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Abstract
An important consideration of any computer adaptive testing (CAT) program is the criterion used for ending item administra-
tion—the stopping rule, which ensures that all examinees are assessed to the same standard. Although various stopping rules
exist, none of them have been compared under the generalized partial-credit model (Muraki in Applied Psychological
Measurement, 16, 159–176, 1992). In this simulation study we compared the performance of three variable-length stopping
rules—standard error (SE), minimum information (MI), and change in theta (CT)—both in isolation and in combination with
requirements of minimum and maximum numbers of items, as well as a fixed-length stopping rule. Each stopping rule was
examined under two termination criteria—one a more lenient requirement (SE = 0.35, MI = 0.56, CT = 0.05), and one more
stringent (SE = 0.30, MI = 0.42, CT = 0.02). The simulation design also included content-balancing and exposure controls,
aspects of CAT that have been excluded in previous research comparing variable-length stopping rules. The minimum-
information stopping rule produced biased theta estimates and varied greatly in measurement quality across the theta distribution.
The absolute-change-in-theta stopping rule had strong performance when paired with a lower criterion and a minimum test
length. The standard error stopping rule consistently provided the best balance of measurement precision and operational
efficiency and was based on the fewest number of administered items necessary to obtain accurate and precise theta estimates,
particularly when it was paired with a maximum-number-of-items stopping rule.

Keywords CAT . Computer adaptive testing . Stopping rules . Termination criteria

Computer adaptive testing (CAT) is a measurement approach
that uses item response theory (IRT; Lord & Novick, 1968) to
generate tailored tests for examinees in real time on the basis
of their responses to previous items (Lord, 1971, 1980). By
administering items that are the most informative for an ex-
aminee, CATs provide precise measurement of an examinee’s
proficiency with relatively few items. However, CATs require
the consideration of many practical components, making its
implementation relatively complicated when compared to
paper-and-pencil administrations (Parshall, Spray, Kalohn, &
Davey, 2002; Wainer, Dorans, Flaugher, Green, & Mislevy,
2000). These required CAT components include: (a) an item
pool with known item characteristics, (b) a response model
appropriate for the item type, (c) an item selection algorithm,

(d) an ability estimation procedure, and (e) some termination
criteria to end item administration (Dodd, De Ayala, & Koch,
1995; Reckase, 1989; Weiss & Kingsbury, 1984). In addition,
the algorithm used for item selection may be constrained to
include content balancing and exposure control mechanisms,
particularly in high-stakes testing (Boyd, Dodd, & Choi,
2010). Content-balancing methods ensure that each test ad-
ministered covers multiple domains according to
predetermined specifications. Exposure control procedures
are designed to enhance test security by protecting items from
overexposure. Both procedures place constraints on maxi-
mum information item selection, which consequently in-
creases test length and decreases measurement efficiency
(Weiss, 2004). Therefore, CAT components must be carefully
selected so that appropriate content coverage and test security
are provided while maintaining a psychometrically sound es-
timate of an examinee’s ability (Weiss, 2004).

CATs have two primary advantages over conventional lin-
ear test forms, which administer the same items to all exam-
inees. One advantage is that CATs provide precise measure-
ment of all examinees throughout the proficiency range (Lord,
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1971). This is due to the item selection algorithm used in
CATs, which selects the most informative item for an exam-
inee after each item administration. All examinees have an
initial ability estimate (usually the population mean) that is
updated after the administration of each item. This interim
ability estimate is used in the item selection procedure, so that
an appropriate item is selected out of the item pool for the next
item to be administered. Another benefit of CATs is increased
measurement efficiency in comparison to conventional tests.
Efficient measurements use the fewest possible items to gain
the most information possible about an examinee. The effi-
ciency of CATs is related to the selection of informative items
on the basis of an examinee’s current ability estimate, such
that items that are too easy or too hard are not administered.
This item selection procedure has the potential to reduce test
length by 80% (De Ayala, 2009).

These two fundamental benefits define the goal of CAT
administration—to simultaneously maximize measurement
precision and efficiency. Though measurement precision and
efficiency are both increased by the information provided by
selected items, they are inversely related to one another due to
their differing relationships with test length. Although mea-
surement precision increases along with test length, efficiency
requires that traits be measured with as few items as possible.
Measurement precision and efficiency must be balanced so
that only as many items needed to gain a sufficiently reliable
estimate of an examinee’s proficiency are administered.

Thus, an important consideration in CATs is how many
items to administer before estimating the final ability level.
This is determined by a termination criterion, or stopping rule,
which ends each examinee’s test once they have been assessed
equivalently according to some prespecified standard. There
are several stopping rules for CATs, which differ in the criteria
used to indicate that an examinee has been measured suffi-
ciently; however, their relative performance under the gener-
alized partial-credit model (GPCM; Muraki, 1992) has not
been studied. This simulation study provides a comprehensive
examination of the performance of several variable-length
stopping rules (i.e., standard error, minimum information,
and absolute change in theta estimate) under the GPCM.
Importantly, in contrast to previous research examining the
performance of stopping rules in CAT, we employ content
balancing and item exposure controls to simulate high-stakes
testing conditions.

Stopping rules

Stopping rules can be categorized as either fixed-length (FL) or
variable-length, which refers to whether test length is equal or
varied across examinees. FL stopping rules are the most straight-
forward as they end an examinee’s test after a predetermined
number of items are administered, regardless of their ability.

However, using a FL test results in a lack of consistent measure-
ment precision (i.e., the standard error of the θ ability estimate)
for all examinees across the range of abilities (Leroux & Dodd,
2014). These imprecise ability estimates are problematic, espe-
cially in high-stakes testing (e.g., licensure or certification testing)
in which they can have detrimental implications. Although ad-
ministering a greater number of items can provide more precise
ability estimates, doing so decreases the efficiency of using CAT
and can lead to item overexposure. Similarly, some examinees
may be measured with high precision after responding to only a
few items, so administering additional items unnecessarily ex-
poses items to examinees and increases examinee burden.

Variable-length stopping rules are designed to provide equiv-
alent measurement precision across examinees by ending item
administration after a prespecified measurement standard has
been satisfied. These tests are of variable length because exam-
ineesmay take a different number of items before the criterion for
test termination is met. Researchers have developed several
variable-length stopping rules, which all aim to administer as
few items as needed to obtain a psychometrically sound estimate
of an examinee’s ability but differ in the criteria used to indicate
that an examinee’s ability has been measured adequately. One
variable-length stopping rule is the standard error (SE) stopping
rule, which terminates item administration when a prespecified
standard error of the present ability estimate has been reached
(Dodd, Koch, &DeAyala, 1989). After each interim ability level
has been estimated, the standard error associated with the exam-
inee’s current ability estimate is evaluated. If this standard error is
below some prespecified value, then item administration ends. If
not, item administration continues until the standard error asso-
ciated with the interim ability estimate falls below the criterion
value. Once item administration terminates, the most recent in-
terim ability estimate becomes the final ability estimate.

Rather than evaluating the precision of the ability estimate
of the examinee, the minimum-information (MI; Dodd et al.,
1989) stopping rule focuses on the quality of the items in
terms of the information they provide. This stopping rule de-
termines when a test is completed by evaluating the informa-
tion of the available items remaining in the pool after each
item is administered. If eligible items in the item pool provide
some sufficiently high level of information on the basis of the
interim ability estimate, then item administration continues.
When the information of the remaining items falls below the
specified level, item administration ends.

A more recently developed stopping rule is the absolute-
change-in-theta (CT) stopping rule. This variable-length stop-
ping rule regulates test length using the absolute change in an

examinee’s theta estimate (θ̂ ) after an item is administered
(Babcock & Weiss, 2012). During a CAT administration, an

examinee’s θ̂ generally changes with each additional item
administered, though the size of this change lessens as the
number of administered items increases. The CTstopping rule
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evaluates the absolute change in the θ̂ after each item is ad-
ministered to an examinee. When this expected change falls
below a specified value, item administration ends.

FL and variable-length stopping rules are often combined,
such that a variable-length termination criterion is used as the
stopping criteria until the examinee is administered a maxi-
mum number of items. Using a maximum test length in addi-
tion to a variable-length stopping rule is beneficial when there
is a mismatch between the item pool distribution and the ex-
aminee’s ability level. In consequence, the examinee could be
administered all items in the item pool because no items re-
main that can satisfy the variable-length stopping criterion.
Thus, in order to keep CATs efficient, as well as reduce exam-
inee burden and item exposure, a secondary FL termination
criterion is often used to stop item administration after a cer-
tain number of items.

Performance of CAT stopping rules

Previous research has examined the performance of different
stopping rules for polytomous IRT models. The performance
of the stopping rule can differ on the basis of its interaction
with other aspects of CAT administration, such as item pool
characteristics, the match of the distribution of the item pool
shape to the examinees, and whether item are dichotomously
or polytomously scored (Boyd et al., 2010). CAT has greater
measurement efficiency when used with polytomous items
because each response category within an item provides addi-
tional information (Dodd et al., 1995). Because of the greater
amount of information polytomous items provide, fewer
polytomous items are needed to obtain the same level of mea-
surement precision as dichotomous items.

Much of the previous research on stopping rules with
polytomously scored items has examined the performance of
the SE and MI stopping rules (with FL as a secondary termina-
tion criterion). Dodd,Koch, andDeAyala (1989) examined these
stopping rules with the graded-response model (GRM;
Samejima, 1969), the partial-credit model (PCM; Masters,
1982) in later research (Dodd, Koch, & De Ayala, 1993), and
Dodd (1990) used the Andrich’s Rating Scale Model (RSM;
Andrich, 1978). In these studies the SE stopping rule generally
outperformed the MI stopping rule—fewer items were adminis-
tered, the correlations between known and estimated ability
levels were higher, and fewer nonconvergent cases resulted.
The only simulation conditions in which the MI stopping rule
had superior performance to the SE rule were those in which the
information distribution of the item pool did not align with the
trait distribution of the test taker population. This was due to the
SE stopping rule administering more items than the MI stopping
rule to examinees with ability levels that were far from the peak
of the item pool shapes.

More recently, Babcock and Weiss (2012) examined the per-
formance of 14 different stopping rules on dichotomously scored
items using the three-parameter logistic (3PL) IRT model. The
researchers examined various cutoff values for the SE stopping
rule, the MI stopping rule, combinations of SE and MI stopping
rules, the CT stopping rule, and several fixed-length stopping
rules. The authors concluded that the SE stopping rule works
well in most cases, but recommended including a minimum
number of items or using it in combination with an MI stopping
rule. The information structure of the item bank had less impact
on the performance of the CT stopping rule in comparison to
other termination methods, meaning the CT rule might have
increased utility when the information distribution of an item
bank does not cover the range of examinee abilities in a sample
(Babcock & Weiss, 2012).

Content balancing and exposure control

Exposure control and content balancing methods are com-
monly implemented in large-scale high-stakes testing scenar-
ios, which often require that test-takers be measured across
multiple domains within a single ability continuum, such as
addition, subtraction, multiplication, and division within an
arithmetic achievement assessment (Weiss, 2004). Content
balancing methods are implemented to ensure that examinees
answer a sufficient number of items from each domain so that
items are equally distributed across the domains for all exam-
inees, meaning that their ability estimates will be determined
from similar content.

Large-scale assessments frequently use content balancing
concurrently with an exposure control procedure. During CAT
administration, different items in the item bank will naturally
be used at different rates. Reducing item exposure rates is
important in high-stakes testing scenarios when there is incen-
tive for examinees to have access to items prior to testing.
Exposure control methods improve test security by controlling
the exposure rate of items across a group of examinees.
Exposure control and content balancing methods are both im-
plemented by modifying the maximum information item se-
lection procedure that places constraints on what items can be
administered (Weiss, 2004). The incorporation of these con-
straints can decrease measurement precision (Davis, 2004;
Davis & Dodd, 2003). Implementing exposure control and
content balancing may also increase the test length and reduce
the efficiency of CATs, as more items are required to obtain
the prespecified degree of precision specified by variable-
length stopping rules (Leroux & Dodd, 2016; Leroux,
Lopez, Hembry, & Dodd., 2013).

Despite the wide use of content balancing and exposure
control methods in large-scale assessments, no prior research
has been conducted that compares variable-length stopping
rules under their implementation. CATs incorporating both
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exposure control and content balancing have been studied
with fixed-length tests (Boyd, Dodd, & Fitzpatrick, 2013).
There has also been research comparing exposure control
methods using content balancing for dichotomous (i.e.,
Leroux et al., 2013) and polytomous (i.e., Davis, Pastor,
Dodd, Chiang, & Fitzpatrick, 2003; Leroux & Dodd, 2016)
IRT models that included separate FL and SEFL stopping rule
conditions but did not compare variable-length stopping rules.
Variable-length stopping rules have only been compared with-
out the use of content balancing or exposure control (e.g.,
Choi, Grady, & Dodd, 2010; Dodd et al., 1989, 1993;
Leroux & Dodd, 2014). Due to the relationship between stop-
ping rules and exposure control and content balancing mech-
anisms, it is important to extend previous research of CAT
stopping rules to the frequently encountered scenarios in
which these constraints are implemented.

Purpose of study

The CTstopping rule is a recently developed approach to CAT
termination, which has demonstrated strong performance un-
der a dichotomous IRTmodel (3PL; Babcock&Weiss, 2012),
but the generalization of this finding is limited to the specific
set of conditions previously researched. The present study
continues this examination of the performance of SE, MI,
and CT stopping rules by extending it to a scoring model for
polytomous items, the GPCM (Muraki, 1992). Furthermore,
we utilize exposure control and content balancing in our study
to mirror conditions in high-stakes testing, as previous re-
search examining variable-length stopping rules has excluded
both of these CAT components and stopping rules may be
sensitive to their use.

Method

Study design overview

In the present study, we compare variable-length CAT stop-
ping rules under the GPCM (Muraki, 1992) as shown in Eq. 1.
The GPCMmodels the probability of scoring in category x on
item i out ofmi + 1 response categories for an individual with a
given trait level, θ as:

Pix θð Þ ¼
exp ∑

x

j¼0
ai θ−bij
� �" #

∑
r¼0

mi

exp ∑
r

j¼0
ai θ−bij
� �" # ð1Þ

where ai is the discrimination or slope of the item, bij is the
step difficulty parameter associated with score category j (j =

1, . . . , mi), and Σ ai (θ – bij) = 0 when j = 0. Item discrimi-
nation, ai, varies across items but not within items across
categories. The GPCM requires that the steps within an item
be completed in order, though the step difficulties of the or-
dered categories, bij, are not required to be in sequential order.

We examined 21 different stopping rules, which consisted
of variations of SE, MI, and CTstopping rules, as well as their
combination with a FL stopping rule. These are discussed in
detail in a following section. This study used a repeated mea-
sures design in which each simulated examinee was adminis-
tered the CAT 21 times, once using each stopping rule. All
data generating procedures and analyses were conducted in
SAS statistical software (version 9.4 for Windows).

Item pool description and data generation

The item pool for this study was generated using the item
parameter values of a large-scale educational assessment pre-
viously calibrated using the GPCM (Davis, 2004). The means
(SD, minimum, maximum) of the item discrimination (a) and
step difficulty (b1–4) parameters were as follows: a = 0.92 (SD
= 0.19, 0.54, 1.52), b1 = – 0.99 (0.90, – 3.13, 1.50), b2 = 0.18
(0.99, – 1.81, 3.57), b3 = – 0.19 (0.76, – 1.48, 1.51), b4 = –
0.12 (0.90, 2.36, 2.34). The pool consisted of 157
polytomously scored items with varying numbers of response
categories—99 items with three response categories, 29 items
with four categories, and 29 items with five categories. Each
item assessed one of three content areas—61 items assessed
content area A, 59 items assessed B, and 37 items assessed C.
The numbers and proportions of items assessing each content
area by the number of item categories are presented in Table 1.
Item and test information based on the GPCM was calculated
using the SAS macro IRTINFO (Fitzpatrick, Choi, Chen,
Hou, &Dodd, 1994). Figure 1 shows the information function
of the 157-item pool, which indicates adequate information
coverage across the range of θ values, and maximal informa-
tion at θ = – 0.6.

Item responses for a sample of 1,000 simulees were gener-
ated from the true generating item parameter values using the

Table 1 Numbers and proportions of items by number of categories and
content area

Content Area 3 Categories 4 Categories 5 Categories

N P N P N P

A 42 .27 10 .06 9 .06

B 42 .27 6 .04 11 .07

C 15 .10 13 .08 9 .06

P = proportion of items fitting content and category criteria out of 157-
item pool. Rounded proportions are presented, but exact proportions were
used as the target proportions in content balancing procedure in CAT
implementation
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SAS macro IRTGEN (Whittaker, Fitzpatrick, Williams, &
Dodd, 2003). The true θ levels for each sample of simulees
were drawn from a normal distribution with a mean of 0 and a
standard deviation of 1. There were 1,000 replications used in
this simulation study, and thus, each of the 1,000 generated
datasets (of N = 1,000 simulees) underwent 21 CATs (with
different stopping rules), for a grand total of 21,000 CAT
simulations.

CAT procedure

CATs were administered to the simulees in SAS software
using a program similar to that of the commercially available
software (SIMPOLYCAT; Chen & Cook, 2009). We used a
modified version of a SAS program that simulated CAT im-
plementation according to the GPCM (Davis, 2004), which
was altered to implement the 21 stopping rule conditions. For
each CAT administration, all simulees started with an initial θ
estimate of zero. A variable step size procedure (Koch &
Dodd, 1989) was used to estimate θ until the simulee made
responses in two different categories, after which point max-
imum likelihood estimation (MLE) was used to obtain ability

estimates. The variable step size approach changed the θ̂ by

half the distance between the initial θ̂ and either of the two
extreme step-difficulty parameter estimates depending on
whether the response to the previous item was in the lower
or upper half of the response scale. Only items that met the
content balancing were used for the variable step size.

Content balancing was employed using Kingsbury and
Zara’s (1989) constrained CAT (CCAT) content-balancing
method. The goal of this procedure is to have the proportions
of items that an examinee answers closely match the
prespecified desired proportions of each content area (i.e.,
target proportions). After an item was administered to a
simulee, the proportion of items answered in each content area
out of all those administered was computed, and then the
discrepancy between the true proportions and the target pro-
portions was calculated. The content area with the largest dis-
crepancy was selected for the subsequent item administration.

Two item characteristics were used to define the areas and
their target proportions—content area and the number of re-
sponse categories. The combination of these two factors strat-
ified the item pool into nine target areas. The target proportion
for each of the nine item types was set equal to the proportion
of items in the 157-item pool that belonged to that combina-
tion of the content area and scale length factors, which are
presented in Table 1. Item administration then proceeded
using the CCAT procedure.

The randomesque exposure control procedure (Kingsbury
& Zara, 1989) was also incorporated into item selection. In
this method, the item administered is randomly selected from
a group of items that are the most informative given an exam-

inee’s current θ̂. This study used a group size of three, which
provides high measurement precision and exposure control
(Davis, 2004). Content balancing was given precedence over
exposure control. Therefore, the content area of the item to be
administered to a simulee was first identified. Then, the three
most informative items in that content area based on the

simulee’s current θ̂ were identified. The CAT program then
randomly selected one of those three items and administered it
to the simulee. The program then calculated the discrepancy in
actual and target content area proportions to determine the
next content area and selected an informative item for the
simulee using the randomesque procedure based on their up-

dated θ̂. This item selection and administration process con-
tinued until the stopping rule was satisfied and the CAT pro-
gram terminated, giving the simulee a final θ estimate for each
of the 21 stopping rule conditions.

Implemented stopping rules

We investigated an FL stopping rule and several variations of
three variable-length stopping rules: (a) SE, (b)MI, and (c) CT
(Table 2). The FL stopping rule administered 20 items to all
simulees. This is a sufficient test length for obtaining an accu-
rate estimate of θ, as was indicated by prior simulation re-
search using the same item pool (Davis, 2004; Leroux &
Dodd, 2016) and across CAT research in general (Dodd,
1990; Dodd et al., 1989, 1993; Gorin, Dodd, Fitzpatrick, &
Shieh, 2005; Koch & Dodd, 1989; Lee & Dodd, 2012).

To increase the generalizability of our findings, each
variable-length stopping rule was implemented twice using
different prespecified criterion values for the stopping rule.
The SE stopping rule ended a test when the SE of the

simulee’s θ̂ was less than the criterion value—being either
0.30 (in SE[.30] conditions) or 0.35 (in SE[.35] conditions),
which are both commonly used SE criteria (e.g., Dodd, 1990;
Dodd et al., 1993; Leroux&Dodd, 2014; Leroux et al., 2013).
Equivalent SE andMI criteria were used to aid in comparisons
between these stopping rules. MI criterion values were select-
ed using the well-known relationship between the standard
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Fig. 1 Item pool information curve
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error of θ and the total information, specifically that the SE is
equal to the inverse of the square root of the information for a
given θ. The MI stopping rule ended the CAT program when
all nonadministered items had Fisher information less than
either 0.42 (MI[.42] conditions) or 0.56 (MI[.56] conditions)

for the simulee’s current θ̂, which are equivalent to SE[.35]
and SE[.30] conditions, respectively. Finally, the CT stopping
rule ended a simulee’s test when the absolute change in the

simulee’s θ̂ was less than either 0.02 (CT[.02] conditions) or
0.05 (CT[.05] conditions). These values were selected due to
their usage in previous CT research (i.e., Babcock & Weiss,
2012) to aid in cross-study comparisons. The SE[.30],
MI[.42], and CT[.02] represented more stringent criteria, in
that they required more items in order to be satisfied in com-
parison to lenient criteria (SE[.35], MI[.56], CT[.05]), which
produced a relatively shorter test.

Variable-length stopping rules were studied both under iso-
lation and in combination with the FL stopping rule (i.e., a
maximum number of items). When used in isolation, as pre-
viously described, the CAT program continued until the ter-
mination criteria was met or until no items remained. Variable-
length stopping rules are frequently paired with a maximum
number of items in real-world CATapplications to prevent the

administration of more items than is necessary to obtain esti-
mates with high measurement precision (Boyd et al., 2010;
Dodd et al., 1995). Additional conditions were included that
combined each variable-length stopping rule and criterion val-
ue with a FL maximum of 20 items (SEFL[.30], SEFL[.35],
MIFL[.42], MIFL[.56], CTFL[.02], and CTFL[.05]), which
ended the CAT program when either the variable-length
criteria were reached or 20 items had been administered.

Preliminary CAT trials revealed that conditions using MI
and CT stopping rules had high rates of nonconvergent cases,
particularly in the MI conditions. We found that these
nonconverged cases had usually only answered an average
of four items, indicating that the criteria for these stopping
rules were being satisfied before the program could obtain
an acceptable θ estimate. Therefore, we included additional
conditions that had the requirement that at least nine items be
administered (MI9[.42], MIFL9[.42], MI9[.56], MIFL9[.56],
CT9[.02], CTFL9[.02], CT9[.05], and CTFL9[.05]). Ninewas
selected as the minimum test length because it was equal to the
number of content areas, meaning that all content areas could
potentially be covered before termination of a test. SE stop-
ping rules were not studied using a minimum test length be-
cause the SE stopping rules were already delivering at least

Table 2 Summary of stopping rule conditions

Stopping Rule Description

FL Fixed length of 20 items

SE[.30] SEθ̂ below 0.30

SEFL[.30] SEθ̂ below 0.30 or a maximum of 20 items

SE[.35] SEθ̂ below 0.35

SEFL[.35] SEθ̂ below 0.35 or a maximum of 20 items

MI[.42] Information of nonadministered items below 0.42

MI9[.42] Information of nonadministered items below 0.42, with a minimum of nine items

MIFL[.42] Information of nonadministered items below 0.42 or a maximum of 20 items

MIFL9[.42] Information of nonadministered items below 0.42 or a maximum of 20 items, with a
minimum of nine items

MI[.56] Information of nonadministered items below 0.56

MI9[.56] Information of nonadministered items below 0.56, with a minimum of nine items

MIFL[.56] Information of nonadministered items below 0.56 or a maximum of 20 items

MIFL9[.56] Information of nonadministered items below 0.56 or a maximum of 20 items, with a
minimum of nine items

CT[.02] Absolute change in θ̂ less than 0.02

CT9[.02] Absolute change in θ̂ less than 0.02, with a minimum of nine items

CTFL[.02] Absolute change in θ̂ less than 0.02 or a maximum of 20 items

CTFL9[.02] Absolute change in θ̂ less than 0.02 or a maximum of 20 items, with a minimum of nine items

CT[.05] Absolute change in θ̂ less than 0.05

CT9[.05] Absolute change in θ̂ less than 0.05, with a minimum of nine items

CTFL[.05] Absolute change in θ̂ less than 0.05 or a maximum of 20 items

CTFL9[.05] Absolute change in θ̂ less than 0.05 or a maximum of 20 items, with a minimum of nine items
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nine items across all simulees and replications. The addition of
these eight minimum test length conditions produced a total of
21 stopping rule conditions.

Data analyses

We compared CAT stopping rules using several criteria that
are important in adaptive testing. We recorded the number of
nonconvergent cases and calculated descriptive statistics of
their frequency for each stopping rule. Only the estimates of
converged cases were used in the following analyses. We also

examined summary statistics of final trait estimates (θ̂ ), the
standard error of the trait estimate (SEθ̂ ), and the number of
items administered. The descriptive statistics for these criteria
were calculated by finding their average within each replica-
tion across simulees, and then calculating the minimum, max-
imum andmean (i.e., grandmean) of these averages across the
1,000 replications of each stopping rule condition. We com-
puted descriptive statistics for the Pearson correlations be-
tween true and estimated θ values, bias, and root mean square
error (RMSE). Bias and RMSE were calculated using the
following formulas:

Bias ¼
∑n

k¼1 θ̂̂k−θk
� �

n
ð2Þ

and

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

k¼1 θ̂̂k−θk
� �2

n

vuut
; ð3Þ

where θ̂k is the estimated trait level for simulee k, θk is the
known trait level for simulee k, and n is the total number of
simulees. In addition, we examined plots of test length, SEθ̂,
bias, and RMSE conditional on θ to detect whether the stop-
ping rules differed in their parameter recovery depending on a
simulee’s true θ. The values on these plots were created by
grouping simulees into 13 groups along the continuum of
known θ from – 3 to + 3 and plotting the average test length,
SEθ̂, bias, and RMSE for each θ group.

We also evaluated the stopping rules in relation to the ex-
posure control and content balancing constraints imposed
across all conditions. Minimum, maximum, and mean item
exposure rates were calculated for each item by dividing the
number of times an itemwas administered by the total number
of simulees. These were averaged across the 157-item pool to
evaluate the relative exposure rates of each stopping rule. Pool
utilization was examined by the percentage of items that were
never administered to each replicated sample of 1,000
simulees. We report the minimum, maximum, and mean per-
centage of items not administered across replications. In addi-
tion, we calculated the differences between the proportions of
items administered in each content area and their targeted

content area proportions to examine adherence to content
balancing constraints across stopping rule conditions.

Results

Number of nonconvergent cases

Table 3 presents descriptive statistics for the frequency of
nonconvergent cases across the 1,000 replications . The low-
est nonconvergence rates occurred when using a fixed-length
test of 20 items (FL) and in conditions using SE-based stop-
ping rules (i.e., SE and SEFL), where nonconvergence oc-
curred in an average of 1.5% of simulees. As was previously
noted, stopping criteria that relied on minimum information

(MI and MIFL) or absolute change in θ̂ (CT and CTFL) pro-
duced excessive numbers of inestimable traits when a criterion
for minimum number of items administered was not included.
The MI and MIFL conditions had the greatest number of
nonconvergent cases, with an average of 6.8% of simulees
when using information of 0.42, and an average of 11.4%
when using 0.56 as the minimum information value.
Investigation of these nonconverging cases revealed that the
majority of these simulees were only administered three or
four items and that maximum likelihood estimation had never
been reached.

The average numbers of nonconvergent cases for CT and
CTFL were less than half those for the MI and MIFL condi-
tions, though they were still higher than would usually be
expected, at about 2.8% of simulees for both 0.02 and 0.05

change in θ̂ conditions. Nonconvergent cases in the CT and
CTFL conditions usually answered five to six items before the
CAT program ended, but all of the simulees’ responses were
in either the highest or the lowest response category, meaning

that MLE could not be used (indicated by θ̂ ≤ – 4 or θ̂ ≥ 4).
The addition of a requirement that a minimum of nine items be
administered mitigated these convergence issues, reducing the
number of nonconvergent cases to an average of 1.8% of
simulees in these conditions (i.e., MI9, MIFL9, CT9, and
CTFL9).

Trait estimation and number of items administered

Table 3 also presents descriptive statistics for the averages of

trait estimates (θ̂ ), standard errors of trait estimates (SEθ̂ ),
and numbers of items administered (NIA) by CATs for each

stopping rule. The grand means of θ̂were uniformly close to 0
across conditions, though the use of MI stopping rules tended
to overestimate θ, particularly when using a more lenient MI
value (MI = 0.56) and not including a minimum NIA require-

ment (θ̂ = 0.08). As would be expected, when more stringent
values were used for the stopping rules—meaning when MI
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was higher (MI = 0.42), CTwas lower (CT = 0.02), or SE was
lower (SE = 0.30)—the average NIAwas higher and SEθ̂ was
lower than we observed under the comparative stopping rule
condition using a more lenient value (i.e., MI = 0.56, CT =
0.05, SE = 0.35). The results also indicate that including a
fixed-length component to a variable-length stopping rule suc-
cessfully decreased test length, most dramatically so in MI
conditions using a 0.42 information value, due to these con-
ditions having a large drop in NIA (MIFL[.42], NIA = 16.13;
MIFL9[.42], NIA = 18.49) from very high values when a
maximum of 20 items was not in place (MI[.42], NIA =
45.79; MI9[.42], NIA = 51.13). Except for these two condi-
tions, attaching a restriction of a maximum of 20 items to a
variable-length stopping rule only increased SEθ̂ by about
0.01.

Figure 2 depicts the average NIA (i.e., test length) for each
variable-length stopping rule, conditional on the simulees’
known θ. TheMI stopping rules administer the largest number
of items to simulees with θs in the center of the distribution,
where the majority of informative items exist. The SE stop-
ping rules display the opposite behavior, giving more items to
simulees with extreme θs, whereas those in the center of the
distribution are measured precisely with fewer items. The

addition of a fixed-length component curtails these tendencies
for delivering long tests for MI and SE stopping rules, though
the CT stopping rule performs similarly with and without an
FL component. When using a CT criterion of 0.05, the CT
stopping rule ends item administration before ever reaching 20
items. The SE and CT stopping rules deliver similar numbers
of items across the θ scale when a maximum number of items
is incorporated in the stopping rule.

MI[.56] and MIFL[.56] had the poorest measurement preci-
sion out of the stopping rules, as is demonstrated by the standard
errors of their θ estimates in Table 3. Though the average SEθ̂ of
the MI conditions was lower when an MI criterion value was
used, the SEθ̂ remained fairly high in the MIFL[.42] condition.
Out of all stopping rule conditions, MI9[.42] had the greatest
measurement precision, which was due to this stopping criterion
delivering a very high number of items. CT stopping rules also
had relatively large SEθ̂ s, with all conditions having grandmean
SEθ̂ ≥ 0.37, with the exception of CT9[.02] and CTFL9[.02].
These two conditions had the highest averageNIAs out of the CT
conditions, delivering an average of 16 and 15 items, respective-
ly. The CT conditions had the poorest measurement precision
when using a 0.05 criterion and no minimum number of items,
which is a result of these conditions only administering an

Table 3 Descriptive statistics of trait estimation and numbers of items administered

Stopping Rule N NonCon θ̂ SEθ̂ NIA
Mean
(Min, Max)

Grand Mean
(Min, Max)

Grand Mean
(Min, Max)

Grand Mean
(Min, Max)

FL 15.37 (5, 29) 0.01 (– 0.09, 0.12) 0.29 (0.28, 0.29) 20.00 (20.00, 20.00)

SE[.30] 14.62 (3, 29) 0.00 (– 0.10, 0.09) 0.30 (0.29, 0.30) 19.42 (18.50, 20.51)

SE[.35] 14.79 (3, 29) – 0.01 (– 0.11, 0.10) 0.34 (0.34, 0.34) 14.03 (13.47, 14.85)

SEFL[.30] 15.32 (5, 29) 0.01 (– 0.09, 0.12) 0.31 (0.31, 0.31) 16.92 (16.70, 17.21)

SEFL[.35] 15.38 (3, 29) 0.00 (– 0.10, 0.10) 0.35 (0.34, 0.35) 13.15 (12.84, 13.59)

MI[.42] 68.05 (47, 96) 0.04 (– 0.09, 0.20) 0.34 (0.31, 0.38) 45.79 (42.64, 48.69)

MI[.56] 114.39 (86, 153) 0.08 (– 0.04, 0.23) 0.51 (0.48, 0.55) 15.94 (14.54, 17.20)

MI9[.42] 18.17 (5, 34) 0.04 (– 0.08, 0.16) 0.24 (0.22, 0.25) 51.13 (48.86, 53.72)

MI9[.56] 18.41 (6, 34) 0.04 (– 0.07, 0.16) 0.31 (0.30, 0.33) 21.91 (20.93, 22.82)

MIFL[.42] 68.12 (48, 91) 0.04 (– 0.07, 0.18) 0.41 (0.39, 0.44) 16.13 (15.50, 16.69)

MIFL[.56] 114.39 (85, 152) 0.08 (– 0.06, 0.20) 0.53 (0.49, 0.56) 12.12 (11.32, 12.87)

MIFL9[.42] 18.21 (6, 33) 0.03 (– 0.08, 0.13) 0.31 (0.30, 0.33) 18.49 (18.10, 18.81)

MIFL9[.56] 18.24 (6, 35) 0.03 (– 0.07, 0.16) 0.33 (0.32, 0.35) 16.84 (16.34, 17.23)

CT[.02] 28.20 (13, 50) – 0.02 (– 0.13, 0.07) 0.37 (0.36, 0.38) 14.02 (13.30, 14.83)

CT[.05] 28.57 (13, 42) – 0.03 (– 0.16, 0.08) 0.46 (0.45, 0.47) 8.96 (8.49, 9.36)

CT9[.02] 18.82 (7, 34) 0.00 (– 0.11, 0.10) 0.32 (0.32, 0.33) 16.33 (15.64, 17.12)

CT9[.05] 18.97 (4, 34) 0.01 (– 0.09, 0.11) 0.37 (0.36, 0.37) 12.13 (11.81, 12.49)

CTFL[.02] 27.83 (13, 45) – 0.02 (– 0.12, 0.08) 0.38 (0.37, 0.39) 12.70 (12.15, 13.16)

CTFL[.05] 28.74 (14, 45) – 0.03 (– 0.14, 0.09) 0.46 (0.45, 0.47) 8.91 (8.44, 9.35)

CTFL9[.02] 18.60 (6, 33) 0.00 (– 0.09, 0.12) 0.33 (0.33, 0.34) 14.74 (14.39, 15.10)

CTFL9[.05] 18.77 (5, 32) 0.01 (– 0.09, 0.13) 0.37 (0.36, 0.37) 12.05 (11.76, 12.44)

N NonCon = number of nonconvergent cases out of 1,000 simulees. The mean of N NonCon is given across 1,000 replications. NIA = number of items
administered
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average of nine items. CT stopping rules generally produced the
shortest tests, and using an MI stopping rule produced the most
variable test lengths. SE conditions also produced relatively short
tests, particularly when used with using a higher SE criterion. As
would be expected, the average SEθ̂ in the SE conditions were
close to the SE criteria used to end the CAT program. The FL
condition always administered 20 items, which resulted in a low
standard error.

Figure 3 displays the average SEθ̂ of each variable-length
stopping rule conditional on known θ. Although the MI and
MI9 conditions produce low average SEθ̂ s for simulees with
θ between – 1.0 and 0.0, all MI conditions increased rapidly,
the farther the simulees’ true θ was from the peak of the item
pool’s information function (θ = – 0.6) and were excessively

high for simulees in the upper and lower regions of the θ
range. SE conditions without a maximum number of items
were consistently at the minimum SE value used for this stop-
ping rule. When using an FL component, the SEθ̂ increased
when the maximum of 20 items was reached before the min-
imum standard error criteria was met. CTconditions generally
had higher SEθ̂ s in the center of the θ range than did the other
conditions, though SEθ̂ s were comparable to those in the SE
conditions toward θ extremes.

Latent trait recovery

Table 4 presents descriptive statistics for bias, RMSE, and
correlations between the known and estimated θs. The biases

Fig. 2 Mean numbers of items administered (NIA), conditional on
known trait level (θ) by stopping rule condition, separated by criterion
value and whether they included a maximum-NIA component. The FL

condition is included in each panel for comparison. Lower criteria: CT =
0.02, MI = 0.42, SE = 0.30. Higher criteria: CT = 0.05, MI = 0.56, SE =
0.35

Fig. 3 Grand means of the standard errors of trait estimates (θ̂ ),
conditional on known trait level (θ) by stopping rule condition, separated
by criterion value and whether they included a maximum-NIA

component. The FL condition is included in each panel for comparison.
Lower criteria: CT = 0.02, MI = 0.42, SE = 0.30. Higher criteria: CT =
0.05, MI = 0.56, SE = 0.35
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of the lower and higher stopping criteria values were nearly
identical for all stopping rules, and bias was slightly decreased
when an FL component was attached to variable length. All
FL, SE, and CT stopping rule conditions produced very low
bias. Positive bias was present in all MI stopping rule varia-
tions. Overestimation of ability was particularly an issue inMI
conditions that did not include a minimum NIA requirement.
Including this requirement in MI conditions decreased bias by
about 50%, producing lower results when used in combination
with a FL stopping rule than when there was no maximum-
number-of-items requirement. Though the mean bias was very
low across all CT conditions, the greatest negative bias found
across all simulated datasets was found in lenient CT and
CTFL conditions. There was zero average bias when using
an SEFL stopping rule, as well as when using a CT stopping
rule when it was paired with a lower criterion or a minimum
and/or maximum NIA component (i.e., CT9[.02], CTFL[.02],
and CTFL9[.02]). Figure 4 presents plots of the mean bias for
each stopping rule conditional on known θ. The MI-based
conditions had the greatest fluctuation in bias throughout the
θ range. Conditions using SE and CT stopping rules demon-
strated low levels of bias across θ, particularly when used with
the lower criteria. The conditions with a minimum number of
items had smaller bias for CTandMI stopping rules across the

θ continuum. Though the FL stopping rule produced very
little bias, the CT9 and SE stopping rules produced less bias
across the θ scale.

As would be expected because of increased test length,
variable-length stopping rules using more stringent (i.e., low-
er) values as termination criteria had lower average RMSEs
than did equivalent conditions using more lenient criteria. The
RMSEs of variable-length stopping rules were also lower
when they were not used in conjunction with a fixed-length
component (i.e., maximum NIA), as well when a minimum-
NIA requirement was in place in the MI and CT stopping rule
conditions. The lowest RMSEs were observed when using the
FL stopping rule or the 0.30 SE stopping rule without a
maximum-number-of-items component, though MI9[.42]
had a similarly low RMSE. The additional constraint of a
maximum of 20 items in MIFL9 increased the RMSE, though
it was still low, and RMSE further increased by using a lenient
termination criterion. The highest RMSE was seen in MI con-
ditions without a minimum-NIA requirement, particularly
when using lenient termination criteria. Though using a lower
MI criterion improved parameter recovery, the RMSEs of
these MI conditions remained quite high. As in the MI condi-
tions, CT stopping rules had better performance (i.e., lower
RMSE) when used with minimum and maximum test length

Table 4 Latent trait parameter recovery statistics by stopping rule

Stopping Rule Bias RMSE Correlation
Mean (Min, Max) Mean (Min, Max) Mean (Min, Max)

FL 0.01 (– 0.02, 0.05) 0.29 (0.27, 0.32) .96 (.95, .97)

SE[.30] – 0.01 (– 0.04, 0.02) 0.29 (0.27, 0.34) .96 (.94, .97)

SE[.35] – 0.01 (– 0.04, 0.02) 0.34 (0.31, 0.39) .95 (.93, .96)

SEFL[.30] 0.00 (– 0.04, 0.04) 0.32 (0.29, 0.34) .95 (.94, .96)

SEFL[.35] 0.00 (– 0.04, 0.03) 0.35 (0.32, 0.37) .94 (.93, .95)

MI[.42] 0.07 (0.01, 0.13) 0.48 (0.41, 0.56) .91 (.89, .94)

MI[.56] 0.07 (0.01, 0.14) 0.61 (0.55, 0.69) .86 (.83, .89)

MI9[.42] 0.04 (0.01, 0.07) 0.30 (0.25, 0.36) .96 (.96, .97)

MI9[.56] 0.04 (0.00, 0.07) 0.36 (0.31, 0.40) .95 (.94, .96)

MIFL[.42] 0.07 (0.02, 0.12) 0.51 (0.45, 0.59) .90 (.87, .92)

MIFL[.56] 0.07 (0.00, 0.13) 0.61 (0.55, 0.67) .86 (.82, .89)

MIFL9[.42] 0.03 (– 0.01, 0.06) 0.35 (0.31, 0.40) .95 (.94, .96)

MIFL9[.56] 0.03 (– 0.01, 0.08) 0.37 (0.33, 0.43) .94 (.93, .96)

CT[.02] – 0.01 (– 0.04, 0.02) 0.37 (0.34, 0.41) .93 (.92, .94)

CT[.05] – 0.01 (– 0.06, 0.03) 0.46 (0.42, 0.51) .90 (.87, .92)

CT9[.02] 0.00 (– 0.03, 0.03) 0.33 (0.29, 0.35) .95 (.94, .96)

CT9[.05] 0.01 (– 0.03, 0.05) 0.37 (0.34, 0.40) .94 (.92, .95)

CTFL[.02] 0.00 (– 0.05, 0.04) 0.38 (0.34, 0.41) .93 (.91, .94)

CTFL[.05] – 0.01 (– 0.07, 0.03) 0.46 (0.42, 0.50) .90 (.88, .92)

CTFL9[.02] 0.00 (– 0.03, 0.04) 0.34 (0.31, 0.36) .95 (.93, .96)

CTFL9[.05] 0.01 (– 0.03, 0.04) 0.37 (0.34, 0.40) .94 (.92, .95)
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components, particularly when used with lower criteria. SE
stopping rules yielded low RMSEs across conditions, with
the largest average RMSE being produced in the lenient
SEFL condition.

Figure 5 depicts the average RMSE conditional on a
simulee’s known theta. As can be seen in the conditional-
bias plot (Fig. 4), the θ recovery of theMI stopping rule varied
greatly depending on a simulee’s true θ. When used without a
maximum number of items, the SE stopping rule produced
low and consistent RMSEs across the proficiency range,
though it was outperformed by MI9 and FL conditions in
the center of the θ distribution, because of their administration
of a greater number of items. SE and CT9 had the best perfor-
mance across θs out of the variable-length stopping rule

conditions, though SE led to slightly lower RMSE levels than
did CT9.

Examination of the correlations between known and esti-
mated θs revealed the same pattern of results detected for
RMSE, in terms of relative parameter recovery ability across
stopping rule conditions, and the influence of more stringent
(i.e., lower) criteria as well as minimum and maximum NIA.
Again, it is apparent that the CT and MI stopping rules are
improved by a minimum NIA, especially when more lenient
termination criteria are used. MI stopping rules without this
requirement produced the lowest θ correlations, particularly
when using a higher MI criterion. However, when MI was
paired with a minimum NIA, it performed equivalently to
the SE stopping rules, whose correlations ranged from .94 to

Fig. 4 Bias conditional on known trait level (θ) by stopping rule
condition, separated by criterion value and whether they included a
maximum-NIA component. The FL condition is included in each panel

for comparison. Lower criteria: CT = 0.02, MI = 0.42, SE = 0.30. Higher
criteria: CT = 0.05, MI = 0.56, SE = 0.35

Fig. 5 RMSE conditional on known trait level (θ) by stopping rule
condition, separated by criterion value and whether they included a
maximum-NIA component. The FL condition is included in each panel

for comparison. Lower criteria: CT = 0.02, MI = 0.42, SE = 0.30. Higher
criteria: CT = 0.05, MI = 0.56, SE = 0.35
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.96. The highest correlations found across CT conditions were
only marginally lower than those of the best-performing MI
and SE conditions. Coinciding with previous results, the
highest correlations were seen in the FL condition as well as
in the SE[.30], SEFL[.30], and MI9[.42] variable-length
conditions.

Item exposure, pool utilization, and content coverage

Table 5 presents descriptives of item exposure, pool utiliza-
tion, and content area coverage. The majority of stopping rule
conditions produced mean and maximum item exposure rates
that were less than the commonly used target maximum ex-
posure rates of 0.2 (e.g., Cheng, Diao, & Behrens, 2017;
Wang, Chang, & Douglas, 2012) and 0.3 (e.g., Leroux &
Dodd, 2014; Moyer, Galindo, & Dodd, 2012). The exposure
rates closely aligned with the number of items administered
(Table 3). CT stopping rules, which had the shortest average
test length, produced the lowest rates of item exposure. The
only exceptions to these low exposure rates were under the
MI[.42] and MI9[.42] stopping rules, which had maximum

exposure rates surpassing 0.30, as well as the longest test
lengths of the studied stopping rules.

Pool utilization was assessed by examining the percentage
of the item pool that was not administered across all simulees
for each stopping rule condition. The SE stopping rule condi-
tions without a fixed-length component had very high item
pool utilization and administered virtually all 157 items across
examinees. Using an FL stopping rule led to an average of
24.3% of the item pool not being administered. All variable-
length stopping rules with a maximum test length exceeded
this percentage, because of their shorter average test lengths.
SEFL and CTFL conditions behaved similarly, though the
SEFL stopping rules had the greatest pool utilization out of
the fixed-length stopping rules. MI and CT stopping rules
without a maximum test length had low mean percentages of
nonadministered items when they were used with lower crite-
rion values. However, the maximum percentages of unutilized
items reveal that these conditions (MI[.42], MI9[.42],
CT[.02], and CT9[.02]) did not perform uniformly well across
replications, and at times used less than 5% of the items in the
pool. The stopping rules that led to greatest number of

Table 5 Descriptive statistics of exposure control and content balancing

Stopping Rule Exposure Rate % of Pool Not Administered Difference in Content Area
Proportions

Mean (Min, Max) Mean (Min, Max) (Min, Max)

FL 0.13 (0.10, 0.15) 24% (22%, 78%) (– .03, .02)

SE[.30] 0.14 (0.11, 0.17) 0% (0%, 0%) (– .01, .02)

SE[.35] 0.10 (0.07, 0.12) 0% (0%, 1%) (– .02, .03)

SEFL[.30] 0.11 (0.09, 0.13) 25% (24%, 78%) (– .02, .02)

SEFL[.35] 0.08 (0.07, 0.11) 26% (24%, 77%) (– .02, .04)

MI[.42] 0.27 (0.24, 0.31) 12% (6%, 97%) (.00, .01)

MI[.56] 0.09 (0.07, 0.11) 32% (23%, 84%) (– .02, .01)

MI9[.42] 0.32 (0.28, 0.36) 9% (4%, 97%) (.00, .01)

MI9[.56] 0.14 (0.11, 0.16) 22% (17%, 87%) (– .01, .02)

MIFL[.42] 0.10 (0.08, 0.12) 38% (36%, 67%) (– .02, .02)

MIFL[.56] 0.07 (0.06, 0.09) 42% (40%, 63%) (– .03, .02)

MIFL9[.42] 0.12 (0.10, 0.14) 31% (29%, 71%) (– .03, .02)

MIFL9[.56] 0.11 (0.09, 0.13) 32% (31%, 69%) (– .02, .03)

CT[.02] 0.09 (0.07, 0.11) 16% (11%, 95%) (– .02, .03)

CT[.05] 0.06 (0.04, 0.07) 30% (25%, 81%) (– .03, .04)

CT9[.02] 0.10 (0.08, 0.13) 15% (10%, 95%) (– .01, .03)

CT9[.05] 0.08 (0.06, 0.10) 28% (25%, 83%) (– .03, .05)

CTFL[.02] 0.08 (0.06, 0.10) 28% (25%, 77%) (– .02, .03)

CTFL[.05] 0.06 (0.04, 0.07) 31% (27%, 78%) (– .03, .04)

CTFL9[.02] 0.09 (0.07, 0.12) 27% (24%, 78%) (– .01, .03)

CTFL9[.05] 0.08 (0.06, 0.10) 30% (26%, 77%) (– .03, .05)

Exposure rate values were calculated as average across item pool. Min and max difference in content area proportions are the smallest and largest
discrepancy between targeted and actual proportions of items administered across the nine content areas
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nonadministered items were MIFL conditions without a
minimum-number-of-items requirement.

Coverage of content areas was evaluated by finding the dis-
crepancy between the targeted and actual proportions of items to
be administered from each content area across all simulees and
replications within each stopping rule condition. Table 5 presents
the largest discrepancies between the targeted and actual content
area proportions across the nine content areas. The average dif-
ference between the true and actual content area proportions is
not presented because it was zero across conditions. The CCAT
content balancing procedure appears to have worked well across
stopping rule conditions, since the absolute value of the greatest
difference in proportions was less than .05 for each stopping rule.
The largest discrepancies in targeted and actual content area cov-
erage were in CT conditions using a more lenient criterion value
(i.e., CT = 0.05) and with a minimum test length, which had
maximum content area discrepancies around .05. The lowest
content area discrepancies were in conditions that had the longest
tests, MI[.42] andMI9[.42], which had a maximum difference in
content area proportions around .01.

Discussion

This study compared the performance of several stopping
rules variations, including minimum information, minimum

standard error, and absolute change in θ̂ under the GPCM.
Our results extend prior research of these termination criteria
using a dichotomous model (i.e., Babcock &Weiss, 2012) to a
polytomous model and include content balancing and expo-
sure control procedures. Developers of high-stakes tests have
high motivation to create fair assessments and maintain test
security. Therefore, they frequently use content balancing and
exposure control procedures in combination, which ensure
equal representation of content areas across examinees and
limit item use to decrease the likelihood of item disclosure,
respectively. The constraints these procedures place on the
item selection process prevent the most informative item from
always being selected, thereby increasing the number of items
needed to satisfy the precision required by variable-length
stopping rules. Despite the wide use of these techniques and
their effect on measurement precision and efficiency, limited
research has implemented both constraints simultaneously,
and the present study is the first to our knowledge that com-
pares variable-length stopping rules while controlling for item
exposure and content balancing.

In general, most CATstopping rule procedures demonstrat-
ed that they could arrive at precise and accurate estimates of θ,
though the MI stopping rule demonstrated either inefficiency
or poor θ recovery in the majority of conditions investigated.
Furthermore, it is apparent that in order to reach optimal

results, the MI- and CT-based stopping rules required an ad-
ditional prerequisite that a minimum number of items be ad-
ministered. All variable-length stopping rules were more effi-
cient when paired with a fixed-length component (i.e., maxi-
mum number of items), as there were only negligible differ-
ences in ability parameter recovery, accompanied by often
large decreases in test length. Terminating a test on the basis
of either variable- or fixed-length termination criteria allows
for equal measurement precision across the majority of exam-
inees, while also preventing item overexposure. Our study
used 20 items for FL conditions due to previous research
indicating this number to produce low levels of bias and high
precision in previous research, while also providing a short
and efficient test (Dodd, 1990; Dodd et al., 1989, 1993; Gorin
et al., 2005; Koch & Dodd, 1989; Lee & Dodd, 2012).
However, if a larger number of items were to be used as the
maximum test length, then differences in efficiency would be
less pronounced. There are a number of considerations when
making the decision on maximum test length, most important-
ly the relative importance of limiting item exposure for test
security and the degree of precision desired by the testing
scenario. Appropriate test length will vary across item pools
and testing contexts, which may require empirically supported
maximum test lengths determined through simulation (see
Thompson & Weiss, 2011).

The importance of including a minimum number of
items for MI and CT conditions is apparent throughout
results. Although this inevitably increased the number of
items administered and item exposure, these conditions
saw meaningful gains in θ measurement. This was par-
ticularly true in MI conditions, which saw dramatic de-
creases in SEθ̂, bias, and RMSE and increases in θ cor-
relations. This can be partially attributed to increased
average test length, but is also indicative of these stop-
ping rules tending to be satisfied before obtaining an
accurate and reliable estimate of an individual’s ability.
Though using a higher MI criterion decreased the aver-
age test length, this produced unacceptable decreases in
measurement precision and accuracy. The MI stopping
rule administers fewer items to examinees the farther
they are from the center of the θ distribution, since there
are increasingly fewer items that provide the information
required to meet the MI criteria (Dodd et al., 1989). This
proclivity toward shorter tests for examinees with ex-
treme θs is amplified when including exposure control
and content-balancing constraints on item selection as
the most informative item in the pool may not be avail-
able for administration. Item exposure rates, pool utiliza-
tion, and content area coverage were closely aligned with
test length. Although shorter tests produced lower expo-
sure rates, they also left a greater proportion of the item
pool unused and greater discrepancies in actual and
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targeted content area proportions. Ideally, all the items in
the pool would be used and have an equal exposure rate,
to prevent a waste of resources and enhance test security,
respectively. CT and SE stopping rules generally main-
tained equilibrium between item exposure and pool utili-
zation, though SE stopping rules without a fixed-length
component clearly excelled in having the fewest unused
items.

As can be seen in the conditional θ plots, measurement effi-
ciency and θ recovery of MI stopping rules fluctuate greatly
depending on the location of an examinee’s true ability on the
θ scale. Without a minimum number of items requirement, the
MI rules frequently ended item administration before obtaining
an accurate and precise θ estimate, particularly for examinees
with θs further from the center of the θ distribution. These overly
short tests for these examinees also contributed to the high
nonconvergence rates. Though the inclusion of minimum and
maximum numbers of items improved the balance of measure-
ment efficiency and precision on average, there is still great dis-
parity in test lengths and θ recovery for examinees across the θ
distribution. The MI stopping rule can have consequences for
both examinees in the center of theθ distribution center and those
at the extremes. Those at the center have increased testing burden
and are administeredmore items than necessary formeasurement
and those in the extremes are likely to be receive an inaccurate
and imprecise proficiency score. Our results indicate that the MI
stopping rule should be used with caution due to difficulty in
finding a suitable criterion value to attain balance in efficiency
and quality of measurement, especially when using exposure
control and content balancing.

CT9 and CTFL9 shared nearly identical results when used

with a 0.05 criterion. This indicates that the change in θ̂ stop-
ping rule was usually reached before 20 items were adminis-
tered, as was seen in previous research (Babcock & Weiss,
2012). CT conditions with a 0.05 criterion had the shortest
average test lengths, though it appears that tests may have
been shorter than required for accurate and reliable θ
estimates in many cases. CT had a better performance when
used with a 0.02 criterion, particularly when used with a
minimum number of items component. Attaching a
maximum number of items to the CT stopping rule did not
have much of an impact and produced only slight differences
in measurement when used with the lower criterion. Babcock
and Weiss (2012) used the same CT criteria but found very
different average test lengths, bias, and RMSE due to their use
of a different item pool, dichotomous IRT model, uniformly
distributed simulee θ distribution, as well as their lack of con-
tent balancing and exposure control constraints on item selec-
tion. The authors stated that CT may be preferred over the SE
stopping rule for exams that include a variety of item banks
with varying information structures, but the differences in our
results indicate that the performance of the CTstopping rule is

dependent on the components of the CAT, including the re-
sponse model, item bank, and item selection procedure.

When viewed holistically, SE stopping rules generally main-
tained the greatest balance of efficiency and precision across
conditions. This result is consistent with previous research com-
paring SE andMI stopping rules with different IRTmodels (e.g.,
Babcock &Weiss, 2012; Dodd, 1990; Dodd et al., 1989, 1993),
indicating that the SE stopping rule is preferable to the MI stop-
ping rule across multiple scoring models, as well as when expo-
sure control and content balancing are implemented. Unlike the
MI and CTconditions, SE and SEFL had no convergence issues
that required an additional criterion for a minimum number of
items and performed similarly when used in isolation. As expect-
ed, administering a fixed length of 20 items provided more pre-
cise measurement of θ due to an increased test length in compar-
ison to the variable-length stopping rules. FL had increased pre-
cision in the center of the θ distribution in which examinees were
administeredmore items than necessary for an acceptably precise
SEθ̂, meaning that using a FL stopping rule is inefficient for the
majority of examinees. SE and SEFL administered fewer items
to these examinees and maintained their low predefined SEθ̂.

Combining SE with a fixed-length component led to an effi-
cient test in which only the small number of examinees with
relatively high or low ability saw increases in SEθ̂. Both SE
criteria values performed well, with the 0.30 criterion producing

more precise θ̂ but having slightly increased test length. A re-
searcher’s decision between a higher or lower SE termination
criterion should be based on whether efficiency or precision is
the more desirable trait. If testing burden is the primary concern,
then a higher criterion should be used to produce a shorter aver-
age test length. A lower criterion may be used if optimal mea-
surement precision and accuracy is of greater importance.
However, the differences between these criteria were quite min-
imal and both provided excellent balance between efficiency and
quality of measurement.

Though the SE stopping rule generally outperformed the
CT stopping rule, the CT stopping rule performed well when
using a 0.02 criterion paired with minimum andmaximum test
length constraints. Furthermore, as described by Babcock and
Weiss (2012), using a change in θ termination criterion may
bemore appropriate than a SE stopping rule whenmaintaining
a low standard error of measurement across the majority of
examinees is unlikely. Such circumstances could arise from
using a small item bank or having mismatch between the item
pool and trait distributions. Babcock and Weiss’s work indi-
cated that the CT stopping rule is less affected by changes in
the item pool’s information structure, a property not manipu-
lated in this study. Given that CT is a relatively new stopping
rule, there is considerable room for research on its utility under
different simulated conditions. Another avenue for future re-
search is the study of variable-length stopping rules used in
combination. As was suggested by Babcock and Weiss
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(2012), CT and SE stopping rules may work well when used
in combination, with the CT stopping rule ending a test for
examinees that are in ranges of θ where the minimum SE
criterion cannot be reached.

Some limitations of our study could limit the generalizabil-
ity of our results. Although numerous stopping rule compo-
nents were manipulated, we used a single item pool and
simulee population across conditions, which had similar in-
formation structures. It is possible that the relative perfor-
mance of the stopping criteria may change when used with
different item banks and θ distributions. Future research pos-
sibilities include examining the effect of differently shaped
and sized item pools on stopping rule performance, as well
as the degree of mismatch between the item pool information
and the trait distribution.

Though exposure control and content balancing were not a
primary focus, the results of our study may be dependent on
the specific methods used for constraining item selection.
Future research may investigate the effectiveness of SE, MI,
and CT stopping rules across various methods designed to
reduce item exposure and match targeted content area distri-
butions. Though several stopping rules modifications were
used in this study, our findings are limited to the specific
criteria used. Although the test information function of an item
pool can be helpful in determining the criteria used for MI and
SE stopping rules, there is no such possible method for CT.
Therefore, it may be difficult to judge the degree of measure-
ment quality and expected test length when choosing between
CT criteria. Further investigation should consider the use of
alternative CT criteria, as different values may give this index
superior performance relative to the SE stopping rule. Future
research could conduct a more thorough investigation of the
impact of various termination criterion values across different
IRT models, item pools, and examinee populations. As was
described by Thompson and Weiss (2011), simulation studies
are necessary to determine the appropriate CAT properties
(e.g., test length and termination criteria) required to ensure
the degree of precision and test efficiency required in opera-
tional testing scenarios.
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