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Abstract
Single-case experimental designs (SCEDs) are increasingly used in fields such as clinical psychology and educational psychology
for the evaluation of treatments and interventions in individual participants. TheAB phase design, also known as the interrupted time
series design, is one of the most basic SCEDs used in practice. Randomization can be included in this design by randomly
determining the start point of the intervention. In this article, we first introduce this randomized AB phase design and review its
advantages and disadvantages. Second, we present some data-analytical possibilities and pitfalls related to this design and show how
the use of randomization tests can mitigate or remedy some of these pitfalls. Third, we demonstrate that the Type I error of
randomization tests in randomized AB phase designs is under control in the presence of unexpected linear trends in the data.
Fourth, we report the results of a simulation study investigating the effect of unexpected linear trends on the power of the
randomization test in randomized AB phase designs. The implications of these results for the analysis of randomized AB phase
designs are discussed. We conclude that randomized AB phase designs are experimentally valid, but that the power of these designs
is sufficient only for large treatment effects and large sample sizes. For small treatment effects and small sample sizes, researchers
should turn to more complex phase designs, such as randomized ABAB phase designs or randomized multiple-baseline designs.

Keywords Single-case experimental design . Interrupted time series design . Linear trend . Randomization test . Power analysis

Introduction

Single-case experimental designs (SCEDs) can be used to
evaluate treatment effects for specific individuals or to assess
the efficacy of individualized treatments. In such designs, re-
peated observations are recorded for a single person on a de-
pendent variable of interest, and the treatment can be consid-
ered as one of the levels of the independent variable (Barlow,
Nock, & Hersen, 2009; Kazdin, 2011; Onghena, 2005).
SCEDs are widely used as a methodological tool in various
domains of science, including clinical psychology, school psy-
chology, special education, and medicine (Alnahdi, 2015;
Chambless & Ollendick, 2001; Gabler, Duan, Vohra, &

Kravitz, 2011; Hammond & Gast, 2010; Kratochwill &
Stoiber, 2000; Leong, Carter, & Stephenson, 2015; Shadish
& Sullivan, 2011; Smith, 2012; Swaminathan & Rogers,
2007). The growing interest in these types of designs can be
inferred from the recent publication of guidelines for reporting
the results of SCEDs in various fields of the educational, be-
havioral, and health sciences (Shamseer et al., 2015; Tate et
al., 2016; Vohra et al., 2015).

SCEDs are often confused with case studies or other non-
experimental research, but these types of studies should be
clearly distinguished from each other (Onghena & Edgington,
2005). More specifically, SCEDs involve the deliberate manip-
ulation of an independent variable, whereas such a manipula-
tion is absent in nonexperimental case studies. In addition, the
reporting of results from SCEDs usually involves visual and
statistical analyses, whereas case studies are often reported in a
narrative way.

SCEDs should also be distinguished from experimental
designs that are based on comparing groups. The principal
difference between SCEDs and between-subjects experimen-
tal designs concerns the definition of the experimental units.
Whereas the experimental units in group-comparison studies
refer to participants assigned to different groups, the experi-
mental units in SCEDs refer to repeated measurements of
specific entities under investigation (e.g., a person) that are
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assigned to different treatments (Edgington & Onghena,
2007). Various types of SCEDs exist. In the following section
we will discuss the typology of single-case designs.

Typology of single-case experimental designs

A comprehensive typology of SCEDs can be constructed
using three dimensions: (1) whether the design is a phase or
an alternation design, (2) whether or not the design contains
random assignment, and (3) whether or not the design is
replicated. We will discuss each of these dimensions in
turn.

Design type Various types of SCEDs can be broadly cate-
gorized into two main types: phase designs and alterna-
tion designs (Heyvaert & Onghena, 2014; Onghena &
Edgington, 2005; Rvachew & Matthews, 2017), although
hybrids of both types are possible (see, e.g., Levin,
Ferron, & Gafurov, 2014; Onghena, Vlaeyen, & de
Jong, 2007). Phase designs divide the sequence of mea-
surement occasions in a single-case experiment (SCE) in-
to separate treatment phases, with each phase containing
multiple measurements (Edgington, 1975a, 1980;
Onghena, 1992). The basic building block of phase de-
signs is the AB phase design that features a succession of
a baseline phase (A) and a treatment phase (B). This basic
design can be expanded by including more A phases or B
phases leading to more complex phase designs such as
ABA and ABAB phase designs. Furthermore, it is also
possible to construct phase designs that compare more
than two treatments (e.g., an ABC design). In contrast to
phase designs, alternation designs do not feature distinct
phases but rather involve rapid alternation of the experi-
mental conditions throughout the course of the SCE.
Consequently, these designs are intended for research sit-
uations in which rapid and frequent alternation of treat-
ments is possible (Barlow & Hayes, 1979; Onghena &
Edgington, 1994). Some common alternation designs in-
clude the completely randomized design (CRD), the ran-
domized block design (RBD), and the alternating treat-
ments design (ATD, Onghena, 2005). Manolov and
Onghena (2017) provide a recent overview of the use of
ATDs in published single-case research and discuss vari-
ous data-analytical techniques for this type of design.

Random assignment When treatment labels are randomly
assigned to measurement occasions in an SCED, one obtains
a randomized SCED. This procedure of random assignment in
an SCED is similar to the way in which subjects are randomly
assigned to experimental groups in a between-subjects design.
The main difference is that in SCEDs repeated measurement
occasions for one subject are randomized across two or more
experimental conditions whereas in between-subjects designs

individual participants are randomized across two or more
experimental groups. The way in which SCEDs can be ran-
domized depends on the type of design. Phase designs can be
randomized by listing all possible intervention start points and
then randomly selecting one of them for conducting the actual
experiment (Edgington, 1975a). Consider, for example, an
AB design, consisting of a baseline (A) phase and a treatment
(B) phase, with a total of ten measurement occasions and a
minimum of three measurement occasions per phase. For this
design there are six possible start points for the intervention,
leading to the following divisions of the measurement
occasions:

AAABBBBBBB
AAAABBBBBB
AAAAABBBBB
AAAAAABBBB
AAAAAAABBB

This type of randomization can also be applied to more
complex phase designs, such as ABA or ABAB phase de-
signs, by randomly selecting time points for all the moments
of phase change in the design (Onghena, 1992). Alternation
designs are randomized by imposing a randomization scheme
on the set of measurement occasions, in which the treatment
conditions are able to alternate throughout the experiment.
The CRD is the simplest alternation design as it features
Bunrestricted randomization.^ In this design, only the number
of measurement occasions for each level of the independent
variable has to be fixed. For example, if we consider a hypo-
thetical SCED with two conditions (A and B) and three mea-
surement occasions per condition, there are 20 possible ran-
domizations 6

3

� �
using a CRD:

AAABBB BBBAAA

AABABB BBABAA

AABBAB BBAABA

AABBBA BBAAAB

ABAABB BABBAA

ABABAB BABABA

ABABBA BABAAB

ABBAAB BAABBA

ABBABA BAABAB

ABBBAA BAAABB

The randomizations schemes for an RBD or an ATD can be
constructed by imposing additional constraints on the CRD
randomization scheme. For example, an RBD is obtained by
grouping measurement occasions in pairs and randomizing
the treatment order within each pair. For the same number of
measurement occasions as in the example above, an RBD
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yields 23 = 8 possible randomizations, which are a subset of
the CRD randomizations.

This type of randomization can be useful to counter the
effect of time-related confounding variables on the dependent
variable, as the randomization within pairs (or blocks of a
certain) size eliminates any time-related effects that might oc-
cur within these pairs. An ATD randomization scheme can be
constructed from a CRD randomization scheme with the re-
striction that only a certain maximum number of successive
measurement occasions are allowed to have the same treat-
ment, which ensures rapid treatment alternation. Using the
example of our hypothetical SCED, an ATD with a maximum
number of two consecutive administrations of the same con-
dition yields the following 14 randomizations:

Note again that all of these randomizations are a subset of
the CRD randomizations. Many authors have emphasized the
importance of randomizing SCEDs for making valid infer-
ences (e.g., Dugard, 2014; Dugard, File, & Todman, 2012;
Edgington & Onghena, 2007; Heyvaert, Wendt, Van den
Noortgate, & Onghena, 2015; Kratochwill & Levin, 2010).
The benefits and importance of incorporating random assign-
ment in SCEDs are also stressed in recently developed guide-
lines for the reporting of SCE results, such as the CONSORT
extension for reporting N-of-1 trials (Shamseer et al., 2015;
Vohra et al., 2015) and the single-case reporting guideline in
behavioral interventions statement (Tate et al., 2016). SCEDs
that do not incorporate some form of random assignment are
still experimental designs in the sense that they feature a de-
liberate manipulation of an independent variable, so they must
still be distinguished from nonexperimental research such as
case studies. That being said, the absence of random assign-
ment in a SCED makes it harder to rule out alternative expla-
nations for the occurrence of a treatment effect, thus weaken-
ing the internal validity of the design. In addition, it should be
noted that the incorporation of randomization in SCEDs is still
relatively rare in many domains of research.

Replication It should be noted that research projects and
single-case research publications rarely involve only one
SCED, and that usually replication is aimed at. Kratochwill
et al. (2010) noted that replication also increases the internal
validity of an SCED. In this sense it is important to emphasize
that randomization and replication should be used concurrent-
ly for increasing the internal validity of an SCED. Replication
can occur in two different ways: simultaneously or sequential-
ly (Onghena & Edgington, 2005). Simultaneous replication
designs entail conducting multiple alternation or phase de-
signs at the same time. The most widely used simultaneous
replication design is the multiple baseline across participants
design, which combines two or more phase designs (usually
AB phase designs), in which the treatment is administered in a
time-staggered manner across the individual participants
(Hammond & Gast, 2010; Shadish & Sullivan, 2011).
Sequential replication designs entail conducting individual
SCEs sequentially in order to test the generalizability of the
results to other participants, settings, or outcomes (Harris &
Jenson, 1985; Mansell, 1982). Also for this part of the typol-
ogy, it is possible to create hybrid designs by combining si-
multaneous and sequential features—for example, by sequen-
tially replicating multiple-baseline across-participant designs
or using a so-called Bnonconcurrent multiple baseline design,^
with only partial temporal overlap (Harvey, May, & Kennedy,
2004; Watson & Workman, 1981). Note that alternative
SCED taxonomies have been proposed (e.g., Gast &
Ledford, 2014). The focus of the present article is on the AB
phase design, also known as the interrupted time series design
(Campbell & Stanley, 1966; Cook & Campbell, 1979;
Shadish, Cook, & Campbell, 2002).

The single-case AB phase design

The AB phase design is one of the most basic and practically
feasible experimental designs for evaluating treatments in
single-case research. Although widely used in practice, the
AB phase design has received criticism for its low internal
validity (Campbell, 1969; Cook & Campbell, 1979;
Kratochwill et al., 2010; Shadish et al., 2002; Tate et al.,
2016; Vohra et al., 2015). Several authors have rated the AB
phase de s ign a s Bquas i - expe r imen t a l^ or even
Bnonexperimental,^ because the lack of a treatment reversal
phase leaves the design vulnerable to the internal validity
threats of history and maturation (Kratochwill et al., 2010;
Tate et al., 2016; Vohra et al., 2015). History refers to the
confounding influence of external factors on the treatment
effect during the course of the experiment, whereas
maturation refers to changes within the subject during the
course of the experiment that may influence the treatment
effect (Campbell & Stanley, 1966). These confounding effects
can serve as alternative explanations for the occurrence of a
treatment effect other than the experimental manipulation and

ABABAB BABABA

ABABBA BABAAB

ABBAAB BAABBA

ABBABA BAABAB

AABABB BBABAA

AABBAB BBAABA

ABAABB BABBAA

ABABAB BABABA

ABABBA BABAAB

ABBAAB BAABBA

ABBABA BAABAB
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as such threaten the internal validity of the SCED. Kratochwill
et al. argue that the internal validity threats of history and
maturation are mitigated when SCEDs contain at least two
AB phase pair repetitions. More specifically, their argument
is that the probability that history effects (e.g., the participant
turns ill during the experiment) occurring simultaneously with
the introduction of the treatment is smaller when there are
multiple introductions of the treatment than in the situation
in which there is only one introduction of the treatment.
Similarly, to lessen the impact of potential maturation effects
(e.g., spontaneous improvement of the participant yielding an
upward or downward trend in the data) on the internal validity
of the SCED, Kratochwill et al. argue that an SCED should be
able to record at least three demonstrations of the treatment
effect. For these reasons, they argue that only phase designs
with at least two AB phase pair repetitions (e.g., an ABAB
design) are valid SCEDs, and that designs with only one AB
phase pair repetition (e.g., an AB phase design) are inadequate
for drawing valid inferences. Similarly, Tate et al. and Vohra et
al. do not consider the AB phase design as a valid SCED.
More specifically, Tate et al. consider the AB phase design
as a quasi-experimental design, and Vohra et al. even regard
the AB phase design as a nonexperimental design, putting it
under the same label as case studies. In contrast, the SCED
classification by Logan, Hickman, Harris, and Heriza (2008)
does include the AB phase design as a valid design.

Rather than using discrete classifications, we propose a
gradual view of evaluating the internal validity of an SCED.
In the remainder of this article we will argue that randomized
AB phase designs have an important place in the methodolog-
ical toolbox of the single-case researcher as valid SCEDs. It is
our view that the randomized AB phase design can be used as
a basic experimental design for situations in which this design
is the only feasible way to collect experimental data (e.g.,
when evaluating treatments that cannot be reversed due to
the nature of the treatment or because of ethical concerns).
We will build up this argument in several steps. First, we will
explain how random assignment strengthens the internal va-
lidity of AB phase designs as compared to AB phase designs
without random assignment, and discuss how the internal va-
lidity of randomized AB phase designs can be increased fur-
ther through the use of replication and formal statistical anal-
ysis. Second, after mentioning some common statistical tech-
niques for analyzing randomized AB phase designs we will
discuss the use of a statistical technique that can be directly
derived from the random assignment that is present in ran-
domized AB phase designs: the randomization test (RT). In
addition we will discuss some potential data-analytical pitfalls
that can occur when analyzing randomized AB phase designs
and argue how the use of the RT can mitigate some of these
pitfalls. Furthermore, we will provide a worked example of
how AB phase designs can be randomized and subsequently
analyzed with the RT using the randomization method

proposed by Edgington (1975a). Third, we will demonstrate
the validity of the RT when analyzing randomized AB phase
designs containing a specific manifestation of a maturation
effect: An unexpected linear trend that occurs in the data yield-
ing a gradual increase in the scores of the dependent variable
that is unrelated to the administration of the treatment. More
specifically we will show that the RT controls the Type I error
rate when unexpected linear trends are present in the data.
Finally, we will also present the results of a simulation study
that investigated the power of the RTwhen analyzing random-
ized AB phase designs containing various combinations of
unexpected linear trends in the baseline phase and/or treat-
ment phase. Apart from controlled Type I error rates, adequate
power is another criterion for the usability of the RT for spe-
cific types of datasets. Previous research already investigated
the effect of different levels of autocorrelation on the power of
the RT in randomized AB phase designs but only for data
without trend (Ferron & Ware, 1995). However, a study by
Solomon (2014) showed that trend is quite common in single-
case research, making it important to investigate the implica-
tions of trend effects on the power of the RT.

Randomized AB phase designs are valid single-case
experimental designs

There are several reasons why the use of randomized AB
phase designs should be considered for conducting single-
case research. First of all, the randomized AB phase design
contains all the required elements to fit the definition of an
SCED: A design that involves repeated measurements on a
dependent variable and a deliberate experimental manipula-
tion of an independent variable. Second, the randomized AB
phase design is the most feasible single-case design for treat-
ments that cannot be withdrawn for practical or ethical reasons
and also the most cost-efficient and the most easily imple-
mented of all phase designs (Heyvaert et al., 2017). Third, if
isolated randomized AB phase designs were dismissed as in-
valid, and if only a randomized AB phase design was feasible,
given the very nature of psychological and educational inter-
ventions that cannot be reversed or considered undone, then
practitioners would be discouraged from using an SCED alto-
gether, and potentially important experimental evidence
would never be collected.

We acknowledge that the internal validity threats of history
and maturation have to be taken into account when drawing
inferences from AB phase designs. Moreover we agree with
the views from Kratochwill et al. (2010) that designs with
multiple AB phase pairs (e.g., an ABAB design) offer better
protection from threats to internal validity than designs with
only one AB phase pair (e.g., the AB phase design). However,
we also argue that the internal validity of the basic AB phase
design can be strengthened in several ways.
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First, the internal validity of the AB phase design (as well
as other SCEDs) can be increased considerably by incorporat-
ing random assignment into the design (Heyvaert et al., 2015).
Random assignment can neutralize potential history effects in
SCEDs as random assignment of measurement occasions to
treatment conditions allows us to statistically control con-
founding variables that may manifest themselves throughout
the experiment. In a similar vein, random assignment can also
neutralize potential maturation effects because any behavioral
changes that might occur within the subject are unrelated to
the random allocation of measurement occasions to treatment
conditions (Edgington, 1996). Edgington (1975a) proposed a
way to incorporate random assignment into the AB phase
design. Because the phase sequence in a AB phase design is
fixed, random assignment should respect this phase structure.
Therefore, Edgington (1975a) proposed to randomize the start
point of the treatment phase. In this approach the researcher
initially specifies the total number of measurement occasions
to be included in the design along with limits for the minimum
number of measurement occasions to be included in each
phase. This results in a range of potential start points for the
treatment phase. The researcher then randomly selects one of
these start points to conduct the actual experiment. By ran-
domizing the start point of the treatment phase in the AB
phase design it becomes possible to evaluate the treatment
effect for each of the hypothetical start points from the ran-
domization process and to compare these hypothetical treat-
ment effects to the observed treatment effect from the start
point that was used for the actual experiment. Under the as-
sumption that potential confounding effects such as history
and maturation are constant for the various possible start
points of the treatment phase these effects are made less plau-
sible as alternative explanations in case a statistically signifi-
cant treatment effect is found. As such, incorporating random
assignment into the AB phase design can also provide a safe-
guard for threats against internal validity without the need for
adding extra phases to the design. This method of randomiz-
ing start points in AB phase designs can easily be extended to
more complex phase designs such as ABA or ABAB designs
by generating random start points for each moment of phase
change in the design (Levin et al., 2014; Onghena, 1992).

Second, the internal validity of randomized AB phase de-
signs can be increased further by replications, and replicated
randomized AB phase designs are acceptable by most stan-
dards (e.g., Kratochwill et al., 2010; Tate et al., 2016). When a
treatment effect can be demonstrated across multiple replicat-
ed randomized AB phase designs, it lowers the probability
that this treatment effect is caused by history or maturation
effects rather than by the treatment itself. In fact, when multi-
ple randomized AB phase designs are replicated across partic-
ipants and the treatment is administered in a staggered manner
across the participants, one obtains a multiple-baseline across-
participant design, which is accepted as a valid SCED

according to many standards (Kratochwill et al., 2010;
Logan et al., 2008; Tate et al., 2016; Vohra et al., 2015).

Third, one can increase the chance of making valid infer-
ences from randomized AB phase designs by analyzing them
statistically with adequate statistical techniques. Many data-
analytical techniques for single-case research focus mainly on
analyzing randomized AB phase designs and strengthening
the resulting inferences (e.g., interrupted time series analysis,
Borckardt &Nash, 2014; Gottman &Glass, 1978; nonoverlap
effect size measures, Parker, Vannest, & Davis, 2011;
multilevel modeling, Van den Noortgate & Onghena, 2003).
Furthermore, one can analyze the randomized AB phase de-
sign using a statistical test that is directly derived from the
random assignment that is present in the design: the RT
(Kratochwill & Levin, 2010; Onghena & Edgington, 2005).

Data analysis of randomized AB phase designs:
techniques and pitfalls

Techniques for randomized AB phase designs can be broad-
ly categorized in two groups: visual analysis and statistical
analysis (Heyvaert et al., 2015). Visual analysis refers to
inspecting the observed data for changes in level, phase
overlap, variability, trend, immediacy of the effect, and con-
sistency of data patterns across similar phases (Horner,
Swaminathan, Sugai, & Smolkowski, 2012). The advantages
of visual analysis are that it is quick, intuitive, and requires
little methodological knowledge. The main disadvantages of
visual analysis are that small but systematic treatment effects
are hard to detect (Kazdin, 2011) and that it is associated
with low interrater agreement (e.g., Bobrovitz &
Ottenbacher, 1998; Ximenes, Manolov, Solanas, & Quera,
2009). Although visual analysis remains widely used for
analyzing randomized AB phase designs (Kazdin, 2011),
there is a general consensus that visual analysis should be
used concurrently with supplementary statistical analyses to
corroborate the results (Harrington & Velicer, 2015;
Kratochwill et al., 2010).

Techniques for the statistical analysis of randomized AB
phase designs can be divided into three groups: effect size
calculation, statistical modeling, and statistical inference.
Effect size (ES) calculation involves evaluating treatment
ESs by calculating formal ES measures. One can discern
proposals that are based on calculating standardized mean
difference measures (e.g., Busk & Serlin, 1992; Hedges,
Pustejovsky, & Shadish, 2012), proposals that are based on
calculating overlap between phases (see Parker, Vannest, &
Davis, 2011, for an overview), proposals that are based on
calculating standardized or unstandardized regression coef-
ficients (e.g., Allison &Gorman, 1993; Solanas, Manolov, &
Onghena, 2010; Van den Noortgate & Onghena, 2003), and
proposals that are based on Bayesian methods (Rindskopf,
Shadish, & Hedges, 2012; Swaminathan, Rogers, & Horner,
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2014). Statistical modeling refers to constructing an ade-
quate description of the data by fitting the data to a statistical
model. Some proposed modeling techniques include
interrupted time series analysis (Borckardt & Nash, 2014;
Gottman & Glass, 1978), generalized mixed models
(Shadish, Zuur, & Sullivan, 2014), multilevel modeling
(Van den Noortgate & Onghena, 2003), Bayesian modeling
techniques (Rindskopf, 2014; Swaminathan et al., 2014),
and structural equation modeling (Shadish, Rindskopf, &
Hedges, 2008).

Statistical inference refers to assessing the statistical sig-
nificance of treatment effects through hypothesis testing or
by constructing confidence intervals for the parameter esti-
mates (Heyvaert et al., 2015; Michiels, Heyvaert, Meulders,
& Onghena, 2017). On the one hand, inferential procedures
can be divided into parametric and nonparametric proce-
dures, and on the other hand, they can be divided into
frequentist and Bayesian procedures. One possibility for an-
alyzing randomized AB phase designs is to use parametric
frequentist procedures, such as statistical tests and confi-
dence intervals based on t and F distributions. The use of
these procedures is often implicit in some of the previously
mentioned data-analytical proposals, such as the regression-
based approach of Allison and Gorman (1993) and the mul-
tilevel model approach of Van den Noortgate and Onghena
(2003). However, it has been shown that data from random-
ized AB phase designs often violate the specific distribution-
al assumptions made by these parametric procedures
(Shadish & Sullivan, 2011; Solomon, 2014). As such, the
validity of these parametric procedures is not guaranteed
when they are applied to randomized AB phase designs.
Bayesian inference can be either parametric or nonparamet-
ric, depending on the assumptions that are made for the prior
and posterior distributions of the Bayesian model employed.
De Vries and Morey (2013) provide an example of paramet-
ric Bayesian hypothesis testing for the analysis of random-
ized AB phase designs.

An example of a nonparametric frequentist procedure that
has been proposed for the analysis of randomized AB phase
designs is the RT (e.g., Bulté & Onghena, 2008; Edgington,
1967; Heyvaert & Onghena, 2014; Levin, Ferron, &
Kratochwill, 2012; Onghena, 1992; Onghena & Edgington,
1994, 2005). The RT can be used for statistical inference
based on random assignment. More specifically, the test
does not make specific distributional assumptions or an as-
sumption of random sampling, but rather obtains its validity
from the randomization that is present in the design. When
measurement occasions are randomized to treatment condi-
tions according to the employed randomization scheme, a
statistical reference distribution for a test statistic S can be
calculated. This reference distribution can be used for calcu-
lating nonparametric p values or for constructing nonpara-
metric confidence intervals for S by inverting the RT

(Michiels et al., 2017). The RT is also flexible with regard
to the choice of the test statistic (Ferron & Sentovich, 2002;
Onghena, 1992; Onghena & Edgington, 2005). For example,
it is possible to use an ES measure based on standardized
mean differences as the test statistic in the RT (Michiels &
Onghena, 2018), but also ES measures based on data
nonoverlap (Heyvaert & Onghena, 2014; Michiels,
Heyvaert, & Onghena, 2018). This freedom to devise a test
statistic that fits the research question makes the RT a versa-
tile statistical tool for various research settings and treatment
effects (e.g., with mean level differences, trends, or changes
in variability; Dugard, 2014).

When using inferential statistical techniques for random-
ized AB phase designs, single-case researchers can encounter
various pitfalls with respect to reaching valid conclusions
about the efficacy of a treatment. A first potential pitfall is that
single-case data often violate the distributional assumptions of
parametric hypothesis tests (Solomon, 2014). When distribu-
tional assumptions are violated, parametric tests might inflate
or deflate the probability of Type I errors in comparison to the
nominal significance level of the test. The use of RTs can
provide a safeguard from this pitfall: Rather than invoking
distributional assumptions, the RT procedure involves the der-
ivation of a reference distribution from the observed data.
Furthermore, an RT is exactly valid by construction: It can
be shown that the probability of committing a Type I error
using the RT is never larger than the significance level α,
regardless of the number of measurement occasions or the
distributional properties of the data (Edgington & Onghena,
2007; Keller, 2012). A second pitfall is the presence of serial
dependencies in the data (Shadish& Sullivan, 2011; Solomon,
2014). Serial dependencies can lead to inaccurate variance
estimates in parametric hypothesis tests, which in turn can
result in either too liberal or too conservative tests. The use
of RTs can also provide a solution for this pitfall. Although the
presence of serial dependencies does affect the power of the
RT (Ferron & Onghena, 1996; Ferron & Sentovich, 2002;
Levin et al., 2014; Levin et al., 2012), the Type I error of the
RTwill always be controlled at the nominal level, because the
serial dependency is identical for each element of the refer-
ence distribution (Keller, 2012). A third pitfall that can occur
when analyzing randomized AB phase designs is that these
designs typically employ a small number of measurement oc-
casions (Shadish & Sullivan, 2011). As such, statistical power
is an issue with these designs. A fourth pitfall to analyzing
single-case data is the presence of an unexpected data trend
(Solomon, 2014). One way that unexpected data trends can
occur is through maturation effects (e.g., a gradual reduction
in pain scores of a patient due to a desensitization effect). In a
subsequent section of this article, we will show that the RT
does not alter the probability of a Type I error above the nom-
inal level for data containing general linear trends, and thus it
also mitigates this pitfall.
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Analyzing randomized AB phase designs
with randomization tests: a hypothetical example

For illustrative purposes, we will discuss the steps involved
in constructing a randomized AB phase design and analyz-
ing the results with an RT by means of a hypothetical exam-
ple. In a first step, the researcher chooses the number of
measurement occasions to be included in the design and
the minimum number of measurement occasions to be in-
cluded in each separate phase. For this illustration we will
use the hypothetical example of a researcher planning to
conduct a randomized AB phase design with 26 measure-
ment occasions and a minimum of three measurement occa-
sions in each phase. In a second step, the design can be
randomized using the start point randomization proposed
by Edgington (1975a). This procedure results in a range of
potential start points for the treatment throughout the course
of the SCE. Each individual start point gives rise to a unique
division of measurement occasions into baseline and treat-
ment occasions in the design (we will refer to each such a
division as an assignment). The possible assignments for this
particular experiment can be obtained by placing the start
point at each of the measurement occasions, respecting the
restriction of at least three measurement occasions in each
phase. There are 21 possible assignments, given this restric-
tion (not all assignments are listed):

AAABBBBBBBBBBBBBBBBBBBBBBB
AAAABBBBBBBBBBBBBBBBBBBBBB
AAAAABBBBBBBBBBBBBBBBBBBBB
...
AAAAAAAAAAAAAAAAAAAAABBBBB
AAAAAAAAAAAAAAAAAAAAAABBBB
AAAAAAAAAAAAAAAAAAAAAAABBB

Suppose that the researcher randomly selects the assign-
ment with the 13th measurement occasion as the start point
of the B phase for the actual experiment: AAAAAAAA
AAAABBBBBBBBBBBBBB. In a third step, the researcher
chooses a test statistic that will be used to quantify the treat-
ment effect. In this example, we will use the absolute differ-
ence between the baseline phase mean and the treatment phase
mean as a test statistic. In a fourth step, the actual experiment
with the randomly selected start point is conducted, and the
data are recorded. Suppose that the recorded data of the ex-
periment are 0, 2, 2, 3, 1, 3, 3, 2, 2, 2, 2, 2, 6, 7, 5, 8, 5, 6, 5, 7,
4, 6, 8, 5, 6, and 7. Figure 1 displays these hypothetical data
graphically. In a fifth step, the researcher calculates the ran-
domization distribution, which consists of the value of the test
statistic for each of the possible assignments. The randomiza-
tion distribution for the present example consists of 21 values
(not all values are listed; the observed value is marked in
bold):

In a final step, the researcher can calculate a two-sided p
value for the observed test statistic by determining the propor-
tion of test statistics in the randomization distribution that are
at least as extreme as the observed test statistic. In this exam-
ple, the observed test statistic is the most extreme value in the
randomization distribution. Consequently, the p value is 1/21,
or .0476. This p value can be interpreted as the probability of
observing the data (or even more extreme data) under the null
hypothesis that the outcome is unrelated to the levels of the
independent variable. Note that the calculation of two-sided p
values are preferable if the treatment effects can go in both
directions. Alternatively, the randomization test can also be
inverted, in order to obtain a nonparametric confidence inter-
val of the observed treatment effect (Michiels et al., 2017).
The benefit of calculating confidence intervals over p values
is that the former conveys the same information as the latter,
with the advantage of providing a range of Bplausible values^
for the test statistic in question (du Prel, Hommel, Röhrig, &
Blettner, 2009).

The Type I error of the randomization test
for randomized AB phase designs in the presence
of unexpected linear trend

One way in which a maturation effect can manifest itself in an
SCED is through a linear trend in the data. Such a linear trend
could be the result of a sensitization or desensitization effect
that occurs in the participant, yielding an unexpected upward
or downward trend throughout the SCE that is totally unrelat-
ed to the experimental manipulation of the design. The pres-
ence of such an unexpected data trend can seriously diminish
the power of hypothesis tests in which the null and alternative
hypotheses are formulated in terms of differences in mean
level between phases, to the point that they become useless.
A convenient property of the start point randomization of the
randomized AB phase design in conjunction with the RTanal-
ysis is that the RT offers nominal Type I error rate protection
for data containing linear trends under the null hypothesis that
there is no differential effect of the treatment on the A phase
and the B phase observations. Before illustrating this property
with a simple derivation, we will demonstrate that, in contrast
to the RT, a two-sample t test greatly increases the probability
of a Type I error for data with a linear trend. Suppose that we
have a randomized AB phase design with ten measurement

AAABBBBBBBBBBBBBBBBBBBBBBB 3.23

AAAABBBBBBBBBBBBBBBBBBBBBB 2.89

. . . . . .

AAAAAAAAAAAABBBBBBBBBBBBBB 4.07

. . . . . .

AAAAAAAAAAAAAAAAAAAAAABBBB 2.73

AAAAAAAAAAAAAAAAAAAAAAABBB 2.04
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occasions (with five occasions in the A phase and five in the B
phase). Suppose there is no intervention effect and we just
have a general linear time trend (Bmaturation^):

A t test on these data with a two-sided alternative hypoth-
esis results in a t value of 5 for eight degrees of freedom, and a
p value of .0011, indicating a statistically significant differ-
ence between the means at any conventional significance lev-
el. In contrast, an RT on these data produces a p value of 1,
which is quite the opposite from a statistically significant treat-
ment effect. The p value of 1 can be explained by looking at
the randomization distribution for this particular example (as-
suming a minimum of three measurement occasions per case):

The test statistic values for all randomizations are identi-
cal, leading to a maximum p value of 1. The result for the RT
in this hypothetical example is reassuring, and it can be
shown that the RT with differences between means as the
test statistic guarantees Type I error rate control in the pres-
ence of linear trends, whereas the rejection rate of the t test
increases dramatically with increasing numbers of measure-
ment occasions.

The nominal Type I error rate protection of the RT in a
randomizedAB phase design for data containing a linear trend
holds in a general way. If the null hypothesis is true, the data
from a randomized AB phase design with a linear trend can be
written as

Y t ¼ β0 þ β1Tt þ εt with t ¼ 1; 2;…; n; ð1Þ

with Yt being the dependent variable score at time t, β0
being the intercept, β1 being the slope of the linear trend, εt
being the residual error, T being the time variable, and t being
the time index. Assuming that the errors have a zero mean, the
expected value for these data is

Ŷ̂ t ¼ β0 þ β1Tt with t ¼ 1; 2;…; n : ð2Þ

In a randomized AB phase design, these scores are divided

between an A phase (ŶAt ) and a B phase (ŶBt ):

Ŷ̂At ¼ β0 þ β1T t with t ¼ 1; 2;…; nA; ð3Þ
Ŷ̂Bt ¼ β0 þ β1T t with t ¼ nA þ 1; nA þ 2;…; nA

þ nB; ð4Þ

and with nA + nB = n. The mean of the expected A phase

scores (ŶA ) and themean of the expectedB phase scores (ŶB )
are equal to

^
ŶA ¼ β0 þ β1TA ¼ β0 þ β1

1þ nA
2

� �
; ð5Þ

^
ŶB ¼ β0 þ β1TB ¼ β0 þ β1

nA þ 1ð Þ þ nA þ nBð Þ
2

� �
: ð6Þ

Consequently, the difference between ŶB and ŶA equals

^
ŶB−

^
ŶA ¼ β1

nA þ 1þ nA þ nB−1−nA
2

� �

¼ β1
nA þ nB

2

� 	
; ð7Þ

which simplifies to

^
ŶB−

^
ŶA ¼ β1

n
2

� 	
: ð8Þ

This derivation shows that, under the null hypothesis, ŶB−
ŶA is expected to be a constant for every assignment of the
randomized AB phase design. The expected difference

Fig. 1 Data from a hypothetical AB design

A A A A A B B B B B

1 2 3 4 5 6 7 8 9 10

AAABBBBBBB 5

AAAABBBBBB 5

AAAAABBBBB 5

AAAAAABBBB 5

AAAAAAABBB 5
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between means, ŶB−ŶA, is only a function of the slope of the
linear trend, β1, and the total number of measurement occa-
sions, n. This implies that the expected value of the test sta-
tistic for each random start point is identical if the null hypoth-
esis is true, exactly what is needed for Type I error rate control.
In contrast, the rejection rate of the t test will increase with
increasing β1 and increasing n, because the difference between
means constitutes the numerator of the t test statistic, and the
test will only refer to Student’s t distributionwith n – 2 degrees
of freedom. The t test will therefore detect a difference be-
tween means that is merely the result of a general linear trend.

The result of this derivation can be further clarified by
comparing the null hypotheses that are evaluated in both the
RT and the t test. The null hypothesis of the t test states that
there is no difference in means between the A phase observa-
tions and the B phase observations, whereas the null hypoth-
esis of the RT states that there is no differential effect of the
levels of the independent variable (i.e., the A and B observa-
tions) on the dependent variable. A data set with a perfect
linear trend such as the one displayed above yields a mean
level difference between the A phase observations and the B
phase observations, but no differential effect between the A
phase observations and the B phase observations (i.e., the
trend effect is identical for both the A phase and the B phase
observations). For this reason, the null hypothesis of the t test
gets rejected, whereas the null hypothesis of the RT is not.
Consequently, we can conclude that the RT is better suited
for detecting unspecified treatment effects than is the t test,
because its null hypothesis does not specify the nature of the
treatment effect. Note that the t test, in contrast to the RT,
assumes a normal distribution, homogeneity of variances,
and independent errors, assumptions that are often implausible
for SCED data. It is also worth noting that, with respect to the
prevention of Type I errors, the RT also has a marked advan-
tage over visual analysis, as the latter technique offers no way
to prevent such errors when dealing with unexpected treat-
ment effects. Consequently, we argue that statistical analysis
using RTs is an essential technique for achieving valid con-
clusions from randomized AB phase designs.

The effect of unexpected linear trends on the power
of the randomization test in randomized AB phase
designs: a simulation study

In the previous section, we showed the validity of the random-
ized AB phase design and the RT with respect to the Type I
error for data containing unexpected linear trends. Another
criterion for the usability of the RT for specific types of data
sets, apart from controlled Type I error rates, is adequate
power. In this section we focus on the power of the RT in
the randomized AB phase design when the data contain
unexpected linear trends. Previous research has not yet

examined the effect of unexpected linear data trends on the
power of the RT in randomized AB phase designs. However,
Solomon (2014) investigated the presence of linear trends in a
large sample of published single-case research and found that
the single-case data he surveyed were characterized by mod-
erate levels of linear trend. As such, it is important to investi-
gate the implications of unexpected data trends for the power
of the RT in randomized AB phase designs.

When assessing the effect of linear trend on the power of
the RT, we should make a distinction between the situation in
which a data trend is expected and the situation in which a data
trend is not expected. Edgington (1975b) proposed a specific
type of RT for the former situation. More specifically, the
proposed RT utilizes a test statistic that takes the predicted
trend into account, in order to increase its statistical power.
Using empirical data from completely randomized designs,
Edgington (1975b) illustrated that such an RT can be quite
powerful when the predicted trend is accurate. Similarly, a
study by Levin, Ferron, and Gafurov (2017) showed that the
power of the RT can be increased for treatment effects that are
delayed and/or gradual in nature, by using adjusted test statis-
tics that account for these types of effects. Of course, in many
realistic research situations, data trends are either unexpected
or are expected but cannot be accurately predicted. Therefore,
we performed a Monte Carlo simulation study to investigate
the effect of unexpected linear data trends on the power of the
RT when it is used to assess treatment effects in randomized
AB phase designs. A secondary goal was to provide guide-
lines for the number of measurement occasions to include in a
randomized AB phase design, in order to achieve sufficient
power for different types of data patterns containing trends
and various treatment effect sizes. Following the guidelines
by Cohen (1988), we defined Bsufficient power^ as a power of
80% or more.

Methods

The Monte Carlo simulation study contained the following
factors: mean level change, a trend in the A phase, a trend in
the B phase, autocorrelation in the residuals, and the number
of measurement occasions for each data set. We used the
model of Huitema and McKean (2000) to generate the data.
This model uses the following regression equation:

Y t ¼ β0 þ β1T t þ β2Dt þ β*
3 T t– nA þ 1ð Þ½ �Dt þ εt; ð9Þ

with
Yt being the outcome at time t, with t = 1, 2, . . . , nA, nA+1, .

. . , nA+nB,
nA being the number of observations in the A phase,
nB being the number of observations in the B phase,
β0 being the regression intercept,
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Tt being the time variable that indicates the measurement
occasions,

Dt being the value of the dummy variable indicating the
treatment phase at time t,

[Tt – (nA+1)]Dt being the value of the slope change variable
at time t,

β1 being the regression coefficient for the A phase trend,
β2 being the regression coefficient for the mean level treat-

ment effect,
β*3 being the regression coefficient for the slope change

variable, and
εt being the error at time t.
In this simulation study, we will sample εt from a standard

normal distribution or from a first-order autoregressive model
(AR1) model.

The A phase trend, the treatment effect, and the B phase
slope change correspond to the β1, β2, and β*3 regression
coefficients of the Huitema–McKean model, respectively.
Note that β*3 of the Huitema–McKean model indicates the
amount of slope change in the B phase relative to the A phase
trend. For our simulation study, we defined a new parameter
(denoted by β3) that indicates the value of the trend in the B
phase independent of the level of trend in the A phase. The
relation between β*3 and β3 can be written as follows: β3 =
β*3 + β1. To include autocorrelation in the simulated data sets,
the εts were generated from an AR1 model with different
values for the AR parameter. Note that residuals with an au-
tocorrelation of 0 are equivalent to the residuals from a stan-
dard normal distribution. The power of the RT was evaluated
for two different measures of ES: an absolute mean difference
statistic (MD) and an immediate treatment effect index (ITEI).

The MD is defined as

A−B



 


;

with A being the mean of all A phase observations and B
being the mean of all B phase observations. The ITEI is de-
fined as

AITEI−BITEI




 


;
with AITEI being the mean of the last three A phase obser-

vations before the introduction of the treatment and BITEI be-
ing the mean of the first three B phase observations after the
introduction of the treatment. For each of the simulation fac-
tors, the following levels were used in the simulation study:

β1: 0, .25, .50
β2: – 4, – 1, 0, 1, 4
β3: – .50, – .25, 0, .25, .50
AR1: – .6, – .3, 0, .3, .6.
N: 30, 60, 90, 120
ES: MD, ITEI

The β1 and β3 values were based on a survey by Solomon
(2014), who calculated trend values through linear regression
for a large number of single-case studies. A random-effects
meta-analysis showed that the mean standardized trend regres-
sion weight for all analyzed data was .37, with a 95% confi-
dence interval of [.28 ; .43]. On the basis of these results, we
defined a Bsmall^ trend as a standardized regression weight of
.25 and a Blarge^ trend as a standardized regression weight of
.50. Note that we included upward trends (i.e., β3 values with
a positive sign) as well as downward trends in the B phase
(i.e., β3 with a negative sign), in order to account for data
patterns with A phase trends and B phase trends that go in
opposite directions. It was not necessary to also include down-
ward trends in the A phase, because this would lead to some
data patterns being just mirror images (when only the direc-
tion of the A phase trend as compared to the B phase trend was
considered) in the full factorial crossing of all included param-
eter values. The full factorial combination of these three β1
values and five β3 values resulted in 15 different data patterns
containing an A phase trend and/or a B phase trend. Table 1
provides an overview of these 15 data patterns, and Fig. 2
illustrates the data patterns visually. Note that the data patterns
in Fig. 2 only serve to illustrate the described A phase trends
and/or B phase trends, as these patterns do not contain any
data variability nor a mean level treatment effect. Hereafter,
we will use the numbering in Table 1 to refer to each of the 15
data patterns individually.

The values for β2 were based on the standardized treatment
effects reported by Harrington and Velicer (2015), who used
interrupted time series analyses on a large number of empirical
single-case data sets published in the Journal of Applied
Behavioral Analysis. The Huitema–McKean model is identi-
cal to the interrupted time series model of Harrington and
Velicer when the autoregressive parameter of the latter model
is zero. We collected the d values (which correspond to stan-
dardized β2 values in the Huitema–McKean model) reported
in Table 1 of Harrington and Velicer’s study, and defined β2 =
1 as a Bsmall^ treatment effect and β2 = 4 as a Blarge^ treat-
ment effect. These values were the 34th and 84th percentiles
of the empirical d distribution, respectively. The AR1 param-
eter values were based on a survey by Solomon (2014), who
reported a mean absolute autocorrelation of .36 across a large
number of single-case data sets. On the basis of this value, we
defined .3 as a realistic AR1 parameter value. To obtain an
additional Bbad case scenario^ condition with respect to auto-
correlation, we doubled the empirical value of .3. Both the
AR1 values of .3 and .6 were included with negative and
positive signs in the simulation study, in order to assess the
effects of both negative and positive autocorrelation. The
numbers of measurement occasions of the simulated data sets
were either 30, 60, 90, or 120. We chose a lower limit of 30
measurement occasions because this is the minimum number
of measurement occasions that is needed in a randomized AB
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phase design with at least five measurement occasions in each
phase to achieve a p value equal to .05 or smaller. The upper
limit of 120 measurement occasions was chosen on the basis
of a survey byHarrington and Velicer that showed that SCEDs
rarely contain more than 120 measurement occasions.

The ESmeasures used in this simulation study are designed
to quantify two important aspects of evaluating treatment ef-
fects of single-case data, according to the recommendations of
the What Works Clearinghouse (WWC) Single-Case Design
Standards (Kratochwill et al., 2010). The first aspect is the
overall difference in level between phases, which we quanti-
fied using the absolute mean difference between all A phase
observations and all B phase observations. Another important

indicator for treatment effectiveness in randomized AB phase
designs is the immediacy of the treatment effect (Kratochwill
et al., 2010). For this aspect of the data, we calculated an
immediate treatment effect index (ITEI). On the basis of the
recommendation by Kratochwill et al., we defined the ITEI in
a randomized AB phase design as the average difference be-
tween the last three A observations and the first three B obser-
vations. Both ESs were used as the test statistic in the RT for
this simulation study. In accordance with theWWC standards’
recommendation that a Bphase^ should consist of five or more
measurement occasions (Kratochwill et al., 2010), we took a
minimum limit of five measurement occasions per phase into
account for the start point randomization in the RT. A full

Table 1 Fifteen different data patterns for randomized AB phase designs containing an A phase trend (β1) and/or a B phase trend (β3)

No. β1 β3 Data Pattern

1 0 0 No A phase trend (0), no B phase trend (0)

2 0 .25 No A phase trend (0) with small upward B phase trend (.25)

3 0 .50 No A phase trend (0) with large upward B phase trend (.50)

4 0 – .25 No A phase trend (0) with small downward B phase trend (– .25)

5 0 – .50 No A phase trend (0) with large downward B phase trend (– .50)

6 .25 0 Small upward A phase trend (.25) with no B phase trend (0)

7 .25 .25 Small upward A phase trend (.25) with small upward B phase trend (.25)

8 .25 .50 Small upward A phase trend (.25) with large upward B phase trend (.50)

9 .25 – .25 Small upward A phase trend (.25) with small downward B phase trend (– .25)

10 .25 – .50 Small upward A phase trend (.25) with large downward B phase trend (– .50)

11 .50 0 Large upward A phase trend (.50) with no B phase trend (0)

12 .50 .25 Large upward A phase trend (.50) with small upward B phase trend (.25)

13 .50 .50 Large upward A phase trend (.50) with large upward B phase trend (.50)

14 .50 – .25 Large upward A phase trend (.50) with small downward B phase trend (– .25)

15 .50 – .50 Large upward A phase trend (.50) with large downward B phase trend (– .50)

Fig. 2 Fifteen AB data patterns containing an A phase trend and/or a B phase trend
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factorial crossing of all six simulation factors yielded 3,750
simulation conditions. The statistical power of the RT for each
condition was calculated by generating 1,000 data sets and
calculating the proportion of rejected null hypotheses at a
5% significance level across these 1,000 replications.

Results

The results will be presented in two parts. To evaluate the
effect of the simulation factors on the power of the RT, we
will present the main effects of each simulation factor. Apart
from a descriptive analysis of the statistical power in the sim-
ulation conditions, we will also look at the variation between
conditions using a multiway analysis of variance (ANOVA).
We will limit the ANOVA to main effects because the inter-
action effects between the simulation factors were small and
difficult to interpret. For each main effect, we will calculate
eta-squared (η2) in order to identify the most important deter-
minants of the results. Second, we will report the power for
each specific AB data pattern that was included in the simu-
lation study for both the MD and the ITEI.

Main effects

The results from the multiway ANOVA indicated that all sim-
ulation factors had a statistically significant effect on the pow-
er of the RT at the .001 significance level. Table 2 displays the
η2 values for the main effect of each simulation factor, indi-
cating the relative importance of these factors in determining
the power of the RT, in descending order.

Table 2 shows that by far the largest amount of variance
was explained by the size of the treatment effect (β2). Of
course, this result is to be expected, because the size of the
treatment effect ranged from 0 to 4 (in absolute value), which
is a very large difference. The large amount of variance ex-
plained by the treatment effect size also accounts for the large
standard deviations for the power levels of the other main
effects (displayed in Tables 4–8 in the Appendix). To visualize
the effect of the simulation factors on the RT’s power, we
plotted the effect of each simulation factor in interaction with
the size of the treatment effect (β2) while averaging the power
across all other simulation factors in the simulation study in
Fig. 3. The means and standard deviations of the levels of the
main effect for each experimental factor (averaged across all
other simulation factors, including the size of the treatment
effect) can be found in Tables 4–8 in the Appendix.

Panels 1–5 in Fig. 3 show the main effects of the number of
measurement occasions, the level of autocorrelation, the size
of the A phase trend, the size of the B phase trend, and the
effect size measure used, respectively, on the power of the RT.
We will summarize the results concerning the main effects for
each of these experimental factors in turn.

Number of measurement occasions Apart from the obvious
result that an increase in the number of measurement occa-
sions increases the power of the RT, we can also see that the
largest substantial increase in average power occurs when in-
creasing the number of measurement occasions from 30 to 60.
In contrast, increasing the number of measurement occasions
from 60 to 90, or even from 90 to 120, yields only very small
increases in average power.

Level of autocorrelation The main result for this experimental
factor is that the presence of positive autocorrelation in the
data decreases the power, whereas the presence of negative
autocorrelation increases the power. However, Table 2 shows
that the magnitude of this effect is relatively small as com-
pared to the other effects in the simulation study.

Effect size measure The results show that the ITEI on average
yields larger power than does the MD for the types of data
patterns that were used in this simulation study.

A phase trend (β1) On average, the power of the randomized
AB phase design is reduced when there is an A phase trend in
the data, and this reduction increases when the A phase trend
gets larger.

B phase trend (β3) The presence of B phase trend in the data
reduces the power of the RT, as compared to data without a B
phase trend. In addition, the power reduction increases as the
B phase trend gets larger. Furthermore, the increase in the
reduction of power is larger for downward B phase trends than
for upward B phase trends for data that also contain an upward
A phase trend. Because the A phase trends in this simulation
study were all upward trends, we can conclude that the power
reduction associated with the presence of B phase trend is
larger when the B phase trend has a direction opposite the
direction of the A phase trend than in the situation in which
both trends have the same direction. Similarly, it is also evi-
dent across all panels of Fig. 3 that the power of the RT is

Table 2 Proportions of explained variance (η2) for the main effects
(Source) of the simulation study

Source η2 (%)

β2 48.77

ES 12.02

β3 2.23

N 1.49

β1 0.73

AR 0.37

β2 = treatment effect size, ES = effect size measure, β3 = B phase trend,N
= number of measurement occasions, β1 = A phase trend, AR = level of
autocorrelation
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lower for treatment effects that have a direction opposite to the
direction of the A phase trend.

Finally, the conditions in Fig. 3 in which the treatment effect
is zero show that the manipulation of each experimental factor
did not inflate the Type I error rate of the RTabove the nominal
significance level. However, this result is to be expected, as the
RT provides guaranteed nominal Type I error control.

Trend patterns

In this section we will discuss the power differences between
the different types of data patterns in the simulation study. In
addition, we will pay specific attention to the differences be-
tween theMD and the ITEI in the different data patterns, as the
ES measure that was used in the RT was the experimental
factor that explained the most variance in the ANOVA apart
from the size of the treatment effect. Figure 4a contains the
power graphs for Data Patterns 1–5, Fig. 4b contains the pow-
er graphs for Data Patterns 6–10, and Fig. 4c contains the
power graphs for Data Patterns 11–15.

1. Data patterns with no A phase trend (Data Patterns 1–5):
The most important results regarding Data Patterns 1–5
can be summarized in the following bullet points:

& For data patterns without any trend (Data Pattern 1),
the average powers of theMD and the ITEI are similar.

& The average power of the ITEI is substantially larger
than the average power of the MD for data patterns
with any type of B phase trend (Data Patterns 2–5).

& Comparison of Data Patterns 2 and 3 shows that the
average power advantage of the ITEI as compared to
theMD in data patterns with an upward B phase trend
increases as the B phase trend grows larger.

& The average power of the MD in Data Patterns 2–5 is
very low.

& The average power graphs for Data Patterns 1–5 are
symmetrical, which means that the results for negative
and positive mean level treatment effects are similar.

2. Data patterns with an A phase trend of .25 (Data
Patterns 6–10):

& For all five of these data patterns, the ITEI has a large
average power advantage as compared to the MD, for
both positive and negative treatment effects.

& The average powers of both the ITEI and the MD are
higher when the treatment effect has the same direc-
tion as the A phase trend, as compared to when the
effects go in opposite directions.

& The average power difference between the MD and
the ITEI is larger when the A phase trend and the
treatment effect go in opposite directions than when
they have the same direction.

& When the A phase trend and the B phase trend have
the same value (Data Pattern 7), the average power
advantage of the ITEI relative to the MD disappears,
but only for positive treatment effects.

& The average power of the MD is extremely low in
nearly all data patterns.

3. Data patterns with an A phase trend of .50 (Data
Patterns 11–15):

& In comparison to Data Patterns 6–10, the overall av-
erage power drops due to the increased size of the A
phase trend (for both the ITEI and the MD and for
both positive and negative treatment effects).

& For all five data patterns, the ITEI has a large average
power advantage over the MD, for both positive and
negative treatment effects.

& When the A phase trend and the B phase trend have
the same value (Data Pattern 13), the average power
advantage of the ITEI relative to the MD disappears,
but only for positive treatment effects.

& The average power of the MD is extremely low for all
types of treatment effects in all data patterns (except
for Data Pattern 13). In contrast, the ITEI still has
substantial average power, but only for positive treat-
ment effects.

Table 3 Average powers (%) for the randomized AB phase design with
60 measurement occasions for large treatment effects (β2 = |4|) for the 15
different data patterns

DP MD ITEI

β 1 β 3 Positive TE Negative TE Positive TE Negative TE

1 0 0 88 87 94 94

2 0 .25 42 31 93 93

3 0 .50 14 15 85 84

4 0 – .25 32 43 92 92

5 0 – .50 14 13 84 86

6 .25 0 52 29 96 85

7 .25 .25 87 0 95 80

8 .25 .50 41 0 92 64

9 .25 – .25 19 13 95 82

10 .25 – .50 10 4 92 71

11 .50 0 24 10 96 49

12 .50 .25 51 0 96 41

13 .50 .50 87 0 95 27

14 .50 – .25 10 4 96 48

15 .50 – .50 6 1 94 39

DP = data pattern, TE = treatment effect, MD = mean difference, ITEI =
immediate treatment effect index. Conditions that reach a power of 80%
or more are marked in bold.
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The most important results regarding differences between
the individual data patterns and between the MD and the ITEI
can be summarized as follows:

& The presence of A phase trend and/or B phase trend in the
data decreases the power of the RT, as compared to data
without such trends, and the decrease is proportional to the
magnitude of the trend.

& Treatment effects that go in the same direction as theA phase
trend can be detected with higher power than treatment ef-
fects that go in the opposite direction from theA phase trend.

& The ITEI yields higher power than does the MD in data sets
with trends, especially for large trends and trends that have a
direction opposite from the direction of the treatment effect.

An additional result regarding the magnitude of the power in
the simulation study is that none of the conditions using 30
measurement occasions reached a power of 80% or more.
Also, all conditions that reached a power of 80% or more
contained large treatment effects (β2 = 4). The analysis of the
main effects showed that designs with 90 or 120 measurement
occasions only yielded very small increases in power as com-
pared to designs with 60 measurement occasions. Table 3 con-
tains an overview of the average powers for large positive and
large negative mean level treatment effects (β2 = |4|) for each of
the 15 different data patterns with 60measurement occasions, for
both the MD and the ITEI (averaged over the levels of autocor-
relation in the data).

Upon inspecting Table 3, one can see that for detecting differ-
encesinmeanlevel(i.e., thesimulationconditionsusingtheMDas
the test statistic), the randomizedAB phase design only has suffi-
cient power for data patternswithout any trend (Data Pattern 1) or
for data patterns inwhich theA phase trend and the B phase trend
areequal (DataPatterns7and13)and inwhich the treatmenteffect
is in the same direction as the A phase trend. With respect to
detectingimmediatetreatmenteffects,onecanseethat therandom-
izedABphase designhad sufficient power for all the data patterns
with no A phase trend included in the simulation study, provided
that the treatment effect was large (Data Patterns 1–5). For data
patternswithAphase trend, the randomizedABphasedesignalso
has sufficient power, provided that the treatment effect is in the
samedirectionas theAphase trend.Whenthe treatmenteffect is in
the opposite direction from theAphase trend, the randomizedAB
phase design only has sufficient power when both the A phase
trend and the B phase trend are small (Data Patterns 6, 7, and 9).
It is also important tonote that theRTonlyhas sufficientpower for
large treatment effects.

Discussion and future research

In this article we have argued that randomized AB phase de-
signs are an important part of the methodological toolbox of

the single-case researcher. We discussed the advantages and
disadvantages of these designs in comparison with more com-
plex phase designs, such as ABA and ABAB designs. In ad-
dition, we mentioned some common data-analytical pitfalls
when analyzing randomized AB phase designs and discussed
how the RTas a data-analytical technique can lessen the impact
of some of these pitfalls. We demonstrated the validity of the
RT in randomized AB phase designs containing unexpected
linear trends and investigated the implications of unexpected
linear data trends for the power of the RT in randomized AB
phase designs. To cover a large number of potential empirical
data patterns with linear trends, we used the model of Huitema
and McKean (2000) for generating data sets. The power was
assessed for both the absolute mean phase difference (MD,
designed to evaluate differences in level) and the immediate
treatment effect index (ITEI, designed to evaluate the immedi-
acy of the effect) as the test statistic in the RT. In addition, the
effect of autocorrelation on the power of the RT in randomized
AB phase designs was investigated by incorporating residual
errors with different levels of autocorrelation into the
Huitema–McKean model.

The results showed that the presence of any combination
of A phase trend and/or B phase trend reduced the power of
the RT in comparison to data patterns without trend. In ad-
dition, the results showed that the ITEI yielded substantially
higher power in the RT than did the MD for randomized AB
phase designs containing linear trend. Autocorrelation only
had a small effect on the power of the RT, with positive
autocorrelation diminishing the power of the RT and nega-
tive autocorrelation increasing its power. Furthermore, the
results showed that none of the conditions using 30 measure-
ment occasions reached a power of 80% or more. However,
the power increased dramatically when the number of mea-
surement occasions was increased to 60. The main effect of
number of measurement occasions showed that the power of
randomized AB phase designs with 60 measurement occa-
sions hardly benefits from an increase to 90 or even 120
measurement occasions.

The overarching message of this article is that the ran-
domized AB phase design is a potentially valid experi-
mental design. More specifically, the use of repeated mea-
surements, a deliberate experimental manipulation, and
random assignment all increase the probability that a valid
inference regarding the treatment effect of an intervention
for a single entity can be made. In this respect, it should
be noted that the internal validity of an experimental de-
sign is also dependent on all plausible rival hypotheses,
and that it is difficult to make general statements regard-
ing the validity of a design, regardless of the research
context. As such, we recommend that single-case re-
searchers should not reject randomized AB phase designs
out of hand, but consider how such designs can be used in
a valid manner for their specific purposes.
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The results from this simulation study showed that the ran-
domized AB phase design has relatively low power: A power
of 80% or more is only reached when treatment effects are
large and the design contains a substantial number of measure-
ment occasions. These results echo the conclusions of
Onghena (1992), who investigated the power of randomized
AB phase designs for data without trend or autocorrelation.
That being said, this simulation study also showed that it is
possible to achieve a power of 80% or more for specific data
patterns containing unexpected linear trends and/or autocorre-
lation, at least for large effect sizes.

One possibility for increasing the power of the RT for data
sets with trends may be the use of adjusted test statistics that
accurately predict the trend (Edgington, 1975b; Levin et al.,
2017). Rather than predicting the trend before the data are
collected, another option might be to specify an adjusted test
statistic after data collection using masked graphs (Ferron &
Foster-Johnson, 1998).

Recommendations with regard to an appropriate number of
measurement occasions for conducting randomized AB phase
designs should be made cautiously, for several reasons. First,
the manipulation of the treatment effect in this simulation
study was very large and accounted for most of the
variability in the power. Consequently, the expected size of
the treatment effect is an important factor in selecting the
number of measurement occasions for the randomized AB
phase design. Of course, the size of the treatment effect
cannot be known beforehand, but it is plausible that effect
size magnitudes vary depending on the specific domain of
application. Second, we did not investigate possible
interactions between the various experimental factors,
because these would be very difficult to interpret. However,
these potential interactions might have an effect on the power
of different types of data patterns, making it more difficult to
formulate general recommendations. Taking the previous
disclaimers into account, we can state that randomized AB
phase designs in any case should contain more than 30
measurement occasions to achieve adequate power. Note
that Shadish and Sullivan (2011) reported that across a survey
of 809 published SCEDs, the median number of measurement
occasions was 20, and that 90.6% of the included SCEDs had
fewer than 50 data points. It is possible that randomized AB
phase designs with fewer than 60measurement occasions may
also have sufficient power in specific conditions we simulated,
but we cannot verify this on the basis of the present results. As
we previously mentioned, we do not recommend
implementing randomized AB phase designs with more than
60 measurement occasions, since the extra practical burden
this entails does not outweigh the very small increase in power
it yields.

Although we advocate the use of randomization in SCEDs,
readers should note that some authors oppose to this practice,
as well as the use of RTs, because it conflicts with response-

guided experimentation (Joo, Ferron, Beretvas, Moeyaert, &
Van den Noortgate, 2017; Kazdin, 1980). According to this
approach, decisions to implement, withdraw, or alter treat-
ments are often based on the observed data patterns during
the course of the experiment (e.g., starting the treatment only
after the baseline phase has stabilized). Response-guided ex-
perimentation conflicts with the use of RTs, because RTs re-
quire prespecifying the start of the treatment in a random fash-
ion. In response to this criticism, Edgington (1980) proposed
an RT in which only part of the measurement occasions of the
SCE are randomized, thus giving the researcher control over
the nonrandomized part.

Some additional remarks concerning the present simulation
study are in order. First, although this simulation study
showed that the randomized AB phase design has relatively
low power, we should mention that multiple randomized AB
phase designs can be combined in a multiple-baseline, across-
participant design that increases the power of the RT consid-
erably (Onghena & Edgington, 2005). More specifically, a
simulation study has shown that under most conditions, the
power to detect a standardized treatment effect of 1.5 for de-
signs with four participants and a total of 20 measurement
occasions per participant is already 80% or more (Ferron &
Sentovich, 2002). A more recent simulation study by Levin,
Ferron, and Gafurov (2018) investigating several different
randomization test procedures for multiple-baseline designs
showed similar results. Another option to obtain phase designs
with more statistical power would be to extend the basic AB
phase design to an ABA or ABAB design. Onghena (1992)
has developed an appropriate randomization test for such ex-
tended phase designs.

Second, it is important to realize that the MD and ITEI
analyses used in this simulation study quantify two different
aspects of the difference between the phases. The MD aims to
quantify overall level differences between the A phase and the
B phase, whereas the ITEI aims to quantify the immediate
treatment effect after the implementation of the treatment.
The fact that the power of the RT in randomized AB phase
designs is generally higher for the ITEI than for the MD
indicates that the randomized AB phase design is mostly
sensitive to immediate changes in the dependent variable
after the treatment has started. Kratochwill et al. (2010) argued
that immediate treatment effects are more reliable indicators of
a functional relation between the outcome variable and the
treatment than are gradual or delayed treatment effects. In this
sense, the use of a randomized AB phase design is appropriate
to detect such immediate treatment effects.

Third, in this article we assumed a research situation in which
a researcher is interested in analyzing immediate treatment effects
and differences in mean level, but in which unexpected linear
trends in the data hamper such analyses. In this context it is
important to mention that over the years multiple proposals have
been made concerning how to deal with the presence of trends in
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the statistical analysis of single-case data. These proposals in-
clude RTs for predicted trends (Edgington, 1975b), calculating
measures of ES that control for trend (e.g., the percentage of data
points exceeding the baseline median; Ma, 2006), calculating
ESs that incorporate the trend into the treatment effect itself
(e.g., Tau-U; Parker, Vannest, Davis, & Sauber, 2011), and quan-
tifying trend separately from amean level shift effect, which is an
approach adopted by most regression-based techniques (e.g.,
Allison & Gorman, 1993; Van den Noortgate & Onghena,
2003), and also by slope and level change (SLC; Solanas et al.,
2010), which is a nonparametric technique to isolate the trend
from the mean level shift effect in SCEDs. The possibilities to
deal with trends in single-case data are numerous and beyond of
the scope of the present article.

The present study has a few limitations that we will now
mention. First of all, the results and conclusions of this sim-
ulation study are obviously limited to the simulation condi-
tions that were included. Because we simulated a large num-
ber of data patterns, we had to compromise on the number of
levels of some simulation factors in order to keep the simu-
lation study computationally manageable. For example, we
only used three different treatment effect sizes (in absolute
value) and four different numbers of measurement occa-
sions. Moreover, the incremental differences between the
different values of these factors were quite large. Second,
this simulation study only considered the 15 previously men-
tioned data patterns generated from the Huitema–McKean
model, featuring constant and immediate treatment effects
and linear trends. We did not simulate data patterns with
delayed or gradual treatment effects or nonlinear trends. An
interesting avenue for future research would be to extend the
present simulation study to delayed and/or gradual treatment
effects and nonlinear trends. Third, in this simulation study
we only investigated randomized AB phase designs. Future
simulation studies could investigate the effect of unexpected
trends in more complex phase designs, such as ABA and
ABAB designs or multiple-baseline designs. Fourth, we on-
ly used test statistics designed to evaluate two aspects of
single-case data: level differences and the immediacy of
the effect. Although these are important indicators of treat-
ment effectiveness, other aspects of the data might provide
additional information regarding treatment efficacy. More
specifically, data aspects such as variability, nonoverlap,
and consistency of the treatment effect must also be evalu-
ated in order to achieve a fuller understanding of the data
(Kratochwill et al., 2010). In this light, more research needs
to be done evaluating the power of the RT using test statistics
designed to quantify trend, variability, and consistency
across phases. Future research could focus on devising an
RT test battery consisting of multiple RTs with different test
statistics, each aimed at quantifying a different aspect of the
data at hand. In such a scenario, the Type I error rate across
multiple RTs could be controlled at the nominal level using

multiple testing corrections. A final limitation of this simu-
lation study is that the data were generated using a random-
sampling model with the assumption of normally distributed
errors. It is also possible to evaluate the power of the RT in a
random assignment model (cf. conditional power; Keller,
2012; Michiels et al., 2018). Future research could investi-
gate whether the results of the present simulation study
would still hold in a conditional power framework.

Conclusion

The AB phase design has been commonly dismissed as inad-
equate for research purposes because it allegedly cannot con-
trol for maturation and history effects. However this blanket
dismissal of AB phase designs fails to discern between ran-
domized and nonrandomized versions of the design. The pres-
ent article has demonstrated that the randomized AB phase
design is a potentially internally valid experimental design
that can be used for assessing the effect of a treatment in a
single participant when the treatment is irreversible or cannot
be withdrawn due to ethical reasons. We showed that random-
ized AB phase designs can be analyzed with randomization
tests to assess the statistical significance of the mean level
changes and immediate changes in the outcome variable by
using appropriate test statistics for each type of effect. The
results of a simulation study showed that the power with
which mean level changes and immediate changes can be
evaluated depends on the specific type of data pattern that is
analyzed. We concluded that for nearly every data pattern in
this simulation study that included an upward A phase trend, a
positive treatment effect, and/or a downward or upward B
phase trend, it was possible to detect immediate treatment
effects with sufficient power using the RT. In any case, ran-
domized AB phase designs should contain more than 30 mea-
surement occasions to provide adequate power in the RT.
Researchers should be aware that the randomized AB phase
design generally has low power, even for large sample sizes.
For this reason, we recommend that researchers use single-
case phase designs with more power (such as randomized
multiple-baseline designs or a serially replicated randomized
AB phase design) whenever possible, as they have a higher
statistical-conclusion validity. When an AB phase design is
the only feasible option, researchers should consider the ben-
efits of randomly determining the intervention point. It is far
better to perform the randomized AB phase design, which can
provide tentative information about a treatment effect, than
not to perform an SCED study at all.

Author note This research was funded by the Research Foundation–
Flanders (FWO), Belgium (Grant ID: G.0593.14). The authors assure that
all research presented in this article is fully original and has not been
presented or made available elsewhere in any form.
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Appendix: Descriptive results (means
and standard deviations) of the main effects
in the simulation study
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