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Abstract
In this study, two approaches were employed to calculate how large the sample size needs to be in order to achieve a desired
statistical power to detect a significant group-by-time interaction in longitudinal intervention studies—a power analysis method,
based on derived formulas using ordinary least squares estimates, and an empirical method, based on restricted maximum
likelihood estimates. The performance of both procedures was examined under four different scenarios: (a) complete data with
homogeneous variances, (b) incomplete data with homogeneous variances, (c) complete data with heterogeneous variances, and
(d) incomplete data with heterogeneous variances. Several interesting findings emerged from this research. First, in the presence
of heterogeneity, larger sample sizes are required in order to attain a desired nominal power. The second interesting finding is that,
when there is attrition, the sample size requirements can be quite large. However, when attrition is anticipated, derived formulas
enable the power to be calculated on the basis of the final number of subjects that are expected to complete the study. The third
major finding is that the direct mathematical formulas allow the user to rigorously determine the sample size required to achieve a
specified power level. Therefore, when data can be assumed to be missing at random, the solution presented can be adopted,
given that Monte Carlo studies have indicated that it is very satisfactory. We illustrate the proposed method using real data from
two previously published datasets.
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Longitudinal studies are increasingly common in educational
and psychological research settings. In some cases, subjects
are measured repeatedly over time in order to examine their
individual growth and the potential differences among
them. In other cases, subjects assigned to different ex-
perimental conditions are treated for a specific period of
time and when the study is finished they are compared
with respect to their average growth rates. Whatever the pur-
pose of the study, it is usual and reasonable to model the
change in the response of interest assuming linear growth
(Willett, 1988) and to express the effect of the intervention

in terms of the difference in mean slopes or rates of change
among groups over time.

Awide variety of methods based on classical linear models
can be applied to the analysis of longitudinal data. However,
the presence of imbalance, due to missing responses from
some subjects or due to observations from the same sub-
ject being generally correlated, can lead to erroneous con-
clusions regarding hypotheses of interest. Among other
reasons, this is why multilevel hierarchical linear models
have become the method of choice for modeling the change in
response over time and the factors influencing the change.

Modeling longitudinal data using a hierarchical system of
regression equations requires sufficient experimental units in
order to detect the effects of interest at the desired power level.
Hence, it is advisable to determine the sample size when plan-
ning a longitudinal study. Numerous publications have ex-
plained how to calculate the sample size in this type of study
(e.g., Heo, Xue, & Kim, 2013; Muthén & Curran, 1997;
Raudenbush & Liu, 2001; Usami, 2014; Wänström, 2009).
There are also many software packages (e.g., ACluster,
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nQuery, OptimalDesign, PASS, PinT, or RMASS2) that can
be used to perform sample size/power calculations with mul-
tilevel data. However, very few publications have dealt with
informing researchers on this topic about errors due to hetero-
geneous variances across treatment groups and/or when it is
expected that some subjects will leave the study prematurely
(Hedeker, Gibbons, & Waternaux, 1999; Heo, 2014; Roy,
Bhaumik, Aryal & Gibbons, 2007; Vallejo, Ato, Fernández,
Livacic-Rojas, & Tuero-Herrero, 2016).

Loss of subjects invariably occurs in longitudinal studies,
potentially leading to inefficient analyses and invalid conclu-
sions. The existence of heterogeneity has been found in sev-
eral reviews of studies published in psychology journals (cf.
Erceg-Hurn & Mirosevich, 2008). This phenomenon is not
only likely to occur in nonrandomized intervention studies,
but it can also occur in completely randomized experiments.
Some common causes of heterogeneity in real data are
problems related to measurement validity, research de-
sign, and analysis (e.g., unclear randomization, high
dropout rates, small sample sizes, presence of floor or
ceiling effects in treatment outcome measures, differen-
tial treatment effects across subjects, or bad data).
Regardless of the potential sources of heterogeneity,
neglecting heterogeneity when it is present can lead to
inefficient and potentially misleading inferences about
fixed effects. For more detailed information about why
heterogeneity occurs in intervention studies, see Grissom and
Kim (2012). Also, Keselman, Algina, Lix, Wilcox, and
Deering (2008) discuss the impact that heterogeneous vari-
ances have on error probabilities.

For the derivation of the power function, it is generally
assumed that all variance components included in the multi-
level models are known. When suitable prior information is
not available, specification of these random components is
sometimes a difficult task. In these cases, a possible solution
is to simplify the procedure of power analysis by assuming
that some effects vary randomly between subjects or clusters,
whereas others are constrained to be fixed effects (e.g., a mod-
el with nonrandomly varying slopes). These restrictions are
sometimes specified in applied research (e.g., Heo &
Leon, 2008, 2009). When a source of variation is
completely ignored, however, this can lead to overly
optimistic sample size and power calculations. For in-
stance, if random-intercept models are used inappropri-
ately, given that both random-intercept and -slope
models need to be considered, there is a considerable
risk of finding high apparent power, because the so-called
random-intercept model generally has a poor control of the
Type I error rate (Vallejo, Ato, & Valdés, 2008).

Usami (2014) has developed a procedure that can be ap-
plied in order to examine the statistical power to detect a

significant group-by-time interaction in a two-level random-
coefficient regression model, especially when no informative
variance components are available. However, this author con-
fined the development of the proposed method for investigat-
ing sample size requirement to detecting an intervention effect
based on two groups for situations that assume a linear
growth pattern of the outcomes over time, complete data
for every subject, and homogeneous errors at both
Levels 1 and 2. Subsequently, Vallejo et al. (2016) ex-
tended the procedure proposed by Usami (2014) to sit-
uations in which the presence of between-subjects het-
erogeneity can be reasonably predicted and the influence
of attrition taken into consideration. However, the
formulas derived by Vallejo et al. (2016) are restricted
to models that assume a linear change in responses over time.
Furthermore, the adequacy of the sample size determination
formulas for heterogeneous and incomplete data has not been
investigated.

The present study extended the work of Vallejo et al.
(2016) so as to overcome the aforementioned limitations
and, therefore, can be viewed as a generalization of the corre-
sponding results of these authors. Specifically, our objective in
this article is threefold: first, to extend the method originally
proposed by Usami (2014) and later updated by Vallejo et al.
(2016) to more complex growth models for power and sample
size determinations; second, to carry out a Monte Carlo study
to verify the statistical power achieved with the estimated
sample sizes; and third, to check whether the theoretical sta-
tistical power based on estimates by ordinary least squares
(OLS) differs from the empirical statistical power based on
maximum likelihood (ML) estimates, by means of Monte
Carlo simulations. In this study, we used restricted ML
(REML) as the estimation method because, in multilevel
modeling, REML estimates of variance components tend to
be less biased than unrestricted ML estimates (Browne &
Draper, 2000).

Formulation of a statistical model

Suppose we are interested in comparing the longitudinal
trends of two groups, experimental versus control, in a numer-
ic dependent variable. Considering that measures taken over
time are nested in subjects, such data can be analyzed using a
hierarchical regression model with two levels. At the first
level, we represent the change we expect each subject of the
population to experience during a specific period of time,
whereas at the second level we describe the conjectured rela-
tionship between the parameters of individual growth and the
explanatory variables that are assumed stable for the whole
duration of the study.
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Adopting an individual growth model in which change is a
linear function of time, the Level 1model can be formulated as
follows:

Y it ¼ b0i þ b1iX it þ eit; ð1Þ
where Yit denotes the response variable of the ith sub-
ject (i = 1, . . . , N) at the tth measurement occasion
(t = 1, . . . , T), Xit defines the specific time (e.g., days)
that this subject is observed, and random parameters b0i
(intercept), b1i (slope or rate of change) and eit (error
term), respectively represent the true value of the sub-
ject’s response at baseline, the rate of change during the
period of data collection and the measurement error
caused by the deviation from linearity. In the absence
of missing data, we assume that Xit = Xt for all i, and
that measurements of the response from the baseline
(X1 = 0) to the last time point increase at time intervals
whose length is equal to unity; so, D = T − 1. It is important to
observe that starting the time coding with T1 = 1 instead of
T1 = 0 would be equivalent, but more difficult to interpret,
because the value zero is outside the range of observed mea-
surement occasions.

At the second level, the parameters resulting from model-
ing the trajectories of individual change over time, are related
to the explanatory variables that describe the differences be-
tween subjects in intercepts and slopes. If we have only one
explanatory variable (e.g., a behavioral intervention to im-
prove the language of autistic children), the Level 2 model
becomes

b0i ¼ β00 þ u0i; ð2Þ
b1i ¼ β10 þ β11Wi þ u1i; ð3Þ
where the indicator variable of the intervention program is
Wi = 0 if the ith Level 2 unit is assigned to the control group,
andWi = 1 if it is assigned to the experimental group. Because
of the randomization of subjects to the two treatment groups,
the Level 2 model for the intercept does not contain the value
of group-level variable Wi and we assume a common mean
response at time t = 0. In this model, β00 is the mean response
in treatment and control group at baseline because no treat-
ment main effect is assumed, β10 is the average rate of change
of the control group and β11 is the difference between the
average rates of change for the groups. As a result, the average
rate of change of the experimental group corresponds to the
sum of β10 + β11 Random variables u0i and u1i are independent
from eit and it is assumed that they follow a bivariate normal
distribution with mean zero, variances τ00 and τ11, respective-
ly, and covariance τ01.

Note that Eq. 2 specifies no predictors for b0i. Suppose,
however, that this intercept depends on Wi. One might then

formulate another form of the random-intercept model.
Specifically, b0i = β00 + β01Wi + u0i, where β01 is the main ef-
fect of the treatment W on b0i. In this case, residual variance
components τ00 and τ11, represent the variability that remains
in parameters b0i and b1i after controlling the effect due to the
program.

By substituting Eqs. 2 and 3 into Eq. 1, the mixed or com-
bined model can be expressed as follows:

Y it ¼ β00 þ β10X it þ β11WiX it þ u1iX it þ u0i þ eitð Þ: ð4Þ

With no assumptions about group differences at base-
line, Eq. 4 should also include Wi as a predictor. It is
often assumed that errors eit, conditional on u1i and u0i,
are distributed normally and independently with mean
zero and constant variance σ2. In this study we also considered
the presence of heterogeneous variance across treatment groups,
although we hold that the distribution of errors is normal.

Under the combined model of Eq. 4, the expected value,
variance, and covariance of the measurements Yit, conditional
on the explanatory variables, are given by

E Y itð Þ ¼ β00 þ β10 þ β11Wið ÞX it; ð5Þ
Var Y itð Þ ¼ τ00 þ 2X itτ01 þ X 2

itτ11 þ σ2; ð6Þ
Cov Y it; Y it0

� � ¼ τ00 þ Xit þ Xit0
� �

τ01 þ XitXit0 τ11: ð7Þ

If baseline values differ across groups, then Eq. 5 should
also include the term β01Wi (For more details on these
equations, see Appendix 1.)

If there are reasons to suspect that changes in the expected
value of the outcome will deviate from linearity over the du-
ration of the study, more complex models of growth can be
considered. For example, if the average outcome in-
creases monotonically with time until the improvement
stabilizes, then we might consider the following curvilinear
growth model:

Y it ¼ β00 þ β10 þ β11Wið ÞX it þ β20 þ β21Wið ÞX 2
it þ

u0i þ u1iX it þ u2iX 2
it þ eit

� �
:

ð8Þ

Again, we can accept the groups as equivalent enough at
the beginning of the study and omit a main effect of treatment
from the model. To allow the intercepts (baselines) to differ by
groups, we add the dummy variable treatmentW to the model
of Eq. 8.

In the model of Eq. 8, the expected value, variance, and
covariance of the measurements Yit, conditional on the explan-
atory variables, are now given by

E Y itð Þ ¼ β00 þ β10 þ β11Wið ÞX it þ β20 þ β21Wið ÞX 2
it; ð9Þ
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Var Y itð Þ ¼ τ00 þ 2X itτ01 þ X 2
itτ11 þ 2X 2

itτ02

þ 2X 3
itτ12 þ X 4

itτ22 þ σ2; ð10Þ

Cov Y it; Y it0
� � ¼ τ00 þ X it þ X it0

� �
τ01 þ X itX it0 τ11þ

X 2
it þ X 2

it0
� �

τ02 þ X itX 2
it0 þ X 2

itX it0
� �

τ12

þ X 2
itX

2
it0 τ22:

ð11Þ

Equation 9 should also include the term β01Wi when the
baseline mean responses are not assumed equal.

To simplify the calculations further, it is useful to re-
express Eqs. 4 and 8 of the multilevel model in terms of
matrices and vectors, as follows:

yi ¼ Xiβ þ Ziui þ ei; ð12Þ

where yi is a T × 1 vector of repeated observations for the ith
subject, Xi(=ZiAi) is a (T × P) design matrix for the fixed
effects, β is a vector (P × 1) of fixed effects, Zi is a (T × Q)
design matrix for the random effects, ui is a (Q × 1) vector of
random effects, and ei is a (T × 1) vector of errors. Here, Ziis a
within-subjects design cual’s mean response changes over
time, and Ai is a (Q × P) between-subjects design matrix that
contains time-invariant explanatory variables.

With respect to errors and random effects, it is assumed that
vectors ei and ui are normally distributed with mean 0 and
variance and covariance matrices Ri and T, respectively.
Matrix Ri may take various forms, however, it is common to
assume a model of conditional independence, that is,
Ri = σ2IT, where I is a T × T identity matrix. These assump-

tions imply that, marginally, yi∼N Xiβ;Vi ¼ ZiTZ′
iRi

� �
.

When Vi is known, the generalized least squares estimator of

vector β is given by β̂ ¼ ∑N
i¼1X

0
iV

−1
i Xi

� �−1∑N
i¼1X

0
iV

−1
i yi and

its variance by ∑N
i¼1X

0
iV

−1
i Xi

� �−1
. In the usual case whereVi is

unknown, then an approximation to the true covariance is

given, replacing Vi with its estimator V̂i.
Equations 5–7 and 9–11 are essential in order to plan a

longitudinal study properly since, as we shall see later, they
provide the machinery that allows us to carry out a correct
power analysis. To estimate the sample size required to detect
a statistically significant group-by-time interaction effect, it is
necessary to specify the value of the parameters included in
Eqs. 1–3 of the model. However, such a task is neither easy
nor straightforward, given that in many cases it is impossible
to surmise the value of the parameters without running the
experiment. Hence, in practice, the use of existing methods
for calculating the sample size is limited to situations in which
researchers are able to anticipate a range of probable values of
the parameters of interest from the results obtained in previous
studies.

In an attempt to optimize focus for a power analysis in
studies in which linear growth is assumed, Usami (2014) sug-
gests transforming the variance components associated with
the model of Eq. 4 and the parameter related to the treatment
(i. e.,β11) into statistical indices whose possible values could
reasonably be specified in advance. These are reliability of
measure at the baseline (ρ1), standardized effect size at the last
time point (dL), level 2 residuals correlation (r1) and ratio
between the variance of outcomes at the end and at the begin-
ning of study within groups (k1). Formally,

ρ1 ¼
Var u0ið Þ

Var u0i þ eitð Þ ¼
τ00

τ00 þ σ2
; ð13Þ

dL ¼ E Y iT Wi ¼ 1jð Þ−E Y iT Wi ¼ 0jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Y iTð Þp

¼ Dβ11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00 þ 2Dτ01 þ D2τ11 þ σ2

p ; ð14Þ

r1 ¼ Cov u0i; u1ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var u0iu1ið Þp ¼ τ01ffiffiffiffiffiffiffiffiffiffiffiffiffi

τ00τ11
p ; ð15Þ

and

k1 ¼ Var Y iTð Þ
Var Y i1ð Þ ¼ τ00 þ 2Dτ01 þ D2τ11 þ σ2

τ00 þ σ2
: ð16Þ

It is important to note that the effect size parameter of Eq.
14 depends on the sum β01 +Dβ11, rather than on the choice
of β11 alone, when β01 ≠ 0.

By solving Eqs. 15 and 16 simultaneously, the following
components of variance and covariance are obtained (see
Appendix 2):

τ01 ¼ −r21τ00 þ r1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21τ

2
00 þ τ00 k1−1ð Þ τ00 þ σ2ð Þ

p
D

; ð17Þ

τ11 ¼ 2r21τ00 þ k1−1ð Þ τ00 þ σ2ð Þ−2r1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21τ

2
00 þ τ00 k1−1ð Þ τ00 þ σ2ð Þp

D2 :

ð18Þ

At the same time, by replacing Var(YiT) in Eq. 14 with the
value found for it in Eq. 16, the coefficient associated with the
effect of linear treatment can be written as:

β11 ¼
dL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 τ00 þ σ2ð Þp

D
: ð19Þ

Please note that if β01 ≠ 0, then β11 ¼ −β01 þ dL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 τ00 þ σ2ð Þp !

=D:

 

Without loss of generality, we can assume that the variance
of the initial outcome is equal to 1 (i. e., τ00 + σ2 = 1). In this
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case, Eqs. 13–19 reduce to that given by Usami (2014). The
restriction above makes it possible to calculate the parameters
of the model by specifying the values of ρ1, dL, r1, and k1.
However, it should be noted that in this regard these indices
can be detailed intuitively, which largely prevents the difficul-
ty involved in exploratory studies in defining the values of the
parameters before running the experiment. In addition, Usami
found that the indices ρ1, r1, and k1 have less influence on the
sample size calculation than does dL, in particular when dL>
0.4.

So far, we have focused on a series of formulas derived in
order to run a prospective analysis of power in models that
assume linear growth. However, this approach can be extend-
ed to more complex curvilinear growth models, including
polynomial and piecewise growth models. For instance, the
outcome may follow a quadratic trend that would require the
inclusion of the second-order treatment effect in the model
(see Eq. 8).

The calculation of an appropriate sample size for detecting
curvature in growth rates relies on transformation of the model
parameters (i. e., τ02, τ12, τ22, and β21) into indices that can be
specified from a literature review and conjecture. In addition
to those specified in Eqs. 13–16, this new situation requires
the inclusion of four additional indices. Using the results of
Eqs. 9–11, these are defined as follows:

dQ ¼
E Y iT jWi ¼ 1
� �

−E Y iTWi ¼ 0j
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Y iTð Þp

¼ Dβ11 þ D2β21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00 þ 2Dτ01 þ D2τ11 þ 2D2τ02 þ 2D3τ12 þ D4τ22 þ σ2

p
;

ð20Þ

r2 ¼ Cov u0i; u2ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var u0iu2ið Þp ¼ τ02ffiffiffiffiffiffiffiffiffiffiffiffiffi

τ00τ22
p ; ð21Þ

r12 ¼ Cov u1i; u2ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var u1iu2ið Þp ¼ τ12ffiffiffiffiffiffiffiffiffiffiffiffiffi

τ11τ22
p ; ð22Þ

and

k2 ¼ Var Y iTð Þ
Var Y i1ð Þ ¼ τ00 þ 2Dτ01 þ D2τ11 þ 2D2τ02 þ 2D3τ12 þ D4τ22 þ σ2

τ00 þ σ2
:

ð23Þ

Again, it is important to note that the effect size parameter
of Eq. 20 depends on the sum β01 +Dβ11 +D2β21, rather than
on the sum Dβ11 +D2β21, when β01 ≠ 0.

By solving the Equation System 21–23, a series of equa-
tions of the form ax2 + bx + c = 0 are obtained (see Appendix
2). The solutions or roots, which correspond to the compo-
nents of variance we sought, can be obtained by solving each
quadratic equation using the familiar formula of Bhaskara (cf.
Puttaswamy, 2012):

τ02 ¼
−β02 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
02−4A02C02

q
2A02

; ð24Þ

where

A02 ¼ D4;B02 ¼ 2D2r22τ00 þ 2D3r12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11=τ00ð Þ

p
r2τ00;

C02 ¼ 2Dτ01r22τ00 þ D2τ11r22τ00− k2−1ð Þ τ00 þ σ2
� �

r22τ00;

τ12 ¼
−B12 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
12−4A12C12

q
2A12

;

ð25Þ

where

A12 ¼ D4;B12 ¼ 2D2r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00=τ11ð Þ

p
r12τ11 þ 2D3r212τ11;C12 ¼ 2Dτ01r212τ11 þ D2τ11r212τ11− k2−1ð Þ τ00 þ σ2

� �
r212τ11; and

τ22 ¼
−β22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
22−4A22C22

q
2A22

;

ð26Þ
where

A22 ¼ D8;B22 ¼ − 2D2r2
ffiffiffiffiffiffiffi
τ00

p þ D3r12
ffiffiffiffiffiffiffi
τ11

p� �2 þ 2D6τ11

þ4D5τ01−2D4 k2−1ð Þ τ00 þ σ2
� �

;

C22 ¼ 4D2τ201 þ D4τ211 þ k2−1ð Þ2 τ00 þ σ2
� �2 þ 4D3τ01τ11

−2 k2−1ð Þ τ00 þ σ2
� �

2Dτ01 þ D2τ11
� �

:

Finally, by substituting in Eq. 20 the value found for
Var(YiT) in Eq. 23, the coefficient for the quadratic treatment
effect can be written as

β21 ¼
dQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 τ00 þ σ2ð Þp

−dL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 τ00 þ σ2ð Þp

D2 : ð27Þ
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In the presence of a main effect of the treatment W, the
slope formula would have the same form as that pro-
vided in Eq. 27, because both dL and dQ contain infor-
mation about β01.

In Appendix 3 the machinery is provided that allows us to
carry out a correct power analysis using piecewise models.
Because the data from many longitudinal studies can be
well-approximated using simple piecewise linear models
with at most one or two knots that are located at judi-
ciously chosen time points (Fitzmaurice, Laird, & Ware,
2011, p. 151), we only present a random two-slope
piecewise model in which the entire growth period of
the outcome under study is split into two parts: (1)
linear growth from the baseline to the last time point
in the study, and (2) linear growth from the breakpoint
to the last time point. Obviously, when determining the
sample size, it must be known ahead of time where the
breakpoint is.

Estimation of the treatment effect and its
variance

The goal of a longitudinal intervention study is to test
whether there are differences between treatment condi-
tions with respect to their average growth rates. If the
change is conceptualized as a sustained linear process,
then we must verify if iom

β11 ≠ 0. With two groups (e.g., experimental versus
control), the OLS estimator of β11 can be expressed as:

β̂11 ¼
∑
i¼1

NE

∑
T

t¼1
X it−X i

� �
Y it

∑
i¼1

NE

∑
T

t¼1
X it−X i

� �2 −
∑
i¼1

NC

∑
T

t¼1
X it−X i

� �
Y it

∑
i¼1

NC

∑
T

t¼1
X it−X i

� �2 ; ð28Þ

where NE and NC are the treatment and control group
sample sizes, respectively. The generalization of Eq. 28
to more than one active treatment is not direct, but it is
simple to derive (see Appendix 4).

To test the interaction effect between variables of Level 1,
time, and Level 2, treatment, calculation of the variance of the
β11 estimator is required. Using Eqs. 6 and 7, and considering
that the variance of a difference reduces to the sum of vari-
ances of independent groups, ordinary algebra shows that (see
Appendix 5):

Var β̂11

� �
¼ 4

N
σ2

∑T
i¼1 X it−X i

� �2 þ τ11

0
B@

1
CA; ð29Þ

where N (= NE + NC) denotes the total number of units of
second level included in study, with N/2 subjects in each
group. The quantity 4/N on the right side of Eq. 30 should
be replaced with (1/Np1p2) to allow groups of unequal size,
where p1 = NC /N and p2 = NE /N.

If the T measures between X1 = 0 and XT =D are equally
spaced, Eq. 29 can be reformulated as follows (see
Fitzmaurice et al., 2011):

Var β̂11

� �
¼ 4

N
12σ2 T−1ð Þ
D2T T þ 1ð Þ þ τ11

� �
; ð30Þ

where D = f−1(T − 1) and f is the frequency of observation per
time unit, whereas V1 and τ11 denote the variability in
growth rates within and across subjects, respectively.
The sum of V1 þ τ11;σ2

b1 onward is a measure of variability
in the estimation by OLS of the model slope (1).

When growth is assumed to be linear and f = 1(i. e., Xt = 0,
1, 2…, T − 1; T =D + 1), the sample variance of the rate of
change simplifies to V1 = 12σ2/(T3 − T). For more complex
growth functions (e.g., quadratic function) and f ≠ 1(e. g.,
Xt = 0, 2, 4…2T − 2; T = fD + 1), Raudenbush and Liu (2001)
showed that the sample variance of the polynomial slope takes
the following form

Vp ¼ σ2 f 2p T−p−1ð Þ!
lp T þ pð Þ! ; ð31Þ

where p denotes the polynomial order of the change of out-
come and lp is a constant whose values depend on the way of
coding the time variable (sequential, centered or orthogonal).
To model nonlinear relations across time it is beneficial to use
orthogonal polynomials, since this reduces any form of col-
linearity that can result from using multiples of t as regressors.

Alternatively, the variance of any trend of interest (e.g.,
linear, quadratic, or cubic), regardless of the form assumed
to characterize the covariance structure of measurement error,
can be more easily obtained from the appropriate diagonal
element of

Cov b̂i
� � ¼ Z

0
iV

−1
i Zi

� �−1
; ð32Þ

where Zi is a design matrix that specifies the change of out-
come of any subject across the study (i.e., a constant, linear,

quadratic, etc., function), Vi ¼ ZiTiZ
0
i þ Ri

� �
is the covari-

ance matrix of repeated measurements, Ti is the dispersion
matrix of Level 2 random effects, and Ri is the covariance
structure of Level 1 errors.

Additionally, a quick and easy way to test the effects thatD
and f will have on the power using the matrix formulation of
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the model is to divide the linear trend component of matrix Zi

by f, that of the quadratic trend component by f2 that of the
cubic trend by f2 and so on. Very often f = 1, but depending on
the value of D, there are many possible alternative results
(e.g., f = 0.5 or f = 2).

Statistical power analysis

The power to detect a specified treatment difference is defined
as the probability of rejecting the null hypothesis of no
treatment-by-linear-trend interaction H0 :β11 = 0, given that
it is in fact false (β11 ≠ 0). Using Eqs. 28 and 30, this hypoth-
esis can be tested with:

F0 ¼ β̂
2

11

Var β̂11

� � ; ð33Þ

where Var β̂11

� �
¼ σ2

b1=Np1p2; p1 = NC /N, p2 = NE/N,

and N = NC + NE. The F0 statistic follows the central F
distribution when H0 is true, but when H0 is false it
follows the noncentral F distribution with df1 degrees
of freedom in the numerator, df2 degrees of freedom
in the denominator, and noncentrality parameter λ
which is defined as

λ ¼ Np1p2β
2
11

σ2
b1

; ð34Þ

This strategy is both feasible and straightforward for stud-
ies in which there is good reason to assume that the groups
have equal variances. However, as we previously indicated, it
is possible that the assumption of Level 1 and/or Level 2
homogeneity of variances will be violated (see the example
described in Vallejo, Fernández, Cuesta, & Livacic-Rojas,
2015, for details). Under the most general scenario, the
noncentrality parameter λ is given by

λ⋅ ¼ Np1p2β
2
11

σ2
b1 Cð Þ þ σ2

b1 Eð Þ
; ð35Þ

where σ2
b1 Cð Þ ¼ p2 12σ2

Cð Þ= T3−T
� �h

þτ Cð Þ
11 � and σ2

b1 Eð Þ ¼ p1

12σ2
Eð Þ= T3−T
� �h

þτ Eð Þ
11 � :

Regardless of the values of f and D and of the number of
groups to be compared, as well as in the possible presence of
heterogeneity, λ can also be computed using a method similar
to the one that Shieh (2003) suggested under the multivariate
general linear model. Specifically,

λ ¼ tr AVA
0

� �−1
CBA

0
� �0

CM−1C
0

� �−1
CBA

0
� �	 


; ð36Þ

where tr denotes the trace of matrix [⋅], A = (1NG| − 1NG)
and C = (1NG − 1| − 1NG − 1) are contrast matrices between
subjects with a complete row range, 1NG is a column
vector of ones, 1NG is an identity matrix, and the sym-
bol | represents the augmented matrix resulting from
appending the columns of matrices A and C. The ex-
pec ted va lues mat r ix across T measurements ,
B = [μ(C)0…μ(C)T − 1; μ(E)0…μ(E)T − 1], can be easily ob-
tained from Eq. 5 by fixing β00 = β10 = 0, M is a diag-
onal matrix whose elements are the number of subjects
in each group [in our case, M = diag(NC, NE),], and the
V matrix is constructed using Eqs. 6 and 7. If the group
variance components are heterogeneous, then V =
p2V(C) + p1V_(E). The described method to compute λ
is limited to Model 1; however, nothing prevents this
from being extended to other contexts. For example,
under Model 8, one would proceed in a similar way,
but using Eqs. 9–11.

That said, the procedure used here to calculate the power of
the statistical test F0 to compare groups in terms of linear rates
of change involves the following steps:

1. Define the significance level α and sample sizes of the
control and experimental groups—that is, NC and NE.
Without loss of generality, we can establish that
β00 = β10 = 0 (or, alternatively, β00 = β10 = β20 = 0, in the
case of the quadratic growth model).

2. Set the values of indices ρ1, dL, r1 and k1 (or, alter-
natively, ρ1, dL, dQ, r1, r2, r12, k1, and k2, in the
case of the quadratic growth model), determining
the values of parameters σ2, τ00, τ01, τ11 and β11
(or σ2, τ00, τ01, τ11τ02, τ12, τ22, β11, and β21, in
the case of the quadratic growth model), and calcu-
late the λ parameter defined in Eqs. 34–36.

3. Specify the critical value of the inverse of the F central
distribution function, namely:

Fc ¼ FINV 1−α; df 1; df 2ð Þ:

4. Calculate the probability that the F0 ratio exceeds
the critical value FC when H0 is false. Under the
alternative hypothesis (H1), the power function asso-
ciated with the F0 test is given by 1 − β = P[F′(df1,
df2, λ) > FC], where F′(df1, df2, λ) denotes a noncen-
tral F random variable with degrees of freedom
(df1, df2) and noncentrality parameter λ, and β de-
notes the probability of a Type II error.

1222 Behav Res (2019) 51:1216–1243



Determination of sample size

There are several approaches to determining the sample size,
including Bayesian and frequentist methods that focus on es-
timation instead of hypothesis testing. However, the most pop-
ular approach involves calculating the power of a statistical
test, that is, the probability of rejecting H0 when H1 is true.

Required sample size for two groups

Let us assume that we want to determine the sample size to
detect differences between two groups. Hypothesis H0 :β11 =
0 is rejected if the estimator of β11 exceeds the critical value

β̂11 > c
� �

. In accordance with Amatya, Bhaumik, and

Gibbons (2013), this value defines the limit between the ac-
ceptance and rejection regions and is set under the following
two conditions:

P β̂11 > c ¼ 0þ Z1− α=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np1p2ð Þ−1σ2

b1

q
jH0true

� �
¼ α; ð37Þ

P β̂11 > c ¼ β11−Z1−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Np1p2ð Þ−1σ2

b1

q
jH1true

� �
¼ 1−β: ð38Þ

Equating Eqs. 37 and 38, since the critical value c is as-
sumed identical under both statistical hypotheses, and solving
for N, we obtain the formula that informs us of the sample size
required in order to achieve the desired power (see Appendix
6). Specifically,

N ¼ Z1− α=2ð Þ þ Z1−β
� �2

σ2
b1

β2
11p1p2

ð39Þ

where Z1 − (α/2) and Z1 −β are 100 (1 −α/2) and 100 (1 −β)
percentiles of the standard normal distribution for a bi-
lateral test.

Required sample size for multiple groups

Determining the sample size needed to compare the
trends of an arbitrary number of groups is a relatively
simple procedure, but one that is seldom documented in
longitudinal studies. For this purpose, Eq. 39 can be
rewritten as

N ¼ Z1− a=2ð Þ þ Z1−β
� �2

1=Tr AVA
0� �−1

CBA
0� �0

CP−1C
0� �−1

CBA
0� �h i ; ð40Þ

where P = diag(p1, p2,…, pJ). The remaining terms have
been defined previously.

Required sample size for two or more groups
with unequal variances

The sample size calculation specified in Eq. 39 assumes ho-
mogeneous errors at both Levels 1 and 2.When it is suspected
that the variance components may differ depending on the
participation of subjects in the training program, the required
sample becomes:

N* ¼ Z1− α=2ð Þ þ Z1−β
� �2

β2
11p1p2

 !
p2σ

2 Cð Þ
b1 þ p1σ

2 Eð Þ
b1

� �
: ð41Þ

As was the case in the homogeneous model, the determi-
nation of the sample size in models with heterogeneous vari-
ances with an arbitrary number of groups also requires the
modification of Eq. 41. For example, the value of N to detect
differences among the trends of three groups can be obtained
as

N* ¼ Z1− α=2ð Þ þ Z1−β
� �2

1=Tr AV*A′
� �−1

CBA′
� �′

CP−1C′
� �−1

CBA′
� � ; ð42Þ

where V^*· = p1V1 + p2V2 + p3V3. If it is suspected that
treatment groups are unbalanced, then V^*· = [(p2p3)/
p^*·]V1 + [(p1p3)/p

^*·]V2 + [(p1p2)/p
^*·]V3, with p^*· =

p1p2 + p1p3 + p2p3.

Required sample size for missing data

So far we have focused on how to determine the sample
size assuming complete cases. However, dropout (also
called attrition) is an inevitable problem in most longi-
tudinal studies. The occurrence of missing values can
produce biased estimates and can reduce statistical pow-
er, leading to inefficient analyses and invalid conclu-
sions. When the rate of attrition is anticipated, a re-
quired sample size may be calculated on the basis of
the final number of subjects that are expected to com-
plete the study.

In the case of missing data, the formula described
above to calculate the variance in the slopes of the

subjects, σ2
b ¼ Var b̂i

� �
, may no longer be applicable

or may not be realistic (Fitzmaurice et al., 2011). For
this reason, we need a solution that mitigates the nega-
tive impact exerted by the attrition of the sample on the
validity of the inferences and of the conclusions
reached.

A method for modeling early leaving of a study reasonably
is to divide, element by element, theVimatrix of Eq. 32 by the
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matrix that identifies the missing data pattern L. In this regard,
O’Kelly and Ratitch (2014) clarified that in studies related to
the health area it is more common for subjects to drop out of
the study prematurely than temporarily. In this situation—that
is, of attrition or dropping out definitively—the variance of the
estimator rate of change can be obtained from the appropriate
diagonal element of

Cov b*i
� � ¼ Z′

i V
−1
i ∅L

� �
Zi

� �−1 ð43Þ

where ∅ denotes the operator of the Hadamard division.
The choice of L matrix will depend on the loss model that

wewish to emphasize. However, if we are interested inmodel-
ing the pattern of missingness found most frequently in ap-
plied research—that is, the monotone—a reasonable choice of
L matrix would be one in which each element of the main
diagonal informs us of the proportion of subjects who remain
in the study over time (i.e., 1, r, r2, . . . , rt–1), and the remaining
elements of the assumed survival rate (i.e., r). For the homo-
geneous model, the suggested procedure provides results sim-
ilar to those obtained using the method described in Hedeker,
Gibbons, and Waternaux (1999).

Method

Theoretical and Monte Carlo studies were conducted in order
to determine the optimal sample size (N) for a study that en-
sures adequate statistical power for rejecting the null hypoth-
esis of β11 = 0, as well as the accuracy of the estimates, as-
suming homogeneous (V2 =V1) or heterogeneous (V2 = 2V1)
group variances at each of the levels of the model and missing
data due to subject dropouts before the completion of the
study after baseline. For this purpose we proceed as follows.
Initially, using the formulas derived in Eqs. 38 and 40 we
carried out a theoretical study to examine the effect of hetero-
geneity and attrition on determining the appropriate N when
the significance level α = 0.05 and the nominal statistical
power 1 − β = 0.80. Five factors were manipulated and
completely crossed in the study for a total of 108 investigated
conditions: reliability of measurement at the first time point
(ρ1 = 0.1, 0.5), Level 2 residual correlation (r1 = − 0.5, 0, 0.5),
number of repeated measurements (T = 4, 8), proportion of
imbalance between the group sizes (Δ = 0.5, 0.35, 0.2), and
standardized effect size at the last time point (dL = 0.4, 0.5,
0.6). According to Cohen (1988), standardized mean differ-
ences of 0.2, 0.5, and 0.8 correspond to small, medium, and
large magnitudes of an effect, respectively. The ratio between
the variances of the outcomes at the end and at the beginning
of the study remained constant (k1 = 25) under each of the

conditions. Later, a Monte Carlo study was carried out to
verify the statistical power achievedwith the estimated sample
sizes.

Data generation

Datasets were simulated on the basis of the two-level model
shown in Eqs. 1–3. At the first level, a continuous outcome
was generated as a linear function of time. The intercept and
one Level 1 variable were simulated to vary randomly as a
function of treatment at the second level. Each explanatory
variable X and W was generated to be standard normal.
Later, we dichotomized theW variable by an arbitrary thresh-
old (i.e., the mean of all observed data). The error terms were
generated as independent normal random variables with
means zero and the variances obtained from the values spec-
ified above for the manipulated factors. We used SAS version
9.4 (SAS, 2016) for the simulations.

For each of the 108 investigated conditions, 1,000 sets of
raw data were generated and analyzed during the simulation
process. In our simulation study, two different situations were
considered: with nomissing data at each of the time points and
time-related dropout with cumulative missing data rates of
27% at the fourth occasion and 52% at the eighth occasion.
Both with complete and with missing data, the analyses were
carried out twice by REML methods using SAS PROC
MIXED, once assuming homogeneity and once modeling
the variances, in order to investigate the results of incorporat-
ing heterogeneity into the models.

Here we will focus on sample size determination in the
presence of a monotone missing data pattern that spans the
missing-at-random (MAR) model. For our dropout MAR
mechanism, the data point for subject i was missing at time t
and the subsequent times ifUit <Φ[λt + Yi(t − 1)], whereUit is a
uniform random variable and Φ is the cumulative normal dis-
tribution function. The values of λt in the above mechanisms
were chosen to yield time-related dropout rates of 0%, 10%,
19%, and 27% for the four respective occasions, and time-
related dropout rates of 0%, 10%, 19%, 27%, 34%, 41%,
47%, and 52% for the eight respective occasions.

Evaluation criteria

To determine the accuracy and precision of the strategies be-
ing compared (i.e., sample size calculations using derived for-
mula based on OLS estimates and simulations based on
REML estimates), we examined their performance in terms
of the following quantities:

1. Relative bias To find out whether a parameter tends to be
over- or underestimated, the relative bias index was used
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in this study. If the parameter of interest wasφ=(1-β), the

percentage relative bias was 100� E ϕ̂
� �

−ϕ
� �

=ϕ
h i

,

where E ϕ̂
� �

was computed as the average parameter es-

timate across valid replications. We have not been able to

find any formal criteria in the literature for when a relative
bias is too big, so in this article, a relative bias less than
10% was considered acceptable.

2. Approximate 95% coverage rates This refers to the num-
ber of times that the absolute difference between the

Table 1 Sample sizes to obtain theoretical power of at least 80% and the empirical power, with complete data and homogeneous Level 1 and 2
variances

Δ= .50 Δ= .35 Δ= .20

r1 dL T ρ1 N 1-β 1−β̂ N 1-β 1−β̂ N 1-β 1−β̂

– .5 .4 4 .1 214 .801 .815 235 .800 .803 334 .800 .789

– .5 .4 4 .5 222 .801 .796 244 .800 .802 346 .801 .802

– .5 .4 8 .1 210 .802 .809 230 .800 .783 327 .800 .819

– .5 .4 8 .5 219 .802 .810 241 .801 .779 342 .801 .786

– .5 .5 4 .1 138 .801 .807 151 .802 .786 214 .801 .792

– .5 .5 4 .5 142 .801 .804 156 .803 .809 222 .801 .795

– .5 .5 8 .1 136 .801 .798 148 .803 .808 210 .802 .812

– .5 .5 8 .5 142 .802 .796 155 .802 .793 219 .802 .778

– .5 .6 4 .1 96 .800 .802 105 .803 .806 149 .802 .796

– .5 .6 4 .5 98 .801 .802 109 .801 .778 154 .803 .798

– .5 .6 8 .1 94 .800 .799 103 .803 .811 146 .802 .797

– .5 .6 8 .5 98 .801 .796 108 .802 .798 153 .802 .788

.0 .4 4 .1 203 .802 .802 222 .800 .778 316 .801 .782

.0 .4 4 .5 197 .801 .806 216 .801 .789 307 .801 .802

.0 .4 8 .1 198 .801 .806 218 .802 .808 309 .801 .813

.0 .4 8 .5 194 .800 .786 214 .802 .817 303 .801 .822

.0 .5 4 .1 130 .801 .793 143 .802 .815 203 .802 .800

.0 .5 4 .5 127 .803 .804 139 .802 .801 197 .801 .799

.0 .5 8 .1 127 .801 .785 140 .802 .812 198 .801 .807

.0 .5 8 .5 125 .802 .812 137 .801 .809 194 .800 .803

.0 .6 4 .1 91 .803 .804 100 .803 .814 141 .801 .795

.0 .6 4 .5 88 .801 .802 97 .802 .805 137 .801 .781

.0 .6 8 .1 89 .803 .814 98 .804 .811 138 .801 .805

.0 .6 8 .5 87 .801 .793 96 .803 .805 135 .800 .789

.5 .4 4 .1 191 .802 .806 210 .802 .809 297 .800 .802

.5 .4 4 .5 172 .802 .789 188 .800 .796 267 .800 .804

.5 .4 8 .1 186 .800 .802 205 .802 .819 290 .800 .806

.5 .4 8 .5 169 .801 .802 186 .802 .791 263 .800 .818

.5 .5 4 .1 123 .803 .804 135 .803 .813 191 .802 .793

.5 .5 4 .5 110 .801 .798 121 .801 .793 172 .802 .808

.5 .5 8 .1 120 .802 .805 131 .800 .807 186 .800 .779

.5 .5 8 .5 109 .803 .805 119 .800 .814 169 .801 .809

.5 .6 4 .1 86 .804 .793 94 .802 .811 133 .802 .819

.5 .6 4 .5 77 .802 .805 85 .804 .803 120 .803 .793

.5 .6 8 .1 84 .804 .807 92 .803 .801 130 .802 .812

.5 .6 8 .5 76 .803 .806 83 .801 .803 118 .802 .814

Δ = proportion of imbalance between group sizes; r1 = Level 2 residual correlation; dL = standardized effect size at the last time point; T = number of

repeated measurements; ρ1 = reliability of measurement at the first time point; 1–β = theoretical power; β̂ = empirical power.
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theoretical and empirical power across the examined con-
ditions falls outside of approximately two standard errors
(SE). The SEs reported for the empirical estimates of pow-

er were estimated by
ffiffiffiffiffiffiffiffiffiffiffi
pq=m

p
, where p is the theoretical

probability of a Type II error, q equals 1–p, and m is the
number of simulations carried out in the numerical
experiment.

Results

Tables 1, 2, 3, and 4 show the sample sizes obtained by the
proposed method to achieve theoretical power of at least 80%
and the simulation-based empirical power estimates. Table 1
gives the results for complete data with homogeneous vari-
ances, Table 2 gives the results for complete data with hetero-
geneous variances, Table 3 gives the results for incomplete
data with homogeneous variances, and Table 4 gives the re-
sults for incomplete data with heterogeneous variances.
Hereafter, these are known as Scenarios A, B, C, and D,
respectively.

As can be seen from Table 1, the sample size needed to
achieve 80% power with a two-sided Type I error rate of 5%
decreases substantially with small increases in the effect
size at the last time point (dL), whereas the influences
of the number of repeated measurements (T), the Level
2 residual correlation (r1), and the reliability of mea-
surement at the first time point (ρ1) are not so obvious.
Although the effects of T, r1, and ρ1 are relatively small
on statistical power, larger values of these factors show
a positive effect on statistical power. It is also shown in
Table 1 that the sample size increases with an increas-
ing degree of imbalance between the group sizes. In
fact, high levels of imbalance (i.e., Δ = .2) cause a
notable increase in the sample size needed to maintain
a specific statistical power of 80%. A similar tendency
is observed for the same conditions under the remaining
scenarios (i.e., B, C, and D).

Table 2 presents the results for complete data in the pres-
ence of heterogeneity of variances (Scenario B). When the
sample size estimates of Table 1 are compared to those of
Table 2, we find that the mere presence of a small degree of
heterogeneity in the Level 1 and 2 random effects (V2 = 2V1)
leads to a noticeable increase in the sample size necessary to
achieve at least 80% power, even when the group sizes are
equal. Table 3 lists the necessary sample sizes to reach the
preset value of power when the assumption ofthe homogene-
ity of Level 1 and 2 variances is satisfied but attrition is present
(Scenario C). As we stated previously, in this study we have
assumed that the dropout rate of subjects from baseline to the
last time point of interest is 10% in each group. As compared

to the case of equal variances and complete data (Scenario A),
it may be observed that dropout rates of 10% over time require
that the sample size increase by 20%–25% in order to reach a
similar power. Finally, the sample sizes required to accommo-
date the dropout rate in the presence of heterogeneity of var-
iances (Scenario D) are given in Table 4. All results displayed
in this table agree with the previous findings from a qualitative
point of view; however, as one would expect, a larger sample
is required under this scenario to reach the same level of
power.

Table 5 shows the percentages of relative bias by ρ1, dL,
and T, collapsed across Level 2 residual correlations (r1). The
results yielded negligible levels of bias (less than ±0.05% to
1.5% of the true population parameter, on average) in the vast
majority of the 108 conditions examined. The levels of bias of
predicted theoretical power were always less than 1%, regard-
less of the investigated conditions, whereas the mean relative
bias for the empirical estimates of power remained under 3.6%
in all cells, and it exceeded 3% in only five cases. In fact, there
were no statistically significant differences in bias for the pow-
er estimates in any of the simulated conditions.

The empirical estimates of power can also be compared to
the theoretical values stated in Tables 1, 2, 3 and 4. The
highest absolute difference was .024 among the 108 condi-
tions displayed in Table 1, .026 among the 108 conditions
displayed in Table 2, .039 among the 108 conditions displayed
in Table 3, and .038 among the 108 conditions displayed in
Table 4. Under Scenarios A and B, the discrepancies between
theoretical prediction and empirical results are negligible,
since 99% of the power estimates fall within two standard
deviation limits (i.e., between .775 and .825). On the other
hand, our results also indicate that, for Scenarios C and D,
about 85% of power estimates fall within the confidence in-
tervals when T = 4, while only 5% of absolute differences
were beyond two standard deviations when T = 8.
Therefore, the derived formulas allow the user to rigorously
determine the sample size required to yield a certain power for
both complete and incomplete data, both assuming homoge-
neity and when incorporating heterogeneity into the multilevel
model.

Empirical illustration using two real
longitudinal data examples

To illustrate how the derived formulas for sample size calcu-
lations that can be used for a study ensure adequate power to
detect statistical significance under different models and con-
ditions (e.g., linear and quadratic, homogeneous and hetero-
geneous, or complete and missing data), we rely on the data of
two longitudinal studies carried out by Núñez, Rosário,
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Vallejo, and González-Pienda (2013) and Rosário et al.
(2017). In the first study, a linear change model was a reason-
able assumption, whereas in the second study a quadratic
model provides a more suitable choice to represent the shape
of change. Consistent with common practice in empirical ap-
plications of growth curve models, the Level 1 predictors (i.e.,
Time and/or Time2) are assumed to be free of measurement
error; if errors do exist, they would generally attenuate the

estimate of the regression coefficients relative to their popula-
tion values.

The first example (Núñez et al., 2013) examined the effec-
tiveness of a school-based mentoring program on student self-
regulated learning strategies. In this study program effects
were tested in 94 sixth grade students assigned randomly to
two experimental conditions, evaluated at the beginning of the
study and after 3, 6, and 9 months. Thus, if we measure the

Table 2 Sample sizes to obtain theoretical power of at least 80% and the empirical power, with complete data and heterogeneous Level 1 and 2
variances

Δ = .50 Δ = .35 Δ = .20

r1 dL T ρ1 N 1-β 1−β̂ N 1-β 1−β̂ N 1-β 1−β̂

– .5 .4 4 .1 321 .801 .803 317 .800 .800 400 .800 .792

– .5 .4 4 .5 332 .800 .787 328 .801 .786 414 .801 .779

– .5 .4 8 .1 314 .800 .801 311 .801 .807 392 .801 .805

– .5 .4 8 .5 328 .801 .793 325 .801 .803 410 .800 .790

– .5 .5 4 .1 206 .802 .789 204 .800 .805 257 .801 .794

– .5 .5 4 .5 213 .801 .810 211 .801 .801 266 .801 .785

– .5 .5 8 .1 202 .800 .802 199 .801 .796 252 .802 .811

– .5 .5 8 .5 211 .801 .795 208 .800 .788 263 .801 .818

– .5 .6 4 .1 143 .802 .804 142 .801 .802 179 .802 .797

– .5 .6 4 .5 148 .801 .798 147 .802 .787 185 .802 .803

– .5 .6 8 .1 140 .802 .801 139 .800 .802 175 .802 .789

– .5 .6 8 .5 147 .802 .797 145 .802 .789 183 .802 .776

.0 .4 4 .1 303 .801 .809 300 .801 .812 379 .801 .799

.0 .4 4 .5 295 .801 .818 291 .800 .796 368 .801 .797

.0 .4 8 .1 296 .800 .800 293 .801 .818 370 .800 .793

.0 .4 8 .5 291 .801 .801 288 .801 .807 363 .800 .800

.0 .5 4 .1 195 .802 .819 192 .800 .793 243 .801 .804

.0 .5 4 .5 189 .801 .807 187 .801 .803 236 .801 .819

.0 .5 8 .1 190 .801 .801 188 .801 .802 237 .800 .797

.0 .5 8 .5 187 .802 .805 185 .802 .804 233 .801 .814

.0 .6 4 .1 136 .803 .781 134 .801 .814 169 .801 .803

.0 .6 4 .5 132 .802 .783 130 .801 .787 164 .800 .821

.0 .6 8 .1 133 .803 .805 131 .801 .813 165 .801 .793

.0 .6 8 .5 130 .801 .803 129 .803 .808 162 .801 .798

.5 .4 4 .1 285 .800 .783 282 .800 .798 356 .800 .794

.5 .4 4 .5 257 .801 .792 254 .801 .806 321 .801 .789

.5 .4 8 .1 279 .801 .796 276 .801 .794 348 .801 .784

.5 .4 8 .5 253 .801 .801 250 .801 .819 316 .801 .799

.5 .5 4 .1 183 .801 .802 181 .801 .799 229 .802 .801

.5 .5 4 .5 165 .802 .825 163 .801 .810 206 .802 .811

.5 .5 8 .1 179 .801 .800 177 .801 .811 223 .800 .807

.5 .5 8 .5 162 .800 .802 161 .802 .810 203 .802 .814

.5 .6 4 .1 128 .803 .806 126 .801 .801 159 .801 .786

.5 .6 4 .5 115 .802 .807 114 .803 .798 143 .801 .802

.5 .6 8 .1 125 .803 .807 123 .801 .789 156 .803 .801

.5 .6 8 .5 113 .801 .802 112 .802 .795 141 .801 .789

See the note to Table 1.
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passage of time quarterly, this design involves f = 1 (the fre-
quency of observation per unit of time is equal to one), D = 3
(the study lasts three quarters), and T = fD + 1 (the number of
measurement occasions is four).

After reanalyzing the data of Núñez et al. (2013), without
assuming that the groups’ average responses are equal at base-
line and using SAS PROC MIXED, the following estimates

were obtained: τ̂00 ¼ :0708; τ̂01 ¼ :0048; τ̂11 ¼ :0050; σ̂2 ¼
0:865; β̂01 ¼ :1169 and

β̂11 ¼ :0804. Here, time was treated as a continuous variable
centered on its overall mean, rather than as a classification
variable, as in the original study. Substituting these estimates
in Eqs. 13–16, yields estimates of the reliability of measure-
ment at the first time point ρ̂1 ¼ :45ð Þ standardized effect size
at the last time point d̂L ¼ :75

� �
, proportion of variance of

outcomes between the first and the last time points

k̂1 ¼ 1:47
� �

and slope-intercept correlation r̂1 ¼ :25ð Þ : In
turn, using Eqs. 30 and 34 the variance of the slope

σ̂2
b1 ¼ :0223

� �
. and the non-centrality parameter

λ̂ ¼ 6:81
� �

are estimated. Inspection of a table for the non-

central F distribution (see, e.g., Ato &Vallejo, 2015) at the .05

significance level with λ̂ ¼ 6:81
� �

and with (1,280) degrees

of freedom yields a power of φ̂≅:74. Also, standard software
(e.g., SAS PROC IML) can be used to estimate this value.
Next, we removed 28 data points to yield approximate drop-
out rates of 0%, 5%, 9%, and 13% for the four time points. In

this particular application, the variance of the slope, σ̂2b1 was

.0246 and the non-centrality parameter, λ̂, 6.18. Using these
results and tables of noncentral F distribution, the power is
found to be approximately .70. The corresponding estimates
of σ2

b1;λ and φ with heterogeneous errors (ratio 1:3) were
.0446, 3.4, and .45, respectively.

Given that, in all three cases described, a power below the
often-mentioned benchmark of .80 (Cohen, 1988) was obtain-
ed, it was necessary to determine the new sample size that
would have allowed us to replicate the differences between
treatment conditions, with respect to their average linear
growth rates, under each of the situations described. From
Eq. 39, with Z1 − (α/2) = 1.96 and Z1 − β = .84, we see that the
total sample sizes needed to achieve 80% power with a 5%
significance level were 109, 120, and 217, respectively. So far,
we have only considered power results for comparing groups
on linear rates of change. Yet the rate of change can also be
nonlinear.

Next we considered data from the longitudinal randomized
design, conducted by Rosário et al. (2017) with 182 fourth
grade students, to examine whether the students’writing qual-
ity differed when they wrote journals on a weekly basis, as
compared with a control group. In the study, the subjects were

measured at baseline and weekly for up to 12 weeks. With
regard to the quality of writing compositions, Rosário et al.
found that providing extra writing opportunities (i.e., writing
journals) had a statistically significant impact on instanta-
neous rate of change at one specific moment and curvature.
We suppose that our interest would lie in replicating the dif-
ference in the average acceleration rates between the two
groups. Thus, we will first check whether there is sufficient
statistical power to detect the described effects.

As in the previous example, we briefly considered three
cases: a complete set of data with homogeneous errors; an
incomplete set of data with homogeneous errors; and a com-
plete set of data with heterogeneous errors. After analyzing the
data using PROC MIXED, the following estimates were ob-

tained: τ̂00 ¼ 45:0677; τ̂01 ¼ 1:0519; τ̂11 ¼ :3254; τ̂02 ¼ :28

67; τ̂21 ¼ :0081; τ̂22 ¼ :0081; σ̂2 ¼ 21:1842; β 11 ¼ :2238;

and β 11 ¼ :2238; andβ̂21 ¼ −:0446. Substituting these esti-
mates into Eqs. 13, 20–23, 32, and 36, the indices and param-

eter estimates can be calculated as ρ̂1 ¼ :6802; d̂Q ¼ −:3106
; k̂1 ¼ 1:3262; k̂2 ¼ 2:1824; r̂1 ¼ − :2747; r̂2 ¼ −:4756; r̂12
¼ − :1574; σ̂2

b2 ¼ :0186; and λ̂ ¼ 4:8533. Inspection of non-

central F tables at the .05 significance level with λ̂ ¼ 4:8533
and with (1, 2178) degrees of freedom yields a power of
φ̂≅:60. Removing 594 data points from the original study
according to a monotone dropout pattern, which represents a

5% dropout, we obtained σ̂2
b2 ¼ 0:257, λ̂ ¼ 3:5096, and

φ̂≅0:47. In the presence of heterogeneity of variances (ratio

1:3), however, we obtained σ̂2b2 ¼ 0:341, λ̂ ¼ 2:4267, and
φ̂ ¼ :34. According to the convention suggested by Cohen
(1988), in all three cases an unsatisfactory level of statistical
power was obtained. Thus, it was necessary to calculate the
sample size that would have allowed us to replicate the differ-
ences between treatment conditions, with respect to their av-
erage acceleration rates, under each of the situations de-
scribed. From Eq. 39, with Z1 − (α/2) = 1.96 and Z1 − β = .84,
we established that the total sample sizes needed to ensure
adequate power were 295, 408, and 589, respectively.

Although we have omitted the original data due to limita-
tions of space, the databases for the two examples are avail-
able from the first author upon request, and Appendix 7 pro-
vides the SAS codes used to perform the sample size and
power calculations for Examples 1 and 2.

Discussion and conclusion

Sample size calculations to provide specified power levels
were performed in four different scenarios, each involving
108 treatment combinations, through the use of mathematical
formulas and numerical simulations. Our results indicate that
both the analytic and empirical method provide virtually iden-
tical estimates of power across all examined conditions. The
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empirical estimates were below the theoretical estimates in
124 of the 432 cells of the design (28.7%), but the differences
were practically insignificant. As we mentioned above, the
mean relative bias for the empirical estimates of power
remained under 3.6% in all cells and, with few exceptions,
the estimates of power fall inside the boundaries of a 95%
confidence interval for the theoretical values, suggesting that
the trend described above is due to chance. Consistent with the

results of Heo et al. (2013), the data indicate that the derived
formulas of power are well-validated by simulation studies,
which show that the values of theoretical power are very close
to those of the empirical power.

In Scenario A, in which complete data across time and
homogeneous variances were available, our results revealed
that the effect size and a large degree of imbalance between
group sizes had decisive impacts on the sample size
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Table 3 Sample sizes to obtain theoretical power of at least 80% and the empirical power, with incomplete data and homogeneous Level 1 and 2
variances

Δ = .50 Δ = .35 Δ = .20

r1 dL T ρ1 N 1-β 1−β̂ N 1-β 1−β̂ N 1-β 1−β̂

– .5 .4 4 .1 260 .801 .824 285 .801 .832 404 .800 .819

– .5 .4 4 .5 264 .801 .819 288 .801 .839 410 .800 .826

– .5 .4 8 .1 266 .800 .796 291 .800 .812 414 .800 .798

– .5 .4 8 .5 270 .801 .823 296 .800 .807 419 .801 .794

– .5 .5 4 .1 168 .801 .791 184 .800 .808 260 .801 .824

– .5 .5 4 .5 169 .802 .799 186 .802 .817 263 .801 .816

– .5 .5 8 .1 172 .801 .797 188 .802 .782 266 .800 .821

– .5 .5 8 .5 174 .802 .809 189 .801 .805 269 .801 .797

– .5 .6 4 .1 118 .800 .818 128 .802 .784 180 .801 .796

– .5 .6 4 .5 118 .803 .822 130 .800 .796 183 .801 .827

– .5 .6 8 .1 120 .801 .808 130 .802 .802 185 .800 .780

– .5 .6 8 .5 122 .800 .804 132 .801 .804 187 .800 .775

.0 .4 4 .1 246 .800 .794 270 .800 .836 384 .801 .802

.0 .4 4 .5 236 .802 .798 259 .801 .802 368 .800 .819

.0 .4 8 .1 254 .801 .791 278 .801 .793 394 .800 .800

.0 .4 8 .5 244 .802 .798 266 .800 .821 378 .801 .804

.0 .5 4 .1 160 .801 .797 174 .802 .841 246 .800 .824

.0 .5 4 .5 152 .801 .828 166 .801 .837 236 .802 .832

.0 .5 8 .1 164 .800 .801 178 .801 .800 254 .801 .801

.0 .5 8 .5 156 .802 .813 172 .801 .798 244 .802 .819

.0 .6 4 .1 112 .801 .820 122 .802 .816 172 .800 .826

.0 .6 4 .5 106 .804 .812 116 .803 .828 164 .801 .824

.0 .6 8 .1 114 .801 .801 124 .801 .782 176 .801 .810

.0 .6 8 .5 110 .803 .794 120 .801 .819 170 .802 .791

.5 .4 4 .1 234 .800 .794 256 .800 .816 364 .801 .812

.5 .4 4 .5 208 .802 .839 228 .801 .812 324 .801 .825

.5 .4 8 .1 242 .800 .810 264 .801 .818 376 .801 .802

.5 .4 8 .5 216 .802 .833 237 .801 .825 336 .801 .833

.5 .5 4 .1 152 .802 .831 165 .802 .835 234 .800 .834

.5 .5 4 .5 134 .800 .808 147 .803 .820 208 .802 .819

.5 .5 8 .1 155 .800 .809 169 .800 .839 240 .800 .815

.5 .5 8 .5 139 .803 .821 152 .801 .824 216 .802 .811

.5 .6 4 .1 106 .804 .822 116 .803 .833 163 .803 .837

.5 .6 4 .5 94 .802 .835 104 .801 .808 145 .802 .812

.5 .6 8 .1 108 .803 .791 118 .801 .815 168 .800 .814

.5 .6 8 .5 98 .804 .835 107 .802 .824 150 .801 .829

See the note to Table 1.



determination. For instance, when the groups had markedly
different sizes (i.e., one group was four times the size of the
other), the sample size was required to increase by approxi-
mately 50% in order to achieve the same power as in the
balanced case; whereas, for an effect size of .40, the sample
size that was required to achieve a power comparable to an
effect size of .60 was close to a 100% increase. Therefore,
careful attention should be paid with regard to the choice
among possible population effect sizes and unequal
randomization when planning a study. A conservative
approach would be to consider the most plausible and
choose the smallest effect size among them. On the other
hand, the effect of the correlation of the Level 2 residuals
and the reliability of measurement at the first time point was
not trivial, but the consequences were much less severe. As
compared with other similar studies, these results match, to a
large degree, the numerical results reported by Usami (2014)

using a method proposed by Satorra and Saris (1985) in the
context of structural equation modeling.

In the remaining scenarios, our two main findings can be
summarized as follows. Firstly, in the presence of heterogene-
ity in the Level 1 and 2 random effects, larger sample sizes are
required in order to obtain the desired nominal power, even for
complete and balanced data. One important caveat is that the
results were only obtained by the proposed method under
positively paired conditions. A positive pairing implies that
the treatment condition that has the smallest number of sub-
jects is associated with the smallest variance, whereas the
opposite occurs for a negative pairing. Unfortunately, with
an unbalanced design similar to that employed in our work
(Livacic-Rojas, Vallejo, Fernández, & Tuero, 2017; Vallejo et
al., 2008), the tendency to be conservative is worse under
negatively paired conditions. The second finding is that, when
there is attrition, sample size requirements can be quite large.

Table 4 Sample sizes to obtain theoretical power of at least 80% and the empirical power, with incomplete data and heterogeneous Level 1 and 2
variances

Δ = .50 Δ = .35 Δ = .20

r1 dL T ρ1 N 1-β 1−β̂ N 1-β 1−β̂ N 1-β 1−β̂

– .5 .4 4 .1 388 .800 .810 384 .801 .815 484 .800 .820
– .5 .4 4 .5 393 .801 .812 390 .800 .817 492 .800 .792
– .5 .4 8 .1 397 .801 .796 394 .800 .791 496 .801 .782
– .5 .4 8 .5 402 .801 .798 398 .800 .804 504 .801 .777
– .5 .5 4 .1 249 .801 .813 246 .801 .829 312 .801 .818
– .5 .5 4 .5 252 .801 .808 250 .801 .813 316 .801 .812
– .5 .5 8 .1 255 .801 .818 252 .801 .824 318 .800 .785
– .5 .5 8 .5 258 .801 .787 256 .801 .793 322 .801 .801
– .5 .6 4 .1 174 .802 .822 172 .801 .825 216 .801 .799
– .5 .6 4 .5 176 .801 .798 174 .801 .818 220 .801 .824
– .5 .6 8 .1 178 .801 .797 176 .801 .806 222 .801 .786
– .5 .6 8 .5 180 .801 .803 178 .801 .795 224 .801 .778
.0 .4 4 .1 369 .801 .819 366 .801 .817 460 .800 .825
.0 .4 4 .5 353 .801 .800 350 .801 .793 440 .800 .829
.0 .4 8 .1 379 .801 .809 374 .800 .798 474 .801 .807
.0 .4 8 .5 363 .801 .818 360 .801 .811 454 .800 .808
.0 .5 4 .1 236 .800 .821 234 .801 .808 296 .800 .824
.0 .5 4 .5 226 .801 .827 224 .802 .809 282 .800 .803
.0 .5 8 .1 243 .801 .794 240 .801 .792 304 .801 .805
.0 .5 8 .5 233 .801 .782 230 .800 .807 292 .801 .812
.0 .6 4 .1 165 .802 .825 164 .802 .831 206 .800 .831
.0 .6 4 .5 158 .803 .828 156 .802 .826 198 .802 .831
.0 .6 8 .1 169 .801 .806 168 .801 .788 212 .801 .797
.0 .6 8 .5 162 .801 .821 160 .800 .805 202 .800 .811
.5 .4 4 .1 349 .800 .816 348 .800 .824 436 .800 .806
.5 .4 4 .5 311 .801 .814 308 .800 .822 388 .800 .826
.5 .4 8 .1 360 .801 .807 356 .801 .775 450 .800 .809
.5 .4 8 .5 323 .801 .805 320 .801 .831 404 .801 .820
.5 .5 4 .1 224 .801 .807 222 .802 .806 280 .801 .811
.5 .5 4 .5 200 .800 .811 198 .801 .827 250 .801 .839
.5 .5 8 .1 231 .801 .796 228 .800 .822 288 .801 .798
.5 .5 8 .5 207 .801 .815 206 .802 .830 258 .800 .818
.5 .6 4 .1 156 .801 .819 154 .800 .813 196 .802 .825
.5 .6 4 .5 140 .802 .820 138 .800 .825 174 .800 .827
.5 .6 8 .1 161 .802 .817 160 .801 .811 202 .802 .810
.5 .6 8 .5 144 .801 .805 144 .802 .829 180 .801 .829

See the note to Table 1.
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As one can easily imagine, however, it is not clear what is
sufficiently large with regard to sample size in order to make
valid inferences about the parameter of interest. In many cases
an increase of 5% or 10%may be sufficient, but depending on
the expected rate of attrition, the appropriate percentage could
vary. In the present study we observed that with dropout rates
of 10% at every time point (e.g., a condition with eight time
points would retain approximately 50% of the original sample
at the last time point), the sample size would be required to
increase by 20%–25% in order to reach a power that was
equivalent to the case of complete data. In any case, when
attrition is anticipated, the formulas we derived allow the pow-
er to be calculated on the basis of the final number of subjects
that are expected to complete the study.

Although the numerical results may change slightly de-
pending on the statistical package and the number of iterations
or the algorithm used to estimate the parameters, the simula-
tions presented in this article strongly suggest that on the
whole the empirical power based on REML estimates is in

fairly good agreement with the theoretical power based on
OLS estimates. However, it has also become clear from the
present study that, with complex statistical models, sample
size estimation using simulations may be needed. One reason
why the Monte Carlo power method may be preferred over a
theoretical method in some cases is because of its great
flexibility to be applied to almost any kind of data,
regardless of whether all the model assumptions are
satisfied, the type of covariates present, and the attrition
rate expected. In fact, the sample size calculation through
simulation can easily be extended to more complex linear
mixed models or generalized linear mixed models, both uni-
variate and multivariate.

Recommendations

As we noted earlier, when performing a prospective power
analysis and no information is available regarding the growth
model parameters, researchers may explicitly specify

Table 5 Percentages of relative bias for predicted theoretical and empirical powers

Scenario A Scenario B Scenario C Scenario D

dL T ρ1 Δ=.5 Δ=.35 Δ=.2 Δ=.5 Δ=.35 Δ=.2 Δ=.5 Δ=.35 Δ=.2 Δ=.5 Δ=.35 Δ=.2

Theoretical power

.4 4 .1 .2 .1 .0 .1 .0 .0 .0 .0 .1 .0 .1 .0

.4 4 .5 .2 .0 .1 .1 .1 .1 .2 .1 .0 .1 .0 .0

.4 8 .1 .1 .2 .0 .0 .1 .1 .0 .1 .0 .1 .0 .1

.4 8 .5 .1 .2 .1 .1 .1 .0 .2 .0 .1 .1 .1 .1

.5 4 .1 .2 .3 .2 .2 .0 .2 .2 .2 .0 .1 .2 .1

.5 4 .5 .2 .3 .2 .2 .1 .2 .1 .3 .2 .1 .2 .1

.5 8 .1 .2 .2 .1 .1 .1 .1 .0 .1 .0 .1 .1 .1

.5 8 .5 .3 .1 .1 .1 .2 .2 .3 .1 .2 .1 .1 .1

.6 4 .1 .3 .3 .2 .3 .1 .2 .2 .3 .2 .2 .1 .1

.6 4 .5 .2 .3 .3 .2 .3 .1 .4 .2 .2 .3 .1 .1

.6 8 .1 .3 .4 .2 .3 .1 .3 .2 .2 .0 .2 .1 .2

.6 8 .5 .2 .3 .2 .2 .3 .2 .3 .2 .1 .1 .1 .1

Empirical power

.4 4 .1 1.0 – 0.4 – 1.1 – 0.2 0 .4 – 0.6 0.5 3.5 1.4 1.9 2.3 2.1

.4 4 .5 – 0.4 – 0.5 0.3 – 0.1 – 0.5 – 1.5 2.3 2.2 2.9 1.1 1.3 2.0

.4 8 .1 0.7 0.4 1.6 – 0.1 0.8 – 0.8 – 0.1 1.0 0.1 0.5 – 1.5 – 0.1

.4 8 .5 – 0.1 – 0.5 1.1 – 0.2 1.2 – 0.5 2.3 2.2 1.3 0.9 1.9 0.2

.5 4 .1 0.2 0.6 – 0.6 0.4 – 0.1 0.0 0.8 3.4 3.4 1.7 1.8 2.2

.5 4 .5 0.3 0.1 0.1 1.8 0.6 0.6 1.5 3.1 2.8 1.9 2.0 2.3

.5 8 .1 – 0.5 1.1 – 0.1 0.1 0.4 0.6 0.3 0.9 1.5 0.3 1.6 – 0.5

.5 8 .5 0.5 0.7 – 0.4 0.1 0.1 1.9 1.8 1.1 1.1 – 0.7 1.3 1.3

.6 4 .1 0.0 1.3 0.4 – 0.4 0.7 – 0.6 2.5 0.14 2.5 2.8 2.9 2.3

.6 4 .5 0.4 – 0.6 – 1.2 – 0.5 – 1.2 1.1 2.9 1.3 2.6 1.9 2.9 3.4

.6 8 .1 0.8 1.0 0.6 0.5 0.2 – 0.7 0.0 0.1 0.2 0.8 0.2 – 0.3

.6 8 .5 – 0.2 0.3 – 0.4 0.1 – 0.3 – 1.5 1.4 2.0 – 0.2 1.2 1.2 0.8

See the note to Table 1.
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parameters by indirectly setting four types of indices (ρ1, k1,
dL, r1) for a linear trend. In some cases, this is a reasonable
approximation, but in other cases it may become a tricky task.
Hence, a range of values often need to be considered.

1. Reliability (ρ1) depends on what measure is being used.
The reader should note, however, that questionnaire mea-
sures, which represent one of the most important tools
available for data collection in the educational and social
sciences, appear to have relatively low reliability. Hence,
reliabilities in the .4–.7 range would provide a reasonable
starting point when planning research.

2. Empirical studies have indicated that, under most situa-
tions likely to be encountered by behavioral science re-
searchers, the ratio between the variances of the outcomes
at the end and at the beginning of a study (k1) could be
more than five times smaller than the value we have ex-
amined (cf. Hertzog, Lindenberger, Ghisletta, & von
Oertzen, 2008). Thus, the sample size requirements will
be less demanding than those shown in the tables.

3. The average effect size (dL) found in published meta-
analyses in psychology is around dL = 0.50 (see Bakker,
van Dijk, & Wicherts, 2012). An effect size in the
range of 0.4–0.6 is regarded as typical. We have not
been able to find any guidelines on how to select
these effect sizes for a quadratic growth model.
Although this issue is an open question and should
be investigated, provisionally we have assumed an ef-
fect size of one-half of a standard deviation unit for
the rate of acceleration (i.e., dQ = 0.50).

4. Although the correlation between the starting point and
the rate of change over time (r1) is not known, precisely
different authors (Hertzog et al., 2008; Hox, 2010) have
suggested that it is unlikely that this correlation would
reach values close to zero in a given population. Hence,
correlations in the .25–.50 range would be values that are
reasonable to choose when planning a longitudinal study.

Finally, for completeness, three caveats are included. First,
it should be clear that the sample size requirements to detect an
intervention effect are study-specific. Second, although
longitudinal studies often involve small samples, it is very
important to emphasize that large samples sizes make small
effect sizes detectable. Therefore, researchers interested in
carrying out studies that have sufficient power to reject the
null hypothesis should avoid using small sample sizes
whenever possible. This is especially the case when they are
unable to specify a minimum effect size that would have either
practical or theoretical significance. Third, it should be noted
that the reliabilities studied (i.e., .1 and .5) are on the low side.
Since unreliability affects statistical power, it becomes
obvious that more positive results should be obtained with
higher initial reliabilities. If reliability is improved to .80, for

example, the potential reduction in sample size that could be
achieved would be approximately 20%. Hence, researchers
should make an effort to reduce the effects of measurement
error.

Limitations of this study

In our simulation study we saw that the theoretical power
values based on the sample size formulas derived using the
OLS estimates were nearly identical to the empirical power
based on the ML estimates, even with a combination of het-
erogeneous variances and missing data. However, readers
should note that the generalization of our results is limited to
situations in which the mechanism for missing data is MAR.
When missing data due to attrition are driven by an MAR
mechanism, the standard likelihood-based method provides
valid inferences about differences in growth rates between
groups. In contrast, when the missing data are not MAR
(NMAR), the likelihood-based method yields erroneous infer-
ences (failure to control the Type I error rate and to provide
altered power). Thus, caution should be exercised if the
missingness is thought to be NMAR. To improve the validity
of estimates, it is recommended that researchers determine
why data are missing and build models that include covariates
that may be predictive of dropping out.

An additional limitation of our study is that the results and
recommendations are based on assuming normality for the
continuous outcome variable. The effect of nonnormality
on the power would not be of much consequence in the
case of near-normal populations. However, the presence
of a fair degree of skewness and/or kurtosis, as is not
uncommon in educational and psychological studies
(see, e.g., Blanca, Arnau, López-Montiel, Bono, &
Bendayan, 2013; Cain,Zhang, & Yuan, 2017; Micceri,
1989), would lead to a more conservative alpha level
and, thus, to more demanding sample size requirements.

Finally, for computational simplicity, we assumed that the
model used only included one categorical variable (e.g., the
program studied). However, it is possible to increase precision
in the estimation of treatment effects if effective covariates are
used in the design. In fact, continuous variables are sometimes
included in longitudinal studies as predictors or baseline co-
variates. In general, as long as the covariates are independent
of the group assignments and do not modify the group effects,
making an adjustment for baseline response will increase sta-
tistical power, because it can be expected that the adjustment
will reduce the between- and within-subjects variability.
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Appendix 1
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P

p¼1
X 2

pijE u2pj
� �

þ 2 ∑
P

p¼1
X pijE u0 jupj

� �þ E e2ij
� � !

¼ τ00 þ 2 ∑
P

p¼1
τ0pX pij þ ∑

P

p¼1
τppX 2

pij þ σ2

Cov Y ij;Y i; j X 1ij;…;X pij
� � ¼ E Y ij−E Y ij

� �� �
Y i; j−E Y i; j

� �� �� � ¼ E Y ijY i; j
� �

−E Y ij
� �

E Y i; jð Þ

¼ E u0 j þ ∑
P

p¼1
upjX pij þ eij

 !
u0 j þ ∑

P

p¼1
upjX pi; j þ ei; j

 !"

¼ E u20 j
� �

þ ∑
P

p¼1
X pijE u0 j; upj

� �þ ∑
P

p¼1
X pi; jE u0 j; upj

� �þ ∑
P

p¼1
X pijX pi; j
� �

E u2pj
� �#

¼ τ00 þ ∑
P

p¼1
τ0p X pij þ X pi; j
� �þ ∑

P

p¼1
τpp X pijX pi; j
� �

Appendix 2

Calculation of variance component τ01

r1 ¼ τ01ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ11

p ; k1 ¼ τ00 þ 2Dτ01 þ D2τ11 þ σ2

τ00 þ σ2

⇒
k1 τ00 þ σ2
� � ¼ τ00 þ 2Dτ01 þ D2τ11 þ σ2

τ11 ¼ τ201
r21τ00


⇒ðk1�1Þ τ00 þ σ2ð Þ ¼ 2Dτ01 þ D2τ201

r21τ00

⇒ðk1�1Þ τ00 þ σ2ð Þr21τ00 ¼ 2Dτ01r21τ00 þ D2τ201

⇒D2τ201 þ 2Dτ01r21τ00− k1�1Þ τ00 þ σ2ð Þr21τ00 ¼ 0
�

τ01 parameter is one of the roots of the quadratic function

τ01 ¼ −B01 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
01−4A01C01

q
=2A01

� �

where

A01 ¼ D2;B01 ¼ 2Dr21τ00 and C01

¼ − k1−1ð Þ τ00 þ σ2
� �

r21τ00

Calculation of variance component τ11

r1 ¼ τ01ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ11

p ; k1 ¼ τ00 þ 2Dτ01 þ D2τ11 þ σ2

τ00 þ σ2

⇒ k1 τ00 þ σ2
� � ¼ τ00 þ 2Dτ01 þ D2τ11 þ σ2

τ01 ¼ r1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ11

p


⇒ k1−1ð Þ τ00 þ σ2
� � ¼ 2Dr1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ11

p þ D2τ11

⇒ 2Dr1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ11

pð Þ2 ¼ k1−1ð Þ τ00 þ σ2
� �

−D2τ201
� �2

⇒D4τ211−4D
2r21τ00τ11−2 k1−1ð Þ τ00 þ σ2

� �
D2τ11 þ k1−1ð Þ2 τ00 þ σ2

� �2 ¼ 0
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τ11 parameter is one of the roots of the quadratic function

τ11 ¼ −B11 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
11− 4A11C11

�q
=2A11

�

where

A11 ¼ D4;B01 ¼ −4D2r21τ00−2 k2−1ð Þ τ00 þ σ2
� �

D2 and C11

¼ k1−1ð Þ2 τ00 þ σ2
� �2

:

Calculation of variance component τ02

r2 ¼ τ02ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ22

p ; r12 ¼ τ12ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11τ22

p ; k2 ¼ τ00 þ 2Dτ01 þ D2τ11 þ 2D2τ02 þ 2D3τ12 þ D4τ22 þ σ2

τ00 þ σ2

⇒
k2 τ00 þ σ2
� � ¼ τ00 þ 2Dτ01 þ D2τ11 þ 2D2τ02 þ 2D3τ12 þ D4τ22 þ σ2

τ12 ¼ r12
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11τ22

p
yτ22 ¼ τ202

r22τ00


⇒ k2‐1ð Þ τ00 þ σ2

� � ¼ 2Dτ01 þ D2τ11 þ 2D2τ02 þ 2D3r12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11τ202
r22τ00

s
þ D4τ202

r22τ00
⇒ k2‐1ð Þ τ00 þ σ2

� �
r22τ00 ¼ 2Dτ01r22τ00 þ D2τ11r22τ00þ

2D2τ02r22τ00 þ 2D3r12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11τ202
r22τ00

s
r22τ00 þ D4τ202

⇒D4τ202 þ 2D2τ02r22τ00 þ 2D3r12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11=τ00ð Þ

p
r2τ00τ02 þ 2Dτ01r22τ00þ

D2τ11r22τ00‐ k2‐1ð Þ τ00 þ σ2
� �

r22τ00 ¼ 0

τ02 parameter is one of the roots of quadratic function

τ02 ¼ −B02 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
02−4A02C02

q� �
=2A02

where

A02 ¼ D4;B02 ¼ 2D2r22τ00þ2D3r12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11=τ00ð Þp

r2τ00 and

C02 ¼ 2Dτ01r22τ00þD2τ11r22τ00‐ k2‐1ð Þ τ00 þ σ2
� �

r22τ00:

Calculation of variance component τ12

⇒
k2 τ00 þ σ2
� � ¼ τ00 þ 2Dτ01 þ D2τ11 þ 2D2τ02 þ 2D3τ12 þ D4τ22 þ σ2

τ02 ¼ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ22

p
y τ22 ¼ τ212

r212τ11


⇒ k2‐1ð Þ τ00 þ σ2

� � ¼ 2Dτ01 þ D2τ11 þ 2D2r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ22

p þ 2D3τ12 þ D4τ212
r212τ11

⇒ k2‐1ð Þ τ00 þ σ2
� �

r212r11 ¼ 2Dτ01r212τ11 þ D2τ11r212τ11 þ

2D2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ212
r212τ11

s
r212τ11 þ 2D3τ12r212τ11 þ D4τ212

⇒D4τ212 þ 2D2r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00=τ11ð Þ

p
r12τ11τ12 þ 2D3τ12r212τ11 þ 2Dτ01r212τ11

þD2τ11r212τ11‐ k2‐1ð Þ τ00 þ σ2
� �

r212τ11 ¼ 0

τ12 parameter is one of the roots of quadratic function

τ12 ¼ −B12 �
ffiffiffiffiffiffiffi
B2
12

q
− 4A12C12

� �
=2A12

where

A12 ¼ D4;B12 ¼ 2D2r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00=τ11ð Þ

p
r12τ11 þ 2D3r212τ11 and

C12 ¼ 2Dτ01r212τ11 þ D2τ11r212τ11−

k2−1ð Þ τ00 þ σ2
� �

r212τ11:
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Calculation of variance component τ22

r2 ¼ τ02ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ22

p ; r12 ¼ τ12
τ11τ22

; k2 ¼ τ00 þ 2Dτ01 þ D2τ11 þ 2D2τ02 þ 2D3τ12 þ D4τ22 þ σ2

τ00 þ σ2

⇒ k2 τ00 þ σ2
� � ¼ τ00 ¼ 2Dτ01 þ D2τ11 þ 2D2τ02 þ 2D3τ12 þ D4τ22 þ σ2

τ02 ¼ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ22

p
yτ12 ¼ r12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11τ22

p


⇒ k2−1ð Þ τ00 þ σ2
� � ¼ 2Dτ01 þ D2τ11 þ 2D2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ22

p þ 2D3r12
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11τ22

p þ D4τ22

⇒ k2−1ð Þ τ00 þ σ2
� � ¼ 2Dτ01 þ D2τ11 þ D4τ22 ¼ 2D2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00τ22

p þ 2D3r12
ffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11τ22

p

⇒ 2D2r2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffi

τ00τ22
p ¼ 2D3r12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11τ22

�
2

r
¼ k2−1ð Þ τ00 þ σ2

� �
−2Dτ01−D2τ11−D4τ22

� �2
⇒D8τ222−τ22 2D2r2

ffiffiffiffiffiffiffi
τ00

p þ 2D3r12
ffiffiffiffiffiffiffi
τ11

p� �2 þ 2D6τ11τ22 þ 4D5τ01τ22−2 k2−1ð Þ τ00 þ σ2
� �

D4τ22 þ 4D2τ201 þ D4τ211

þ k2−1ð Þ2 τ00 þ σ2
� �2−2 k2−1ð Þ τ00 þ σ2

� �� 2Dτ01 þ D2τ11
� �þ 4D3τ01τ11 ¼ 0

τ22 parameter is one of the roots of quadratic function

τ22 ¼ −B22�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
22−4A11C22

p
2A22

where

A22 ¼ D8;B22 ¼ − 2D2r2
ffiffiffiffiffiffiffi
τ00

p þ 2D3r12
ffiffiffiffiffiffiffi
τ11

p� �2 þ 2D6τ11

þ4D5τ01−2D4 k2−1ð Þ τ00 þ σ2
� �

andC22 ¼ 4D2τ201

þD4τ211 þ k2−1ð Þ2 τ00 þ σ2
� �2−2 k2−1ð Þ τ00 þ σ2

� �
� 2Dτ01 þ D2τ11
� �þ 4D3τ01τ11:

Appendix 3

To extend the proposed method to addressing sample
size calculations for future data, the following piecewise
growth model for two separate linear pieces will be
used:

Level 1:

Y it ¼ b0i þ b1iX 1it þ b2iX 2it þ eit

Level 2:

b0i ¼ β00 þ u0i;
b1i ¼ β10 þ β11W i þ u1i;
b2i ¼ β20 þ β21W i þ u2i;

Note that because of the randomization of subjects to the
two treatment groups, Level 2 for the intercept does not

contain the value of the group-level variable Wi, and we as-
sume a common mean response at baseline. Substituting the
corresponding Level 2 equations into the Level 1 equation, we
get the combined model:

Y it ¼ β00 þ β10 þ β11W ið ÞX 1it þ β20 þ β21W ið ÞX 2it

þ u0i þ u1iX 1ti þ u2iX 2ti þ eitð Þ;

where X1it and X2it are coded variables to represent the
piecewise regression. In this case, X1it denotes the time
of the tth measurement on the ith subject, while the
variable X2it would be coded as X2it = Xit if (Xit − Bp) > 0
and X2it = 0 if (Xit − Bp) ≤ 0.

From this single equation model, the expected value and
variance–covariance structures of Yit given Wi can be
expressed as

E Y itjWið Þ ¼ β00 þ β10 þ β11Wið ÞX 1it þ β20 þ β21W ið ÞX 2it;

Var Y itjWið Þ ¼ τ00 þ 2X 1itτ01 þ X 2
1itτ11

þ2X 2itτ02 þ 2X 1itX 2itτ12 þ X 2
2itτ22 þ σ2;

Cov Y it; Y it; jWið Þ ¼ τ00 þ X 1it þ X 1it0
� �

τ01

þX 1itX 1it0 τ11 þ X 2it þ X 2it0
� �

τ02

þ X 1itX 2it0 þ X 2itX 1it0
� �

τ12 þ X 2itX 2it0
� �

τ22:

To generalize the proposed procedure to more com-
plicated piecewise models, it is fundamental to use
transformed indices that are easy to specify. In addition
to those specified in Eqs. 13–16 and 19 (i. e., ρ1, dL, r1,
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k1 and β11), this new situation requires the indices to be
defined as follows:

dPW ¼ D1β11 þ D2
2β21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ00 þ 2D1τ01 þ D2
1τ11 þ 2D2τ02 þ 2D1D2τ12 þ D2

2τ22 þ σ2
q ;

r2 ¼ Cov u0i; u2ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var u0i u2ið Þp ¼ τ02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ00 τ22
p ;

r12 ¼ Cov u0i; u2ið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var u0i u2ið Þp ¼ τ12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ11 τ22
p ;

and

k2 ¼ Var Y iTð Þ
Var Y i1ð Þ ¼ τ00 þ 2D1τ01 þ D2

1τ11 þ 2D2τ02 þ 2D1D2τ12 þ D2
2τ22 þ σ2

τ00 þ σ2
:

By solving simultaneous equations following a procedure
similar to that described in Appendix 2, we obtain the com-
ponents of variance τ02, τ12 and τ22 associated with the sec-
ond of the two piecewise slopes of the linear growth model.
Specifically,

τ02 ¼ −B02 �
ffiffiffiffiffiffiffi
B2
02

p
− 4A02C02

2A02
;

where A02 ¼ D2
2;B02 ¼ 2D2r22τ00 þ 2D1D2r12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ11=τ00ð Þ

p
r

2τ00;C02 ¼ 2D1τ01r22τ00 þ D2
1τ11r

2
2τ00− k2−1ð Þ τ00 þ σ2

� �
r2 2τ00;

τ12 ¼ −B12 �
ffiffiffiffiffiffiffi
B2
12

p
− 4A12C12

2A12
;

where A12 ¼ D2
2;B12 ¼ 2D2r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ00=τ11ð Þp

r12τ11 þ 2D1D2

r212τ11; C12 ¼ 2Dτ01r212τ11þD2τ11 r212τ11− k2−1ð Þ τ00 þ σ2ð Þ
r212τ11; and

τ22 ¼ −B22 �
ffiffiffiffiffiffiffi
B2
22

p
− 4A22C22

2A22
;

whereA22 ¼ D4
2;B22 ¼ − 2D2r2

ffiffiffiffiffiffiffi
τ00

p þ 2D1

�
D2r12

ffiffiffiffiffiffiffi
τ11

p Þ2
þ2D2

1 D
2
2τ11 þ 4D1D2

2τ01−2D
2
2 k2−1ð Þ τ00 þ σ2

� �
;C22 ¼ 4

D2
1τ

2
01 þ D4

1τ
2
11 þ k2−1ð Þ 2 τ00 þ σ2ð Þ 2 þ 4D3

1τ01τ11−2
k2−1ð Þ τ00 þ σ2ð Þ 2D1τ01 þ D2

1τ11
� �

:

Finally, by substituting in the effect size formula (i. e., dPW)
the value found for Var (YiT) in the formula used to define the
ratio between the variances of outcomes at the beginning and
end of the study (i. e., k2), the coefficient associated with

differences between treatment conditions from the breakpoint
to the end of the study can be written as

β21 ¼
dPW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 τ00 þ σ2ð Þp

−dL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 τ00 þ σ2ð Þp

D2
:

The components of variance associated with the first
of the two piecewise slopes (i. e., τ01 and τ11) coincide
with those obtained for the linear growth model with D
replaced by D1.

Appendix 4

OLS estimation of the effect of the interaction of treatment by
time with three groups:

β̂11 ¼

∑
i¼1

N2

∑
T

t¼1
X it−X i

� �
Y it

∑
i¼1

N2

∑
T

t¼1
X it−X i

� �2 −
∑
i¼1

N1

∑
T

t¼1
X it−X i

� �
Y it

∑
i¼1

N1

∑
T

t¼1
X it−X i

� �2
2
6664

3
7775þ

∑
i¼1

N3

∑
T

t¼1
X it−X i

� �
Y it

∑
i¼1

N3

∑
T

t¼1
X it−X i

� �2 −
∑
i¼1

N1

∑
T

t¼1
X it−X i

� �
Y it

∑
i¼1

N1

∑
T

t¼1
X it−X i

� �2
2
6664

3
7775þ

∑
i¼1

N3

∑
T

t¼1
X it−X i

� �
Y it

∑
i¼1

N3

∑
T

t¼1
X it−X i

� �2 −
∑
i¼1

N2

∑
T

t¼1
X it−X i

� �
Yit

∑
i¼1

N2

∑
T

t¼1
X it−X i

� �2
2
6664

3
7775

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

=4

With four groups we would proceed similarly, but dividing
instead by 10. With five groups, we should divide by 20.
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Appendix 5

If we assume that the subject outcomes are independent, the
variance of the numerator of Eq. 28 can be decomposed as
follows:

Var ∑
i¼1

N j

∑
T

t¼1
X it−X i

� �
Y it

 !
¼ Aþ B:

Developing the terms of the second member of the above
expression, we obtain

A ¼ ∑
i¼1

N j

∑
T

t¼1
X it−X i

� �2
Var Y itð Þ ¼ ∑

i¼1

N j

∑
T

t¼1
X it−X i

� �2
τ00 þ 2itτ01 þ X 2

itτ11 þ σ2
� �

¼ ∑
i¼1

N j

∑
T

t¼1
X it−X i

� �2
τ00 þ X it−X i

� �2
2X itτ01 þ X it−X i

� �2
X 2

itτ11 þ X it−X i

� �2
σ2

	 


¼ τ00 þ σ2
� �

N j ∑
T

t¼1
X it−X i

� �2
þ 2τ01N j ∑

T

t¼1
X it X it−X i

� �2
þ τ11N j ∑

T

t¼1
X 2

it X it−X i

� �2

B ¼ ∑
i¼1

N j

∑
T

t¼1
∑
T

t0≠t
X it−X i

� �
X it0−X i

� �
Cov Y it; Y it;ð Þ ¼ ∑

i¼1

N j

∑
T

t¼1
∑
T

t0≠t
ZtZt; τ00 þ Xit þ Xit;ð Þτ01 þ XitXit; τ11½ �;

¼ τ11N j ∑
T

t¼1
∑
T

t0≠t
X it−X i

� �
X it;−X i

� �
X itX it;−τ00N j ∑

T

t¼1
X it;−X i

� �2
−2τ01N j ∑

T

t¼1
X it X it−X i

� �2

where it follows that:

Var ∑
i¼1t

N j

∑
T

t¼1
X it−X i

� �
Y it

 !
¼ τ00 þ σ2 ¼ τ00
� �

N j ∑
T

t¼1
X it−X i

� �2
þ 2τ01N j ∑

T

t¼1
X it X it−X i

� �2
−

2τ01N j ∑
T

t¼1
X it X it−X i

� �2
þ τ11N j ∑

T

t¼1
X 2

it X it−X i

� �2
þ ∑

T

t¼1
∑
T

t0≠t
X it−X i

� �
X it;−X i

� �
X itX it;

" #

¼ σ2N j ∑
T

t¼1
X it−X i

� �2
þ τ11N j ∑

T

t¼1
X 2

it X it−X i

� �2
þ ∑

T

t¼1
∑
T

t0≠t
X it−X i

� �
X it;−X i

� �
X itX it;

" #

¼ σ2N j ∑
T

t¼1
X it−X i

� �2
þ τ11N j ∑

T

t
∑
T

t0
X it−X i

� �
X it;−X i

� �
X itX it;

¼ σ2N j ∑
T

t¼1
X it−X i

� �2
þ τ11N j ∑

T

t¼1
X it−X i

� �4
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Therefore, the variance of the estimator of the linear slope

for jth group, δ̂ j j ¼ 0; 1ð Þ, is

Var δ̂ j

� �
¼

Var ∑
i¼1

N j

∑
T

t¼1
X it−X i

� �
Y it

 !

Var ∑
i¼1

N j

∑
T

t¼1
X it−X i

� �2� � ¼
σ2N j ∑

T

t¼1
X it−X i

� �2
N2

j ∑
T

t¼1
X it−X i

� �4 þ
τ11N j ∑

T

t¼1
X it−X i

� �4
N2

j ∑
T

t¼1
X it−X i

� �4

¼ σ2

N j ∑
T

t¼1
X it−X i

� �2 þ τ11
N j

¼ 1

N j

σ2

∑
T

t¼1
X it−X i

� �2 þ τ11

0
BB@

1
CCA

Finally, using the properties of variance when variables are
independent, we arrive at

Var β̂11

� �
¼ Var δ̂1

� �
þ Var δ̂0

� �

¼ 4

N
σ2

∑
T

t¼1
X it−X i

� �2 þ τ11

0
BB@

1
CCA

Remember that N denotes here the total number of Level 2
units included in study, with N/2 subjects in each group. The
quantity 4/N on the right side of variance formula should be
replaced by (1/Np1p2) in order to allow for groups of unequal
size, where p1 =NC /N and p2 =NE /N″.

Appendix 6

Equating Eqs. 36 and 37 and solving for N, we get

Z1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
b=Np1p2

q
¼ β11−Z1−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
b=Np1p2

q
β11 ¼ Z1−α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
b=Np1p2

q
þ Z1−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
b=Np1p2

q
β11 ¼ Z1−α=2 þ Z1−β

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
b=Np1p22

q
β2
11Np1p2 ¼ Z1−α=2 þ Z1−β

� �2
σ2
b

N ¼ Z1−α=2 þ Z1−β
� �2

σ2
b

β2
11p1p2
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