overall impression of marker
movement per presented stimulus (e.g., Fig. 8). These
plots are explained in more detail in the sections in which
Studies 1 and 2 are presented.

Higher order parameters of facial movement After the
Blender data are postprocessed and corrected for outliers
and artifacts, it is possible to analyze the data in several
ways. Currently, the blenderFace package provides
functions to compute the angle and the distance to compare
marker movements with respect to direction and distance
across different stimuli. However, the package will be
developed continuously to extend its capabilities. One of our
tasks, for example, is to add functions to compute speed, the
onset, apex, and offset phases of an expressive episode as
well as symmetry parameters of facial movement.

Study 1

The main purpose of Study 1 was to determine the
optimal tracking settings, tracking parameters, and tracking

Fig. 7 Plot of Participant 37 for the disgust stimulus episode (Frames
1707–1969) for the right (red, orange) and left (blue, green) x- and
y-axis movements of the cheek markers. Note that the origin of the
coordinate system is at the tip of the nose; therefore, the left and
right markers target the opposite directions on the x-axis (red and blue
lines). The plot’s x-axis represents the frame numbers, and the y-axis
represents the movement in mm
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Fig. 8 Plot of the centered median movement in mm of the four
symmetrical markers per stimulus episode aggregated over participants
in Study 1. The ellipse represents the quartiles of the movement
distribution for the x- and y-axes. The x- and y-axes of the plots are
scaled to the same range so that the angle represents the true direction
of movement

procedure for Blender. These properties were tested in
a small sample comprising 55 participants and eight
emotion markers. In addition, in this study, we tested the
required hardware characteristics (e.g., camera, processing
performance), illumination settings, and synchronization
with the stimulus presentation procedure.

Method

Participants A total of 55 students from different disci-
plines at the University of Koblenz-Landau, Germany were
recruited and received either course credit or were paid for
their participation. However, due to improper lighting con-
ditions, incorrectly placed markers, obliterated markers, or
improper behavior by the participants (see Table 1), data
from only 39 participants (age M = 22.1, SD = 5.78; 77%
female) could be used in the subsequent analyses.

Design and procedure In Study 1, participants’ data were
collected in individual sessions. At the beginning of each
session, black markers were painted on each participant’s
face. The participants were equipped with a black cap and
a black headphone with placed colored glue dots. Four
emotion markers were used: Forehead markers were placed
at the positions of the left and right inner eye brow, a
nasolabial marker was placed left and right beneath the
nose, a mouth marker was placed at the left and right corners
of the mouth, and left and right cheek markers were placed
on the cheeks. These markers were placed at the cheeks to
provide a measurement of movement when natural markers
are not available.

Based on a script, the record of the video (FFmpeg,
ver. 2.2.16) and the presentation of the stimuli was started
and stopped simultaneously. The presentation of the stimuli
was implemented in Milliseconds Inquisit (ver. 3.0.6.0),
whereas each consecutive stimulus was presented with a
predefined duration. First, the participants were instructed
to direct the tip of the nose to the upper left corner
and to the middle of the right border of the computer
screen. This parallax phase was implemented for 10 s
at each position to obtain some parallax for the facial
surface estimation. Subsequently, the participants were
asked to show the emotions happiness, sadness, disgust,
and anger for 10 s at a time. The instructions read “Please
show the emotion happiness” (in the case of happiness),
accompanied by an example picture of a facial expression
of the corresponding emotion taken from Olszanowski,
Pochwatko, Kukliński, Ścibor-Rylski, and Ohme (2008).
The instructions were presented below the picture along
with a 10 s countdown. Thereafter, additional stimuli were
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presented to the participant; however, these were outside
the scope of the present study. Finally, the participants were
debriefed and were compensated for their participation.

Measures Tracking was done for the complete video clip,
including the parallax phase and facial expression episodes.
However, due to missing, not visible, or obliterated facial
surface markers, we decided not to estimate individual facial
surfaces, but to use a standard facial surface mask that was
based on averaged faces from preliminary investigations.

Thereafter, the symmetrical four facial emotion markers
were tracked and projected onto the standard facial surface
mask. Subsequently, the tracked emotion markers were
exported into a CSV file, matched with the stimulus
presentation episodes, and merged into a single raw data file
in R and saved for further processing.

Results

Accuracy of the measurement procedure To estimate the
accuracy of the tracking procedure, we calculated the
following parameters: (a) Accuracy of measuring head
movements and estimating the facial surface: The solve
error represents the mean deviation of the tracked markers
of the video and the marker positions estimated by the
model (and projected onto a 2D surface). This solve error
was below 0.3 for all participants, representing a mean
deviation between the video-tracked marker position and
the model-estimated marker position of maximally one third
of a pixel. (b) Accuracy of measurement of the scaling
parameters: The measurement of the distances between the
eyes, the mouth corners, the left eye–left mouth corner,
and the right eye–right mouth corner can be used to
compute reliability. The reliability of these four measures
was α = .996 and also reflected interindividual differences
in head proportions (i.e., participants had different mouth
widths compared with their distance between their eyes). (c)
Accuracy of the model building and rescaling procedure:
In a pilot study a paper cuboid of 10 × 10 × 20 cm,
roughly representing the area and the size the blenderFace
method is intended for, was constructed and equipped with
glue dots. For this cuboid, the real-world positions of
the glue dots were known. The cuboid was recorded on
video, and the blenderFace measurement procedure with the
subsequent scaling into mm was performed. The distances
that were measured and scaled by Blender differed from the
real-world measures by a mean of M = 0.80 mm (SD = 0.54)
with a maximum of 1.82 mm for the 12 distances that were
measured. Although the placement of the glue dots was
performed very carefully by hand, this measurement also
includes a manufacturing bias for the glue dot placement.
Altogether, these parameters do not directly estimate the
accuracy of the measurement of emotion marker movement

but show that the measurement procedure itself is very
accurate.

Outliers and artifacts The raw data file was rescaled into
mm and also into the standardized face. Both rescaled data
sets were centered per stimulus episode (posing happiness,
posing sadness, posing disgust, and posing anger). For each
stimulus episode, a raw data plot was generated to detect
outliers or unusual movements (see Fig. 5).

A precise inspection of these plots20 revealed potential
outliers. A deeper analysis of these marker movements was
indicated to rule out errors or artifacts. As an example, this
procedure will be shown for the right cheek marker in the
“posing disgust” episode; however, it was performed for
all markers in all stimulus episodes. The lower left plot
of Fig. 5 for the “posing disgust” episode revealed an
unusual movement pattern for the right cheek marker to
the left direction. This movement did not appear to be
common to all participants; however, this could not be
reliably determined by plotting the aggregated participants.
Therefore, a second plot of individual median21 movement
for the right cheek marker of the disgust episode revealed
that Participant number 37 had caused this deviant
movement (Fig. 6).

Once the participant, the marker, and the episode for
which the outlier or artifact occurred were identified, a very
specific inspection of the x- and y-movement of the marker
per frame was performed. Figure 7 shows the x- and y-
movement of the right cheek marker, along with the left
cheek marker for Participant 37 for the frames of the “pos-
ing disgust” episode. The deviation in the plot can be inter-
preted in mm, because the scaled-to-mm dataset was used.

However, the plot revealed no artifacts or outliers but
showed an asymmetrical expression of disgust for the cheek
markers of Participant 37. Whereas the left and the right y-
axis lines (yellow and green) run parallel to a large extent,
this was not true for the x-axis (red and blue lines). Note
that the origin of the coordinate system is at the tip of the
nose, which leads to the fact that on the x-axis in the plot,
the markers on the left and the right sides of the face run in
opposite directions. Nevertheless, if the x-value of the right
cheek marker (red line) were to be mirrored along y = 0,
the median deviation would be stronger (≈ 6 mm) compared
with the x-value of the left cheek marker (blue line, ≈
4 mm). A visual inspection of frames 1,700 to 2,000 for the
video clip of the Participant 37 confirmed the assumption of
asymmetry in the expression of disgust.

20Changing the alpha parameter of the blenderFace function,
which affects the over-plotting density, is very helpful for this purpose.
21Because the movement is unlikely to be normally distributed, the
median rather than the mean was chosen for aggregation.
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For other cases in which artifacts were actually detected,
for example, tracks jumping between two positions because
the search pattern had a high probability of being fit to
two positions in the search area, the artifacts were corrected.
This was done in Blender by setting a new pattern for this
track and subsequently tracking, exporting, and postpro-
cessing the data. For cases in which a retracking was not
possible (e.g., bad illumination conditions, hidden markers),
the x-, y-, and z-values of this marker were set to “not avail-
able” (NA) in the raw data file in R for the corresponding
frames, with the subsequent postprocessing of raw data.

Facial movement in response to the emotional stimuli
Constituting the main outcome of the procedure, we created
a combined plot of marker movement per stimulus episode
aggregated over participants. Figure 8 shows the markers
that were arranged in accordance with their actual facial
position, beginning with the left and right forehead markers,
the cheek markers, the nasolabial markers, and the mouth
corner markers. Data scaled to mm were used, and the x-
and the y-axes were scaled to the same range. Therefore,
the direction of the movement reflected the true movement
of the facial skin. The ellipse around the median point
represents the quartiles of the distribution of movement for
the x- and the y-axis. In addition to the stimulus episodes
in which participants showed happiness, sadness, disgust,
and anger, a neutral episode—taken from the parallax phase

of the video clip—was added to reflect measurement noise
when no emotional expression was shown. However, the
neutral episode reflects not only the measurement error of
the blenderFace method but also unintentional movements
(e.g., mouth corner movement occurring while swallowing).
The relevant parameters for this plot, the angle, and the
distance for each stimulus episode per marker, can also be
printed (see Table 2).

Discussion

The study was conducted to test the blenderFace method
and its border conditions. As a result, the blenderFace
method can be implemented with a good, shadow-free
illumination on standard hardware (computer, webcam)
using only on open-source software. The tracking procedure
and therefore the measurement turned out to be very
accurate because the mean accuracy for the tracks was
below 1 pixel and below 1 mm, respectively. Because
the blenderFace method uses markers that are painted on
the facial skin, it becomes possible to measure movement
in facial areas that lack natural landmarks (e.g., on the
cheeks). In the postprocessing of the Blender data, a
reliable detection of outliers and artifacts is possible.
When the data are corrected, the statistical analyses of
movements of the facial skin can be performed. The
measured movement corresponds closely to the definition

Table 2 Angle and distance of facial movement in study 1

Stimulus Foreh L Angle Foreh L Distance Foreh R Angle Foreh R Distance

Disgust 315.97 0.85 234.49 1.02

Happy 228.11 0.14 337.24 0.28

Sad 335.81 0.13 211.61 0.07

Anger 348.65 0.95 201.26 1.40

Cheek L Angle Cheek L Distance Cheek R Angle Cheek R Distance

Disgust 89.02 4.57 90.28 4.98

Happy 119.90 4.75 54.75 4.78

Sad 308.31 1.44 237.08 1.46

Anger 76.83 0.82 111.97 0.89

Nose L Angle Nose L Distance Nose R Angle Nose R Distance

Disgust 87.92 6.48 88.13 6.54

Happy 125.37 4.94 52.35 5.33

Sad 299.22 1.36 245.19 1.57

Anger 73.10 0.62 117.18 0.57

Mouth L Angle Mouth L Distance Mouth R Angle Mouth R Distance

Disgust 89.64 3.37 90.63 3.98

Happy 130.78 6.01 50.13 6.31

Sad 304.12 1.46 247.59 2.21

Anger 320.87 0.93 211.25 0.80

Note. Angle (values in degree) and median distance (values in mm) of marker movement aggregated over participants per stimulus episode of
Study 1. Note, that 0 degree describes a movement to the right, and that on the x-axis left and right markers move in the opposite direction
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of the EMFACS/FACSAID (see Ekman & Hager, 2002;
Friesen & Ekman, 1983). For example, for the emotion
of disgust, the cheek, the nose, and the mouth markers
move upwards, which represents the activation of AU 9
(nose wrinkler) and AU 10 (upper lip raiser). For the
emotion happiness the cheek-, the nose-, and the mouth
markers move upwards and sideways, thus representing the
activation of AU 6 (cheek raiser) and AU 12 (lip corner
puller).

In a second study, the blenderFace method was tested
with a larger number of simultaneously recorded emotion
markers, with a larger sample, and by estimating each
participant’s individual facial surface. In addition, technical
improvements that facilitate the synchronization of the
stimulus presentation with the timescale of the video clip
were checked (e.g., a timestamp and the participant number
burnt into the video clip).

Study 2

The aim of Study 2 was to test the full set of proposed
markers (see Fig. 2), test the improved experimental settings
(e.g., lighting, video compression, etc.), test the improved
stimulus-video synchronization markers (e.g., video time
stamp branding), and replicate the findings of Study 1.

Because there were more markers to track, it was no
longer practical to use marker labels that were based on
facial landmarks (e.g., “mouth corner”, “inner eye brows”).
A labeling scheme based on the FACS (Ekman & Friesen,
1978; Ekman et al., 2002) using Action Units (AUs) as
marker labels is also inappropriate, because an AU defines
the position of a marker on the face along with the direction
of the movement. In contrast, the blenderFace method
measures the visible movement of a marker drawn on the
facial skin, which may move in virtually any direction.
Therefore, we decided to use a straightforward labeling
scheme defining only the position of the marker on the face
(see left part of Fig. 2): Letters define the x-axis position in
the sense of a longitude, whereas numbers define the y-axis
position (i.e., latitude) of a marker for the surface marker
mesh. The face is divided vertically by the “A”-axis—going
form the center of the forehead, via the tip of the nose to
the chin—in two symmetrical parts, which were labeled as
“left” and “right” part of the face. Left and right refers to
when looking at a face vis-à-vis (not the left and right part
of the own face). Starting from the “A”-axis, the subsequent
vertical axes are labeled “B”, “C”, “D”, and “E” in the
direction to the ears, combined with the label “L” for the
left part, and “R” for the right part of the face. This labeling
scheme facilitates the comparison of corresponding markers
on the two sides of the face. The horizontal grid lines are
labeled starting from top to bottom, for example, “1” at the

upper forehead, via “5” intersecting the tip of the nose, to
“10” at the bottom of the chin. For example, the marker
“A5” denotes the tip of the nose, and “CL7” the left corner
of the mouth.

Method

Participants One hundred fifty students from different
disciplines at the University of Koblenz-Landau, Germany
were recruited and received either course credit or were
paid for their participation. However, 37 participants
were excluded due to illumination problems, inappropriate
adjustments of the camera drivers (e.g., autofocus, auto-
brightness and contrast), hidden markers, or extreme head
movements (see Table 1). A total of 113 participants (age
M = 23.1, SD = 2.3; 82% female) could be used in further
analyses.

Design and procedure In Study 2 participant’s data were
collected in individual sessions as the last part of an
experimental sequence that fell outside the scope of the
present article. As a cover story, the entire experimental
sequence was presented as being about eye tracking. Similar
to Study 1, before the experimental sequence began, the
participant was equipped with a marker cap and marker
headphones. In contrast to Study 1, the participants were
painted with the full set of 68 facial markers (see Figs. 1
and 2). Again, the simultaneous beginning and end of
the video recording and the stimulus presentation was
controlled by a script. For additional video - stimulus
presentation synchronization, FFmpeg was used to add the
time code, the subject number, and stimulus episode to
the video clip. Further on, a mirror in the back of the
participants allowed the recording of the presented sti-
muli, which grants a synchronization on video frame level.

The participants were asked to show a neutral, a
disgusted, a happy, and a fearful facial expression for 5 s
each. The instructions to show an emotion were given
by the sentence “Please show the emotion . . . ” along
with a countdown of 5 s presented at the bottom of the
screen. However, we did not present an example picture
of the corresponding emotion to prevent participants from
imitating the exact same expression that was shown in the
picture. In the last part of the experimental episode relevant
to the present study, the participants were asked to point
their tip of the nose directly into the webcam and to the
middle of the right border of the computer monitor for
5 s each. Again, this was done to obtain a parallax for
estimating the individual’s facial surface.

Thereafter, further stimuli were presented. However,
these were outside the scope of the present investigation.
Finally, the participants were debriefed and were given
course credits or were paid for their participation.
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Measures Analogous to Study 1, the tracking of the static
head markers was performed for each participant’s complete
video clip, whereas the 68 surface markers were tracked
only for the short parallax episode. Subsequently, the head
movements were estimated and the 3D surfaces of the
individual faces were built. Finally, the emotion markers
were tracked for the emotionally relevant stimuli episodes,
projected onto their individual facial surfaces and exported
as CSV files. Subsequent postprocessing included adding
stimulus presentation information, merging CSV files,
standardizing the marker movements into mm and into the
standardized face, and centering the marker movement at
the onset of each stimulus episode.

Results

Accuracy of the measurement procedure Again, the solve
error for all participants was below 0.3, indicating a mean
deviation of one third of a pixel per participant between
actual tracks and model-estimated tracks. The internal
consistency of the measurement of the four scaling distances
(eye–eye distance, mouth corner–mouth corner distance,
and left/right eye–mouth corner distance) was α = .985.

Outliers and artifacts An artifact/outlier analysis was
performed for all markers in all stimulus conditions. We
asserted that the data did not contain any errors and were
suited for further statistical analyses.

Facial movement in response to the emotional stimuli As
a main outcome, the median movements per stimulus
episode aggregated over participants, along with the quartile
ellipses, are presented in Figs. 9 and 10. The data set
scaled to mm was used for the plots; therefore, the median
movement can be interpreted in mm.

We also included an episode with no facial expression
(neutral), to represent measurement noise. However, the
overall measurement noise was very low (see black ellipses
in Figs. 9 and 10, Table 3: mean distance in mm, irrespective
of angle M = 0.026, SD = 0.013). The marker movement
can also be presented with parameters such as angle and
distance (Table 3).

Again, the marker movement conformed to the descrip-
tion of movements in EMFACS/FACSAID (Ekman &
Hager, 2002; Friesen & Ekman, 1983) of activated AUs for
emotional facial expression: For the emotion of happiness
AU 6 (cheek raiser) and AU 12 (lip corner puller) should
be activated; these are visible in Figs. 9 and 10 for the
markers CL4/CR4 along with CL7/CR7 as a sideways and
upwards movement (green dot and ellipse). The other mark-
ers (e.g., BL5/BR5 in Fig. 10) follow this movement to some
extent because the skin is also pulled in the corresponding
direction.

Fig. 9 Plot of the median movement in mm of the first four
symmetrical markers per stimulus episode aggregated over participants
in Study 2. The ellipse represents the quartiles of the movement
distribution for the x- and y-axes. The x- and y-axes of the plots are
scaled to the same range so that the angle represents the true direction
of movement. The marker positions are shown in the left part of Fig. 2
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Fig. 10 Plot of the median movement in mm of the second four
symmetrical markers per stimulus episode aggregated over participants
in Study 2. The ellipse represents the quartiles of the movement
distribution for the x- and y-axes. The x- and y-axes of the plots are
scaled to the same range so that the angle represents the true direction
of movement. The marker positions are shown in the left part of Fig. 2

For the emotion of disgust the description of activated
AUs is heterogeneous. AU 9 (nose wrinkler), AU 10 (upper
lip raiser) are very common, but so are pressing the lips
together and the mouth corners downwards (AU 15, lip
corner depressor, AU 16, lower lip depressor, AU 17, chin
raiser), or a slightly opened mouth (AU 25, lips part, AU 26,
jaw drop). With the red point and ellipse, Fig. 10 shows
the upwards movements in BL4/BR4 and BR7/BL7 but
no dragging down of the mouth corners or chin raising
in the data when aggregated over participants. However, a
tightening of the eyebrows toward the nose root (BL2/BR2
and DL2/DR2) was measured as this is mentioned in the
literature (Ekman & Friesen, 1975; Rozin, Lowery, & Ebert,
1994).

For the emotion of fear, mainly the activation of AU 1
(inner brow raiser) and AU 2 (outer brow raiser) and
sometimes AU 4 (brow lowerer, leads to a narrowing of
the eyebrows) are reported. These movements are visible as
blue points and ellipses in Fig. 9 for the markers BL2/BR2
and DL2/DR2 as an upwards and center directed movement.
Movements in other seldom reported AUs22 referring to
pressed lips (AU 20, lip stretcher, AU 25, lips part,
AU 26 jaw drop) could be measured only to a very small
extent.

In summary, the findings of the blenderFace method in
Study 2 replicate and extend the findings of Study 1. Again,
they closely confirm the EMFACS/FACSAID (Ekman &
Hager, 2002; Friesen & Ekman, 1983) assumptions of the
activated AUs for emotional facial expression; however, the
blenderFace method offers an objective way to measure
facial movements.

Discussion

Study 2 showed that it is possible to measure up to
14 emotion markers simultaneously in a sample of 113
participants for 12 min of footage with the blenderFace
method. The optical measurement of facial movements with
the blenderFace method was very precise, which can be
seen by the mean deviation of one third the size of a
pixel between video track and model estimated track, an
internal consistency of scaling measures close to 1, and a
measurement of noise in a neutral condition resulting in a
mean movement of 0.026 mm.

22It was not possible to measure AU 5 (upper lid raiser) or AU 7
(lid tightener) due to frequent eyelid movement, which changes the
tracking pattern. These drawbacks are discussed in the Limitations
section.
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Table 3 Angle and distance of facial movement in study 2

Stimulus BL2 Angle BL2 Distance BR2 Angle BR2 Distance

Neutral 270.00 0.01 254.96 0.01

Disgust 348.81 1.31 196.44 1.12

Happy 178.45 0.47 2.29 0.45

Fear 72.75 1.07 105.75 1.20

DL2 Angle DL2 Distance DR2 Angle DR2 Distance

Neutral 282.29 0.02 261.92 0.02

Disgust 345.47 2.48 194.39 2.19

Happy 180.91 0.80 359.84 0.71

Fear 40.99 0.62 147.32 0.67

CL4 Angle CL4 Distance CR4 Angle CR4 Distance

Neutral 299.42 0.05 242.57 0.02

Disgust 91.25 3.25 86.89 3.47

Happy 122.63 2.84 57.17 2.98

Fear 348.47 0.22 186.43 0.12

A7 Angle A7 Distance

Neutral 309.66 0.02

Disgust 85.55 3.78

Happy 86.10 2.27

Fear 67.31 0.28

BL4 Angle BL4 Distance BR4 Angle BR4 Distance

Neutral 313.66 0.03 260.50 0.03

Disgust 98.56 3.76 80.04 4.20

Happy 130.43 2.53 50.26 2.74

Fear 16.85 0.25 140.01 0.15

BL7 Angle BL7 Distance BR7 Angle BR7 Distance

Neutral 288.49 0.02 299.17 0.02

Disgust 103.48 4.20 71.66 4.44

Happy 127.95 4.51 50.27 4.35

Fear 10.52 0.41 148.31 0.18

CL7 Angle CL7 Distance CR7 Angle CR7 Distance

Neutral 306.09 0.05 235.35 0.04

Disgust 92.35 3.22 82.80 3.45

Happy 118.40 6.51 61.01 6.68

F ear 326.76 0.63 228.22 0.49

A8 Angle A8 Distance

Neutral 292.30 0.03

Disgust 29.64 0.18

Happy 283.79 0.97

Fear 37.82 0.13

Note. Angle (values in degree) and median distance (values in millimeter) of marker movement aggregated over participants per stimulus episode
of Study 2. Note, that 0 degree describes a movement to the right, and that on the x-axis left and right markers move in the opposite direction. The
marker positions are shown in the left part of Fig. 2

The measured movements for the 14 emotion mark-
ers corresponded closely to the assumed AUs of the
EMFACS/FACSAID (Friesen & Ekman, 1983; Ekman &
Hager, 2002). The practical improvements in Study 2,
such as the illumination or the time code in the video
clip, strongly facilitated the synchronization of the tracking

procedure and the stimulus presentation. Also the use of
an individual facial surface improved the measurement
accuracy as can be seen by the decrease in marker move-
ment noise in the neutral stimulus condition in Study 2
compared with Study 1, where no individual facial masks
were used.
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General discussion

In this paper, we presented the blenderFace method, which
circumvents the drawbacks of existing methods that are
used to measure facial expressions because it offers a very
accurate (sub second, sub pixel, and sub millimeter range),
non intrusive simultaneous raw data measurement of several
emotionally relevant markers at a high temporal resolution.
Study 2 showed that it is possible to simultaneously measure
the temporal dynamics of up to 14 markers at a timely
resolution of 33 ms for approximately 12 min of video
footage for each of 113 participants. Due to the open-
source approach, the blenderFace method is very versatile
and transparent at every step of data processing and in line
with the desiderata of reproducible research (e.g., Fomel &
Claerbout, 2009). Although we presented only descriptive
findings of the blenderFace method in this paper, they
correspond with findings from established measurement
instruments (EMFACS, FACSAID; Ekman & Hager, 2002;
Friesen & Ekman, 1983). In addition, there are many
possible research applications for this method: (a) The
raw data generated by the blenderFace method can be
analyzed with inferential statistical methods to test various
hypotheses. This can include, for example, the identification
of parameters to score emotional facial expression, similar
to what Olderbak, Hildebrandt, Pinkpank, Sommer, and
Wilhelm (2013) did for AFER output. With the blenderFace
method, this can be investigated more efficiently than with
FACS, in contrast to EMG measurement it easily can
be performed for facial expressions involving the whole
face, and also without the assumption of basic emotions
as implied by AFER algorithms, whereas the existence of
basic emotions is still in scientific discourse (Gendron &
Barrett, 2017). Another way to analyze raw data obtained
with blenderFace could be to investigate the temporal
dynamics of facial emotion expression. For example, it
may be possible to identify movement parameters that
allow a distinction between a posed and a spontaneous
facial expression. Although very good classifiers exist for
this distinction (e.g., in the case of pain; Littlewort et
al., 2009), these classifiers do not allow researchers to
test for specific parameters that can be applied to make
this distinction. For example, distinction parameters that
have been suggested in the literature are pauses, stepwise
intensity changes, several onset-, apex-, and offset-phases
of specific facial markers (Dubois et al., 2013; Hess &
Kleck, 1990, 1994; Schmidt, Ambadar, Cohn, & Reed,
2006; Schmidt, Bhattacharya, & Denlinger, 2009; Weiss,
Blum, & Gleberman, 1987). Therefore, contrary to AFER
classifiers, which do a very good job at classifying,
the blenderFace method may lead to gains in scientific
knowledge in this area of research. A third way to use
raw data from blenderFace raw could be, for example, the

analysis of microexpressions (Ekman & Friesen, 1969).
Although the concept of microexpressions has existed for
several years, it has not yet been extensively investigated
(30 hits in PsycARTICLES and PsycINFO databases; May,
2018). (b) A novel and unique feature of the proposed
blenderFace method is the possibility of superimposing the
standardized measurements of several respondents as they
react to an experimental stimulus condition. With this, it
may be possible to identify common characteristics of facial
expressions and individual deviations (e.g., asymmetries
or atypical reactions) in an objective manner. This opens
a large field of further research options, for example,
the identification of facial reaction patterns without the
restriction of a priori hypotheses such as basic emotions. (c)
More generally, the blenderFace method can also be used
as an optical method for measuring non-verbal behavior.
For example, the head movement and head turn data that
are collected in the blenderFace measurement procedure
(to be disentangled from facial movements), have not yet
been taken into account for data evaluation. However, head
movements and head turns may be used as indicators of
approach-avoidance behavior. For example, the speed with
and the extent to which the face turns away from an aversive
stimulus can be measured and used as an indicator. Provided
the appropriate markers are used, other non verbal behavior
can also be measured. For example, with markers on the
hands and arms, speech-supporting illustrators could be
recorded. With markers on the body (e.g., on the shoulders),
the body movements during a dyadic interaction could be
measured. (d) The video material also contains additional
information that could be evaluated in combination with
the blenderFace method. For example, it would be possible
to derive biophysiological indicators such as pulse rate
and increased blood flow to the skin by increasing the
color intensity (Wu, Rubinstein, Shih, Guttag, Durand, &
Freeman, 2012) and to combine them with participants’
facial expression.

However, the proposed blenderFace method is also
subject to limitations: (a) The use of markers in the
blenderFace method is relatively complex, not so much in
comparison with FACS rating or EMG measurement, but in
comparison with AFER procedures. However, it is precisely
this use of markers painted on participants’ facial skin
that allows the accurate measurement of facial movements.
(b) At the moment, facial movement is measured in three
dimensions but analyzed in a two-dimensional way. One
reason to do this is data reduction. As outlined before,
this can be done with reasonable costs in measurement
precision. Another reason is that to transform a face into
a standardized face, no suitable scaling object for the z-
axis exists (e.g., there is a great deal of interindividual
variability in size / height of the nose independent of head
size). However, provided there is a suitable scaling object, a
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three-dimensional processing is possible. (c) Markers next
to the eyelids (e.g., AU 5 or AU 7) are currently very
hard to track because eye-blinking constantly changes the
tracking pattern and requires a lot of manual corrections.
For this purpose, other techniques (e.g., a robust ellipsoid
fitting), are more suitable. Due to its openness, the method
can be adapted to various experimental conditions and can
also be improved on the technical side. For example, in
combination with the openCV library (www.opencv.org),
the functionality of Blender may be enhanced to find and
track a given set of markers automatically. Furthermore, a
second camera could be used to get a stereoscopic view,
which in turn can be used to compute a 3D surface of the
face automatically. In this sense of openness, we hope the
blenderFace method will be used, adapted, and improved.
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