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Abstract
In this paper, we hypothesize a type of item-response strategy based on knowledge retrieval. Knowledge retrieval-based
item-solving strategy may emerge when: (1) one’s regular ability is not utilized, (2) fast response time is not necessarily
applied, and (3) the accuracy rate may be higher than the expected level due to chance. We propose to utilize item-response
time with a finite-mixture IRT modeling approach to illustrate a potentially knowledge retrieval-based item-solving strategy.
The described strategy is illustrated through the utilization of a low-stakes assessment data administered under no time
constraint. A simulation study is provided to evaluate the accuracy of the empirical results.
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Introduction

Background

Examinees’ differential item-response strategies have inter-
ested educational researchers for quite some time. For
example, Mislevy and Verhelst (1990) proposed a mixed-
strategy item-response theory (IRT) model, positing that
subjects implement one of a finite number of mutually
exclusive item-solution strategies when taking a test. A sub-
ject’s strategy choice is not directly observed but inferred
based on item-response patterns. Yamamoto (1989) pro-
posed a HYBRID model that has a similar finite-mixture
structure and can also be used to differentiate examinees’
multiple item-solution strategies.

Researchers have paid particular attention to examinees’
guessing strategy that often appears during tests admin-
istered under time constraints. For instance, Mislevy and
Verhelst (1990) applied their model to investigate a ran-
dom guessing item-response strategy. Yamamoto (1997)
proposed an extension of the HYBRID model to identify
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examinees who switch their item-solution strategy from a
regular to a guessing one. A number of researchers have
presented various modeling approaches to capture time-
pressured respondents’ guessing strategies during speeded
tests (e.g., Bolt, Cohen, & Wollack, 2002; Cao & Stokes,
2008; Chang, Tsai, & Hsu, 2014; Wang & Xu, 2015).
Unmotivated examinees may also apply a guessing strategy
in low-stakes assessments (e.g., Pokropek, 2016; Wise &
Kong, 2005; Wise & DeMars, 2006).

We note that guessing is commonly defined in these
studies as an item-solving strategy that does not rely on
one’s ability. Additionally, the following assumptions are
implied in these previous studies: (1) guessing is usually
a rapid process because a relatively short time is applied
compared to a regular ability-based solution strategy; (2)
the accuracy of a guessing strategy is within or below
the accuracy level expected by chance; (3) only one type
of guessing strategy exists, which is differentiable from a
regular item-solution strategy.

Our proposal

Our study aims to examine what one or more secondary
latent classes would look like if item-response time is
used as covariates for the marginal probabilities of strategy
classes. We use the terminology ‘secondary class’ to
contrast it against a class of respondents that supposedly
works on the items as intended for the test to measure
a certain type of ability. Standard item-response analysis
assumes that all examinees will respond to test items
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based on their ability. In this sense, a class of examinees
who may not rely on their ability in solving test items
(that we hypothesize and explore in this paper) can be
seen as a ‘secondary’ as opposed to a ‘regular’ ability
class. It is plausible that response strategies are not only
characterized by the patterns of item responses in terms
of their accuracy but also based on response time. For
instance, a fast guessing strategy would be identified as a
class with fast item responses with rather low probabilities
of success. This implies that the item response time is an
informative covariate for the marginal probability of the
guessing strategy class (along with the regular ability-based
class if there are only two classes).

It is an empirical question: what would the resulting
classes be when response time is used as a covariate to
inform the probability of using a strategy? Rapid guessing is
not the only possible alternative to the regular, ability-based
strategy. Suppose a subgroup of examinees comes to the
test with a large body of ready knowledge (obtained from
an earlier familiarization with the material) so that for a
substantial subset of the items a correct response can be
given based on fast retrieval (from the automated knowledge
base). Examinees who primarily rely on such a strategy
would give fast and correct responses to rather easy items;
however, they would spend more time on more difficult
items where both knowledge and reasoning processes are
needed. We will label this strategy “knowledge retrieval
strategy”. In the taxonomy of Bloom (Bloom, Engelhart,
Furst, Hill, & Krathwohl, 1956), knowledge is considered to
be the lowest level of ability or skill development; hence,
one may expect subjects at further stages of development to
use more complex strategies than just the retrieval of ready
knowledge.

The strategy we are referring to, as the basis of a possible
secondary class, consists of responding to items on the
basis of one’s knowledge even when deeper understanding
is available. In principle, it is possible to use this strategy
without having a deeper level of understanding, but a deeper
understanding does not exclude the possibility that one
would respond on the basis of one’s ready knowledge. For
example, one may answer a question related to Pythagoras’
theorem on the basis of his or her knowledge of the
theorem. The scenario does not exclude the possibility that
one has a deeper understanding (thus, can infer and apply
the theorem). Similarly, one may know that 8 × 7 = 56
and give an answer on the basis of that knowledge. Even
when one is able to (re)construct a correct response on
the basis of a deeper understanding, why would one go
the long way if a shortcut based on ready knowledge is
available? The response can be fast, without much effort,
and it would have a high probability of success. However,
when an item is more difficult (because it requires reasoning

to make an inference or applying one’s knowledge), trying
to retrieve knowledge and make inferences from other bits
of knowledge would take additional time and have a lower
probability of success.

Independent of the sources of the knowledge, this
knowledge may be available at the surface of the knowledge
base; hence, this knowledge-based strategy would be fast
and have a high probability of giving correct answers.
In other cases, the construction of a response or the
elimination of incorrect responses is needed based on one’s
inferences made from other bits of knowledge. This requires
a deeper kind of processing because the correct response
is not available at the surface of one’s knowledge base.
The terms “surface” and “deep” are used in the literature
referring to learning (e.g., Entwistle & Peterson, 2004)
and understanding (e.g., Bennet & Bennet, 2008; Jong &
Ferguson-Hessler, 1996). Two other related concepts are
automated versus controlled processing (e.g., Shiffrin &
Schneider, 1977). Retrieving ready knowledge is consistent
with automated processing, while controlled processing is
intentional, effortful, and requires more time, for example,
to make inferences or applications. A knowledge retrieval
strategy can in principle be used with surface knowledge
as well as with deep knowledge, while it would rely on
automated processing rather than on controlled processing.

For test-takers with a rather large ready knowledge base,
the knowledge retrieval strategy is a highly efficient strategy
because it is successful and does not require much effort.
Because one may assume that some examinees using the
knowledge retrieval strategy may have some more ready
knowledge than other examinees, there may be two or more
knowledge-strategy classes that differ with respect to their
success rates.

In summary, the knowledge retrieval strategy would show
relatively short response time and high probabilities of
success, especially for easier items. For more difficult items,
a knowledge retrieval strategy would require relatively more
time and yet have a low success rate because getting a
correct answer requires more than knowledge retrieval but
also reasoning processes. This would then lead to relatively
lower success rates and longer response time. Hence we
expect a positive relationship between item difficulty and
the effect of response time on the marginal probability
of belonging to the knowledge retrieval class. For easy
items, a relatively short response time is an indication for
a knowledge retrieval strategy, while for difficult items
relatively longer response time may be such an indication.
We use the modifying adverb “relatively” here because
we will use double centered response time (which will be
further explained in section “Proposed approach”), so that
the time intensity of the items and individual differences in
item response speed do not play a role in the results.
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Previous studies

Finite-mixture modeling approaches for item-solving strate-
gies have rarely been formulated with item-response time
as covariates. The use of response time, however, can throw
new light on response strategy modeling, providing a bet-
ter understanding of response strategies. An alternative way
of taking response time information into account is to use
a joint mixture model for response accuracy and response
time (e.g., Meyer, 2010; Molenaar, Oberski, Vermunt, &
De Boeck, 2016; Wang & Xu, 2015). These papers for-
mulated finite-mixture models for item responses, so that
responses from the same subject can belong to different
latent classes. Models of this type are more flexible in one
sense because they can accommodate within-subject vari-
ability; but they are less flexible because strong constraints
are required to make the models estimable. Specifically,
in the Molenaar et al. (2016) model, one class is defined
as a class of fast responses and the other class as a class
of slow responses. Both of the two classes are differenti-
ated by an item-independent log-time constant. In Meyer
(2010), the nature of the two classes is determined a pri-
ori. One class is defined as a rapid guessing class and the
other class as a solution behavior (ability-based) class. A
mixture Rasch model is specified for response accuracy
and a mixture log-normal model is specified for response
time. The two classes are differentiated by constraining the
prior mean (of the response time distribution) for the solu-
tion behavior class to be higher than the rapid guessing
class. Wang and Xu (2015) also formulated a two-class mix-
ture model where the nature of classes is pre-determined.
These authors define one class as a guessing class with an
item-specific probability of success and with an item- and
person-independent response-time distribution, while set-
ting the other class to follow the hierarchical model for
responses and response time, as described by van der Linden
(2007), which amounts to a model for response accuracy
and a model with latent speed, item time intensity, and
discrimination for the response time.

In this study, we will describe a finite-mixture item-
response model that also allows for within-subject variation
related to the response times, where the variation is the same
within the secondary latent class. For example, a knowledge
retrieval class would gradually vary from relatively fast
responding for successful knowledge retrieval to relatively
slow responding for the case where knowledge retrieval
does not work well. The secondary class does not need to
be a fast or slow class and neither is its nature predefined,
such as a rapid guessing class. Although we have speculated
on the nature of a possible secondary class, the item success
rates and the effects of the response time covariates will
in fact be inferred from the data; thus, the nature of a
secondary class is an empirical issue. Unfortunately, it

seems impossible to combine the two ideas: (1) within-
person mixture models for item responses, and (2) complete
openness to the nature of the latent classes.

Motivating example

Our motivating example is a low-stakes educational
assessment, the Major Field Test for the Bachelor’s Degree
in Business, which is designed for testing undergraduate
business students’ mastery of concepts, principles, and
knowledge. The test items are a mixture of easy and difficult
items with a range from knowledge to application.1 The data
included responses from 1000 examinees on 60 multiple-
choice psychology items with four response options. A time
limit of an hour was given to the examinees to complete
the corresponding test section. The average completion time
was 42 minutes for the 1000 respondents.

Most examinees gave responses to all the test items
(only 0.034% of students provided at least one missing item
response). The omitted response rate was very low (less than
0.1%) across all test items (with a median of 0.01%).

The average response time ranged from 16.49 to 158.10
(seconds) across the test items (with a mean of 42.03 and a
median of 36.81). In Fig. 1a, the response time distribution
showed no distinctive pattern as a function of item location.
In addition, we note that fast response time did not seem
necessarily applied to solve the end of test items. Figure 2
displays the response time distributions of a set of items
selected from the beginning, middle, and end of the test.
Figure 2 shows that the response time distributions were
alike regardless of the location differences of the items.
These distributions did not show clear bimodality that
may indicate an existence of a response class with fast
responses (or fast guessing). That is, although some of the
responses may still be guesses, there are no indications for
a substantial proportion of responses being of that kind.
This makes sense given that the data were obtained from a
low-stakes assessment.

In Fig. 1b, the response accuracy did not show
a distinctive pattern across items. The average correct
response proportion for all test items was approximately
51.4%. Across all individual items, the average proportions
of correct responses ranged from 7 to 95%, while across the
1000 respondents the correct response proportions ranged
from 20 to 88%.

These descriptive statistics suggest that there was little
evidence of a considerable proportion of random responses

1The item contents were unavailable to the authors due to confidential-
ity issues. Sample items can be found at https://www.ets.org/Media/
Tests/MFT/pdf/mft samp questions business. ETS. Copyright © 201x
ETS. www.ets.org. We are grateful to ETS for the permission to use
the data.
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Fig. 1 (a) Response time distribution of the 60 test items and (b) Response accuracy distribution of the 60 test items

given by time-pressured respondents or by unmotivated
respondents in this assessment.

Proposed approach

Our proposed approach is based on a finite-mixture
IRT model that includes a continuous latent variable
that represents respondents’ regular ability and a discrete
latent variable that represents respondents’ item solution
strategies. We allow for different item response models
across different latent classes, where one class follows

a regular IRT model and the secondary classes follow a
probabilistic model that lets the data speak about the nature
of these classes.

The model includes r regular classes (ability group or
Class Rg , g = 1, ..., r) and s secondary classes (no ability
group or Class Sg , g = 1, ..., s). We posit a single regular
class (r = 1) but multiple secondary classes (s ≥ 1); hence,
a total of (1 + s) latent classes are to be differentiated due
to their differential item solving strategies. In this study, we
focus on differentiating multiple no-ability-based strategy
types, although it is possible that there may also be multiple
types of ability-based strategies. One may consider multiple
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Fig. 2 Response time distribution of a selected set of items (Items 1, 7, 27, 34, 43, 48, 51, 56 from the top left to the bottom right, presented by
row)
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ability-based classes depending on research questions and
data conditions.

For the regular class (class R),2 we assume that subjects
solve test items in accordance with a regular two-parameter
logistic (2PL) model. Specifically, for a binary response Yip

to item i (i = 1, ..., I ) for subject p (p = 1, ..., N), the
regular, ability group model is specified as follows:

P(Yip = 1|θp, Cp = R) = exp(α(R)
i θ

(R)
p − β

(R)
i )

1 + exp(α(R)
i θ

(R)
p − β

(R)
i )

, (1)

where Cp is a categorical latent variable that indicates
subject p’s latent class membership, and Cp = R represents
that subject p belongs to the regular class. The continuous
latent trait variable θ

(R)
p for subject p is assumed to

be normally distributed, with θ
(R)
p ∼ N(0, 1) (where

the trait variance is fixed at 1 for identification). The
α

(R)
i and β

(R)
i parameters indicate the item discrimination

and minus the item intercept parameters, respectively.
Equation (1) is specified based on an item factor analysis
formulation; hence, the item difficulty parameter can be
defined as β

(R)
i /α

(R)
i . In practice, however, minus the

intercept parameter (β(R)
i ) is often interpreted as item

difficulty. Hence, for further discussions, we use β
(R)
i ,

instead of β
(R)
i /α

(R)
i , in this paper.

For the secondary classes (class Sg), we postulate that
subjects give their item responses without using their regular
ability (that one intends to measure with the test). The no-
ability based model for the secondary class can be specified
as follows:

P(Yip = 1|Cp = Sg) =
exp

(
−δ

(Sg)

i

)

1 + exp
(
−δ

(Sg)

i

) . (2)

Note that person latent trait is not incorporated in the
probability function in Eq. 2. This means that for subject p

who belongs to the secondary class Sg , his/her probability

of success for item i is a function of the −δ
(Sg)

i

parameter, where δ
(Sg)

i is minus the item intercept parameter

(representing item difficulty) and −δ
(Sg)

i indicates the logit
of the probability of correctly solving item i for subjects in
class Sg .

We further postulate that examinees’ item response time
can be indicative of their strategy choice. Hence, we utilize
item response time to predict subjects’ probabilities of
belonging to class Sg . We log-transform the response time
to achieve approximate normality of the response time
distribution (van der Linden, 2007); we then mean-center
the log response time both within persons and within

2Since we assume that there is one ability-based class, we omit the
subscript of Rg for the sake of simplicity. That is, Rg = R1 = R in the
current paper.

items so that within-person and within-item differences
in the log response time can be adjusted. For within-
person centering, the mean of the log response times

across all items was computed per person (RT
WP

.p ). For
within-item centering, the mean of the log response times

across all respondents was computed per item (RT
WI

i. ). The
double-centered response time (RT DC

ip ) was computed as

RT DC
ip = RTip − RT

WP

.p − RT
WI

i. + RT ... The main
reason for applying this double-centering (for both within-
person and within-item centering) to response time data is
that when raw response times (log-transformed) are used
as covariates, heterogeneity in respondents’ speed as well
as heterogeneity in item time intensity may confound the
estimate results. This was the main criticism on existing
modeling approaches that utilize raw respond times as
covariates (e.g., van der Linden, 2009). As a method to
address this confounding issue, van der Linden (2007)
and van der Linden (2009) proposed a hierarchical model
that utilizes a factor analytic model for response time
(that directly models a speed latent variable and item time
intensity parameters).

Accordingly, a multinomial logit model is specified (with
the ability group as the reference class) for the double-
centered log response time (RT DC

ip ) as follows:

P(Cp = Sg) =
exp

(
γ

(Sg)

0 + ∑I
i γ

(Sg)

i RT DC
ip

)

∑1+s
u=1 exp

(
γ

(u)
0 + ∑I

i γ
(u)
i RT DC

ip

) , (3)

where u = R, S1, S2, ..., Ss (with u = R as the reference

group), γ
(Sg)

0 and γ
(Sg)

i represent the intercept and the
regression coefficient of the log response time for item i

(i = 1, ..., I ) for class Sg . The intercept γ
(Sg)

0 is fixed

at 0 but all γ
(Sg)

i parameters (i = 1, ..., I ) are freely

estimated.3 The γ
(Sg)

i parameters indicate whether or not
the log response time for the corresponding test items helps

subject p to be classified into secondary class Sg . If γ
(Sg)

i

is positive and significant, it means that spending more time
on item i is more likely to help the subject to belong in

the secondary class. On the other hand, a negative γ
(Sg)

i

value indicates spending more time on item i is less likely
to help the subject to belong in the secondary class. Hence,

the estimated γ
(Sg)

i patterns can be used to appreciate the
nature of the secondary respondent group Sg . For instance,

if γ
(Sg)

i < 0 and significant for all i, Class Sg may be

described as a rapid guessing group. However, if γ
(Sg)

i > 0
for some items, this means that Class Sg cannot simply

3When the intercept was freely estimated, the value was not
significantly different from 0 (also the log-likelihood was identical
to the first decimal point); hence, we fixed the intercept to 0 for
computational ease.
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be defined as a rapid guessing class, because taking a
longer time on test items also contributes to generating the
secondary group of respondents.

The marginal probability model can be specified with
respect to subjects’ all potential class memberships:

Pr(yip = 1|θp) = Pr(yip = 1|θ(R)
p , Cp = R)P (Cp = R)

+
s∑

g=1

Pr(yip =1|Cp =Sg)P (Cp = Sg),

(4)

where P(Cp = R) = 1 − ∑s
g=1 P(Cp = Sg) is

the probability of belonging to the regular class and the
probability of belonging to the secondary class P(Cp = Sg)

is described in Eq. 3.

Application

We applied the proposed approach to the motivating data
example described in section “Motivating example”. To
proceed with the data analysis, we log-transformed the
raw response time such that the distribution became close
to normal. The resulting log response time distribution
had a median/mean of 3.49 and a maximum of 6.86. We
additionally applied within-person and within-item mean-
centering to the log-transformed response time as discussed
in section “Proposed approach”.

To estimate the proposed model, Mplus was used with
full information maximum likelihood estimation with 15
quadrature points. An exampleMplus code for the estimated
model is provided in the Appendix. To compare the fit
of models, we considered two likelihood-based statistics,
AIC and sample size adjusted BIC (SABIC). The SABIC
places a penalty for adding parameters based on sample
size. We used the SABIC rather than the BIC following
recent simulation study results that recommend applying
the SABIC for model comparisons (e.g., Enders & Tofighi,
2008; Tofghi & Enders, 2007; Yang, 2006).

Preliminary analysis

We first applied regular finite-mixture 2PL IRT models to
the data in order to see whether the data consist of multiple
sub-populations with different distributional characteristics
(with a 2PL IRT model in each of the classes and no
response time covariates). We fit two-class and three-
class models (all with ability-based classes) and found
that both models were empirically under-identified.4 This
result indicates that there was insufficient evidence for
the existence of multiple sub-classes of examinees who

4Both models generated a singular information matrix error.

Table 1 Goodness-of-fit statistics of the estimated models

Model log-likelihood p AIC SABIC

Preliminary

Model A1 −34955.319 120 70150.637 70358.441

Model A2a −35549.760 120 71339.521 71547.324

Model A2b −34966.241 180 70292.483 70604.189

Proposed

Model B2 −34677.615 240 69835.231 70250.839

Model B3∗ −34640.015 241 69762.031 70179.370

Model B4 −34268.662 480 69497.323 70328.539

Model A1: One-class model; with no RT covariates. Model A2a: Two-
class model (with one ability class and one secondary (no-ability)
class); with no RT covariates; δ

(S1)
i = 0.25. Model A2b: Two-class

model (with one ability class and one secondary (no-ability) class);
with no RT covariates; δ(S1)

i are freely estimated. Model B2: Two-class
RT-based model (with one ability class and one secondary (no-ability)
class); with RT covariates. Model B3∗: Constrained three-class RT-
based model (with one ability class and two secondary (no-ability)
classes); with RT covariates; constrained such that δ

(S1)
i = δ

(S2)
i + c1.

Model B4: Four-class RT-based model (with one ability class and three
secondary (no-ability) classes); with RT covariates. p is the number of
parameters and SABIC indicates sample-size adjusted BIC

qualitatively differed in their ability distributions. However,
this does not rule out the possibility that there might be
additional latent classes based on a strategy that is not
reflected in a 2PL model.

In addition, previous studies suggest that unmotivated
respondents may apply a guessing strategy during low-
stakes assessments (Wise & Kong, 2005; Wise & Demars,
2006). Therefore, we compared a single-class 2PL IRT
model (Model 1) with two types of two-class models
that include a regular item solution class and a secondary
guessing (no ability) class. In one model (Model A2a), the
probability of success for the guessing group was fixed at
0.25 (the reciprocal of the number of response options);
in another model (Model A2b),5 the probability of success
was not fixed but freely estimated. The former, constrained
method is equivalent to Mislevy and Verhelst (1990)’s
mixed-strategy model.

The goodness-of-fit of the two mixture models, however,
was not better than the regular, single-class 2PL model (see
Table 1 for the fit statistics). On the one hand, this result
seems to indicate that with the current data it was hard
to differentiate unmotivated respondents who gave random
responses to the test items. On the other hand, this result also

5The number (e.g., 1, 2) appeared in model names (e.g., Model 1,
Model A2a) indicates the number of latent classes presumed in the
corresponding models.
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suggests that we would need to apply a somewhat different
analytic approach if we wish to investigate examinees’
potentially different item solution strategies that might have
been applied to these non-speeded, low-stakes test items.

Results: Two-class model with response times
as covariates

We now apply our proposed approach to the data. We
considered a two-class model and incorporated response
time information to predict one’s classification into
the secondary class, as discussed in section “Proposed
approach”. To differentiate our proposed approach from the
two-class models fitted in the preliminary analysis (Models
A2a and A2b discussed in section “Preliminary analysis”),
we refer to our model as a two-class RT-based model (Model
B2).

Results showed that the goodness-of-fit of the two-class
RT-based model (Model B2) was improved compared to the
fit of the two two-class null models (Models A2a and A2b)
as well as the regular 2PL model (Model A1). See Table 1
for details. This means that a secondary strategy class helps
to understand the data. Specifically, 37.2% of the examinees
were identified within the secondary class, while 62.8% of
the examinees were classified into the regular, ability-based
class.

The response time information for 17 items was useful to
identify the secondary class (statistically significant at the
5% level). The estimated regression coefficients (γ (S1)

i ) of
the response time variable ranged from -2.02 to 1.90 for the
17 items (a mean of 0.05 and SD of 1.2). The fact that the
γ

(S1)
i estimates included both positive and negative signs

indicates that fast response time was not always indicative of
the no-ability based strategy. This means that the identified
item response strategy cannot simply be described as fast
guessing.

To measure how the impact of the item-response time
on person classification was related to the item difficulty,
we plotted the γ

(S1)
i parameter estimates (regression

coefficients for response time) with the δ
(S1)
i parameter

estimates (minus item intercept for the secondary class).
See Fig. 3a for the result (all parameter estimates and their
standard errors are provided in Tables 2 and 3).

The γ
(S1)
i coefficients tended to be positively associated

with the δ
(S1)
i parameter estimates (with a correlation

of 0.49 for all items and 0.71 for the significant γ
(S1)
i

items). When γ
(S1)
i < 0, the δ

(S1)
i estimates were often

smaller than 0 (bottom left corner). This means that for
relatively easy items, spending less time on an item helped
the respondents to be grouped into the secondary class.
When γ

(S1)
i > 0, the δ

(S1)
i estimates were often larger

than 0 (top right corner), indicating that for relatively

difficult items, spending more time on an item helped the
respondents to be assigned into the secondary class. That
is, fast responses tended to result in higher probabilities
of correct answers, while slow responses led to lower
success rates. This type of secondary class with relatively
fast responses for rather easy items and relatively slower
responses for rather difficult items cannot be attributed to
the well-known relationship between easiness and short
response times because the item differences in response
time are eliminated by double-centering. Similarly, the
secondary class cannot be interpreted as a general speed
related class because individual differences in response
time are also eliminated. A possible interpretation is that
the secondary class represents a mixture of strategies:
knowledge retrieval when it works well and less successful
strategies if knowledge retrieval does not work. We will
denote the secondary class as a knowledge retrieval class
although it is a hypothetical interpretation and although
alternative strategies may have been used if knowledge
retrieval does not work.

We then compared the average raw response time for the
no-ability class with the response time for the regular class.
The most likely latent class for individual respondents was
obtained using maximal a posteriori estimation. The item-
level average response time for the no-ability group ranged
from 14.3 to 186 (with a median 36.5), while for the regular
class it ranged from 17.0 to 141 (with a median of 36). The
person-level average response time for the no-ability group
ranged from 18.3 to 59.5 (with a median 36.5), while for
the regular class it ranged from 2.2 to 73.1 (with a median
of 41.4). That is, the respondents in the secondary class did
not show a consistent pattern (i.e., consistently fast or slow
response time) compared to those examinees in the regular
class.

Next, we assessed the relationship between minus the
item intercept parameter estimates (item difficulties) for
the regular class (β(R)

i ) and for the secondary class (δ(S1)
i ).

Figure 3b shows the results. The two parameter estimates
were positively correlated (with a correlation of 0.867)
although the δ

(S1)
i parameter estimates (for class 2) tended to

be smaller than the β
(R)
i parameter estimates. The average

difference between the two parameter estimates (δ(S1)
i −

β
(R)
i ) was -0.738 (SE = 0.031). This means that the test

items tended to be easier for those respondents who applied
the no-ability strategy. In other words, the secondary class
respondents were generally more successful in solving the
test items than the regular class respondents. This is a highly
intriguing result because if the secondary class respondents
had applied a guessing strategy, their performance would
have been poorer compared to a standard ability-based
strategy (Wise & Kong, 2005). Furthermore, for most items,
the probability of a correct response for the secondary class
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Table 2 Item parameter estimates (for Items 1 to 30) from the two-class RT-based model (Model B2, with an ability class and a secondary class)

Item α
(R)
i β

(R)
i δ

(S1)
i γ

(S1)
i

EST SE EST SE EST SE EST SE

1 0.33 0.15 1.30 0.11 1.01 0.13 −0.35 0.36

2 0.28 0.17 −1.05 0.11 −0.56 0.13 0.44 0.47

3 0.29 0.26 2.21 0.16 1.45 0.16 −0.29 0.37

4 −0.10 0.15 0.62 0.09 0.30 0.13 0.94 0.40

5 −0.22 0.22 1.89 0.14 1.16 0.16 0.55 0.40

6 0.67 0.34 3.19 0.25 2.03 0.19 0.56 0.31

7 −0.22 0.15 1.37 0.11 0.80 0.15 0.64 0.38

8 0.10 0.15 0.93 0.10 0.50 0.12 0.23 0.35

9 0.07 0.14 1.15 0.10 0.49 0.13 0.58 0.45

10 0.26 0.16 0.85 0.10 0.27 0.12 0.89 0.41

11 0.11 0.16 1.23 0.11 0.20 0.12 1.89 0.53

12 0.08 0.21 1.84 0.14 0.09 0.14 0.73 0.36

13 0.21 0.17 1.39 0.12 −0.27 0.15 1.06 0.41

14 0.15 0.15 0.95 0.10 −0.23 0.12 1.21 0.48

15 0.12 0.17 0.95 0.11 −0.38 0.14 0.40 0.39

16 0.35 0.16 1.02 0.11 −0.45 0.13 0.09 0.38

17 0.15 0.17 0.93 0.11 −0.55 0.15 −0.91 0.40

18 0.27 0.16 0.60 0.10 −0.33 0.12 −0.35 0.35

19 0.46 0.15 0.77 0.10 −0.33 0.13 −0.49 0.37

20 0.30 0.20 1.23 0.13 −0.68 0.14 −0.13 0.46

21 0.37 0.14 0.54 0.09 −0.33 0.14 −0.32 0.39

22 0.60 0.18 0.82 0.11 −0.59 0.13 −1.25 0.42

23 0.17 0.13 0.15 0.09 −0.15 0.12 0.91 0.40

24 0.28 0.15 0.39 0.09 −0.45 0.13 0.27 0.57

25 0.38 0.14 0.40 0.10 −0.47 0.13 0.52 0.31

26 0.41 0.15 0.31 0.09 −0.52 0.14 −0.46 0.31

27 0.71 0.17 0.17 0.11 −0.27 0.12 0.39 0.45

28 0.22 0.14 0.46 0.10 −1.14 0.18 −0.80 0.47

29 0.15 0.13 0.23 0.09 −0.69 0.15 0.41 0.33

30 0.46 0.16 0.12 0.09 −0.44 0.13 0.38 0.42

α
(R)
i and β

(R)
i are the item discrimination and minus intercept parameter estimates for the ability class and δ

(S1)
i are minus the intercept parameter

estimates from the secondary (non-ability) class. γ (S1)
i are the regression coefficients of response time on the probability of being classified into

class S1

respondents was generally higher than .25 (the accuracy
expected by chance). See Fig. 4 for the result.

Taken together, these results show that respondents
identified in the secondary class might not be simply a
group of random guessers. These individuals might be better
described as knowers (considering their response time and
the item response success rates). It may be reasonable to
speculate that knowers belong to a knowledge retrieval
class. The knowledge retrieval strategy is different from
using pre-knowledge on the items, stemming from item
over-exposure or compromise (e.g., Shu, Henson, & Luecht,
2013), in that the test was a low-stakes assessment of little
consequence.

Results: Three-class model with response times
as covariates

In order to find out whether the secondary class from the
two-class RT-based model could further be differentiated,
we applied a three-class RT-based model with one regular
class and two secondary (no-ability) classes (Model
B3). The three-class model was, however, empirically
unidentified;6 hence, we modified the model by imposing
the assumption that there were systematic differences in

6The information matrix was singular unless some parameter
constraints were imposed.
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Table 3 Item parameter estimates (for Items 31 to 60) from the two-class RT-based model (Model B2, with an ability class and a secondary class)

Item α
(R)
i β

(R)
i δ

(S1)
i γ

(S1)
i

EST SE EST SE EST SE EST SE

31 0.45 0.16 0.34 0.11 −1.20 0.16 −0.43 0.35

32 0.05 0.12 0.17 0.09 −0.66 0.13 0.52 0.39

33 0.43 0.14 0.14 0.10 −0.93 0.13 −0.43 0.37

34 0.45 0.16 0.19 0.11 −1.99 0.22 0.88 0.32

35 0.46 0.16 −0.01 0.10 −0.69 0.13 0.30 0.37

36 0.20 0.13 0.02 0.10 −0.68 0.14 −1.06 0.38

37 0.44 0.15 0.00 0.10 −1.29 0.18 −0.10 0.38

38 0.42 0.14 −0.07 0.09 −0.62 0.13 −0.28 0.30

39 0.07 0.16 0.04 0.11 −0.99 0.15 −0.70 0.40

40 0.81 0.19 −0.20 0.11 −1.19 0.15 −0.25 0.45

41 0.59 0.16 −0.17 0.10 −1.05 0.14 −1.10 0.47

42 0.46 0.15 −0.16 0.09 −0.71 0.13 −0.05 0.43

43 0.45 0.14 −0.34 0.10 −1.34 0.15 −0.55 0.35

44 0.35 0.16 −0.37 0.10 −1.89 0.24 −0.96 0.40

45 0.73 0.18 −0.61 0.12 −1.77 0.19 −0.87 0.35

46 0.32 0.14 −0.36 0.10 −1.00 0.16 0.39 0.38

47 0.58 0.18 −0.60 0.11 −1.43 0.20 −0.07 0.53

48 0.57 0.17 −0.81 0.12 −1.91 0.20 −0.40 0.49

49 0.72 0.18 −1.52 0.15 −3.53 0.37 −2.02 0.41

50 0.51 0.18 −1.60 0.14 −2.75 0.27 −0.85 0.38

51 0.21 0.15 −0.71 0.10 −1.32 0.15 −0.69 0.38

52 0.39 0.14 −0.64 0.10 −0.80 0.13 0.49 0.33

53 0.04 0.13 0.31 0.09 0.62 0.13 1.33 0.37

54 1.11 0.33 −3.17 0.34 −3.47 0.34 −0.55 0.41

55 0.77 0.28 −2.62 0.24 −3.13 0.33 −0.70 0.43

56 0.48 0.17 −1.50 0.13 −1.82 0.18 0.45 0.48

57 −0.25 0.15 1.05 0.10 1.35 0.15 −0.03 0.38

58 0.20 0.15 −0.59 0.10 −0.59 0.13 −0.15 0.37

59 −0.23 0.19 1.71 0.13 2.42 0.22 0.28 0.34

60 0.45 0.25 −2.51 0.19 −2.29 0.20 0.26 0.39

α
(R)
i and β

(R)
i are the item discrimination and minus intercept parameter estimates for the ability class and δ

(S1)
i are minus the intercept parameter

estimates from the secondary (non-ability) class. γ (S1)
i are the regression coefficients of response time on the probability of being classified into

class S1. (Continued)

the γ
(Sg)

i and δ
(Sg)

i parameters between the two secondary

classes (g = 1, 2). That is, we imposed δ
(S1)
i = δ

(S2)
i + c1

and γ
(S1)
i = γ

(S2)
i + c2, where superscripts (S1) and (S2)

represent the first and second secondary classes (class 2 and
class 3), respectively and c1 and c2 represent constants. The
constraints that we imposed in the three class model were
devised based on the following motivations: First, imposing
these constraints is a confirmatory approach to investigate
the two secondary classes as being different with respect
to the level of performance (which is a possibility that we
have considered earlier in this paper). Second, the number
of model parameters is largely reduced in such a way

to improve interpretations. Accordingly, we hypothesized
that there might be systematic differences in the model

parameters (γ
(Sg)

i and δ
(Sg)

i ) between the two secondary
classes. Researchers, however, may consider other types of
constraints based on their theoretical and/or practical needs.

The difference in the δ
(Sg)

i parameters (c1) was estimated
as 0.536 (SE = 0.054), while the difference in the

γ
(Sg)

i parameters (c2) was nearly zero. Hence, we further
constrained the c2 constant (between-class difference in the

γ
(Sg)

i parameters) to be zero. The fit of this constrained
three-class RT-based model (Model B3∗) was improved
compared to the two-class RT-based model (Model B2) (see
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Fig. 4 Probability of success for the 60 test items for those respondents who were identified in the secondary class (S1) from the two-class
RT-based model (Model B2)

Table 1 for the fit statistics). Incorporating an additional
secondary class (i.e., four-class model; Model B4) did not
meaningfully improve the goodness-of-fit of the constrained
three-class model in terms of the SABIC measure (see
Table 1).

We proceeded to examine the characteristics of the
constrained three-class model (Model B3∗). Figure 5

displays: (a) a comparison between the δ
(Sg)

i difficulty

parameter estimates and the γ
(Sg)

i parameter estimates for
the two secondary classes and (b) a comparison between
the β

(R)
i parameter estimates for the regular class and the

δ
(Sg)

i difficulty parameter estimates for the two secondary
classes all parameter estimates and their standard errors are
provided in Tables 4 and 5). When interpreting the figures,
note that although Model B3∗ includes two secondary

classes, the item difficulty parameter(δ
(Sg)

i , g = 1, 2) and

the regression coefficients (γ
(Sg)

i , g = 1, 2) are equivalent

for the two secondary classes, while for δ
(Sg)

i there is
a constant difference between the two secondary classes
parameters (as explained above).

The patterns from Fig. 5 were generally similar to the pat-

terns observed in Fig. 3. The γ
(Sg)

i coefficients tended to

be positively associated with the δ
(Sg)

i difficulty estimates
(with a correlation of 0.49 for all items and 0.72 for the

significant γ
(Sg)

i items). The correlations are not surpris-
ing because class 3 is class 2 plus an additive constant and
classes 3 and 2 are basically class 2 from the previous, two-
class RT-based model (Model B2), as will be explained with

percentages in the next paragraph. From Fig. 5b, we also

observe that the δ
(Sg)

i difficulty parameter estimates for the

two secondary classes tended to be smaller than the β
(R)
i

parameter estimates for the regular class. That is, the items
appeared to be generally easier for the respondents who did
not use their ability compared to those respondents who
indeed used their abilities in item solving. The two sec-
ondary classes were differentiated in terms of their overall
success rates. On average, the class 3 examinees were more
successful than the class 2 examinees in the probability of
success, while the difference was significantly different at
the 5% level (0.536, SE= 0.054).

The constrained three-class model (Model B3∗) showed
clear differentiation of latent classes; 61.6% were identified
in the ability class, 15.4% in the first secondary class
and 23% in the second secondary class. It is noteworthy
that with the application of the three-class model, most
examinees who were initially identified in the secondary
class from the two-class model were re-classified into the
two secondary classes. Specifically, 41.4% (154 out of
372) were classified into the first non-ability class and
56.5% (210 out of 372) into the second non-ability class
(the remaining 2.1% was assigned to the ability class.),
where the second non-ability class showed a higher mean
compared to the first non-ability class. This result indicates
that the no-ability class from the two-class model was
indeed decomposed into two groups with the three-class
model. This result supports our hypothesis that multiple
non-ability-based classes existed that differed in their
overall success rates.
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Table 4 Item parameter estimates (for Items 1 to 30) from the constrained three-class RT-based model (Model B3∗, with an ability class and two
secondary classes)

Item α
(R)
i β

(R)
i δ

(S1)
i γ

(S1)
i

EST SE EST SE EST SE EST SE

1 0.36 0.16 1.30 0.11 0.75 0.14 −0.33 0.35

2 0.33 0.17 −1.09 0.11 −0.85 0.13 0.30 0.63

3 0.29 0.28 2.24 0.17 1.18 0.16 −0.26 0.34

4 −0.08 0.15 0.60 0.09 0.06 0.14 0.95 0.40

5 −0.16 0.24 1.85 0.14 0.95 0.15 0.48 0.39

6 0.73 0.33 3.19 0.26 1.82 0.19 0.53 0.32

7 −0.20 0.15 1.36 0.11 0.56 0.15 0.71 0.41

8 0.13 0.16 0.92 0.10 0.25 0.13 0.12 0.39

9 0.07 0.14 1.16 0.11 0.22 0.14 0.61 0.49

10 0.26 0.16 0.87 0.10 −0.01 0.13 0.73 0.39

11 0.12 0.17 1.24 0.11 −0.05 0.12 1.82 0.48

12 0.03 0.21 1.88 0.14 −0.16 0.15 0.85 0.36

13 0.20 0.18 1.42 0.12 −0.53 0.15 1.04 0.42

14 0.15 0.15 0.97 0.10 −0.49 0.13 1.20 0.42

15 0.08 0.16 0.98 0.11 −0.64 0.15 0.28 0.41

16 0.36 0.16 1.03 0.11 −0.69 0.14 0.08 0.41

17 0.14 0.16 0.95 0.10 −0.81 0.15 −0.82 0.41

18 0.26 0.17 0.62 0.10 −0.61 0.14 −0.31 0.35

19 0.47 0.14 0.78 0.10 −0.59 0.13 −0.46 0.40

20 0.27 0.18 1.27 0.12 −0.94 0.16 −0.14 0.42

21 0.36 0.14 0.55 0.10 −0.61 0.14 −0.27 0.41

22 0.58 0.17 0.85 0.12 −0.86 0.14 −1.20 0.42

23 0.18 0.13 0.14 0.09 −0.41 0.13 0.95 0.42

24 0.29 0.15 0.39 0.10 −0.70 0.13 0.14 0.48

25 0.39 0.14 0.41 0.10 −0.75 0.13 0.54 0.27

26 0.46 0.15 0.30 0.10 −0.76 0.14 −0.46 0.31

27 0.72 0.18 0.18 0.10 −0.56 0.13 0.41 0.45

28 0.23 0.14 0.47 0.10 −1.35 0.17 −0.65 0.42

29 0.15 0.13 0.24 0.09 −0.96 0.15 0.38 0.35

30 0.48 0.17 0.11 0.10 −0.70 0.13 0.56 0.47

α
(R)
i and β

(R)
i are the item discrimination and minus intercept parameter estimates for the ability class and δ

(S1)
i are minus the intercept parameter

estimates from the first secondary (non-ability) class. γ (S1)
i are the regression coefficients of response time on the probability of being classified

into class S1. (δ
(S2)
i is obtained as δ

(S2)
i = δ

(S1)
i − 0.536 and γ

(S1)
i = γ

(S2)
i .)

Figure 6 displays the probability of a correct response
for the test takers who were identified in the two secondary
classes.

Clearly, the response accuracy of the class 3 respondents
was somewhat higher than the class 2 respondents. The
probability of success for the class 3 and class 2 respondents
was generally higher than .25, which is the accuracy
level expected by chance for random guesses. This result
confirms that the examinees identified in the two secondary
classes may be described as successful knowledge retrievers
rather than simple random guessers. The fact that there

were two such classes indicates that there were individual
differences in the performance of the item-solving strategy
that could be interpreted as knowledge retrieval.

Simulation study

We conducted a simulation study to evaluate the accuracy
of the estimated results described in section “Application”.
Hence, we considered a two-class model (Model B2)
and a constrained three-class model (Model B3∗) for a
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Table 5 Item parameter estimates (for Items 31 to 60) from the constrained three-class RT-based model (Model B3∗, with an ability class and two
secondary classes)

Item α
(R)
i β

(R)
i δ

(S1)
i γ

(S1)
i

EST SE EST SE EST SE EST SE

31 0.44 0.16 0.37 0.10 −1.48 0.17 −0.52 0.33

32 0.05 0.12 0.18 0.09 −0.94 0.14 0.62 0.38

33 0.42 0.15 0.17 0.10 −1.23 0.14 −0.47 0.40

34 0.44 0.16 0.22 0.11 −2.23 0.22 0.89 0.30

35 0.47 0.16 −0.00 0.10 −0.98 0.13 0.35 0.39

36 0.18 0.13 0.03 0.09 −0.97 0.14 −0.94 0.39

37 0.48 0.15 0.00 0.10 −1.53 0.17 −0.02 0.40

38 0.44 0.15 −0.07 0.10 −0.90 0.14 −0.23 0.33

39 0.03 0.16 0.08 0.10 −1.32 0.17 −0.80 0.38

40 0.81 0.19 −0.17 0.11 −1.48 0.15 −0.26 0.47

41 0.59 0.16 −0.14 0.10 −1.35 0.15 −0.97 0.47

42 0.45 0.16 −0.16 0.09 −0.99 0.14 −0.18 0.46

43 0.46 0.15 −0.32 0.10 −1.63 0.16 −0.58 0.35

44 0.32 0.16 −0.34 0.10 −2.19 0.25 −1.05 0.43

45 0.74 0.20 −0.60 0.13 −2.03 0.19 −0.87 0.38

46 0.34 0.13 −0.37 0.10 −1.27 0.15 0.38 0.35

47 0.61 0.17 −0.61 0.11 −1.68 0.18 −0.06 0.45

48 0.56 0.17 −0.79 0.12 −2.21 0.19 −0.53 0.42

49 0.69 0.18 −1.47 0.14 −3.87 0.38 −1.97 0.41

50 0.50 0.19 −1.58 0.14 −3.06 0.27 −0.91 0.35

51 0.22 0.16 −0.71 0.10 −1.60 0.16 −0.64 0.36

52 0.42 0.15 −0.66 0.10 −1.09 0.13 0.51 0.30

53 0.08 0.13 0.29 0.09 0.36 0.13 1.38 0.36

54 1.11 0.32 −3.14 0.33 −3.80 0.33 −0.56 0.39

55 0.84 0.28 −2.67 0.25 −3.38 0.30 −0.64 0.45

56 0.47 0.17 −1.48 0.13 −2.15 0.18 0.52 0.43

57 −0.24 0.16 1.02 0.10 1.11 0.15 0.00 0.36

58 0.25 0.15 −0.61 0.10 −0.86 0.13 −0.23 0.39

59 −0.19 0.18 1.67 0.13 2.21 0.22 0.29 0.32

60 0.44 0.25 −2.50 0.19 −2.64 0.20 0.26 0.40

α
(R)
i and β

(R)
i are the item discrimination and minus intercept parameter estimates for the ability class and δ

(S1)
i are minus the intercept parameter

estimates from the first secondary (non-ability) class. γ (S1)
i are the regression coefficients of response time on the probability of being classified

into class S1. (δ
(S2)
i is obtained as δ

(S2)
i = δ

(S1)
i − 0.536 and γ

(S1)
i = γ

(S2)
i .) (Continued)

testing situation analogous to the empirical study setting.
Specifically, 60 test items were considered for 1000
subjects, where response time was generated based on a
log-normal model, such as log(RTip) = ν + εip, where
ν is the overall mean (set to -4, similar to the empirical
study) and εip ∼ N(0, 1). The data-generating parameter
values were set similar to the parameter estimates obtained
from the two-class model fitted to the empirical data. We
additionally considered a larger sample size condition with
5000 subjects to compare its parameter recovery results with
the N = 1000 case.

The mixing proportions of the two models were
determined by the regression coefficients of the response
time predictors of the secondary classes. For the two-class
model (Model B2), the mixing proportions were π1 = 0.62
and π2 = 0.38, while for the constrained three-class model
(Model B3∗), they were π1 = 0.62, π2 = 0.23, and
π3 = 0.15. For each condition, 100 datasets were generated
and estimated with Mplus. The same maximum likelihood
estimation setting was used as in the empirical study.

Note that label switching is of minimal concern in
our simulation studies; for the two-class model there is
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Fig. 6 Probability of success for the 60 test items for those respondents who were identified in the two secondary classes (class 2 (S1) and class 3
(S2)) from the three-class RT-based model (Model B3∗)

asymmetry between the two response strategy classes; that
is, the two classes have different model structures in that one
class includes an ability component (a regular ability based
strategy class) and the other class does not (knowledge
retrieval class). There is also asymmetry between two
secondary classes for the constrained three class model
because of the presence of the constant parameter c1 in one
secondary class.

Results: Two-class model

Figures 7 and 8 display the bias and root mean square error
(RMSE) of the estimated item parameters from the two-
class model (Model B2) under two sample size conditions.

Overall, the bias and RMSE of the estimated parameters
were minor for most parameters and in all cases, the
95% confidence intervals of the bias included 0. For the
γ (S1) parameters (regression coefficients of the response
time predictors), the bias and RMSE were somewhat large
compared to other parameters especially when the sample
size is N = 1000. However, the bias of γ (S1) greatly
decreased when N = 5000. The RMSE reduction was
outstanding as shown in Fig. 8.

We also assessed classification accuracy with two
measures: (1) the proportion of simulated datasets with
correct classification per person, and (2) Cohen’s kappa
coefficient (which is a measure of agreement between
categorical variables). Based on these two statistics, we

found the classification accuracy generally excellent for the
two-class model in all sample sizes. When N = 1000,
the proportion of correct classification ranged from 82% to
99% (with a mean of 92.6%) and Cohen’s kappa coefficient
ranged from 0.78 to 0.88 (with a mean of 0.84) across the
respondents. When N = 5000, the proportion of correct
classification ranged from 82 to 100% (with a mean of
93.3%) and Cohen’s kappa coefficient ranged from 0.83 to
0.88 (with a mean of 0.86) across the respondents.

Results: Three-class model

Figures 9 and 10 display the bias and RMSE of the estimated
item parameters from the constrained three-class model
(Model B3∗) in the three sample size conditions.

Similar to the two-class model case, the bias and RMSE
of the estimated parameters were generally minor for most
parameters except for the γ (Sg) parameters whenN = 1000.
However, the bias and RMSE greatly decreased when the
sample size wasN = 5000. In addition, the 95% confidence
intervals of the bias included 0 in all cases when N = 1000
and N = 5000.

Classification accuracy was great for the constrained
three class model in both sample sizes. WhenN = 1000, the
proportion of correct classification ranged from 70 to 100%
(with a mean of 87.0%) and Cohen’s kappa coefficient
ranged from 0.76 to 0.83 (with a mean of 0.79) across the
1000 subjects. When N = 5000, the proportion of correct
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i parameter values for the two-class RT-based model (Model B2) when N = 1000 and

N = 5000

classification ranged from 70 to 100% (with a mean of
87.7%) and Cohen’s kappa coefficient ranged from 0.80 to
0.82 (with a mean of 0.81) across the 5000 subjects.

Discussion

The present paper is a follow-up study to earlier investiga-
tions on respondents’ multiple item response strategies. In

particular, in our study we have hypothesized and explored
the kind of latent classes that result when response time per
item was used as covariates of the mixture probabilities.
Note that response time was centered in two ways such that
the effects could not be interpreted as stemming from gen-
eral speed differences between subjects and items.7 Similar

7We found that the results were similar without double centering the
response time.
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to the existing multiple-strategy models, in our approach
one of the two (or more) classes are classes without individ-
ual differences; thus, they are homogeneous classes without
an ability component. For example, a guessing latent class
would be a class with rather low probabilities of success. An
alternative possibility as illustrated in our study is that the
homogeneous class represents a simple knowledge retrieval

strategy instead of a regular, ability-based strategy. If knowl-
edge retrieval is successful, the response would likely be
given quickly. If knowledge retrieval does not work, one
may expect a longer response time and a lower success
rate. As a consequence, the alternative response strategy
class would be characterized by fast responses for success-
ful items as well as slower responses for less successful
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i parameter values for the constrained three-class RT-based model (Model B3∗) when

N = 1000 and N = 5000. The bias of the c1 parameter was −0.001 and −0.0004 when N = 1000 and N = 5000, respectively

items. A third class can be included in the model if there
would be differences among the knowledge retrieval strat-
egy subjects in their overall knowledge levels and qualities.
To our knowledge, a model with mixture probabilities based
on item-specific effects of response times has not been used
earlier to explore secondary latent classes, and the results
are of a kind that a knowledge retrieval strategy is a possible
explanation for secondary classes.

The analysis of our motivating data example, obtained
from a low-stakes cognitive assessment without time
pressure, showed that a non-trivial number of examinees
employed possibly an item-response strategy based on
knowledge retrieval rather than a random guessing strategy.
We also found that two classes of potential knowledge
retrieval could be differentiated based on their overall
success level. Specifically, the hypothetical knowledge
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retrieval classes could be characterized as subjects with
faster responses for easy items and slower responses for
more difficult items. This type of strategy was likely to be
different from the strategy based on item pre-knowledge,
stemming from item compromise (e.g., Shu et al., 2013),
given that the analyzed data came from a low-stakes
assessment.

These results seem to show the presence of knowledge
retrieval strategies that we hypothesized although additional
work would be needed to further strengthen our hypothesis.
We note that Bolsinova, De Boeck and Tijmstra (2017)
analyzed the same dataset with a local dependence
extension of the hierarchical model of van der Linden
(2007) with a dimension for response accuracy and another
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dimension for response time, where the local dependence
refers to response time and correctness of the responses.
Bolsinova et al. (2017) showed that after controlling for
latent variables and item parameters, (1) response time is
negatively related to the correctness of the response for most
items, and (2) the dependence is related to item difficulty in
that the dependence is positive for the most difficult items.
This relationship between dependence and item difficulty is
in line with our results. It is possible that the dependence
stems from a subset of the subjects using a response strategy
that consists of retrieving knowledge from surface memory
for easier items while using less successful strategies for
more difficult items. It was not our purpose to find an
explanation for earlier findings regarding the same data set
and neither did we aim at finding the true model. However,
it is intriguing and encouraging that the results from both
analyses seem to be consistent. One way to follow up on
these results would be to analyze the data with a model
that has two dependence-based latent classes: one with and
another without residual dependence between response time
and response accuracy.

As discussed earlier, our model is a meaningful extension
of earlier multiple-strategy mixture modeling approaches
(e.g., Mislevy & Verhelst, 1990), with response time
covariates for the marginal probabilities of strategy classes.
We utilized the response time to shed light on the nature of
the secondary strategy classes. Response time information
has also been used in the literature, often in the context of
studying rapid guessing behavior. For instance, Schnipke
and Scrams (1997) applied a finite-mixture model to
response time data. Meyer (2010) and Wang and Xu (2015)
applied a joint mixture model to both response data and
response time, simultaneously. Wise and Demars (2006)
utilized response time to determine time thresholds and to
define speeded items. Molenaar et al. (2016) used response
time information to define a class of fast responses and a
class of slow responses. In a non-mixture modeling context,
other researchers utilized response time as a predictor
to account for heterogeneity in the probability of correct
responses (e.g., Goldhammer et al., 2014; Goldhammer,
Naumann, & Greiff, 2015; Roskam, 1997).

Our proposed modeling approach can be further
improved in several ways. For instance, it could be ben-
eficial to incorporate other behavioral, psychological, and
even neural information in the model in order to inves-
tigate the nature of response strategy classes. In addi-
tion, although our model allows for within-subject dif-
ferences in how item responses are generated, the dif-
ferences between items are the same within each class.
A more flexible model would be a mixture model for
responses so that the strategies can vary within subjects

in different ways depending on the person. It may be
meaningful to relax this assumption to allow for item-
specific strategy choices as also discussed in e.g., Erosheva
(2005) and Pokropek (2016). However, as noted earlier, it
would imply that constraints of a different kind need to be
imposed.

Appendix

Here we provide an example Mplus code for fitting our pro-
posed model (Model B2) to the motivating data example.

!! Header of input file
TITLE: Two-class mixture model for
!knowledge retrieval based item response
!strategy

!! Data file specification
DATA: FILE = example.dat;

!! Define variables and specify number
!of latent classes
VARIABLE:
NAMES ARE y1-y60 t1-t60; ! 60 item
!responses and 60 item response time
CATEGORICAL = y1-y60; ! binary responses
MISSING = ALL(99);
! missing data coded as 99
CLASSES = c (2);
! define # of latent classes

!! Estimation settings
ANALYSIS:
TYPE = MIXTURE; ! estimate
!finite mixture model
ALGORITHM = INTEGRATION; ! use
!integration method
!(with 15 default quadrature points)
STARTS = 20 10 ; ! random start

!! Model specification
MODEL:
! Overall model
%OVERALL%
th by y1-y60*; ! item loading
[th@0]; ! factor mean fixed at 0
th@1; !factor variance fixed at 1
! Item response time as predictors
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c#1 on t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
(d1-d10);
c#1 on t11 t12 t13 t14 t15 t16 t17 t18
t19 t20 (d11-d20);
c#1 on t21 t22 t23 t24 t25 t26 t27 t28
t29 t30 (d21-d30);
c#1 on t31 t32 t33 t34 t35 t36 t37 t38
t39 t40 (d31-d40);
c#1 on t41 t42 t43 t44 t45 t46 t47 t48
t49 t50 (d41-d50);
c#1 on t51 t52 t53 t54 t55 t56 t57 t58
t59 t60 (d51-d60);

[c#1@0] ; ! mean of class 1 fixed at 0

! Model for class 2 (ability group)
c#2%
th by y1-y60*; ! item loading
[th@0]; ! factor mean fixed at 0
th@1; !factor variance fixed at 1
[y1$1-y60$1] (i1-i60); ! difficulty

! Model for class 1 (secondary,
!no-ability group)
%c#1%
th by y1-y60@0; ! item loading
[th@0]; ! factor mean fixed at 0
th@0; !factor variance fixed at 0
[y1$1−y60$1] (g1-g60); ! difficulty

! Save posterior probabilities of
!latent class membership
SAVEDATA: FILE IS model prob.txt;
SAVE = cprob;

References

Bennet, D., & Bennet, A. (2008). The depth of knowledge: Surface,
shallow or deep? Vine, 38, 405–420.

Bloom, B., Engelhart, M., Furst, E., Hill, W., & Krathwohl, D.
(1956). Taxonomy of educational objectives: The classification
of educational goals handbook I: cognitive domain. New York:
David McKay Company.

Bolsinova, M., De Boeck, P., & Tijmstra, J. (2017). Modelling
conditional dependence between response time and accuracy.
Psychometrika.

Bolt, D. M., Cohen, A. S., & Wollack, J. A. (2002). Item parameter
estimation under conditions of test speededness: Application
of a mixture Rasch model with ordinal constraints. Journal of
Educational Measurement, 39, 331–348.

Cao, J., & Stokes, S. (2008). Bayesian IRT guessing models for partial
guessing behaviors. Psychometrika, 73, 209–230.

Chang, Y. W., Tsai, R. C., & Hsu, N. J. (2014). A speeded item
response model: Leave the harder till later. Psychometrika, 79,
255–274.

Enders, C., & Tofighi, D. (2008). The impact of misspecifying
class-specific residual variances in growth mixture models. Struc-
tural Equation Modeling: A Multidisciplinary Journal, 15, 75–
95.

Entwistle, N., & Peterson, E. (2004). Conceptions of learning and
knowledge in higher education: Relationships with study behavior
and inferences of learning environments. International Journal of
Educational Research, 41, 407–428.

Erosheva, E. (2005). Comparing latent structures of the Grade of
Membership, Rasch, and latent class models. Psychometrika, 70,
619–628.

Goldhammer, F., Naumann, J., Stelter, A., Toth, K., rolke, H., &
klieme, E. (2014). The time on task effect in reading and problem
solving is moderated by task difficulty and skill: Insights from
a computer-based large-scale assessment. Journal of Educational
Psychology, 106, 608–626.

Goldhammer, F., Naumann, J., & Greiff, S. (2015). More is not always
better: The relation between item response and item response time
in Raven’s matrices. Journal of Intelligence, 3, 21–40.

Jong, T., & De Ferguson-Hessler, M. (1996). Types and qualities of
knowledge. Educational Psychologist, 31, 105–113.

Meyer, J. (2010). A mixture Rasch model with item response-
time components. Applied Psychological Measurement, 34, 521–
538.

Mislevy, R. J., & Verhelst, N. (1990). Modeling item responses
when different subjects employ different solution strategies.
Psychometrika, 55, 195–215.

Molenaar, D., Oberski, D., Vermunt, J., & De Boeck, P. (2016).
Hidden Markov IRT models for responses and response times.
Multivariate Behavioral Research, 51, 606–626.

Pokropek, A. (2016). Grade of membership response time model
for detecting guessing behaviors. Journal of Educational and
Behavioral Statistics, 41, 300–325.

Roskam, E. E. (1997). Models for speed and time-limit tests. In van
der Linden, W. J., & Hambleton, R. (Eds.) Handbook of modern
item response theory, (pp. 87–208). New York: Springer.

Schnipke, D. L., & Scrams, D. J. (1997). Modeling item response
times with a two-state mixture model: A new method of measuring
speededness. Journal of Educational Measurement, 34, 213–
232.

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic
human information processing: II. Perceptual learning, automatic
attending and a general theory. Psychological Review, 84, 127–190.

Shu, Z., Henson, R., & Luecht, R. (2013). Using deterministic, gated
item response theory model to detect test cheating due to item
compromise. Psychometrika, 78, 481–497.

Tofghi, D. C. K. (2007). Enders Identifying the correct number of
classes in mixture models. In Hancock, G.. R.., & Samulelsen, K..
M.. (Eds.) Advances in latent variable mixture models, (pp. 317–
341). Greenwich: Information Age.

van der Linden, W. J. (2007). A hierarchical framework for modeling
speed and accuracy on test items. Psychometrika, 72, 287–308.

van der Linden, W. J. (2009). Conceptual issues in response-time
modeling. Journal of Educational Measurement, 46, 247–272.

Wang, C. G., & Xu, G. (2015). A mixture hierarchical model
for response times and response accuracy. British Journal of
Mathematical and Statistical Psychology, 68, 456–477.

Wise, S. L., & Demars, C.. E. (2006). An application of item response
time: The effort moderated IRT model. Journal of Educational
Measurement, 43, 19–38.

Wise, S. L., & Kong, X. (2005). Response time effort: A new
measure of examinee motivation in computer-based tests. Applied
Measurement in Education, 18, 163–183.

Behav Res (2019) 51: 7–69 197718



Yamamoto, K. (1989). A HYBRID model of IRT and latent class
models. ETS Research Report SeriesA HYBRID model of IRT
and latent class models ETS Research Report Series. Princeton:
Educational Testing Service.

Yamamoto, K. H. (1997). Everson Modeling the effects of test
length and test time on parameter estimation using the HYBRID
modelModeling the effects of test length and test time on

parameter estimation using the HYBRID model. In Rost, J.., &
Langeheine, R.. (Eds.) Applications of latent trait and latent class
models in the social sciences, (pp. 89-98). New York: Waxmann
Verlag GmbH.

Yang, C. C. (2006). Evaluating latent class analysis models in
qualitative phenotype identification. Comput Stat Data Anal, 50,
1090–1104.

Behav Res (2019) 51: 7–69 197 719


	An analysis of an item-response strategy based on knowledge retrieval
	Abstract
	Abstract
	Introduction
	Background
	Our proposal
	Previous studies

	Motivating example
	Proposed approach
	Application
	Preliminary analysis
	Results: Two-class model with response times as covariates
	Results: Three-class model with response times as covariates

	Simulation study
	Results: Two-class model
	Results: Three-class model

	Discussion
	Appendix 
	References


