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Abstract
In this study, we evaluated the estimation of three important parameters for data collected in a multisite cluster-randomized trial
(MS-CRT): the treatment effect, and the treatment by covariate interactions at Levels 1 and 2. The Level 1 and Level 2 interaction
parameters are the coefficients for the products of the treatment indicator, with the covariate centered on its Level 2 expected
value and with the Level 2 expected value centered on its Level 3 expected value, respectively. A comparison of a model-based
approach to design-based approaches was performed using simulation studies. The results showed that both approaches produced
similar treatment effect estimates and interaction estimates at Level 1, as well as similar Type I error rates and statistical power.
However, the estimate of the Level 2 interaction coefficient for the product of the treatment indicator and an arithmetic mean of
the Level 1 covariate was severely biased in most conditions. Therefore, applied researchers should be cautious when using
arithmetic means to form a treatment by covariate interaction at Level 2 in MS-CRT data.

Keywords Three-level models . Covariate by treatment interaction . Design-based . Model-based . Multisite cluster-randomized
trials

The random assignment of study conditions to individuals or
groups allows for the equivalence of potential outcomes in
treated and control groups and provides a strong basis for
causal inference of the treatment effect (Hong, 2015). In the
social sciences, assigning clusters to conditions is generally
more feasible than assigning individuals. Furthermore, ran-
domizing individuals might be inappropriate when assessing
the impact of interventions that naturally occur in clusters
(Barbui & Cipriani, 2011; Donner & Klar, 2004). The fre-
quency of utilizing cluster-randomized trials (CRTs), and es-
pecially multisite cluster-randomized trials (MS-CRTs), has
been increasing (Bloom & Spybrook, 2017). In a CRT, clus-
ters of participants are assigned to a condition. An MS-CRT is
a type of CRT in which lower-level clusters are assigned from
within levels of a higher-level cluster to at least two different

levels of a condition. For example, an MS-CRT could have
teachers within schools assigned to either treatment or control
groups, and all students of a teacher would be in the same
condition. By contrast, when the highest-level clusters are
assigned to conditions, the design is not an MS-CRT and is
typically referred to simply as a CRT. For example, a CRT
could have several schools randomly assigned to treatment or
control, resulting in a study in which all teachers in a school,
and therefore all children in the school, are assigned to the
same condition.

In the simplest MS-CRT there are three levels. In educa-
tional research, within-school random assignment can offer
more efficient studies than random assignment of schools.
For a fixed sample size, assigning teachers within a school
to different study conditions offers increased statistical power
to detect a treatment effect, when compared to random assign-
ment of entire schools. For a fixed target power, random as-
signment of schools might require up to twice as many
schools. (Bloom & Spybrook, 2017; Wijekumar, Hitchcock,
Turner, Lei, & Peck, 2009). For an extensive discussion of
MS-CRTs, readers are referred to Kelcey, Spybrook, Phelps,
Jones, and Zhang (2017), Kraemer (2000), Raudenbush and
Liu (2000), and Ruud et al. (2013). In this study we focused
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on analyses of the simplest MS-CRT, in which the second-
level units are randomly assigned to treatment conditions from
within a third level.

In any variation of cluster-randomized designs, partici-
pants’ scores within a cluster are dependent. For example, in
an MS-CRTwith children nested in classes nested in schools,
scores for participants in a class are dependent, as are scores
for participants in a school. Three main frameworks address
this dependency when investigating a treatment effect: model-
based, design-based, and permutation (Feng, Diehr, Peterson,
&McLerran, 2001; Gardiner, Luo, & Roman, 2009; Ghisletta
& Spini, 2004; Huang, 2016; Hubbard et al., 2010; Murray et
al., 2006; Nevalainen, Oja, & Datta, 2017). However, for an
MS-CRT targeting on detecting a covariate by treatment inter-
action, the choices are limited. Permutation tests, a partially
model-free approach, do not allow for examining moderation
effects and are used infrequently in educational research. A
relatively recent approach, cluster bootstrapping, has been
shown to produce results similar to those of multilevel model-
ing (MLM), but the results are computationally demanding,
especially within a Monte Carlo simulation study (Huang,
2016). In brief, MLM, as a completely model-based approach,
and generalized estimating equations (GEE) and cluster-
robust standard errors (CRSE), as design-based approaches,
are possible alternatives for analyzing MS-CRT data
(McNeish, 2014; McNeish & Harring, 2017; McNeish &
Wentzel, 2017). Among these three methods,MLM is current-
ly the predominant method in the field of the social sciences
(Bauer & Sterba, 2011; McNeish, Stapleton, & Silverman,
2017). However, CRSE offers a convenient approach, espe-
cially for the applied researchers familiar with single-level
models that make fewer assumptions about random effects
than MLM does. Furthermore, comparison studies have sup-
ported the use of design-based methods over model-based
methods (Gardiner et al., 2009; McNeish et al., 2017;
Sterba, 2009; Wu, Wang, & Pei, 2012). GEE has fewer
advantages for MS-CRT data with a continuous outcome
than does CRSE; furthermore, if GEE uses an independent
working correlation matrix, its results are expected to be
identical to those of CRSE (McNeish et al., 2017). In brief,
in this study we investigated the performance of MLM and
CRSE using Mplus 7.4 (Asparouhov & Muthén, 2006;
Muthén & Muthén, 2015) to detect both a treatment effect
and Covariate × Treatment interactions in an MSCRT setup
with a continuous outcome.

Investigating moderation effects in an MLM setting is of
relatively recent interest, as compared to single-level models.
The importance of the subject was emphasized by Bauer and
Curran (2005) and by Preacher, Curran, and Bauer (2006).
Mathieu, Aguinis, Culpepper, and Chen (2012) and Aguinis,
Gottfredson, and Culpepper (2013) investigated estimation
procedures for cross-level interactions. Preacher, Zhang, and
Zyphur (2016) advised the examination of level-specific

moderation, and explained the problems with commonly ap-
plied procedures in which moderation tests are completed
without separating the lower- and higher-level effects into
their orthogonal components. Studies addressing the level-
specific moderation in a multilevel setting have been limited.
Ryu (2015), focusing on Level 1 (L1) variables, investigated
the effect of centering in a multilevel structural equation
framework based on an orthogonal partitioning. One of her
two simulation studies is relevant to an MS-CRT design in
which the interaction between a Level 2 (L2) variable and
the between-level component of an L1 variable is investigat-
ed. Ryu’s approach of orthogonal partitioning does not allow
for interaction between the within-level component of the L1
variable and the L2 variable, due to a homogeneous L1 co-
variance structure across clusters; hence, she studied the mod-
eration effect at L2, and reported biased estimates due to the
use of observed rather than latent means (Lüdtke et al., 2008)
with cluster mean centering. A similar insight was provided
by Preacher, Zhang, and Zyphur, who suggested using latent
decomposition when investigating moderation effects. Latent
decomposition refers to decomposing an L1 independent var-
iable around its expected values at higher levels. For example,
in a two-level design, the independent variable Xij can be
decomposed as Xij = μ + (μj − μ) + (Xij − μj), where μ is the
grand expected value and μj is the expected value of Xij for
the jth cluster. The mean μj is referred to as a latent mean
(Lüdtke et al., 2008). However, the authors did not examine
in detail the bias due to the use of observed means as covar-
iates, and they reported that latent decomposition for a three-
level model is not easily feasible. A recent work by Brincks et
al. (2017), in which the authors investigated the effect of cen-
tering in three-level models, also mentioned the infeasibility
of latent decomposition in three-level models. The necessity
of using latent decomposition to study the main effect of an L1
reflective variable at L2 was also shown by earlier studies
(Croon & van Veldhoven, 2007; Lüdtke et al., 2008; Shin &
Raudenbush, 2010). However, an investigation comparing the
bias of the treatment effect estimator in a two-level CRT re-
vealed no bias when the L2 covariate comprised either ob-
served or latent means; furthermore, the statistical power to
detect the treatment effect was slightly lower when the latent
means were used as the covariate and cluster sizes were small
(Aydin, Leite, & Algina, 2016). Given that testing treatment
effects is a primary purpose of CRTs, we addressed two
questions:

Research Question 1: In an MS-CRT, what are the
effects of using the observed L2 means as a covar-
iate on (a) the bias of estimation of the treatment
effect and the level-specific treatment by covariate
(T×C) interactions, and (b) the Type I error rate and
power of the test of the treatment effect and level-
specific T×C interactions?
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Research Question 2:Do the effects of using L2 observed
means as a covariate differ between design-based and
model-based approaches?

To answer these questions, we considered the simplest MS-
CRT, in which k = 1 . . . K Level 3 (L3) units are randomly
selected from a population, j = 1 . . . J L2 units are randomly
selected within each L3 unit and randomly assigned to a treat-
ment or control group with equal probabilities, and i = 1 . . . n
L1 units are selected in each L2 unit. At L1, an outcome (Yijk)
and two covariates (X1ijk, X2ijk), all continuous, are assessed.
The treatment indicator (Z.jk) is an L2 binary variable.We used
following terms in this three-level structure: A site mean refers
to the arithmetic mean of all observations within the kth site,
and a cluster mean refers to the arithmetic mean of all obser-
vations within the jth L2 cluster within the kth site. The article
is structured as follows: We (a) briefly discuss decomposing
interactions in an MS-CRT design, (b) introduce the compet-
ing approaches to analyze MS-CRT data, (c) explain our sim-
ulation study design, (d) report the results, and (e) provide an
empirical example and a Discussion section.

Decomposing interactions for an MS-CRT
setup

For empirical studies in which the main interest is in the treat-
ment effect itself, investigating the interaction between a treat-
ment indicator and a relevant variable is generally stated as an
additional research question. One way to include an interac-
tion term in a multilevel model is to multiply the treatment
indicator by the relevant variable and, if necessary, decompose
it into different levels by centering the product. This approach
was considered by Josephy, Vansteelandt, Vanderhasselt, and
Loeys (2015), but its use was criticized by Preacher, Zhang,
and Zyphur (2016) because the results are uninterpretable. In
this study, we investigated the treatment main effect and
Covariate × Treatment interaction due to an L1 moderator (1
× (2→1) design) by decomposing the L1 predictor into
between- and within-factor components and then multiplying
the components by the treatment indicator. The decomposition

of the covariate is X 1ijk ¼ X 1ijk−X 1:ijk
� � þ X 1:ijk−X 1:k

� �
þ

X 1:k , and the product terms are X 1i jk−�X 1:i jk
� �

Z : jk at L1 and

�X 1:i jk−��X 1:k

� �
Z : jk at L2, where X 1:ijk and X 1:k represent a

cluster mean and a school mean, respectively.

Three approaches to analyze MS-CRT data

In this article, three approaches to address dependency due to
the nested structure of an MS-CRT are compared. We utilized

MLM, CRSE, and a combination of these two approaches.
These approaches were implemented with the Mplus 7.4 soft-
ware (Muthén & Muthén, 2015). As we noted earlier, multi-
level modeling is currently the predominant method among
social scientists for analyzing clustered data. For extensive
details on three-level models, readers are referred to
Moerbeek and Teerenstra (2015), Raudenbush and Bryk
(2002), and Snijders and Bosker (2012). These models can
be estimated using several different software programs (e.g.,
SAS, HLM, and the R package nlme or lme4). Both regres-
sion coefficients and variance components can be estimated
with a multilevel model. A three-level model without covari-
ates for an MS-CRT can be written as

Y i jk ¼ β0 jk þ ei jk
β0 jk ¼ γ00k þ γ01kZ : jk þ u0 jk
γ00k ¼ π000 þ u00k
γ01k ¼ π010 þ u01k

ð1Þ

where Yijk is a continuous L1 outcome and Z.jk is the binary
treatment indicator at L2. Fixed effects are represented by π;
specifically, π000 is the intercept and π010 is the treatment main
effect. The L1 random effect (eijk), L2 random effect (u0jk),
and L3 random effects for the intercept (u00k) and the treat-
ment (u01k) are assumed to be normally distributed with a
mean of 0 and a covariance matrix T:

T ¼
σ2

0 τβ0jk

0 0 τγ00k
0 0 τγ00k ;γ01k τγ01k

2
664

3
775 ð2Þ

where σ2 is the within-cluster variance component, τβ0jk
is the

variance component due to clusters within sites, τγ00k repre-
sents the variance due to sites, τγ01k is the treatment effect
variance between sites, and τγ00k ;γ01k is the covariance between
the site-specific means and the site-specific treatment effects.
The statistical power to detect the treatment effect in Eq. 1
varies as a function of the magnitude of π010, the sample size,
and the variance at each level including τγ01k (Bloom &
Spybrook, 2017; Spybrook et al., 2011, p. 86). When covari-
ates are added to Eq. 1, the statistical power changes due to the
adjustment in π010 and the variance components. The effect of
the covariates on the conditional variance depends on the
strength of the correlation between the covariates and the out-
come, as well as on the correlation between the covariates.

CRSEs can account for dependency due to clusters. As an
example of calculating CRSEs, consider a residual-based es-
timator for standard errors of a single-level model estimated
from two-level data. The standard errors can be computed
using a sandwich estimator (see, e.g., Raudenbush & Bryk,
2002, p. 277) to produce robust standard errors with large
samples. According to Raudenbush and Bryk, the procedure
allows for approximately correct tests and confidence

Behav Res (2019) 51:243–257 245



intervals, even when the residual for the single-level model is
not normally distributed. For relatively small sample sizes,
further modifications might be needed (McNeish &
Stapleton, 2016).

Several variations of CRSEs are available, at least for
a single-level model (McNeish, 2014; McNeish &
Harring, 2017; Raudenbush & Bryk, 2002). Mplus pro-
vides a CRSE procedure referred to as type = complex,
which entails fitting a single-level model to data and
correcting the standard errors for clustering at a higher
level. Asparouhov (2005) describes the procedure for
complex sampling with stratification, clustering, and
sampling weights. In the following discussion, we adapt
Asparouhov’s description of a design without stratifica-
tion or sampling weights, the type of design we investi-
gated. Estimates are obtained by maximizing a likelihood
defined assuming independence of the observations.
Thus, when there are no sampling weights and no strat-
ification, the estimates are ML estimates of a single-level
model. Let l be the likelihood based on the independence
assumption, lij the contribution to the likelihood by the ith
individual in cluster j, z j ¼ ∑i∂ log lij

� �� �
=∂θ, z the aver-

age of the zi, and L^ the matrix of the second derivatives
of logl. The asymptotic covariance matrix of the estimates

is given by J= J−1ð Þð ÞL0 0−1∑ j z−z j
� �

z−z j
� �TL″−1, where J

is the number of clusters and T is the transpose operator.
A combination of CRSE and MLM can be employed

to analyze a three-level data structure by accommodat-
ing the first two levels with MLM and the third level
with CRSE (McNeish & Wentzel, 2017; Rabe-Hesketh
& Skrondal, 2006). Hence, instead of extensive model
building at L3, the researchers can focus on a less com-
plex model while accounting for the third-level cluster-
ing. Mplus provides a combination procedure that is
referred to as type = complex twolevel. Asparouhov
and Muthén (2006) have described the procedure to
compute standard errors in a multilevel setup that al-
lows for stratification and sampling weights. Assuming
no stratification and sampling weights equal to 1 at both
L1 and L2, as in this study, the procedure can be de-
scribed as follows, which we have adapted from
Asparouhov and Muthén. Let ljk be the likelihood of
the observed data for the jth L2 unit nested in the kth
L3 unit, l ¼ ∏ j;k ljk , L = log(l), and Ljk = log(ljk), CRSEs
are computed using (L″)−1Var(L′)(L″)−1, where the ' and ''

refer to the first and second derivatives, respectively, of
the log likelihood, and the second term Var(L′) is equal to

Var ∑k; jLjk
� �

. According to Asparouhov and Muthén, the

last term Bis computed according to the formulas for the
variance of the weighted estimate of the total described in
Cochran, Chapter 11 (1977) taking the appropriate design
into account^ (p. 2719).

Monte Carlo simulation study

The data generation process for the MS-CRT data was com-
pleted using R (R Core Team, 2016). The simulated datasets
were analyzed using Mplus 7.4 (Muthén & Muthén, 2015).
The results from Mplus outputs were investigated in a mixed
analysis of variance (ANOVA) framework. These three main
steps of the Monte Carlo simulation study are presented in this
section. The data generation model was a three-level model,
presented in Eq. 3:

Y i jk ¼ β0 jk þ β1 jk X 1i jk−μ1 jk

� �
þ β2 jk X 1i jk−μ1 jk

� �
Z : jk

þ β3 jk X 2i jk−μ2 jk

� �
þ ei jk

β0 jk ¼ γ00k þ γ01kZ : jk þ γ02k μ1 jk−μ1k

� �
þ γ03k μ1 jk−μ1k

� �
Z : jk

þ γ04k μ2 jk−μ2k

� �
þ u0 jk

β1 jk ¼ γ10k
β2 jk ¼ γ20k
β3 jk ¼ γ30k
γ00k ¼ π000 þ π001 μ1k−μ1ð Þ þ π002 μ2k−μ2ð Þ þ u00k
γ10k ¼ π100

γ20k ¼ π200

γ30k ¼ π300

γ01k ¼ π010 þ u01k
γ02k ¼ π020

γ03k ¼ π030

γ04k ¼ π040

ð3Þ

where for each of the two L1 covariates s = 1, 2, μs is
the grand mean, ωsk = μsk − μs is the random effect for
school k with variance component τωs ; ξsjk ¼ μsjk−μsk is

the random effect for class j in school k with variance
component τξs and Rsijk = Xsijk − μsjk is the random effect
for individual i in class j in school k with variance
component σ2

RS
. Each of the random effects has a mean

of 0. The grand means for the covariates were set equal
to 0. The decomposition of the variance of a covariate
is σ2

X sijk
¼ τωs þ τξs þ σ2

RS
. The variance σ2

X sijk
was set to

1, so that τωs ¼ ICCXS−L3; τξs ¼ ICCXS−L2, and σ2
RS

¼
1− ICCXS−L2 þ ICCXS−L3ð Þ, where ICCXS−L3 and
ICCXS−L2 are the intraclass correlation coefficients for
Xs. The variance components were equal for the two
covariates, and the correlation coefficient for each com-
ponent of the covariates is provided in Table 1.

The data generation process was completed through the
following steps: Simulate (a) the L3 components of covariates
ω1:k

ω2:k

� �
from N

0
0

� �
;

ICCX1−L3
Cov ω1:k ;ω2:kð Þ ICCX2−L3

� 	
Þ

�
; (b) the L2 com-

ponents of covariates
ξ1 jk
ξ2 jk

� �
from

N
0
0

� �
;

ICCX1−L2
Cov ξ1 jk ; ξ2 jk

� �
ICCX2−L2

� 	� �
; ( c ) L 1
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components of covariates
R1ijk

R2ijk

� �
from N

0
0

� �
;

�
�
1−ICCX1−L2 þ ICCX 1−L3
Cov R1ijk ;R2ijk

� �
1−ICCX2−L2 þ ICCX2−L3

	�
; (d) the bina-

ry treatment indicator to randomly assign half of the L2 units
within an L3 unit to treatment and half to control; (e) the

L3 random components of the outcome variable
u00k
u01k

� �
from

N
0
0

� �
;

τπ00k
τπ00k;π01k τπ01k

� 	� �
, where τπ00k = ICCY − L3 and

ICCY–L3 is the L3 ICC for Y, conditional on the treatment indi-
cator, the covariates, and the products of the treatment indicator
and covariates; (f) for each L3 unit, the L2 random component
uojk fromN(0, ICCY− L2); and finally (g) for each L2 unit, the L1
random component eijk from N(0, 1 − (ICCY − L3 + ICCY − L2)).

The mixed model for generating the data is

Y i jk ¼ π000 þ π001 μ1k−μ1ð Þ þ π002 μ2k−μ2ð Þ þ π010Z : jk

þ π020 μ1 jk−μ1k

� �
þ π030 μ1 jk−μ1k

� �
Z : jk

þπ040 μ2 jk−μ2k

� �
þ π100 X 1i jk−μ1 jk

� �
þ π200 X 1i jk−μ1 jk

� �
Z : jk þ π300 X 2i jk−μ2 jk

� �

þu00k þ u0 jk þ u01kZ : jk þ ei jk

ð4Þ

Conditions and population parameters

Estimating a three-level model for 1,000 replications of each
combination of factors (i.e., a condition) was computationally

demanding; hence, we conducted four separate simulation stud-
ies, one main and three additional simulations. The parameters
for these simulations are summarized in Table 1. The first and
second additional simulations aimed to explore if themain study
findings were consistent with larger sample sizes and factors that
were not manipulated in the main simulation. The third addi-
tional simulation aimed to provide additional insight on model
comparisons under relatively complex covariance structures.

For the main simulation study, the sample size combi-
nations were selected on the basis of reviewing 357 pro-
jects funded by Institute of Education Sciences (Aydin et
al., 2016); the L1 and L2 sample sizes were six and ten; the
L3 sample sizes were 20 and 40. The ICC values for L2
(.08 and .16) and L3 (.09) were chosen in light of a meta-
analysis on variance decomposition of academic achieve-
ment data due to schools and districts (Hedges & Hedberg,
2013). The correlations between the components of the two
L1 covariates were equal across levels and were set so that
the total correlation was either .30 or .70, to represent rel-
atively small and large relationship strengths, respectively.
The magnitude of the fixed effects for the treatment (.15),
its interactions with the covariates (.20 and .30 at both L1
and L2), and the covariate (.20 for both L1 and L2) were
chosen on the basis of the representative application stud-
ies from the decade of the 2000s, summarized by Mathieu,
Aguinis, Culpepper, and Chen (2012). Given that we fixed
the variance of X to 1 in our simulation studies, these mag-
nitudes can be considered standardized effect sizes. The
effect size variability magnitude, τπ01k = .05, was chosen

Table 1 Simulation symbols and population parameters

Factor Symbol Main Add-1 Add-2 Add-3

L1 sample size n 6,10 20 10 10

L2 sample size J 6,10 10, 20 10 10

L3 sample size K 20,40 40, 60 40 40

L2 ICCX ICCX1–L2 .08, .16 .08, .16 .08, .16 .16

L3 ICCX ICCX1–L3 .09 .09 .06, .12 .09

L2 ICCY ICCY-L2 .08, .16 .16 .08, .16 .08,.16

L3 ICCY ICCY-L3 .06, .12 .12 .06, .12 .06, .12

L2 int. comp. π30 or πTX− L2 0, .20 0, .20, .30 0, .20 .20

L1 int. comp. π200 or πTX− L1 0, .20 0, .20, .30 .20 .20

Treatment π010 or πT 0, .15 .15 .15 .15

L3 Treatment variance τπ01k .05 .05 .05, .20 0, .05, .20

Correlation X1 and X2 Cor(X1, X2) .30, .70 .50 .30, .70 .50

X1 and X2 effect π001, π002, π020, π040, π100, π300 .20 .20 .20 at L1–3 .10, .20 at L2 .20

L3 correlation Cor(u00k, u01k) .20 .20 .20, .40 0,.30, .70

Competing models 1–3 1–3 2 only 1–3

Total 1,024 72 1,024 36

Add = Additional simulation study, int. comp. = interaction component. Also notice that the L1 interaction component corresponds to a cross-level
interaction.
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on the basis of the Optimal Design software (Spybrook et
al., 2011, p. 98).

Competing models

We examined the performance of three competing
models. The default estimator for each model was max-
imum likelihood estimation with robust standard errors
(MLR1). Syntax for fitting the competing models using
Mplus 7.4 is provided in the Appendix. Our first model,
referred as M3L and presented in Eq. 5, is a three-level
model, as is Eq. 4, but an observed mean decomposi-
tion of the covariates is employed: group mean center-
ing of the continuous independent variables represented

by X ijk−X jk
� �

at L2, and X jk−X ::k at L3.2 Fixed effects
are represented by π ; specifically, π001 and π002 are the
L3 effects, π010 and π040 are the L2 effects, π100 and
π300 are the L1 effects of the covariates X1 and X2,
respectively. Given that the treatment effect and the co-
variate by treatment interaction are of greater interest in
a CRT than are the coefficients for the covariates, the
fixed effect of treatment (π020, referred below as πT),
the L2 interaction component (π030 or πTX-L2), and the
L1 interaction component (π200 or πTX-L1) are investigat-
ed in detail.

Y i jk ¼ π000 þ π001
��X 1::k þ π002

��X 2::k þ π010Z : jk þ π020 �X 1: jk−��X 1::k

� �

þ π030 �X 1: jk−��X 1::k

� �
Z : jk þ π040 �X 2: jk−��X 2::k

� �

þ π100 X 1: jk−�X 1: jk
� �þ π200 X 1i jk−�X 1: jk

� �
Z : jk
� �

þ π300 X 2i jk−�X 2: jk
� �þ u00k þ u0 jk þ u01kZ : jk þ ei jk

ð5Þ

Model 2, referred as M2L-C, is a two-level model and
thus includes variables at L1 and L2. The two-level com-
plex procedure, which corrects the standard error for clus-
tering at L3, was used to estimate the parameters and to
carry out hypothesis testing. The M2L-C model can be
obtained from Eq. 5 by deleting u00k and u01k. Model 3,
referred as M1L-C, is a single-level model and can be
obtained from Eq. 5 by deleting u00k, u01k and u0jk. The
complex procedure, which corrects the standard error for
clustering at L3, was used to estimate the parameters and
to carry out hypothesis testing. All three models included
the same fixed effects. In particular, Model 3, as well as
Models 1 and 2, includes the L1 interaction component
πTX-L1 and the L2 interaction component πTX-L2. Model 1
includes variance components at L1, L2, and L3; Model 2

includes variance components at L1 and L2; and Model 3
includes only an L1 variance.

Analysis of the simulation results

We focused on three coefficients and their standard errors:
π̂T ; π̂TX−L1 and π̂TX−L2. The convergence rate, the ratio of nor-
mally terminated estimations to the total number of replica-
tions was 100% for each condition. We examined coverage
rates, coefficient bias, relative bias of the standard error, power
and Type I error rates. We used a mixed-design ANOVA
model; factors of the simulation design were treated as
between-subjects factors and the analysis method was treated
as the within-subjects factor. We conducted 15 separate
analyses of variance (ANOVAs), one for each combination
of the coefficients, on the one hand, and for coverage rate,
coefficient bias, relative standard error bias, Type I error
rate, and power, on the other. The dependent variables in
these analyses were:

& Coefficient bias—The dependent variable was θ̂−θ coef-

ficient bias was calculated as the average of θ̂−θ over
replications of a condition.

& Coverage rate—The dependent variable was an indica-
tor variable for the 95% confidence interval (CI) in a

replication of a condition: θ̂� z:975ð ÞS θ̂
� �

, where θ

was πT, πTX − L1,or πTX − L2. The coverage rate was cal-
culated as the percentage of intervals that contained θ,
and rates within .925 and .975 were considered accept-
able (Bradley, 1978).

& Relative standard error bias—The dependent variable was

SE θ̂
� �

¼ SE θ̂
� �

−SD θ̂
� �h i

=SD θ̂
� �

, where SD θ̂
� �

is

the standard deviation of the parameter estimate across
all replications of a condition (Bandalos & Leite, 2013).
The relative standard error bias was calculated as the av-

erage of SE θ̂
� �

−SD θ̂
� �h i

=SD θ̂
� �

over replications of a

condition. Following Hoogland and Boomsma (1998), we
considered the relative bias of the standard errors accept-
able if the average over replications were between – 0.1
and 0.1.

& Type I error rate—For conditions in which θ = 0, the
dependent variable was an indicator variable for whether

z ¼ θ̂=SE θ̂
� �

did not result in rejection of H0 : θ = 0,

with ± z.975 as the critical value. The Type I error rate
was calculated as the proportion of replications in which
H0 : θ = 0 was not rejected, and rates within .025 and .075
were considered acceptable (Bradley, 1978).

& Power—For conditions in which θ ≠ 0, the depen-
dent variable was an indicator variable for whether z ¼

1 Conventional maximum likelihood (ML), one of the main estimation
methods for multilevel modeling, is not available with the type = complex
option in Mplus, whereas restricted maximum likelihood (REML) currently is
not an option in Mplus at all (see McNeish, 2017).
2 This approach corresponds to CWC1/CWC2 as described in Brincks et al.
(2017).
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θ̂=SE θ̂
� �

did result in rejection of H0 : θ = 0, with ± z.975

as the critical value. Power was calculated as the propor-
tion of replications in which H0 : θ = 0 was rejected.

Generalized η2 (Olejnik & Algina, 2003) was calculated as
the effect size measure, and effects with generalized η2 < .001
were not interpreted.

Results

Main simulation study

The main simulation study was completed in approximately
2,088 hours, divided across six computers, each of which had
16 GB RAM and a 3.70-GHz central processing unit. As is
reported in Table 1, a total of ten between-subjects factors
were manipulated, and each factor had only two levels,
resulting in 210 = 1,024 conditions. Estimation converged
for all 1,024 × 1,000 replications.

Coefficient bias The average coefficient bias across iterations
for π̂T ranged between – .010 and .009, with a mean of 0;
these values did not change across different models. The η2

values were all smaller than .001. Similarly, the coefficient
bias for π̂TX−L1 was acceptable and ranged between – .006
and .006

The coefficient bias for π̂TX−L2 included large values
and ranged between – .14 and .14, with a mean of 0;
these values did not change across different models. The
mixed-design ANOVA revealed substantial effects of
πTX−L1 (η2 = .060) and πTX−L2 (η2 = .059), and relatively
weak effects for (a) the πTX − L1 by ICCX1–L2 interaction
(η2 = .003), (b) the πTX − L2 by ICCX1–L2 interaction (η2 =
.003), (c) the πTX − L1 by n interaction (η2 = .001), and
(d) the πTX − L2 by n interaction (η2 = .001). The results
in Table 2 indicate the sources of these effects. Bias
occurred when πTX − L1 ≠ πTX − L2. The magnitude of the bias
differed after the third decimal place across the different
models, and it decreased as n and ICCX1–L2 increased. The
direction of the bias was positive when πTX − L2 > πTX − L1, and
negative otherwise.

Coverage rates The mean coverage rates across iterations for
M2L-C and M1L-C were similar to each other and differed
generally only after the third decimal place, but M3L had
slightly different rates. The ranges of coverage rates for πT
were [.906, 960] for the M3L and [.910, .963] for the M2L-
C and M1L-C. The mixed-design ANOVA did not result in
any values of η2 > .001. For M3L, 21% of all 1,024 simulated
conditions resulted in mean coverage rates lower than .925;
for the other two models, low coverage rates were observed in

approximately 9% of the conditions. Among all low-coverage
conditions, 91% occurred with K = 20.

A similar pattern was observed for πTX − L1: The ranges of
coverage rates were [.898, .965] for M3L, and [.904, .966] for
the other two models. For M3L, 21% of all 1,024 simulated
conditions had mean coverage rates lower than .925, and for
the other two models this percentage was 8%. Again, low-
coverage conditions occurred largely (91%) when K = 20.

The coverage rates were more problematic for πTX−L2, with
ranges in coverage rates equal to [.751, .953], [.782, .957], and
[.782, .958] for M3L, M2L-C, and M1L-C, respectively. Only
23% of the simulated conditions resulted in acceptable mean
coverage rates. The mixed-design ANOVA resulted in η2 =
.006 for the πTX − L1 by πTX−L2 interaction. Table 3 shows the
ranges in coverage rates for πTX−L2 as a function of model.
The coverage ranges when πTX − L1 and π̂TX−L2 were equal
were [.893, .953], [.900, .957], and [.900, .958]. These rates
are similar to those reported for πT and πTX − L1, and rates
lower than .925 occurred largely (81%) when K = 20.

Relative bias of the standard errors The results for 16 replica-
tions out of 1,024,000 had standard errors larger than 10. All
of these outlying standard error estimates were for M3L.3 For
π̂T , the median relative bias of standard errors across 1,000
replications of the 1,024 conditions were in the range [– .113,
.047] for M3L, and the range [– .094, .059] for M2L-C and
M1L-C. The mixed-design ANOVA did not reveal any

Table 2 Average biases of π̂TX−L2 for the main study

πTX− L2 πTX− L1 n ICCX1–L2 M3L M2L-C M1L-C

0 0 6 .08 .000 .000 .000

0 0 6 .16 .000 .000 .000

0 0 10 .08 .000 .000 .000

0 0 10 .16 .000 .001 .001

0 .2 6 .08 – .124 – .126 – .126

0 .2 6 .16 – .087 – .088 – .088

0 .2 10 .08 – .101 – .102 – .102

0 .2 10 .16 – .063 – .064 – .064

.2 0 6 .08 .127 .128 .128

.2 0 6 .16 .087 .088 .088

.2 0 10 .08 .102 .102 .102

.2 0 10 .16 .064 .064 .064

.2 .2 6 .08 .001 .002 .002

.2 .2 6 .16 .000 .000 .000

.2 .2 10 .08 .001 .002 .002

.2 .2 10 .16 .001 .001 .001

M3L = three-level model, M2L-C = two-level complex model, M1L-C =
single-level complex model

3 Outlying standard errors occurred for π̂TX−L2, and four of these 16 repli-
cations also had outlying standard errors for π̂T.
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interpretable effects, and – .113 was observed when K = 20
and J = 6. A similar pattern was observed for π̂TX−L1: [– .115,
.045] withM3L, and [– .092, .060] with the other two models;
– .11 was observed when K = 20 and J = 6. All four models
performed similarly when K was larger. Table 4 reports the
mean relative biases of the standard errors after removing the
16 outliers.

For π̂TX−L2, the ranges for the median relative standard
error bias were [– .141, .041], [– .151, .022], and [– .150,
.028] for Models 1–3, respectively. The mixed-design
ANOVA did not reveal interpretable effects. Out of the
1,024 manipulated conditions, median values lower than –
.10 occurred in 98, 120, and 119 conditions for Models 1–3,
respectively, mainly when K = 20 and J = 6. Table 5 reports
the mean values after removing the 16 outliers. These results
indicated that on average, standard errors were slightly
underestimated when K was smaller and that J had a larger
effect when K was smaller.

Power and Type I error rate The average empirical powers to
detect the treatment effect were similar across the different
models: .533 for M3L and .523 for M2L-C and M1L-C. The
sample size at each of the three levels and the ICCY–L2 factors
had η2 > .001. The largest effect size was for K, η2 = .061. The
mean power was .402 forK = 20, and .65 forK = 40. The effects
of sample size at L1 and L2 were smaller: η2 = .004 for n, with
means of .49 and .56 for n = 6 and n = 10, respectively, and η2 =
.017 for J, with means of .46 and .59 for J = 6 and J = 10,
respectively. The effect size for ICCY–L2 was η

2 = .006, with
means of .56 and .49 for ICCY-L2 = .08 and .16, respectively.
The larger value of ICCY–L2 indicates a larger conditional
variance for Y, and this accounts for the reduction in power.

The average Type I error rates for the treatment effect were in
the ranges [.040, .094], [.039, .090], and [.039, .090], withmean
values of .067, .062, and .063 for Models 1–3, respectively. No
effect had η2 > .001; however, 20% of the conditions resulted in
Type I error rates larger than .075 forM3L, and 8% for the other
twomodels. Among the conditions with large Type I error rates,
90% occurred when K = 20.

The empirical powers to detect πTX − L1 were similar across
models: .926 for M3L, and .920 for the other models. The
mixed design ANOVA revealed six effects with η2 > .001,
each involving sample size: (a) η2 = .051 for K, (b) η2 =
.037 for J, (c) η2 = .028 for n, (d) η2 = .015 for the K by n
interaction, (e) η2 = .010 for theK by J interaction, and (f) η2 =
.006 for the J by n interaction. Table 7 reports the empirical
power to detect πTX − L1 as a function of sample size. In addi-
tion, η2 = .001 for ICCY–L2, with means equal to .913 for .08
and .930 for .16, and also for ICCX1–L2, with means equal to
.930 for .08 and .914 for .16. Averaged across iterations, the
Type I error rates when testing πTX − L1 = 0 were in the ranges

Table 3 Coverage rates for πTX− L2 for the main study

πTX− L2 πTX− L1 M3L M2L-C M1L-C

0 0 [.899, .953] [.900, .957] [.900, .957]

0.2 0 [.751, .922] [.782, .934] [.782, .934]

0 0.2 [.767, .922] [.806, .928] [.806, .928]

0.2 0.2 [.893, .951] [.901, .955] [.901, .958]

M3L = three-level model, M2L-C = two-level complex model, M1L-C =
single-level complex model

Table 4 Mean relative biases of the standard errors for the main study

Coefficient K M3L M2L-C M1L-C

π̂T 20 – .041 – .023 – .023

40 – .020 – .009 – .009

π̂T−L1 20 – .041 – .016 – .016

40 – .019 – .006 – .006

M3L = three-level model, M2L-C = two-level complex model, M1L-C =
single-level complex model

Table 6 Empirical power to detect πT = .15 for the main study

K J n ICCY-L2 M3L M2L-C M1L-C

20 6 6 .08 .357 .346 .346

20 6 6 .16 .310 .298 .298

20 6 10 .08 .425 .411 .411

20 6 10 .16 .345 .333 .333

20 10 6 .08 .467 .452 .452

20 10 6 .16 .410 .394 .394

20 10 10 .08 .535 .521 .521

20 10 10 .16 .460 .446 .446

40 6 6 .08 .583 .575 .575

40 6 6 .16 .505 .497 .497

40 6 10 .08 .672 .665 .665

40 6 10 .16 .565 .558 .558

40 10 6 .08 .733 .726 .726

40 10 6 .16 .658 .650 .650

40 10 10 .08 .801 .795 .795

40 10 10 .16 .708 .701 .701

M3L = three-level model, M2L-C = two-level complex model, M1L-C =
single-level complex model

Table 5 Mean relative biases of the standard errors for π̂TX−L2 for the
main study

K J M3L M2L-C M1L-C

20 6 – .067 – .073 – .072

20 10 – .051 – .055 – .055

40 6 – .040 – .038 – .036

40 10 – .030 – .031 – .029

M3L = three-level model, M2L-C = two-level complex model, M1L-C =
single-level complex model
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[.035, .102] and [.034,.096], and on average they were .067
for M3L and .062 for the other models. No effect had η2 >
.001; however, 17% of the conditions resulted in Type I error
rates larger than .075 for M3L, and 7% for the other two
models. Among these conditions with large Type I error rates,
92% occurred when K = 20.

The L2 interaction effect, π̂TX−L2, was estimated without bias
onlywhen πTX − L2 = πTX − L1, and therefore we studied empirical
power for the 216 conditions in which πTX− L2 = πTX − L1 = .20.
The effect size η2 was at least .001 for sample size at
L2 (η2 = .017), L3 (η2 = .015), and the interaction
effect for the L2 and L3 sample sizes (η2 = .001). The
model had η2 = .005. The empirical power rates in Table
8 show that power increases as either the L1 or L2 sample
size increases, and the impact of the L1 sample size is
larger when the L2 sample size is larger. In addition,
M3L had a relatively larger power than the other models,
which had very similar powers. An increase in a covari-
ate’s ICC at L2 resulted in a larger power (η2 = .005), with
mean empirical power rates equal to .27 for M3L and .22
for the other models when ICCX–L2 = .08, and .35 for M3L
and .28 for the other models when ICCX–L2 = .16. An
increase in conditional variance for Y at L2 resulted in
lower empirical power (η2 = .003), with mean empirical
power rates equal to .34 for M3L and .27 for the other
models when ICCY–L2 = .08, and .28 for M3L and .23 for
the other models when ICCY–L2 = .16. Type I error rates for
testing πTX − L2 = 0 were in the ranges [.047, .101] and
[.043, .100], and on average they were .074 for M3L and
.072 for the other models. No effect had η2 > .001; how-
ever, 45% of the conditions resulted in Type I error rates larger
than .075 forM3L, and 33% for the other two models. Among
these conditions with large Type I error rates, 80% occurred
when K = 20.

Additional simulation studies

The estimation for M3L was computationally demanding and
slow, and this prevented manipulating more than two levels
for each factor. On the basis of the main study findings, we
conducted three additional small scale simulation studies to
explore further (a) π̂TX−L2 bias, (b) the effect of the parameters
that were not manipulated in the main study, and (c) model
comparisons with relatively more complex variance
structures.

Additional Simulation Study 1 Table 2 indicated that πTX−L2
was estimated with bias for some conditions. The amount of
bias varied, mainly due to the interaction magnitude at both
levels (i.e., πTX − L1 and πTX − L2) and to the covariate’s ICC at
L2. Thus, in our first additional study we manipulated the
interaction magnitude to be 0, .2, and .3 at both levels, and
the ICC to be .08 and .16.We also increased the sample size at
all levels: n = 20, J = 10, 20, and K = 40, 60. Consistent
with the main study results, substantial bias was detected
when πTX − L1 ≠ πTX − L2, even with larger sample sizes; the
results are reported in Tables 9 and 10.

Additional Simulation Study 2 The main study did not reveal
substantial differences due to model choice, except for the
empirical power difference to detect L2 interactions. In our
second additional simulation study, focused on the parameter
estimates, we aimed to explore the effects of the factors that
were not manipulated in the main study. A total of 1,024

Table 8 Empirical power to detect πTX − L2 for the main study when
πTX − L2 = πTX − L1

K J ICCY–L2 ICCX1–L2 M3L M2L-C M1L-C

20 6 .08 .08 .190 .159 .159

20 6 .08 .16 .236 .192 .192

20 6 .16 .08 .160 .134 .134

20 6 .16 .16 .197 .170 .170

20 10 .08 .08 .288 .227 .226

20 10 .08 .16 .363 .281 .281

20 10 .16 .08 .231 .195 .195

20 10 .16 .16 .293 .240 .240

40 6 .08 .08 .278 .212 .211

40 6 .08 .16 .356 .278 .278

40 6 .16 .08 .224 .191 .190

40 6 .16 .16 .284 .234 .234

40 10 .08 .08 .451 .346 .345

40 10 .08 .16 .581 .437 .437

40 10 .16 .08 .360 .286 .285

40 10 .16 .16 .460 .373 .373

M3L = three-level model, M2L-C = two-level complex model, M1L-C =
single-level complex model

Table 7 Empirical power to detect πTX − L1 for the main study

K J n M3L M2L-C M1L-C

20 6 6 .703 .686 .686

20 6 10 .907 .899 .899

20 10 6 .886 .876 .876

20 10 10 .987 .985 .985

40 6 6 .933 .930 .930

40 6 10 .995 .995 .995

40 10 6 .993 .992 .992

40 10 10 1.000 1.000 1.000

The empirical power for K = 40, J = 10, and n = 10 was 1, and the other
values of empirical power were near 1. Therefore, we conducted the same
analyses on z values for all conditions combined, and separately for K =
20. The results were essentially the same, and the model effect was ab-
sent. Furthermore, we investigated Type I error rates separately for K =
40, and they were on average .061 for M3L, and .058 for the other
models.
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conditions were generated (see Table 1) and analyzed only
with M2L-C. Consistent with the main study results, the
coefficient estimate was unbiased for π̂T and π̂TX−L1; the
coefficient bias for the π̂TX−L2 varied as a function of
πTX − L2 (η

2 = .075), ICCX1–L2 (η
2 = .004), and the πTX− L2 by

ICCX1–L2 interaction (η2 = .004), but not as a function of the
newly added factors. The relative biases of the standard errors
for π̂T ; π̂TX−L1 and π̂TX−L2 were all acceptable: – .01, – .01, and
– .03 on average, respectively.

Additional Simulation Study 3We designed our final addition-
al simulation study to investigate the model effect under a
wider range of L3 variances of the treatment random effect
(τπ01k) and of the L3 covariances between the L3 random
effect and the L3 treatment random effect (τπ00k, π01k). We
expected these new conditions to affect the results for πT,
but we also report results for πTX − L1 and πTX − L2. The cover-
age rates for πT, πTX − L2, and πTX − L2 were all 94%, and there
was no bias for the estimates. The relative bias of the standard
errors for these three parameter estimates were within the
range [– .075, .054] and were acceptable for each of the 36
manipulated conditions.

The empirical power to detect the treatment effect was var-
ied as a function of τπ01k (η

2 = .174), ICCY–L2 (η
2 = .007), and

the τπ01k by ICCY–L2 interaction (η2 = .001). Under the ma-
nipulated conditions, these results were expected (Bloom &
Spybrook, 2017; Spybrook et al., 2011, p. 86). Table 11 re-
ports the average power for these factors.

The empirical power to detect πTX − L1 was high; hence, we
examined the effects of conditions on z values. The method
effect was small (η2 = .008); the z values varied as a function
of ICCY–L2 (η2 = .016) and ICCY–L3 (η2 = .009). Table 12
reports mean z values. M2L-C and M1L-C produced average
z values that are equal and slightly smaller than those forM3L.
An increase in conditional variance at L2 and L3, which

Table 9 The average biases of π̂TX−L2 for Additional Study 1

πTX− L2 πTX− L1 ICCX1–L2 M3L M2L-C M1L-C

0 0 .08 – .002 – .003 – .003

0 0 .16 .004 .005 .005

0 .2 .08 – .071 – .072 – .072

0 .2 .16 – .039 – .038 – .038

0 .3 .08 – .102 – .101 – .101

0 .3 .16 – .058 – .057 – .057

.2 0 .08 .068 .066 .066

.2 0 .16 .037 .036 .036

.2 .2 .08 – .003 – .003 – .003

.2 .2 .16 – .001 .001 .001

.2 .3 .08 – .037 – .034 – .034

.2 .3 .16 – .019 – .019 – .019

.3 0 .08 .101 .102 .102

.3 0 .16 .057 .057 .057

.3 .2 .08 .032 .034 .034

.3 .2 .16 .020 .020 .020

.3 .3 .08 .003 .003 .003

.3 .3 .16 .003 .003 .003

M3L = three-level model, M2L-C = two-level complex model, M1L-C =
single-level complex model

Table 10 The average biases of π̂TX−L2 by sample size when πTX −

L1 ≠ πTX− L2 for Additional Study 1

K J πTX− L2 πTX− L1 M3L M2L-C M1L-C

40 10 0 .2 – .055 – .054 – .054

40 10 0 .3 – .078 – .078 – .078

40 10 .2 0 .055 .054 .054

40 10 .2 .3 – .029 – .03 – .029

40 10 .3 0 .078 .078 .078

40 10 .3 .2 .022 .022 .023

40 20 0 .2 – .056 – .055 – .056

40 20 0 .3 – .084 – .083 – .083

40 20 .2 0 .052 .051 .052

40 20 .2 .3 – .029 – .029 – .028

40 20 .3 0 .079 .081 .081

40 20 .3 .2 .023 .022 .023

60 10 0 .2 – .052 – .056 – .056

60 10 0 .3 – .077 – .076 – .077

60 10 .2 0 .05 .048 .049

60 10 .2 .3 – .025 – .024 – .023

60 10 .3 0 .079 .079 .079

60 10 .3 .2 .032 .033 .033

60 20 0 .2 – .057 – .055 – .055

60 20 0 .3 – .079 – .078 – .079

60 20 .2 0 .051 .051 .051

60 20 .2 .3 – .028 – .027 – .027

60 20 .3 0 .081 .079 .079

60 20 .3 .2 .028 .026 .027

M3L = three-level model, M2L-C = two-level complex model, M1L-C =
single-level complex model

Table 11 Empirical power to detect πT for Additional Study 3

τπ01k ICCY-L2 M3L M2L-C M1L-C

0 .08 .957 .955 .955

0 .16 .868 .863 .863

.05 .08 .798 .792 .792

.05 .16 .712 .706 .706

.20 .08 .471 .467 .467

.20 .16 .441 .435 .435

M3L = three-level model, M2L-C = two-level complex model, M1L-C =
single-level complex model
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resulted in a decreased L1 variance, was associated with larger
z values.

The empirical power to detect π̂TX−L2 varied as a function
of model choice (η2 = .018), ICCY–L2 (η

2 = .007), τπ01k (η
2 =

.002), and ICCY–L3 (η
2 = .001). Moreover, three different two-

way interactions affected the results, of model by ICCY–L3,
ICCY–L2, and τπ01k each with η2 = .001. Table 13 reports
average power for these factors. M2L-C and M1L-C per-
formed similarly under the manipulated conditions, and all
three models performed similarly when the variance compo-
nents at L3 were smaller. The power difference between M3L
and the other models reached its maximum with larger L3
variance but smaller L2 variance.

Illustration

We selected a subsample of 22 schools from the data for an
ongoing early childhood education project. Each school had
three control and three intervention classrooms, and each
classroom had three children who met the criteria for risk of
developing emotional/behavioral disorders. The total sample

size was 396. The outcomemeasure was selected to be School
Readiness Composite (SRC-post) scores at the postinterven-
tion. The preintervention SRC score, the Social Awareness
Composite (SAC) score at L1, and the binary treatment indi-
cator at L2 served as independent variables. We standardized
SRC and SAC scores to have a grand mean of 0 and a standard
deviation of 1. The classroom and school arithmetic means of
SRC and SAC were added into the models, along with the
SRC L1 and L2 deviation by treatment interactions, so that the
models investigated in the simulations could be estimated.

The correlation between the treatment indicator and
preintervention scores was 0, as we would expect from an
MS-CRT design. The correlation between SRC-post and
SRC-pre scores was .57; that between SRC-pre and SAC
was .38. Three-level empty models revealed that the L1 vari-
ance components were .81, .87, and .82; the L2 variance com-
ponents were .13, .10, and .12; and the L3 variance compo-
nents were .06, .04, and .07, for SRC-post, SRC-pre, and
SAC, respectively. Table 14 reports the results from the
models addressed in this study; all were estimated using
MLR in Mplus. Consistent with the simulation studies, all
three models provided similar results to detect the treatment
effect and the L1 interaction component. The estimates for the
L2 interaction coefficient and its standard error were the same
for M2L-C and M1L-C, and slightly smaller than for M3L.
We also tested a two-level model, M2L, in which we ignored
L2, listed all covariates at L1, and declared L3 as the second
level. As expected, with M2L the standard error estimates
were different, due to the distribution of L2 variances over
the bottom and top levels (Moerbeek, 2004).

Discussion and conclusion

Motivated by Bloom and Spybrook (2017) observation that
the use of MS-CRT has been increasing, we compared

Table 13 The empirical power to detect πTX − L2 for the Additional
Study 3

ICCY-L2 τπ01k ICCY-L3 M3L M2L-C M1L-C

.08 0 .06 .595 .503 .503

.08 0 .12 .598 .440 .440

.08 .05 .06 .584 .457 .457

.08 .05 .12 .610 .383 .383

.08 .2 .06 .592 .402 .402

.08 .2 .12 .603 .352 .352

.16 0 .06 .446 .401 .401

.16 0 .12 .474 .367 .367

.16 .05 .06 .478 .394 .394

.16 .05 .12 .471 .344 .344

.16 .2 .06 .463 .353 .353

.16 .2 .12 .459 .311 .311

M3L = three-level model, M2L-C = two-level complex model, M1L-C =
single-level complex model

Table 12 Average of z values (estimate/SE) for π̂TX−L1 for Additional
Study 3

ICCY-L2 ICCY-L3 M3L M2L-C M1L-C

.08 .06 5.784 5.711 5.711

.08 .12 6.003 5.927 5.927

.16 .06 6.078 6.001 6.001

.16 .12 6.343 6.263 6.263

M3L = three-level model, M2L-C = two-level complex model, M1L-C =
single-level complex model

Table 14 Illustration results

Fixed Effects M3L M2L-C M1L-C M2L

π̂T .051 (.063) .051 (.064) .051 (.064) .051 (.062)

π̂TX−L1 .151 (.098) .151 (.100) .151 (.100) .151 (.098)

π̂TX−L2 .274 (.161) .242 (.156) .242 (.156) .294 (.171)

Random Effects

σ̂2 .492 .492 .599 .579

τ̂ β0jk
.093 .107 NA Ignored

τ̂ π00k .023 NA NA .019

τ̂ π01k .01 NA NA NA

τ̂ π00k;π01k – .01 NA NA NA

Standard errors are in parentheses. M3L = three-level model, M2L-C =
two-level complex model, M1L-C = single-level complex, M2L = two-
level model
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three methods to estimate and test the treatment effect and
covariate by treatment interaction due to L1 covariate moder-
ation both at L1 and L2 with respect to convergence, Type I
error rates, power, coverage and bias of estimates. In this sec-
tion, we discuss our findings in threefold: (a) L2 interaction,
(b) treatment main effect and L1 interaction component, and
(c) comparison of competing models. We then present the
limitations of the present study.

The results showed that, regardless of the model choice, L2
interaction estimates were biased unless the magnitude of the
L1 and L2 interaction were equal to L1. The bias was upward
when πTX − L2 > πTX − L1 and downward otherwise and bias
was larger when difference between πTX − L2 and πTX − L1 was
larger. The magnitude of bias was as large as .13 for a popu-
lation value of .20. This is clearly unacceptable, and the prob-
lem of bias persisted even with larger sample sizes studied in
this article. For example, in our Additional Simulation Study 1
(see Table 10), the magnitude of bias was .051 for a population
value of .20 even whenK = 60 and J = 20; it was .050 when K
= 60 and J = 10; .052 when K = 40 and J = 20; and .055 when
K = 40 and J = 10. As was reported by Ryu (2015) and
mentioned by Preacher, Zhang, and Zyphur (2016), this bias
is due to unreliability (or sampling error) of the aggregated L1
covariate. Furthermore, the amount of bias parallels with the
results calculated using bias derivation formula for two-level
models given by Lüdtke et al. (2008). A possible solution is to
use a latent decomposition; however, in a three-level model it
is not easily computable (Brincks et al., 2017; Preacher et al.,
2016), and to date it is not possible to compute with the Mplus
software.4 We included conditions with πTX − L2 = πTX − L1 in
the simulations and found that the estimates of L2 interaction
were not biased. The coverage rates, Type I error rates and
relative bias of the standard errors were mainly acceptable
when πTX − L2 = πTX − L1 and K = 40 with all three competing
models under the manipulated conditions in the main study
and additional studies; however, when K = 20, slightly unac-
ceptable rates and relative bias values occurred, especially
with M3L. The empirical power to detect an unbiased L2
interaction increased with larger sample sizes and larger
ICCX–L2 values. The results for M3L are consistent with
Dong, Kelcey, and Spybrook (2017, Eq. 28). In terms of mod-
el comparison,M3Lwas slightlymore powerful than the other
three models when detecting an unbiased L2 interaction but
these results are in alignment with slightly underestimated
standard errors. The difference between M3L and the other
models reached its maximum with larger L3 variance but
smaller L2 variance. McNeish and Wentzel (2017) reported
comparison between a M3L with small sample adjustment
and M2L-C under a relatively simpler covariance matrix than

was included in the present study and small L3 sample size
(four, seven, and ten). The authors could not compare the
power difference between these two models due to poor per-
formance of M2L-C in terms of biased variance estimates, but
they also noted that the poor performance was less severe with
small L3 variance. Furthermore, our results also emphasize
the importance of small sample adjustment given that slightly
underestimated standard errors occurred more often for M3L
when K = 20.

When K = 40, our results indicate that the coefficient bias
for π̂T and π̂TX−L1 was absent for all four models, Type I error
rates were also acceptable. The coverage rates for population
parameters of πT and πTX − L1 were between .925 and .975
under 79% of the conditions in the main study; the remaining
21% had coverage rates ranged between .898 and .925. The
poor performance in terms of coverage rates occurred mainly
(91%) with K = 20 and was due to slight downward bias in
standard errors. This finding is also consistent with McNeish
andWentzel’s (2017) study in which they utilized ML estima-
tion; in our study we were limited to MLR given that Mplus
does not offer MLwith CRSE. The poor performance ofMLR
than of ML in a multilevel structural equation framework with
no assumption violations was reported by Hox, Maas, and
Brinkhuis (2010). The downward bias in standard errors was
slightly larger for M3L than for the other models, but the
difference among the competing models vanished with a larg-
er L3 sample size. Using REML or REMLwith the Kenward–
Roger correction (Kenward & Roger, 2009) could be a possi-
ble remedy for M3L’s poor performance with small L3 sample
sizes (McNeish, 2017; McNeish & Wentzel, 2017). These
alternatives, however, are not available with Mplus. The em-
pirical power to detect a non-zero πTor πTX − L1 did not change
across competing models and generally increased as a func-
tion of sample size at L3 and then L2. These findings are
expected for M3L as shown by Dong, Kelcey, and Spybrook
(2017, Eq. 50), Spybrook et al. (2011, p. 86), and Bloom and
Spybrook (2017).

In addition to the model comparisons above, one interest-
ing outcome of this study is that M1L, at least with the Mplus
software, provided roughly the same results as M2L-C under
the conditions of this study and the specifications of the two
models. The specifications included correctly including the L1
and L2 components of interaction. If the model used in the
program implementingM1L-C had only included a total prod-
uct term—that is, X1ijkZ.jk and its coefficient—estimates of the
coefficient would likely not be equal to either π̂TX−L1or π̂TX−L2
obtained from the program we used to implement M1L-C in
the simulations. If, alternatively, the model used in the pro-
gram implementing M1L had only included only the product

term X 1ijk−X 1jk
� �

Z :jk
� �

and its coefficient, estimates of the
coefficient would likely be equal to π̂TX−L1 obtained from the
program we used to implement M1L-C in the simulations.
Similar to results reported by McNeish, Stapleton, and

4 Confirmed by Bengt Muthén on the Mplus discussion forum; see www.
statmodel.com/discussion/messages/12/9389.html?1490056072#
POST127856.
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Silverman (2017), our results also support the use of design-
based methods (M1L-C) or the combination of design-based
and model-based methods (M2L-C) as an alternative to
completely model-based methods even with a complex mul-
tilevel design, in our case anMS-CRT. Our illustration section
agrees with this development. A note of caution is due here:
Raudenbush and Bloom (2015) related the MS-CRT to Ba
fleet of experiments^ that is particularly useful to study effect
heterogeneity. According to Raudenbush and Bloom, investi-
gating both mean program impact and impact heterogeneity is
a necessary step when moving forward from a field study to
public policy, program theory or professional practice. One
dimension of the impact heterogeneity can be studied by ex-
amining the L3 random effects and design-based analyses
removes the possibility of detecting this type of heterogeneity.
Another point is that M2L in the illustration study ignores the
intermediate level, instead treating all covariates at L1 and
adjusting for L3 clustering only, and thus produced different
results than M1L, since it is known that ignoring a level is
problematic (Moerbeek, 2004). Therefore, M2L-C should be
used rather than M2L.

As is true for all simulations and illustrations, there were
some limitations to our study. Our results were restricted to a
balanced MS-CRT without any missing data and with all as-
sumptions satisfied. We focused on only three parameters,
π̂T ; π̂TX−L1; and π̂TX−L2. We were also limited to a single esti-
mator implemented in Mplus. Furthermore, in order to study
model comparison with unbiased estimates of L2 interaction
we set πTX − L2 = πTX − L1 for a substantial portion of the con-
ditions in each of the four simulations. Another limitation is
that M3L demanded computational power, and therefore we
refrained from combining the main study and the small simu-
lation study conditions. Even though they occurred for only
0.0015% of the main study conditions, we observed outlying
standard error estimates with M3L for the L2 interaction. To
address this limitation, we reported both mean and median
relative standard error biases.

Appendix

OSmean refers to observed school mean, OCmean refers to
observed classroom mean centered around the school mean,
Ocnt refers to L1 deviation scores centered around the ob-
served classroom mean.

TITLE: M3L

DATA: dataname.csv;
VARIABLE:

NAMES = cid2 y trt schid OSmeanx OSmeanx2OCmeanx
OCmeanx2 Ocntx Ocntx2 IntL1 IntL2;

CLUSTER = schid cid2;
WITHIN = Ocntx Ocntx2 IntL1;
BETWEEN = (cid2) OCmeanx OCmeanx2 trt IntL2

(schid) OSmeanx OSmeanx2;
DEFINE:

IntL1 = trt*Ocntx;
IntL2 = trt*OCmeanx;

ANALYSIS: TYPE = THREELEVEL RANDOM;
MODEL:

%WITHIN%
y ON Ocntx Ocntx2 intl1;
%BETWEEN cid2%
s2 | y ON trt;
y ON OCmeanx OCmeanx2 intl2;
%BETWEEN schid%
y ON OSmeanx OSmeanx2;
y with s2;

TITLE: M2L-C

DATA: dataname.csv;
VARIABLE:

NAMES = cid2 y trt schid OSmeanx OSmeanx2OCmeanx
OCmeanx2 Ocntx Ocntx2 IntL1 IntL2;

CLUSTER = schid cid2;
WITHIN = Ocntx Ocntx2 IntL1;
BETWEEN = OCmeanx OCmeanx2 trt IntL2 OSmeanx

OSmeanx2;
DEFINE:

IntL1 = trt*Ocntx;
IntL2 = trt*OCmeanx;

ANALYSIS: TYPE = TWOLEVEL COMPLEX ;
MODEL:

%WITHIN%
y ON Ocntx Ocntx2 intL1;
%BETWEEN%
y ON trt Ocmeanx Ocmeanx2 intL2 Osmeanx Osmeanx2;

TITLE: M1L-C

DATA: dataname.csv;
VARIABLE:

NAMES = cid2 y trt schid OSmeanx OSmeanx2OCmeanx
OCmeanx2 Ocntx Ocntx2 IntL1 IntL2;

CLUSTER = schid;
DEFINE:

IntL1 = trt*Ocntx;
IntL2 = trt*Ocmeanx;

ANALYSIS: TYPE = COMPLEX;
MODEL:

y ON Ocntx Ocntx2 intL1 trt Ocmeanx Ocmeanx2 intL2
OSmeanx OSmeanx2;

Behav Res (2019) 51:243–257 255



References

Aguinis, H., Gottfredson, R. K., & Culpepper, S. A. (2013). Best-practice
recommendations for estimating cross-level interaction effects using
multilevel modeling. Journal of Management, 39, 1490–1528.

Asparouhov, T. (2005). Sampling weights in latent variable modeling.
Structural Equation Modeling, 12, 411–434.

Asparouhov, T., & Muthén, B. O. (2006). Multilevel modeling of com-
plex survey data. Los Angeles, CA: ASA Section on Survey
Research Methods. Available from www.statmodel.com

Aydin, B., Leite, W. L., & Algina, J. (2016). The effects of including
observed means or latent means as covariates in multilevel models
for cluster randomized trials. Educational and Psychological
Measurement, 76, 803–823.

Bandalos, D. L., & Leite, W. L. (2013). Use of Monte Carlo studies in
structural equation modeling research. In G. R. Hancock & R. O.
Mueller (Eds.), Structural equation modeling: A second course (2nd
ed.) (pp. 564–666). Greenwich, CT: Information Age.

Barbui, C., & Cipriani, A. (2011). Cluster randomised trials.
Epidemiology and Psychiatric Sciences, 20, 307–309.

Bauer, D. J., & Sterba, S. K. (2011). Fitting multilevel models with ordi-
nal outcomes: Performance of alternative specifications and
methods of estimation. Psychological Methods, 16, 373–390. doi:
https://doi.org/10.1037/a0025813

Bauer, D., & Curran, P. (2005). Probing interactions in fixed and multi-
level regression: Inferential and graphical techniques. Multivariate
Behavioral Research, 40, 373–400. https://doi.org/10.1207/
s15327906mbr4003_5

Bloom, H. S., & Spybrook, J. (2017). Assessing the precision of multisite
trials for estimating the parameters of a cross-site population distri-
bution of program effects. Journal of Research on Educational
Effectiveness, 10, 877–902. https://doi.org/10.1080/19345747.
2016.1271069

Bradley, J. V. (1978). Robustness? British Journal of Mathematical and
Statistical Psychology, 31, 144–152.

Brincks, A. M., Enders, C. K., Llabre, M. M., Bulotsky-Shearer, R. J.,
Prado, G., & Feaster, D. J. (2017). Centering predictor variables in
three-level contextual models. Multivariate Behavioral Research,
52, 149–163. https://doi.org/10.1080/00273171.2016.1256753

Cochran, W. G. (1977). Sampling techniques. New York, NY: Wiley.
Croon, M. A., & van Veldhoven, M. J. P. M. (2007). Predicting group-

level outcome variables from variables measured at the individual
level: A latent variable multilevel model. Psychological Methods,
12, 45–57. https://doi.org/10.1037/1082-989X.12.1.45

Dong, N., Kelcey, B., & Spybrook, J. (2017). Power analyses for mod-
erator effects in three-level cluster randomized trials. Journal of
Experimental Education, 86, 489–514. https://doi.org/10.1080/
00220973.2017.1315714

Donner, A., & Klar, N. (2004). Pitfalls of and controversies in cluster
randomization trials. American Journal of Public Health, 94, 416–
422.

Feng, Z., Diehr, P., Peterson, A., & McLerran, D. (2001). Selected statis-
tical issues in group randomized trials. Annual Review of Public
Health, 22, 167–187.

Gardiner, J., Luo, Z., & Roman, L. (2009). Fixed effects, random effects
and gee: What are the differences? Statistical Medicine, 28, 221–
239. https://doi.org/10.1002/sim.3478

Ghisletta, P., & Spini, D. (2004). An introduction to generalized estimat-
ing equations and an application to assess selectivity effects in a
longitudinal study on very old individuals. Journal of Educational
and Behavioral Statistics, 29, 421–437.

Hedges, L. V., & Hedberg, E. C. (2013). Intraclass correlations and co-
variate outcome correlations for planning two-and three-level
cluster-randomized experiments in education. Evaluation Review,
37, 445–489.

Hong, G. (2015). Causality in a social world: Moderation, mediation, and
spill-over. West Sussex, UK: Wiley-Blackwell.

Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covari-
ance structure modeling. Sociological Methods & Research, 26,
329–367. https://doi.org/10.1177/0049124198026003003

Hox, J. J., Maas, C. J. M., & Brinkhuis, M. J. S. (2010). The effect of
estimation method and sample size in multilevel structural equation
modeling. Statistica Neerlandica, 64, 157–170.

Huang, F. L. (2016). Using cluster bootstrapping to analyze nested data
with a few clusters. Educational and Psychological Measurement,
78, 297–318. https://doi.org/10.1177/0013164416678980

Hubbard, A. E., Ahern, J., Fleischer, N. L., Van der Laan, M., Lippman,
S. A., Jewell, N., . . . Satariano, W. A. (2010). To GEE or not to
GEE: Comparing population average and mixed models for estimat-
ing the associations between neighborhood risk factors and health.
Epidemiology, 21, 467–474.

Josephy, H., Vansteelandt, S., Vanderhasselt, M.-A., & Loeys, T. (2015).
Within-subject mediation analysis in ab/ba crossover designs.
International Journal of Biostatistics, 11, 1–22.

Kelcey, B., Spybrook, J., Phelps, G., Jones, N., & Zhang, J. (2017).
Designing large-scale multisite and cluster-randomized studies of
professional development. Journal of Experimental Education, 85,
389–410.

Kenward, M. G., & Roger, J. H. (2009). An improved approximation to
the precision of fixed effects from restricted maximum likelihood.
Computational Statistics and Data Analysis, 53, 2583–2595.

Kraemer, H. C. (2000). Pitfalls of multisite randomized clinical trials of
efficacy and effectiveness. Schizophrenia Bulletin, 26, 533–541.

Lüdtke, O., Marsh, H. W., Robitzsch, A., Trautwein, U., Asparouhov, T.,
&Muthén, B. (2008). The multilevel latent covariate model: A new,
more reliable approach to group-level effects in contextual studies.
Psychological Methods, 13, 203–229. https://doi.org/10.1037/
a0012869

Mathieu, J. E., Aguinis, H., Culpepper, S. A., & Chen, G. (2012).
Understanding and estimating the power to detect cross-level inter-
action effects in multilevel modeling. Journal of Applied
Psychology, 97, 951–966. https://doi.org/10.1037/a0028380

McNeish, D. M. (2014). Modeling sparsely clustered data: Design-based,
model-based, and single-level methods. Psychological Methods, 19,
552–563. https://doi.org/10.1037/met0000024

McNeish, D. (2017). Multilevel mediation with small samples: A cau-
tionary note on the multilevel structural equation modeling frame-
work. Structural Equation Modeling, 24, 609–625.

McNeish, D. M., & Harring, J. R. (2017). Clustered data with small
sample sizes: Comparing the performance of model-based and
design-based approaches. Communications in Statistics:
Simulation and Computation, 46, 855–869.

McNeish, D., & Stapleton, L. M. (2016). Modeling clustered data with
very few clusters. Multivariate Behavioral Research, 51, 495–518.
https://doi.org/10.1080/00273171.2016.1167008

McNeish, D., Stapleton, L. M., & Silverman, R. D. (2017). On the un-
necessary ubiquity of hierarchical linear modeling. Psychological
Methods, 22, 114–140. https://doi.org/10.1037/met0000078

McNeish, D., & Wentzel, K. R. (2017). Accommodating small sample
sizes in three-level models when the third level is incidental.
Multivariate Behavioral Research, 52, 200–215. https://doi.org/10.
1080/00273171.2016.1262236

Moerbeek, M. (2004). The consequence of ignoring a level of nesting in
multilevel analysis. Multivariate Behavioral Research, 39, 129–
149. https://doi.org/10.1207/s15327906mbr3901_5

Moerbeek, M., & Teerenstra, S. (2015). Power analysis of trials with
multilevel data. Boca Raton, FL: CRC Press.

Murray, D. M., Hannan, P. J., Pals, S. P., McCowen, R. G., Baker, W. L.,
& Blitstein, J. L. (2006). A comparison of permutation and mixed-
model regression methods for the analysis of simulated data in the

256 Behav Res (2019) 51:243–257

http://www.statmodel.com
https://doi.org/10.1037/a0025813
https://doi.org/10.1207/s15327906mbr4003_5
https://doi.org/10.1207/s15327906mbr4003_5
https://doi.org/10.1080/19345747.2016.1271069
https://doi.org/10.1080/19345747.2016.1271069
https://doi.org/10.1080/00273171.2016.1256753
https://doi.org/10.1037/1082-989X.12.1.45
https://doi.org/10.1080/00220973.2017.1315714
https://doi.org/10.1080/00220973.2017.1315714
https://doi.org/10.1002/sim.3478
https://doi.org/10.1177/0049124198026003003
https://doi.org/10.1177/0013164416678980
https://doi.org/10.1037/a0012869
https://doi.org/10.1037/a0012869
https://doi.org/10.1037/a0028380
https://doi.org/10.1037/met0000024
https://doi.org/10.1080/00273171.2016.1167008
https://doi.org/10.1037/met0000078
https://doi.org/10.1080/00273171.2016.1262236
https://doi.org/10.1080/00273171.2016.1262236
https://doi.org/10.1207/s15327906mbr3901_5


context of a group-randomized trial. Statistics in Medicine, 25, 375–
388.

Muthén, L.K., & Muthén, B.O. (1998–2015). Mplus user’s guide (7th
ed.). Los Angeles, CA: Muthén & Muthén.

Nevalainen, J., Oja, H., & Datta, S. (2017). Tests for informative cluster
size using a novel balanced bootstrap scheme. Statistics inMedicine,
36, 2630–2640. https://doi.org/10.1002/sim.7288

Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared
statistics: Measures of effect size for some common research de-
signs. Psychological Methods, 8, 434–447. https://doi.org/10.1037/
1082-989X.8.4.434

Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools
for probing interactions in multiple linear regression, multilevel
modeling, and latent curve analysis. Journal of Educational and
Behavioral Statistics, 31, 437–448.

Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2016). Multilevel structural
equation models for assessing moderation within and across levels
of analysis.Psychological Methods, 21, 189–205. https://doi.org/10.
1037/met0000052

R Core Team. (2016). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria. Retrieved from www.R-project.org/

Rabe-Hesketh, S., & Skrondal, A. (2006). Multilevel modelling of com-
plex survey data. Journal of the Royal Statistical Society: Series A,
169, 805–827.

Raudenbush, S. W., & Bloom, H. S. (2015). Learning about and from a
distribution of program impacts using multisite trials. American
Journal of Evaluation, 36, 475–499.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models:
Applications and data analysis methods (2nd ed., Vol. 1). Thousand
Oaks, CA: Sage.

Raudenbush, S. W., & Liu, X. (2000). Statistical power and optimal
design for multisite randomized trials. Psychological Methods, 5,
199–213. https://doi.org/10.1037/1082-989X.5.2.199

Ruud, K. L., LeBlanc, A., Mullan, R. J., Pencille, L. J., Tiedje, K.,
Branda, M. E., . . . Montori, V. M. (2013). Lessons learned from
the conduct of a multisite cluster randomized practical trial of deci-
sion aids in rural and suburban primary care practices. Trials, 14,
267. https://doi.org/10.1186/1745-6215-14-267

Ryu, E. (2015). The role of centering for interaction of level 1 variables in
multilevel structural equation models. Structural Equation
Modeling, 22, 617–630. https://doi.org/10.1080/10705511.2014.
936491

Shin, Y., & Raudenbush, S. W. (2010). A latent cluster-mean approach to
the contextual effects model with missing data. Journal of
Educational and Behavioral Statistics, 35, 26–53.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An intro-
duction to basic and advanced multilevel modeling. Los Angeles,
CA: Sage.

Spybrook, J., Bloom, H., Congdon, R., Hill, C., Martinez, A., &
Raudenbush, S. (2011). Optimal design plus empirical evidence:
Documentation for the Boptimal design^ software (Software manual).
Retrieved from http://hlmsoft.net/od/od-manual-20111016-v300.pdf

Sterba, S. K. (2009). Alternative model-based and design-based frame-
works for inference from samples to populations: From polarization
to integration. Multivariate Behavioral Research, 44, 711–740.
https://doi.org/10.1080/00273170903333574

Wijekumar, K., Hitchcock, J., Turner, H., Lei, P., & Peck, K. (2009). A
multisite cluster randomized trial of the effects of compass-learning
odyssey [r] math on the math achievement of selected Grade 4
students in the mid-Atlantic region (Final report. NCEE 2009-
4068). Washington, DC: National Center for Education Evaluation
and Regional Assistance.

Wu, J.-Y., & Kwok, O.-M. (2012). Using SEM to analyze complex survey
data: A comparison between design-based single-level and model-
based multilevel approaches. Structural Equation Modeling, 19, 16–
35. https://doi.org/10.1080/10705511.2012.634703

Behav Res (2019) 51:243–257 257

https://doi.org/10.1002/sim.7288
https://doi.org/10.1037/1082-989X.8.4.434
https://doi.org/10.1037/1082-989X.8.4.434
https://doi.org/10.1037/met0000052
https://doi.org/10.1037/met0000052
http://www.r-project.org
https://doi.org/10.1037/1082-989X.5.2.199
https://doi.org/10.1186/1745-6215-14-267
https://doi.org/10.1080/10705511.2014.936491
https://doi.org/10.1080/10705511.2014.936491
http://hlmsoft.net/od/od-manual-20111016-v300.pdf
https://doi.org/10.1080/00273170903333574
https://doi.org/10.1080/10705511.2012.634703

	Comparison...
	Abstract
	Decomposing interactions for an MS-CRT setup
	Three approaches to analyze MS-CRT data
	Monte Carlo simulation study
	Conditions and population parameters
	Competing models
	Analysis of the simulation results

	Results
	Main simulation study
	Additional simulation studies
	Illustration

	Discussion and conclusion
	Appendix
	TITLE: M3L
	TITLE: M2L-C
	TITLE: M1L-C

	References


