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Abstract
The Massive Auditory Lexical Decision (MALD) database is an end-to-end, freely available auditory and production
data set for speech and psycholinguistic research, providing time-aligned stimulus recordings for 26,793 words and 9592
pseudowords, and response data for 227,179 auditory lexical decisions from 231 unique monolingual English listeners. In
addition to the experimental data, we provide many precompiled listener- and item-level descriptor variables. This data
set makes it easy to explore responses, build and test theories, and compare a wide range of models. We present summary
statistics and analyses.
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Introduction

In psycholinguistics, databases constructed using large-
scale studies with responses to tens of thousands of
words have become an important resource for researchers
investigating many topics, particularly lexical processing
and representation. In the present paper, we detail the
design and construction of what we call the “Massive
Auditory Lexical Decision” (MALD) database, which
provides an auditory parallel to many of the existing large-
scale databases that have been conducted almost exclusively
in the visual domain.

One of the first data sets of this scale was the English
Lexicon Project (Balota et al., 2007), which contains
responses from visual lexical decision and naming tasks
of North American English. More recently, similar stud-
ies have been completed for British English (Keuleers
et al., 2012), Dutch (Keuleers et al. 2010, 2015), French
(Ferrand et al., 2010), and Cantonese (Tse et al., 2016),
as well as a database of lexical decision and naming across the
lifespan for German (Schröter & Schroeder, 2017). These
large-scale studies or “megastudies” (Seidenberg & Waters,
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1989) have several important advantages, including statis-
tical power, minimization of strategic effects, comprehen-
siveness, and multi-functionality, as well as complementing
and validating a wide range of traditional, smaller factorial
experiments (Balota et al., 2012; Keuleers & Balota, 2015).

Recently, the MEGALEX database has been released,
which investigates both visual and auditory recognition of
spoken French (Ferrand et al., 2017) helping to move the
megastudy research into the auditory domain. Preceding this
work, several smaller-scale auditory databases have been
produced (Luce & Pisoni, 1998; Smits et al., 2003; Warner
et al., 2014; Ernestus & Cutler, 2015), which investigate
the processing of spoken language. Even though speech is
phylogenetically and ontogenetically prior to reading, and
despite the fact that even in modernized literate societies
most daily interactions likely occur in the form of speech
rather than reading or writing, megastudies are still largely
restricted to the visual domain. In the remainder of this
section, we briefly review the advantages of megastudies
and we discuss in more detail the specific motivation for the
creation of the present auditory lexical decision data set.

Whymegastudies?

Balota et al. (2012) and Keuleers and Balota (2015) provide
summaries of the history and advantages of megastudies in
psycholinguistics. In this section and the next, we give our
primary motives for producing MALD, why a megastudy
was warranted, and in particular why one is overdue for
English in the auditory domain.

Behavior Research Methods (2019) 51:1187–1204

Published online 18 June 2018:

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-018-1056-1&domain=pdf
mailto: bvtucker@ualberta.ca


Small targeted experiments often suffer from sampling
difficulties. Smaller samples of items are more susceptible
to sampling bias, not only of the random variety, but also
due to the conditions imposed by the theoretical question
itself and properties of the language. For example, if a
researcher is investigating differences between closed- and
open-class words, the number of items and their lengths
and makeup will be constrained by the set of closed-class
words existing in the language. In addition to these types
of constraints, item selection can also be susceptible to
the experimenters’ unconscious selection decisions (Cutler,
1981; Forster, 2000). A large data set provides a theoretical
testing ground in which the item selection is independent
of the question and the experimenter. Naturally, such a data
set is still subject to the limitations of the specific language,
and in some cases may be even more limited than smaller
data sets created for the purposes of a single study. These
limitations often motivate the conjunction of large-scale
studies with smaller, targeted studies.

In the role of complementary research, large databases
enable the quick confirmation of experimental results with
an independent sample of items, subjects, and responses,
collected by researchers unrelated to, and uninfluenced by,
the studied effects. Their size also affords the statistical
power to detect small effects and reduces the possibility of
type II error, which has been a serious recurring issue in
the social sciences (Cohen, 1962; Sedlmeier & Gigerenzer,
1989; Ioannidis, 2005; Maxwell et al., 2015). Many smaller
studies would be buttressed considerably by the type of
verification provided by larger data sets. All studies have
limitations and biases, and the more corroborative evidence
that can be gathered from a variety of sources, samples,
and methods, the more persuasive their conclusions can be
(Campbell, 1959; Shadish, 1993). A general-purpose large
database can contribute in this capacity to a variety of
studies.

Using data from a megastudy, a researcher can create
a virtual experiment using a list of items that match a
theoretical question and conduct the experiment with a
statistical analysis (e.g., Kuperman (2015), Baayen et al.
(2017), Brysbaert and New (2009), Brysbaert et al. (2016),
and New et al. (2006)). That is, factorial designs are
important for understanding a particular question, but
augmenting them with data from megastudies or using data
from a megastudy as a pilot before investing resources on
a particular experiment is a useful and expedient research
option. As previously noted, it also allows the researcher
to avoid the influence of unconscious selection decisions
(Cutler, 1981; Forster, 2000).

Another advantage of megastudies is that they allow
for rapid theoretical development and complex modeling.
Large databases of visual word recognition responses have
been extremely useful in testing models of visual language

processing, and offered new possibilities in computational
modeling (Norris, 2013). For example, the English Lexicon
Project and other visual megastudies have been used
extensively by proponents of multiple models to gauge the
importance of different lexical factors (e.g., New et al. 2006;
Dufau et al. 2012; Yap et al. 2012, 2015; Mandera et al.
2017). In speech perception and comprehension, although
certain attempts which we will describe below have been
made, such large databases have not been readily available
to researchers. Still, Shortlist B (Norris & McQueen, 2008)
was developed on the basis of a large database of Dutch
diphone perception (Smits et al., 2003). A more recent
model, DIANA (ten Bosch et al. 2013, 2014, 2015a, b), was
created based on a newly developed large data set, described
in more detail below (Ernestus & Cutler, 2015).

Auditory vs. visual perception

While there has been a preponderance of megastudies in
the visual modality, there is a general lack of these in the
auditory modality. In this section we will discuss some
of the reasons why this is the case, describe some of the
differences between the modalities, and briefly describe the
existing auditory data that we are aware of.

Compared to reading experiments, auditory experiments
are labor-intensive. This may partly account for the general
trend that the psycholinguistic aspects of auditory compre-
hension are under-researched compared to visual compre-
hension. Whereas it is relatively less time-consuming and
more straightforward to create and control stimuli in a visual
experiment, an experiment requiring the creation of audi-
tory stimuli is often a complex multistep process requiring a
great deal of human effort, as described below in the Meth-
ods section (“Methods”). Experiments in the two modalities
are similar in the design, balancing, and selection of target
words and foils (though in the auditory case one indexes a
pronunciation dictionary so as to work in phones rather than
orthographic glyphs). However, the two designs quickly
diverge in the stimulus creation stage. In the visual case,
this normally involves simple computer output to a standard
font, while the auditory case typically demands recording,
markup, and extraction of items, auditory and visual loca-
tion of acoustic landmarks or relevant intervals, and audio
normalization or other post-processing, all of which involve
human labor. The labor-intensive nature of the setup for
experiments in the auditory domain serves as a disincentive
for many researchers to perform such work. However, as we
will detail, work in the visual domain is no substitute for
corresponding work in the auditory domain.

Speech unfolds over time, and even single words are
not taken up or auditorily “glimpsed” in a single chunk,
but are integrated over time by a running process (Mattys,
1997; Smits et al., 2003; Warner et al., 2014). This is
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quite different from the processing for written words,
which are ordinarily chunked in brief individual fixations
of the eyes (Rayner & Clifton, 2009; Rayner et al., 2006;
Radach & Kennedy, 2013). Another characteristic that sets
reading apart from listening is the ability to re-access the
information source, either by fixating it for a longer period,
or by making a regressive eye movement backward in the
text. In the auditory modality, listeners rarely have the option
of replaying the sound. Consequently, the existing large visual
processing studies (Balota et al. 2007; Ferrand et al. 2010;
Keuleers et al. 2010, 2012) are inadequate for understanding
how auditory language comprehension occurs.

It should not be surprising that the organization of an
individual’s knowledge about speech might differ from their
knowledge about writing, or that the processes involved in
perception of the two kinds of stimuli should differ. The
psycholinguistic relevance of these differences can be seen
when we consider the details of the findings in the two
modalities. For example, the effect of neighborhood density
varies depending on the modality and how neighborhood
density is calculated (orthographic vs. phonological). In
visual lexical decision, both orthographic and phonological
neighborhood density is facilitative (Coltheart et al.,
1977; Andrews, 1997; Yates et al., 2004), making the
response latencies shorter in high-density neighborhoods.
However, in the auditory modality, one of the effects
changes: the effect of orthographic neighborhood density
remains facilitative (Ziegler et al., 2003), but phonological
neighborhood density is inhibitive (Luce & Pisoni, 1998;
Vitevitch & Luce, 1998).

Conclusions about lexical processing based on reading
often do not provide a satisfactory description of auditory
comprehension, though some have claimed that models
of visual lexical access should be appropriate for speech,
accounting for obvious physical differences (Bradley &
Forster, 1987). Even so, most models of lexical access have
diverged such that there are different models across the
modalities. Further, the visual signal cannot address the
inherent variation in the spoken signal, within individual
speakers, across speakers, and across dialects. While
letter shapes are effectively invariant across words (for a
given font), the acoustic realization of speech elements is
decidedly variable.

Large databases in the auditory modality

As we noted previously, there are numerous benefits of
creating large databases in the field of psycholinguistics,
and there is also a relative lack of megastudies for auditory
word recognition in comparison to visual studies, even
though the two modalities cannot be equated. However,
there are a few studies for auditory processing that can be
considered megastudies.

In their experiments investigating the effects of neigh-
borhood density and the neighborhood activation model,
Luce and Pisoni (1998) tested 918 monosyllabic words of
the form CVC. Ninety participants listened to one of three
sublists (306 words each) with words presented in three dif-
ferent noise conditions (signal-to-noise ratios: +15, +5, and
−5 dB) and were asked to identify the word by typing the
word. An additional 30 participants performed an auditory
lexical decision task in a separate experiment. In this case,
words were again divided into three lists and each partici-
pant heard 306 words and 304 pseudowords. The resultant
data set produced ten observations per word for all 918
words.

There have also been two studies that have examined
Dutch and English diphone processing (Smits et al.,
2003; Warner et al., 2014). In both of these experiments,
participants were presented with gated fragments of
diphones and were asked to identify them. In the Dutch
experiment, there were 1170 diphones and in the English
experiment there were 2288 diphones. The Dutch database
has played a central role in the development of Shortlist B
(Norris & McQueen, 2008).

Ernestus and Cutler (2015) published the ‘Biggest Audi-
tory Lexical Decision Experiment Yet’, or BALDEY.
This data set for Dutch contains auditory lexical deci-
sion responses from 20 participants who each responded
to 2780 words and 2762 pseudowords resulting in
110,820 responses. The stimuli purposely sample a wide
range of morphological complexity, including compound
words.

Recently, Ferrand et al. (2017) produced the MEGALEX
database. This database investigates comprehension of
French and contains data from both the visual and auditory
modalities, with a specific focus on comparing comprehen-
sion in the two modalities. The visual experiment contains
28,466 words and the same number of pseudowords, while
the auditory experiment contains 17,876 words and the same
number of pseudowords. In this experiment, as opposed to
BALDEY, the authors used speech synthesis to create all of
their stimuli. The MEGALEX and BALDEY data sets are
the closest data sets in size and approach to the MALD data
set described below.

In the remainder of the paper, we describe the design
and creation of the MALD database, and summarize general
properties of the items, listeners, and responses.

Methods

The goal of item selection for the project was to ensure
generalization across the spoken English lexicon, ultimately
including 26,793 words and 9592 pseudowords in the data
set reported here.
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Items

Words

The list of words for MALD was compiled to represent
conversational speech with the final goal of a list of at least
25,000 words. To do this, we extracted all the unique word
types (about 8000) in the Buckeye Corpus of Conversational
Speech (Pitt et al., 2007), which provided a base of words
biased toward conversational speech. The base word list was
then augmented with words from COCA (Davies, 2009).
We selected the first 25,000 words (ranked by frequency
of occurrence) and merged these words with the base list.
After removing specific entries, defined below, the base list
was augmented with about 10,000 words from COCA. The
word list was also augmented with a list of 1252 compound
words extracted from CELEX (Baayen et al., 1995). The
base list was then further augmented with about 9000 words
randomly sampled from the English Lexicon Project (Balota
et al., 2007).

During the compilation of the word list, we attempted
to exclude items that were proper nouns, coordinating
conjunctions, offensive words, days of the week, and letters
of the alphabet. The resulting list contained a total of 28,510
words and includes mono- and multi-morphemic words,
inflected and derived forms, function and content words,
compound words, and all parts of speech apart from proper
nouns and coordinating conjunctions. For pronunciation
referencing, we used the CMU Pronouncing Dictionary
V0.6 (Weide, 2005, 133,315 pronunciations of 123,656
unique headwords), augmented with 3726 additional entries
for those words in the study lacking entries, and removing
70 entries for punctuation marks. We will hereafter refer to
this augmented resource as “CMU-A”.

Pseudowords

Pseudoword design, recording, and preparation are far more
labor-intensive than for words. The speaker needs to read
a phonetic notation, and often requires multiple repetitions
and corrections, which consumes significantly more time.
In order to optimize the time spent in recording and
preparation, it was decided to record more words, rather
than pseudowords (still more than four times as many
pseudowords as BALDEY, the next largest auditory lexical
decision database with real speech).

Pseudowords for the project were generated using the
software package Wuggy (Keuleers & Brysbaert, 2010),
which was kindly adapted by its author to utilize the
CMU Pronouncing Dictionary (Weide, 2005) to create
a phonotactic (rather than orthotactic) database. This
change allowed for the creation of phonotactically licit

pseudowords, which is necessary when trying to create
words that a native speaker is comfortable producing.
The word IPA transcriptions were input into Wuggy to
ensure that phoneme and syllable makeup and transitional
probabilities were comparable to the words; 11,400 of
the resulting pseudowords were chosen at random as the
recording list for use in MALD. The settings in Wuggy
were set so that one-third of the subsyllabic constituents
of the input word were swapped for other phonotactically
licit segments with similar transitional probabilities. This
resulted in the production of English-like “accidental
gap” pseudowords, e.g., . Using
Wuggy in this way, many of the resulting pseudowords also
exhibit a degree of apparent morphological complexity, e.g.,

.

Speaker, recording procedure

One 28-year-old Western Canadian male phonetics under-
graduate student was recorded over approximately 60 h
(generally 2 h per recording session, but occasionally
longer, always on weekday afternoons) in 2011 and 2012
in the Alberta Phonetics Laboratory at the University of
Alberta. To help decrease effects of boredom and fatigue,
the speaker took as many breaks during the recording ses-
sion as he felt necessary. The speaker performed the record-
ings at the same time each day and if the speaker was sick
recordings were not performed that day.

All word and pseudoword recordings were made with
a single recording setup, which consisted of the same
Countryman E6 headset microphone with 0-dB flat cap,
powered by an Alesis MultiMix8 mixer/amplifier, and fed
to a Korg MR-2000S studio recorder. Digital recordings
were made with a sampling rate of 44.1 kHz and a bit
rate of 16. The speaker was seated within a WhisperRoom
sound isolation booth and read stimuli from a computer
monitor positioned outside of the booth on the other side
of a window. He was instructed to read words “as naturally
as possible”, and to read pseudowords as though they
were words. Words and pseudowords were presented one
at a time using E-Prime (Schneider et al., 2012). Words
appeared in their standard spelling as listed in CMU-A.
Pseudowords appeared in an IPA phonemic transcription
with stress indicated. Both word and pseudoword lists were
randomized and then sectioned into individual lists for the
recording sessions.

The speaker recorded all words over 15 sessions,
followed by the pseudowords in ten sessions. Words were
produced once each. Pseudowords were produced with at
least three repetitions (but taking care to avoid the sing-
song list intonation that often accompanies items produced
multiple times), so that the most fluent word-like production
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could be selected. An experimenter monitored the recording
for errors or disfluencies, noting problem items to be re-
recorded after completion of all the item sessions.

From the base word list of 28,510 words, 1709
words or 5.99% of the full list were excluded due to
mispronunciations, false starts, or disflunecies leaving
26,801 total words. Once all items were recorded and
verified, the Penn Forced Aligner (Yuan & Liberman, 2008)
was used to create a rough word-level alignment of each
item, and these were hand-corrected. The items were then
sectioned into individual sound files at zero-crossings, and
each was normalized to 70 dB mean intensity using Praat’s
Scale intensity function.

Sixty-seven sets of 400 words each were matched with
24 sets (“a” - “x”) of 400 pseudowords in a rotating fashion
to ensure that each word set appeared with at least two
different pseudoword sets. This resulted in a total of 134
randomized experimental lists each containing 800 items.

Itemmarkup

Both word and pseudoword phone level transcriptions were
time-aligned with the audio recordings once again using
the Penn Forced Aligner (Yuan & Liberman, 2008). For
words, a custom pronunciation dictionary was used, tailored
to include all words in the study, and including a number
of common pronunciation variants as well (where in each
case the closest variant to the acoustics of the recording
was selected by the aligner). For pseudowords, only the
specific pronunciation for that pseudoword was given to the

aligner for each item, except that multiple stress options
were provided for each vowel such that the aligner selects
the most appropriate stress assignments according to the fit
of the acoustics to its models. The aligner selected at most
one stressed vowel, and at most one secondarily stressed
vowel. Phone boundaries for both words and pseudowords
were then hand-corrected by trained phonetics research
assistants. The resulting TextGrid files (Praat (Boersma &
Weenink, 2011) text annotation files) are provided with each
stimulus recording, indicating the approximate start and end
points of each phone. Example audio files and TextGrids are
illustrated in Fig. 1.

Listeners

In this section, we describe the general listener character-
istics for the MALD data set. One response each for the
entirety of the items requires 67 experimental runs. For this
first phase of the MALD data, we collected a minimum of
four responses per item, which requires a minimum of 268
experimental sessions. While having only four responses
per item results in a data set that has low item power, this
criterion was selected to give us a base of responses for gen-
eral analysis of the lexicon. Item power will grow as further
collection is completed and additional data is added to the
dataset.

The listeners for MALD were 231 monolingual native
Canadian English speakers who completed 284 total
sessions. Listeners were recruited from the University of
Alberta, Department of Linguistics participant pool and
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Fig. 1 Sample alignments of one word and one pseudoword from the MALD stimuli. From top, waveform, spectrogram, original aligned phone
boundaries, item boundaries
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received course credit for their participation. Listeners were
permitted to participate up to three times, but never received
the same words or pseudowords.

The listeners were 180 females, 51 males, aged 17–29
(mean 20.11, SD 2.39). Listeners 30 and over were not
included in the present data set but will be included
in a later data set. Prior to the experiment, listeners
completed a demographic questionnaire, and received a
rudimentary audiometric evaluation (described below). The
questionnaire was used to sort participants into the relevant
databases (e.g., native monolingual listeners went into
the database described here), and the hearing evaluation
provides further listener data for distribution with the
database; it was not used in any way to exclude potential
listeners. Listener characteristics are described in the
analysis section below.

Experimental procedure

Each experimental session had three parts. First, a hearing
evaluation was conducted. We used a Maico MA25
audiometer to present a 20-dB SPL pure tone to each ear at
500, 1000, 2000, and 4000 Hz. The participant faced away
from the experimenter and equipment, and raised a hand to
indicate when they had heard the tone. We recorded whether
or not each tone was detected in each ear in the subject’s
background information.

Second, the participants began the automated auditory
lexical decision task in a noise-attenuating sound booth.
This was implemented using E-Prime 2.0 Professional
(Schneider et al., 2012) with a Serial Response Box,
both from Psychology Software Tools, Inc. Listeners were
presented with 400 words and 400 pseudowords (with very
slight qualifications to follow below) for each experimental
session. Lexical decision sessions lasted between 20 and
25 min. Stimuli were presented over MB Quartz QP805
headphones calibrated with a 1-kHz tone to a level of
81 dB (±1 dB). This level was intended to be loud but
comfortable and safe, roughly the level of a telephone dial
tone, enabling comparison with a future MALD release
currently being collected, which includes older listeners
with various degrees of hearing loss. The calibration of
the headphones was performed using a sound level meter
(EXTECH 407750) with a 2cc-coupler, which simulates the
resonant frequencies of the ear canal.

Each experimental session at the computer began with
a set of background questions, responded to by the par-
ticipant. Listeners were then provided with brief instruc-
tions where they were asked to decide whether a given
item was a word of English, and to press a button with
their dominant hand to select “word”, and with their non-
dominant hand to select “not a word”. No feedback was
provided during the experiment. Each trial was preceded by

a 500-ms “+” fixation mark at screen center, and partici-
pants were given 3000 ms from stimulus onset to respond
(mean stimulus duration = 582.15 ms; SD = 136 ms).
Third, following completion of the experimental block,
each listener provided additional demographic and language
background information orally to the experimenter.

The stimulus presentation software E-Prime (used
here to provide millisecond accuracy in response timing
(Schneider et al., 2012)) operates only under Windows
operating systems. The case-insensitivity of the Windows
environment resulted in sound-file naming conflicts for
eight-word/pseudoword pairs whose WAV files were spelled
with the same letters (words “brown”, “flaws”, “flows”,
“gray”, “owl”, “pays”, “says”, “shawl”; and pseudowords

,
respectively). Although both members of each pair were
intended to be presented in their corresponding word and
pseudoword lists, only the word member was presented in
both cases. This has resulted in these eight words being
represented more frequently than the other words in the
data set, and these eight pseudowords were not presented
at all. For this reason, a small number of experimental runs
contained slightly more than 400 words, and slightly fewer
than 400 pseudowords.

Dataframe

A broad range of questions can be immediately addressed
with the data provided in MALD, including questions
germane to language processing lexical access, auditory
perception, acoustic cue weighting (production and per-
ception), individual variation, and the interactions of all
of these. In what follows, we present a description of the
information available in the final data files and some sum-
mary properties of the listeners, items, and responses. We
then present two sample analyses investigating effects of
frequency and modality on word recognition.

The MALD data frame contains listener data, item
data, and the collected response data. Here we provide
descriptions of all the compiled variables of each data type.
Where appropriate, we also provide means and standard
deviations. Variables marked with an asterisk (*) are
included mainly for comparison with other data sets such as
extensions of MALD which are currently being collected.
These variables may be homogeneous throughout this data
set, e.g., NativeLang, which has only the value “English”
for this MALD release.

Listeners

This data set contains summary information about each
participant. In addition to the data included in MALD, nine
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of 256 experimental runs (from eight unique listeners) were
excluded due to poor accuracy (<60% for all items). The
list below provides descriptions of the individual variables.
Table 1 provides a summary of the numeric variables and
their distributions.

Subject: The listener’s identifier. These are not ordered
or consecutive.

NumSess: The number of experimental sessions the
listener participated in. Listeners were permitted to
participate up to three times. Eight (3%) subjects
participated three times; 37 (16%) subjects participated
twice; and 186 (81%) subjects participated only once.

Age: The listener’s age at first participation. The mean
age for subjects was 20.11 and the standard deviation was
2.39 years.

Sex: The listener’s self-reported sex. Females: 180
(78%); males: 51 (22%).

Handedness: The listener’s dominant hand. This was
also the hand that the listener used to indicate words.
Left-handed: 26 (11%); right-handed: 205 (89%).

HearingScore: a four-digit indicator of the listener’s
hearing evaluation results, with each digit indicating
detection results at 20 dB SPL at 500 Hz, 1 kHz, 2 kHz,
and 4 kHz, respectively. “0”: neither ear was able to
detect the tone; “1”: detected the tone only in the left ear;
“2”: detected the tone only in the right ear; “3”: detected
the tone from both ears. For example, “3333” indicates
the listener was able to detect tones of all four frequencies
in both ears; “3032” indicates that the listener did not
detect the 1-kHz tone in either ear, and detected the 4-
kHz tone only in the right ear. Among our listeners, 216
(94%) detected all four tones from both ears; 15 (6%) had
some degree of hearing loss evident from our screening.

Table 1 Min, max, mean, and standard deviations of some listener
variables

Measure Min Max Mean SD

Background

Age 17 29 20.11 2.39

EducationLevel 1 8 2.26 1.39

YearsInCan 11 29 19.96 2.46

Performance

Hits 0.67 0.99 0.9 0.05

FalseAlarms 0.02 0.68 0.16 0.13

Dprime 0.86 3.35 2.47 0.47

Beta 0.002 9.73 0.86 1.37

ACCRate 0.66 0.9525 0.87 0.06

MeanRT (ms) 791.98 1352.68 1015.68 111.01

WordMeanRT (ms) 708.73 1251.7 946.22 91.47

PwordMeanRT (ms) 806.18 1576.17 1097.82 151.56

EnglishProficiency*: The listener’s English profi-
ciency as rated by the experimenters impressions of the
listeners’ English abilities. “1”: beginner – “5”: native.
This variable is included mostly for comparison with
nonnative listener data in the future, as all listeners were
native English monolinguals.

EducationLevel: The listener’s number of years
history attending university. The mean education level
was 2.26 and the standard deviation was 1.39.

NativeLang*: The listener’s self-reported native lan-
guage or languages.

Table 2 Min(imum), max(imum), mean, and standard deviations (SD)
of selected item variables

Measure Min Max Mean SD

Duration(ms)

Words 186 1347 578.81 136.95

Pseudowords 160 1224 591.49 132.87

NumSylls

Words 1 9 2.52 1.11

Pseudowords 1 7 2.54 1.03

NumPhones

Words 1 17 6.7 2.34

Pseudowords 1 17 6.93 2.23

NumMorphs

Words 1 6 1.76 0.73

PhonUP

Words 2 18 6.55 2.05

Pseudowords 2 10 4.66 0.92

OrthUP

Words 2 19 7.67 2.23

PhonND

Words 0 240 12.96 25.92

Pseudowords 0 207 5.86 14.63

OrthND

Words 0 77 5.05 8.55

PhonLev

Words 5.45 15.08 7.02 1.27

Pseudowords 5.56 15.01 7.1 1.26

OrthLev

Words 6.15 15.17 7.78 1.24

FreqSUBTLEX

Words 0 2,134,713 1612 27,394

FreqCOCA

Words 0 13,780,893 8271 132,339

FreqCOCAspok

Words 0 2,694,449 1890 30,508

FreqGoogle

Words 0 2.3e+10 1.8e+07 2.3e+08
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OtherLangs: Any languages other than English that the
listener speaks or has studied.

OtherLangProficiencies: Self-ratings of profi-
ciency in each of the listener’s OtherLangs. “1”: beginner
– “3”: advanced.

LangAtHome*: The languages used around the home
during the listener’s childhood.

GrewUpWestCan*: Whether the listener grew up in
Western Canada.

YearsInCan*: The number of years the listener has
lived in Canada. 13 listeners (6%) have a somewhat
smaller number of years in Canada than their age due to
having lived abroad for some period.

CountryRegion*: The listener’s country of residence.

Hits: The proportion of word stimuli the listener
correctly identified as words. The mean was 0.9, and the
standard deviation was 0.05.

FalseAlarms: The proportion of pseudoword stimuli
the listener incorrectly identified as words. The mean was
0.16, and the standard deviation was 0.13.

Dprime: The Signal Detection Theoretic (SDT) d′
score (Pastore & Scheirer, 1974; Abdi, 2007) for the
listener. This is a measure of how well the listener
discriminated words from pseudowords, measured in
standard deviations, and taking into account any bias. The
mean was 2.47, and the standard deviation was 0.47.

Beta: The SDT bias toward “word” (positive values) or
“pseudoword” (negative values) responses the listener
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Fig. 2 Density plots for item syllable counts, durations, phonological uniqueness points, phone level neighborhood densities, and phone level
mean Levenshtein distances for words and pseudowords
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displayed. The mean was 0.86, and the standard deviation
was 1.37.

ACCRate: The accuracy rate over all items (words and
pseudowords).

MeanRT: The listener’s mean response time in millisec-
onds.

WordMeanRT: The listener’s mean response time in
milliseconds for words.

PwordMeanRT: The listener’s mean response time in
milliseconds for pseudowords.

Items

Below we describe the item-level information bundled with
the MALD release. Fields marked with a dagger (†) apply
only to word items. A summary table of some of the numeric
features can be found in Table 2. Figure 2 compares some of
the similarities and differences between properties of words
and pseudowords for several of the item variables.

Item: The word or pseudoword identifier.
WAV: The name of the sound file.
Pronunciation: Transcription of the item phones in

the Arpabet transcription scheme.
IsWord: Whether the item is a word or pseudo-word.
StressPattern: The stress pattern of the word.
StressCat: The stress category of word items. The

category indicates which syllable the primary stress
of the word is associated with. “Medial” indicates
the word has primary stress in the interior syllables
of the word rather than the initial or final syllable;
“multiple” indicates the word has multiple primary
stresses; “secondary only” indicates the word has only
secondary stress identified by CMU-A; and “none” items
have all syllables listed as unstressed. The different stress
categories and the number of items for each category can
be found in Table 3.

NumSylls: The number of syllables in the item.
NumPhones: The number of phones in the item.
Duration: The duration of the item in milliseconds.

The average duration of all items is 582.15 ms and the
standard deviation is 136 ms. The range of durations is

Table 3 Stress patterns for words

Pattern Frequency

Initial 17908

Medial 6580

Final 2089

Multiple 192

SecondaryOnly 5

None 14

160 ms to 1347 ms. As might be expected, words were
produced with a slightly shorter duration (−12.68 ms)
on average than pseudowords. The speaker is a trained
phonetician, however, and the word/pseudoword effect
on durations is small (R2

(w,pw) = 0.0017).
PhonUP: The phone index of the phonological unique-

ness point of the item within the CMU-A dictionary. The
index tells which sound within the word distinguishes
it from all other words. An index one greater than the
number of phones is assigned if even the final sound
of the item does not make it unique, e.g. ‘abandon’

has 7 phones, but even the final phone does
not yet distinguish it from ‘abandoned’ , so
the phonological uniqueness point of ‘abandon’ is given
as 8. The mean uniqueness point phone position is 6.6
(SD: 2.1) for words and 4.7 (SD: 0.92) for pseudowords.

OrthUP†: The letter index of the orthographic unique-
ness point of the item within the CMU-A dictionary. This
is computed as for PhonUP.

PhonND: The number of phonological neighbors
(defined as one phone edit away) for the item within the
CMU-A.

OrthND†: The number of orthographic neighbors (one
glyph edit away) for the item within the CMU-A.

PhonLev: Mean phone-level Levenshtein distance (Lev-
enshtein, 1966) of the item from all entries in CMU-A.
The orthographic version of this metric is shown in
Yarkoni et al. (2008) to have several advantages over the
traditional neighborhood density scores in accounting for
lexical competition effects. We compute it here also for
phones.

OrthLev†: Mean orthographic Levenshtein distance of
the word items from all entries in CMU-A.

POS†: The frequency-dominant part-of-speech of the
orthographic form of words according to SUBTLEX-US
(Brysbaert et al., 2012). A summary of the distribution of
the POS tags in the corpus are provided in Table 4.

AllPOS†: All parts-of-speech of the orthographic word
form, in order of decreasing frequency, as given in
SUBTLEX-US.

NumMorphs†: The number of morphemes as parsed
by the PC-Kimmo two-level morphological parser
(Antworth, 1995) and the Englex English morpheme sets
(Antworth, 1994). It should be noted, however, that the
1200 noun–noun compounds incorporated in the item
set are mostly analyzed as single morphemes by this
parser. A summary of the distribution of the number of
morphemes can be found in Table 5.

FreqSubtLex†: The frequency of the orthographic
word form within the SUBTLEX-US corpus (Brysbaert
et al., 2012), summing all parts of speech.

FreqCOCA†: The frequency of the word form within the
COCA corpus (Davies, 2009).
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Table 4 Summary properties of different parts of speech in MALD. Response times are for correct responses only

POS ItemCount ItemPerc meanACC sdACC meanRT sdRT

Adjective 4031 15.0% 0.900 0.300 955 299

Adverb 994 3.7% 0.928 0.258 967 305

Function 174 0.6% 0.892 0.310 898 267

Interjection 29 0.1% 0.865 0.343 956 355

Name 384 1.4% 0.811 0.392 986 351

Noun 13245 49.4% 0.909 0.288 940 296

Number 65 0.2% 0.936 0.244 955 305

Verb 6143 22.9% 0.928 0.259 928 287

NA 1728 6.4% 0.756 0.430 1096 375

FreqCOCAspok†: The frequency of the word form
within the spoken language subset of the COCA corpus
(Davies, 2009).

FreqGoogle†: The frequency of the word form within
the Google Unigram corpus (Michel et al., 2011).

Figure 2 illustrates that for some of the variables,
like Syllable, the words and pseudowords are very
similar in their distributions. However, for variables like
Duration the pseudowords are slightly, but significantly
longer than the words. This is inevitable for naturally spoken
pseudowords in a study of this scale. For Uniqueness
Point the pseudowords have an earlier uniqueness
point than words, which may be due to the lack of
morphologically related competitors in the dictionary for
pseudowords.

Another way to compare the words is to investigate
the distribution of individual phonemes across the sets of
words. Table 6 indicates individual phones and the count
of the occurrence and percentage of the total of those
phones in both the word and pseudoword lists. It can be
seen that the distribution of phones is largely similar across
both lists. The process Wuggy uses appears to reliably
maintain the relative phone frequencies. One difference
of note is that does not occur in the pseudowords
as a transcribed phoneme. It does occur, however, in the
pseudowords as the sequence , which would help
account for the higher percentage of and in the
pseudowords. We also note that there is no occurrence of

in the pseudowords. The merger is a feature
of the Western Canadian English dialect, and our speaker
does not produce the distinction. However, the CMU-A

Table 5 Number of morphemes in word items

Number of morphemes 1 2 3 4 5 6

Number of words 9776 11,571 2912 408 38 1

transcriptions do distinguish the two sounds, thus the words
reflect this vowel in their transcriptions.

Responses

The final data set contains the trial-by-trial responses
merged with the Listener and Items data sets. The list below
only contains the columns not already described in the
previous two data files, with Item and Subject repeated
as the identifier variables across the three data sets.

Experiment*: “MALD1 sR” is the identifier for this
release of MALD.

Trial: The trial number within the experimental ses-
sion.

Session: The experimental session of the item.
List: The list identifier (the word list or pseudoword list)

from which the item came. Each word list appeared in
two different sessions in order to pair the words with two
different pseudoword lists.

WordRunLength: The number of consecutive words
or pseudowords in a row at the point of this trial
in the experiment. For example, “1” indicates there
was a word/pseudoword switch at this item, and “3”
indicates this is the 3rd word or pseudoword in a
row. Word/pseudoword item selection was randomized,
making long runs of words or pseudowords possible.
The average word run length was 1.99 and the standard
deviation was 1.4. The run lengths followed the expected
geometric distribution.

ExperimentRunID: A unique identifier for this partic-
ular experimental run (subject + session combination).

RT: Response time in milliseconds measured from item
onset. The average response time is 1016.96 ms and the
standard deviation is 345.02 ms.

ACC: Accuracy of the response where TRUE is a correct
response and FALSE is an incorrect response. The
average response accuracy is 87.37% and the standard
deviation is 33.22%.
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Table 6 Total phone token counts and percentages, in words and in
pseudowords

IPA Arpabet Word Pword

AA 3183 (1.77%) 1366 (2.05%)

æ AE 4220 (2.35%) 1393 (2.09%)

AH 17268 (9.61%) 8065 (12.13%)

AO 2034 (1.13%) 0 (0.00%)

AW 784 (0.44%) 448 (0.67%)

AY 2716 (1.51%) 1308 (1.97%)

b B 3673 (2.05%) 1847 (2.78%)

CH 1062 (0.59%) 654 (0.98%)

d D 7791 (4.34%) 2386 (3.59%)

DH 144 (0.08%) 97 (0.15%)

ε EH 5187 (2.89%) 2615 (3.93%)

ER 5491 (3.06%) 0 (0.00%)

EY 3599 (2.00%) 1023 (1.54%)

f F 3112 (1.73%) 991 (1.49%)

g G 2050 (1.14%) 967 (1.45%)

h HH 1326 (0.74%) 589 (0.89%)

IH 11777 (6.56%) 4357 (6.55%)

i IY 6171 (3.44%) 2157 (3.24%)

d3 JH 1387 (0.77%) 378 (0.57%)

k K 8416 (4.69%) 3515 (5.29%)

l L 9802 (5.46%) 3336 (5.02%)

m M 5559 (3.10%) 2017 (3.03%)

n N 12013 (6.69%) 4624 (6.95%)

NG 2817 (1.57%) 1114 (1.68%)

OW 2451 (1.36%) 845 (1.27%)

OY 268 (0.15%) 14 (0.02%)

p P 5655 (3.15%) 1713 (2.58%)

R 9593 (5.34%) 4512 (6.78%)

s S 11484 (6.39%) 4614 (6.94%)
∫

SH 2373 (1.32%) 913 (1.37%)

t T 12532 (6.98%) 3964 (5.96%)

θ TH 616 (0.34%) 124 (0.19%)

UH 481 (0.27%) 125 (0.19%)

u UW 1842 (1.03%) 618 (0.93%)

v V 2363 (1.32%) 923 (1.39%)

w W 1621 (0.90%) 695 (1.05%)

j Y 1068 (0.59%) 279 (0.42%)

z Z 5511 (3.07%) 1874 (2.82%)

3 ZH 165 (0.09%) 43 (0.06%)

Response summary

The data set contains 227,179 total responses, from all
listeners, including words and pseudowords. Of these
responses, participants were on average 87.37% accurate
with a standard deviation of 33.22%. When words are
considered separately, the mean accuracy is 90.12%

with 29.84% for the standard deviation. The mean
accuracy for pseudowords was 84.62% and the standard
deviation 36.07%. As expected, these averages indicate that
participants were more accurate for the words than for
the pseudowords. Participant mean response latencies were
1017 ms with a standard deviation of 345.02 ms. When
words are considered separately, the mean response latency
is 950.91 ms with 303.9 ms for the standard deviation.
The mean accuracy for pseudowords was 1083.12 ms and
the standard deviation 370 ms. As expected, these averages
indicate that participants were faster to respond to words
than to pseudowords.

Figure 3 provides a brief summary of the accuracy and
response latency responses. The figure on the left illustrates
individual participants plotted for the accuracy to the words
against their pseudoword accuracy. This plot indicates that
there is a general cluster of participants in the upper right,
where we would expect participants that were generally
accurate for both the words and pseudowords. This plot also
illustrates that there were participants who had relatively
high accuracy for words or pseudowords and relatively
low accuracy for the other. The second plot in this figure
illustrates the distribution of response latencies for both
words and pseudowords. Here, as would be expected from
the body of literature, we see that words are responded to
faster than pseudowords, and that the deviation from the
mean is also smaller.

Example analyses

Large datasets such as MALD enable certain analyses which
are out of scope of smaller, targeted experiments. In the
remainder of this section, we present the results of four
such analyses. First, we look at frequency, a major factor
in lexical decision tasks, and compare frequency estimates
from various sources in their ability to predict participant
accuracy and response latencies. Second, we draw from
two megastudies, MALD and English Lexicon Project, to
investigate differences in effects various predictors have
in the auditory versus the visual modality. Third, we
briefly describe one published study which makes use of
the MALD dataset (Schmidtke et al., 2018) to investigate
the processing of compound words. Finally, we briefly
summarize the results of a replication of Goh et al. (2016)
using the MALD stimuli.

Corpus frequency comparison

In our first example, we examine the effects of frequency
in the MALD data and investigate how predictive individual
corpora are for the MALD data. Frequency is one of
the most robust effects in psycholinguistic research. In
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Fig. 3 Left: accuracy rates by listener, for words and pseudowords (listeners with total accuracy below 60% were excluded); Right: response
latency density functions of words and pseudowords

these studies, researchers employ some corpus count to
approximate the relative ambient exposure of selected items,
and this predicts a good portion of the variance in how
fast listeners respond to those items. The nature of this
frequency effect, however, is not well understood. We
compared frequency counts compiled from three large US
English corpora: the Google Unigram corpus (Michel
et al., 2011), the Corpus of Contemporary American English
(Davies, 2009); which was divided into two corpora: the
full corpus (COCA), and the subset containing only spoken
materials (COCAspok), and a movie subtitle corpus of
American English (Brysbaert et al., 2012, SUBTLEX-US).

We used linear mixed-effects modeling to compare the
frequency effects from the various corpora on modeling
the MALD data (Baayen et al., 2008). We created
baseline models of the response latencies for correct
responses and the accuracy for words. In these models,
we did not explore any potential interactions. We included
the following control predictors: PhonND, PhonUP,
Duration, Trial and WordRunLength. All of the
predictors were scaled (with their center at 0) and all but
Trial and WordRunLength were logged for normality
in their distributions. We added 1 to each frequency
value and PhonND to ensure nonzero values for the
logarithmic transform. We included random effects for
Subject and Item with random slopes for PhonND,

Table 7 AIC goodness-of-fit ratings for the word frequency models
yielded by counts from various corpora

Model AIC RT AIC ACC

Baseline −13956.00 66843.82

Google −16280.46 61692.71

COCA −16479.90 61240.61

COCAspok −16390.59 61120.17

SubtLex −16477.47 60548.80

Duration, Trial and WordRunLength by Subject
in the response latency model. Random slopes that did not
significantly improve the model fit were not included in
the model. We tested Age and Sex as control variables in
the baseline model but they were not statistically significant
predictors and were excluded in subsequent models. In the
accuracy model, partly due to the fact that there were so
few responses per item and to help address convergence
issues, we did not include Item as a random effect, or
random slopes. We then created four separate models,
each expanding the baseline model by including one of
the frequency measures. Models with the lowest Akaike
Information Criterion (AIC; Akaike (1973)) are the models
providing the strongest fit to the data. Table 7 consists of the
AICs for each corpus or corpus subset.

The results of the frequency corpus comparison indicate
different results depending on the dependent variable
analyzed. The models were statistically compared to one
another using ANOVA. All within variable comparisons
were significant except for the comparison of SubtLex
and COCA in the response latencies. The response latency
comparisons indicate that the AIC for the subtitle-based
corpus, SubtLex, and COCA provided the best fit to

Table 8 Results of the model using COCA frequency

Estimate Std. error t value

Intercept 6.894 0.007 1042.111

Duration 0.073 0.001 54.202

COCA −0.074 0.002 −34.622

PhonND 0.015 0.001 11.399

Trial −0.022 0.002 −10.877

PhonUP −0.012 0.001 −12.219

WordRunLength −0.011 0.001 −10.584

Note all numeric predictors have been scaled
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the data. The results of the linear mixed-effects model
for response latencies using the COCA frequency-based
measure can be found in Table 8. The other models are
essentially identical to this one. In the accuracy models, we
find that COCAspok is more predictive than COCA, though
SubtLex provides the best overall fit. In all cases Google
provided the worst fit to the data.

By way of further comparison, we have also provided a
correlation matrix of the four frequency measures in Table 9.
This table indicates that there is a strong relationship
between SubtLex and COCAspok, which squares with the
similar content of the two corpora. COCA and COCAspok
are understandably strongly correlated as COCAspok is
a subset of COCA. Interestingly, the correlation between
COCA and SubtLex is weaker than most of the other
correlations even though they equally account for the
latency data. We suspect that this may be due to the fact
that each corpus captures different genres of language
better. We also suspect that the reason both subtitle corpora
(COCAspok and SubtLex) perform better in the accuracy
models is that they better represent the lexicon that most
participants are familiar with and use in their day-to-day
interactions.

Comparison of auditory and visual lexical decisions

Although both visual and auditory word processing
literatures are longstanding and developed (e.g., visual:
Forster (1976), Coltheart et al. (1977), Forster et al. (2003),
and Balota et al. (2006); auditory: (Jusezyk & Luce, 2002;
Smits et al., 2003; Cutler, 2012)), there is surprisingly little
direct comparison of the two modalities. There may be a
great deal of shared architecture in the systems involved in
both types of recognition (Bradley & Forster, 1987), but
(Taft, 1986), (Goh et al., 2016) and (Ferrand et al., 2017) are
the only behavioral studies we were able to uncover which
compare the two modalities directly (though see Chee et al.
(1999) and Rayner and Clifton (2009), for neuroimaging
studies). Large visual databases have existed for some time,
and now with the addition of MALD, these auditory/visual
comparisons are quite accessible.

In the comparison that follows, we explore how the
patterns of duration, word frequency, neighborhood density,

Table 9 Correlation matrix of the four frequency variables calculated
from the different corpora

Google COCA COCAspok SubtLex

Google 1

COCA 0.974 1

COCAspok 0.926 0.967 1

SubtLex 0.695 0.75 0.861 1

uniqueness point, trial number, and word run length might
differ between the modalities. In addition, we compare
whether phonological neighborhood density (as computed
with phone-level representations of the words and the
dictionary entries) differs from orthographic neighborhood
density in their fit to the data (corrphonND,orthND = 0.73).
Since the two neighborhoods are computed in dimensions
that are tailored to the two styles, a portion of the
competition effects might be better represented in the
respective units. On the other hand, since competition
effects are presumed to be a property of the organization of
a single lexicon employed in both reading and listening, it
might be expected that one or the other of the ND measures
would better model this property of the lexicon and produce
better model fits for both modalities.

We subsetted the MALD and the visual lexical decision
portion of the English Lexicon Project (Balota et al. 2007,
henceforth “ELP”) data sets to include only word items
common to both corpora (25,389 unique words, including
95% of MALD words, and 63% of ELP words). Before
merging the two data sets, we computed word run length
(recall that this is the number of words or pseudowords that
occurred in a row at the point of the item) for ELP, and in
both corpora we excluded responses faster than 200 ms or
slower than 3000 ms, and included only correct responses
for our response latency analysis. The resulting data set
contained 97,069 MALD responses from 231 subjects and
750,299 ELP responses from 815 subjects. Apart from the
size differences, it should be noted that although we are
comparing only the words the two corpora had in common, the
pseudoword sets used in the two experiments were different.

We performed subtractive nested AIC goodness-of-fit
tests for linear mixed effects models of response time,
comparing models using phonological neighborhood den-
sity with those using orthographic neighborhood density,
and comparing global models including both corpora with
individual models for each corpus. The models are aimed
at comparing the two perception modalities and the two
measures of lexical competition.

All variables in the models were natural log transformed
to more normally distribute their residuals with respect
to the response times, and then converted to z-scores for
comparable scaling across the variables, with the exception
of Trial and WordRunLength which were scaled
only. As before we smoothed both PhonND and COCA
frequencies by incrementing by 1, to shift the variable
ranges into the domain of the log transform.

Since we are interested in the differences between the
two modalities, we included interaction terms between
Corpus and Duration (the duration of the stimulus
recording in the auditory experiment), COCA (COCA corpus
frequency - as this provided the best fit in the previ-
ous latency analysis), PhonND (phonological neighborhood
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density), and PhonUP (phonological uniqueness point).
Additional control variable fixed effects were also included
for Trial and WordRunLength. Random intercepts
were included for Item, as well as random intercepts for
Subject with slopes for COCA and PhonND. Additional
slopes by subject or item became computationally infea-
sible, and were not critical to our intended comparisons.

The planned model comparison procedure was to
remove fixed interactions and then fixed effects, selecting
at each point the more parsimonious model unless the
model with additional parameters was significantly better
fitting (by anova model comparison in R; all lmer
models were fit by maximum likelihood to enable this
comparison) as indicated by the AIC. In this case,
the fully specified model, with all the aforementioned
interactions, was by far the best fitting, several hundred AIC
points lower than the next best model (lower AIC values
index better model fit). Additionally, the phonological
neighborhood density (PhonND) provided the best fit
to the data in both the omnibus model (AICphonND =
1,911,609; AICorthND = 1,911,897) as well as the two
individual corpus models (auditory data set: AICphonND =
177,040.2, AICorthND = 177,149.2 ; visual data set:
AICphonND = 1,721,626, AICorthND = 1,722,601). This
suggests that even in the visual word recognition modality,
competition effects may be phone-based rather than glyph-
based. Since the phonND models were the best fitting in all
cases, we present only results from models with that variety
of neighborhood density variable.

Table 10 presents the parameter estimates for the
omnibus model comparing the auditory and visual lexical
decision data. Separate models were also fit for each
corpus, and corroborate the patterns shown here. The effect
of corpus reveals that auditory lexical decision is slower

Table 10 Results of the model comparing both corpora. Note all
numeric predictors have been scaled

Estimate Std. error t value

Intercept −0.058 0.016 −3.530

MALD 0.638 0.035 18.316

Duration 0.072 0.002 30.364

COCA −0.242 0.003 −88.763

PhonND −0.076 0.003 −22.334

PhonUP 0.040 0.002 18.069

Trial −0.044 0.001 −50.408

WordRunLength −0.070 0.001 −86.845

MALD:Duration 0.134 0.003 38.499

MALD:COCA 0.120 0.005 23.512

MALD:PhonND 0.116 0.006 18.883

MALD:PhonUP −0.078 0.003 −24.171

on average than visual lexical decision (mean RTMALD

= 940 ms; mean RTELP = 759 ms). Longer stimulus
duration recordings, and items with later uniqueness points
also produced longer response times overall. Later trials,
however, as well as longer word run lengths (with the latter
effect several times larger than the former) resulted in faster
responses. Higher-frequency items, and items from higher
density neighborhoods also had faster responses on average.
In the interactions by corpus, stimulus recording duration
has a much larger effect in MALD than for ELP, which
squares with the fact that MALD is the only corpus in
which the recordings were actually presented. The effect
of duration in ELP is mediated by the correlation of the
number of letters in the word with the length of the spoken
word, weakening the association by some measure. The
facilitation afforded by frequency appears to be nearly twice
as much in the visual domain as in the auditory domain, as is
the effect of neighborhood density. Surprisingly, the effect
of uniqueness point is also somewhat larger in the visual
domain.

Conceptual relations of compounds

Schmidtke et al. (2018) investigate the effect of competing
conceptual relations in the recognition of compound words.
In experiment 2, the authors explore these effects in the
auditory domain using 412 English compounds from the
MALD dataset and in experiment 3 they make use of
an auditory compound lexical decision dataset with 426
English compounds. In the analyses of both datasets they
find effects of the entropy of conceptual relations (effect
sizes of 56 ms and 37 ms, respectively). They also found
no effect of family size for these items. Interestingly,
they find different effects for Left-Whole and Right-Whole
semantic similarity. The authors attribute this difference to
the fact that in the MALD dataset the compound words
are mixed in with many non-compound words while the
dataset in experiment 3 is exclusively compounds (words
and pseudowords).

Replication of semantic richness effects

In the final example, we show how MALD recordings can
be used as stimuli in creating targeted experiments and
how MALD data set corresponds to yet another targeted
experiment’s findings. We extracted all of the items from
the Goh et al. (2016) study which overlapped with the
items in the MALD dataset, 442 nouns, and selected
a random sample of 442 MALD pseudowords. We ran
a separate experiment with an additional group of 25
English speaking participants with only these items from
the MALD recordings. Our analysis was an attempt to
replicate the procedure described in Goh et al. (2016), in
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which hierarchical linear regression was used on reaction
times that were z-scored per participants and then averaged
by item. The results showed that the same hierarchical
model (out of four tested) was the best fit to the data in
both studies. For semantic richness variables, we gathered
the same measures as those used by Goh et al. (2016):
concreteness (Brysbaert et al., 2014), valence and arousal
(Warriner et al., 2013), number of features (McRae et al.,
2005), semantic neighborhood density (Shaoul & Westbury,
2010), and semantic diversity (Hoffman et al., 2013).
Identical patterns of significance and effect direction were
noted for all semantic richness variables. The effects
reported were largely replicated. For lexical predictors,
same patterns were observed for duration, frequency,
phonological uniqueness point (non-significant), and a
structural principal component (consisting of phonological
neighborhood density, phonological Levenshtein distance,
number of phones, and number of syllables). the only
exception was number of morphemes, which was not
significant in our replication, but was significant in the
Goh et al. (2016) study (note however that the effects
of this variable were unstable, and non-significant in the
semantic categorization experiment conducted as part of
the same study). For semantic richness variables, identical
patterns of significance and effect direction were noted for
all variables (concreteness, valence, number of features,
semantic neighborhood density, and semantic diversity). We
did not see a significant improvement in the model when
quadratic valence was added to the model. The Table 11 in
the appendix contains the coefficients from the analyses.

General discussion

In this paper, we have described the methods and
characteristics of the first release of MALD and have
illustrated some basic questions that can be investigated
using the data set. It provides formidable subject-level
and item-property-level (e.g., frequency) statistical power,
and as further data is collected, item-specific power (i.e.,
how listeners recognize specific individual words) will be
solidified as well.

As an illustration, we performed three sample analyses
using the MALD data set or MALD stimuli and summarized
another study which has already made use of the MALD
dataset. The first analysis investigated four different
sources of calculating frequency. Our findings were in line
with other research, and indicated that a subtitle-based
frequency count (SUBTLEX) best explains the frequency
effects on response times, even when compared to a
balanced corpus like COCA or the spoken subset of COCA,
which both should have similarity to the subtitle corpus.
This corroborates the findings from Ernestus and Cutler

(2015). In the second analysis, we compared the data
from MALD to the data from the ELP with several
standard statistical predictors. In the comparison of auditory
lexical decision to visual lexical decision we were able
to replicate the general findings of neighborhood density
for both visual and auditory modalities, where dense
neighborhood words are recognized more rapidly. We also
found that phonological neighborhood density, rather than
orthographic neighborhood density, better predicts not only
the auditory lexical decision results but also the visual
lexical decision data. The results from both of these
analyses deserve more detailed exploration. The fourth
analysis successfully replicated an existing study using
the MALD stimuli. We believe that they provide inviting
demonstrations of some of the research that can be done
with these datasets.

As with any single task methodology, there are limita-
tions to auditory lexical decision. However, since such a
large body of the literature has employed this task, we feel
that this is a reasonable place to begin, with the hope that
researchers will expand such endeavors to other tasks. We
also recognize that there is a bias in language processing
research toward visual materials, not only in the megas-
tudies that are available but also more generally (Jarema
et al., 2015). We hope that by making this data set available,
more researchers who might otherwise avoid investigations
of speech will expand their domains of interest, and we
encourage other speech and psycholinguistic researchers to
consider what other theoretically significant but underde-
veloped areas of psycholinguistic theory might benefit from
megastudies of their own, such as conversational speech
(Tucker & Ernestus, 2016).

Availability The corpus is available publicly and can be
downloaded here: http://mald.artsrn.ualberta.ca/

As previously noted, data collection for MALD is
ongoing and will be continually updated on the public
website as more data is available. The data sets will be
associated with version numbers so that when the current
version of MALD1 (v1.0) is updated with additional data
the version number can be used to indicate which version of
the data has been used.

In the spirit of open science, we encourage researchers
who calculate other variables for the data set as part of their
research to share them with us so that we can add them to
future MALD versions. We also encourage researchers who
design experiments using the MALD stimuli to share their
data publicly.
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Appendix

Table 11 Standardized regression coefficients for item-level hierarchi-
cal regression analyses from the replication of Goh et al. (2016)

Model 1: Lexical variables (Control)

Word duration 0.00***

log subtitle word freq −0.07***

Phonological UP 0.03

Structural principal component −0.14**

Num. of morphemes −0.02

Adjusted R2 0.2871***

Model 2: Semantic richness variables

Concreteness −0.34***

Valence −0.05**

Arousal −0.03.

Number of features −0.01**

Semantic neighborhood density 0.12

Semantic diversity −0.11

�R2 0.0671***

Model 3: Quadratic valence

Valence2 0.01

� R2 −0.0015

Model 4: Valence × arousal

Valence × arousal −0.01

Arousal × valence2 0.00

� R2 −0.0031
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A., . . . , Pallier, C. (2010). The French Lexicon Project: lexical
decision data for 38,840 French words and 38,840 pseudowords.
Behavior Research Methods, 42(2), 488–496.

Forster, K., Mohan, K., & Hector, J. (2003). Masked priming: State
of the art (pp. 3–37). New York: Psychology Press Ch, The
Mechanics of Masked Priming (Ch. 1).

Forster, K. I. (1976). Accessing the mental lexicon. In Wales, R. J.,
& Walker, E. (Eds.) New approaches to language mechanisms,
(pp. 257–287). Amsterdam: A collection of psycholinguistic
studies.

Forster, K. I. (2000). The potential for experimenter bias effects in
word recognition experiments. Memory & Cognition, 28, 1109–
1115.

Goh, W. D., Yap, M. J., Lau, M. C., Ng, M. M. R., & Tan, L.-C.
(2016). Semantic Richness Effects in Spoken Word Recognition:
A Lexical Decision and Semantic Categorization Megastudy.
Frontiers in Psychology 7. https://www.frontiersin.org/articles/10.
3389/fpsyg.2016.00976/full

Hoffman, P., Ralph, M. A. L., & Rogers, T. T. (2013). Semantic
diversity: a measure of semantic ambiguity based on variability in
the contextual usage of words. Behavior Research Methods, 45(3),
718–730.

Ioannidis, J. P. (2005). Why most published research findings are false.
PLos Med, 2(8), 0696–0701.

Jarema, G., Libben, G., & Tucker, B. V. (2015). The integration
of phonological and phonetic processing: a matter of sound
judgment Jarema, G., & Libben, G. (Eds.) Benjamins Current
Topics (Vol. 80, pp. 1–14). Amsterdam: John Benjamins Pub-
lishing Company. https://doi.org/10.1075/bct.80.002int. https://
benjamins.com/catalog/bct.80.002int

Jusezyk, P. W., & Luce, P. A. (2002). Speech perception and spoken
word recognition: past and present. Ear and Hearing, 23(1), 2–40.

Keuleers, E., & Balota, D. A. (2015). Megastudies, crowdsourcing, and
large datasets in psycholinguistics: An overview of recent develop-
ments. The Quarterly Journal of Experimental Psychology, 68(8),
1457–1468. https://doi.org/10.1080/17470218.2015.1051065

Keuleers, E., & Brysbaert, M. (2010). Wuggy: A multilingual
pseudoword generator. Behavior Research Methods, 42(3), 627–
633. http://link.springer.com/article/10.3758/BRM.42.3.627

Keuleers, E., Diependaele, K., & Brysbaert, M. (2010). Practice effects
in large-scale visual word recognition studies: a lexical decision
study on 14,000 Dutch mono- and disyllabic words and nonwords.
Frontiers in Language Sciences 1, 174. http://www.frontiersin.org/
language sciences/10.3389/fpsyg.2010.00174/abstract

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British
Lexicon Project: lexical decision data for 28,730 monosyllabic
and disyllabic English words. Behavior Research Methods, 44(1),
287–304.

Keuleers, E., Stevens, M., Mandera, P., & Brysbaert, M. (2015). Word
knowledge in the crowd: measuring vocabulary size and word
prevalence in a massive online experiment. The Quarterly Journal
of Experimental Psychology, 68(8), 1665–1692. https://doi.org/
10.1080/17470218.2015.1022560

Kuperman, V. (2015). Virtual experiments in megastudies: a case
study of language and emotion. The Quarterly Journal of Exper-
imental Psychology, 68(8), 1693–1710. https://doi.org/10.1080/
17470218.2014.989865

Levenshtein, V. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics – Doklady, 10, 707–710.

Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: the
neighborhood activation model. Ear and Hearing, 19(1), 1–36.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467695/

Mandera, P., Keuleers, E., & Brysbaert, M. (2017). Explain-
ing human performance in psycholinguistic tasks with mod-
els of semantic similarity based on prediction and counting: a
review and empirical validation. Journal of Memory and Lan-
guage, 92, 57–78. http://www.sciencedirect.com/science/article/
pii/S0749596X16300079

Mattys, S. L. (1997). The use of time during lexical processing and
segmentation: a review. Psychonomic Bulletin & Review, 4(3),
310–329. http://link.springer.com/article/10.3758/BF03210789

Maxwell, S. E., Lau, M. Y., & Howard, G. S. (2015). Is psychology
suffering from a replication crisis? what does ”failure to replicate”
really mean? American Psychologist, 70(6), 487.

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005).
Semantic feature production norms for a large set of living and
nonliving things. Behavior Research Methods, 37(4), 547–559.

Michel, J.-B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M., The
Google Books Team, . . . , Aiden, E. L. (2011). Quantitative
analysis of culture using millions of digitized books. Science,
331(6014), 176–182.

New, B. et al. (2006). Reexamining the word length effect in visual
word recognition: new evidence from the English Lexicon Project.
Psychonomic Bulletin & Review, 13(1), 45–52.

Norris, D. (2013). Models of visual word recognition. Trends in
Cognitive Sciences, 17(10), 517–524.

Norris, D., & McQueen, J. M. (2008). Shortlist B: a Bayesian model
of continuous speech recognition. Psychological Review, 115(2),
357–395. http://www.ncbi.nlm.nih.gov/pubmed/18426294

Pastore, R., & Scheirer, C. (1974). Signal detection theory:
considerations for general application. Psychological Bulletin,
81(12), 945–958.

Pitt, M. A., Dilley, L., Johnson, K., Kiesling, S., Raymond, W.,
Hume, E., & Fosler-Lussier, E. (2007). Buckeye Corpus of
Conversational Speech (2nd release) [www.buckeyecorpus.osu.
edu] Columbus, OH: Department of Psychology. Ohio State
University (Distributor).

Radach, R., & Kennedy, A. (2013). Eye movements in reading: some
theoretical context. The Quarterly Journal of Experimental Psy-
chology, 66(3), 429–452. https://doi.org/10.1080/17470218.2012.
750676

Rayner, K., Chace, K. H., Slattery, T. J., & Ashby, J. (2006).
Eye movements as reflections of comprehension processes
in reading. Scientific Studies of Reading, 10(3), 241–255.
https://doi.org/10.1207/s1532799xssr1003 3

Rayner, K., & Clifton, C. (2009). Language processing in reading and
speech perception is fast and incremental: implications for event-
related potential research. Biological Psychology, 80(1), 4–9.

Schmidtke, D., Gagn, C. L., Kuperman, V., Spalding, T. L., & Tucker,
B. V. (2018). Conceptual relations compete during auditory
and visual compound word recognition. Language, Cognition
and Neuroscience. http://www.tandfonline.com/doi/abs/10.1080/
23273798.2018.1437192

Schneider, W., Eschman, A., & Zuccolotto, A. (2012). E-Prime
Reference guide. Pittsburgh: Psychology Software Tools Inc.
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