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Abstract

Nystrom and Holmqvist have published a method for the classification of eye movements during reading (ONH) (Nystrom &
Holmgqyvist, 2010). When we applied this algorithm to our data, the results were not satisfactory, so we modified the algorithm (now
the MNH) to better classify our data. The changes included: (1) reducing the amount of signal filtering, (2) excluding a new type of
noise, (3) removing several adaptive thresholds and replacing them with fixed thresholds, (4) changing the way that the start and end of
each saccade was determined, (5) employing a new algorithm for detecting PSOs, and (6) allowing a fixation period to either begin or
end with noise. A new method for the evaluation of classification algorithms is presented. It was designed to provide comprehensive
feedback to an algorithm developer, in a time-efficient manner, about the types and numbers of classification errors that an algorithm
produces. This evaluation was conducted by three expert raters independently, across 20 randomly chosen recordings, each classified
by both algorithms. The MNH made many fewer errors in determining when saccades start and end, and it also detected some fixations
and saccades that the ONH did not. The MNH fails to detect very small saccades. We also evaluated two additional algorithms: the
EyeLink Parser and a more current, machine-learning-based algorithm. The EyeLink Parser tended to find more saccades that ended
too early than did the other methods, and we found numerous problems with the output of the machine-learning-based algorithm.

Keywords Eye movement - Classification - Evaluation - Comparison

In 2010, Nystrom and Holmqvist published a major article
describing a new method for classifying eye movements dur-
ing reading. The object was to classify such eye movement
signals into periods of fixation, saccades, and postsaccade
oscillations (PSO). (Note that another eye movement type—
i.e., smooth pursuit—is not present in a typical text-reading
task and was not classified by the original method [Nystrom &
Holmgqyvist, 2010] as a separate category.) In addition to the
eye movement categories, some data are also classified as
“noise” (really, “artifacts”), and some are left unclassified.
(By design, the algorithm does not classify all events in the
recording.) The algorithm is very sophisticated and has
many novel features, including the fact that it is the first
algorithm to automatically detect PSOs. In describing their
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method, the authors emphasized its “adaptive” aspect,
which involved setting various thresholds based on each
individual recording’s characteristics.

Several years later, we were in possession of a large data-
base of recorded eye movements during reading. M. Nystrom
kindly made the Matlab (Natick, MA) code available to us.
The coding style was remarkably sophisticated, elegant, and
efficient. We did find one error in the many lines of code.
Although in the present case this error played no role in our
analysis, in other contexts it might be very important." We
made minor technical modifications to the code in order to
better accommodate our data format and to report out the data
as we preferred. One substantive change we had to make from
the start was the sampling rate. The original code was written
for data collected from an SMI HiSpeed eyetracker (Teltow,
Germany) at 1250 Hz, but our data were collected with an
EyeLink 1000 (SR Research, Kanata, ON, Canada) at 1000
Hz. Dr. Nystrom informed us that his algorithm was adaptable

! Documentation of the programming error is available in the file
“DocumentationOfaProgrammingErrorlnTheONH.docx” at https://digital.
library.txstate.edu/handle/10877/6874.
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to the lower sampling rate with a change to a single parameter
in the code. The EyeLink 1000 automatically removes data it
determines to be blinks and replaces these samples with
“NaN” values. The SMI eyetracker, on the other hand, auto-
matically replaces periods in which the eyes are closed with 0.
The code also needed to be modified to deal with this
difference.

The original algorithm (ONH) produced interpretable re-
sults with our data; we carefully inspected the resulting clas-
sifications but were not satisfied with the results. The first
author (L.F.) of the present article spent approximately 3—4
months modifying the ONH to produce a new version
(MNH). After some formal inspection and assessment, we
decided that the MNH was quite usable for us, although we
knew that it was not perfect.

Before one can evaluate an algorithm, one first needs to
establish the goals of the algorithm. For example, one goal
might be to classify the raw data, another might be to classify
the smoothed data, and a third might be to classify the velocity
trace. Because the ONH employs a Savitzky—Golay filter with
a window length for our data of 19ms, and given the fact that
this filter would delay the resulting smoothed position and
velocity calculation by 9 ms and that this filter delay was never
corrected in the original code, the algorithm could not be
intended to classify the raw position signal. (Although
Nystrom & Holmgqvist, 2010, claim that the delay is removed,
this is not correct.”> We provide more information about this
issue below.) Although there is no explicit mention of this, it
seems much more likely that the algorithm was designed to
classify the smoothed position trace rather than the velocity
trace, since classification of the position trace is typically what
is desired.

We wanted to compare the performance of the two algo-
rithms, but we were interested particularly in the issues that
other algorithm developers would want to have addressed. As
one example, for saccade initiation, we wanted to count the
number of times each algorithm detected the onset of a sac-
cade too early, on the basis of human expert judgment.
Another example would be to measure the number of fixation
periods each algorithm failed to detect. This type of informa-
tion would directly assist the algorithm developer in focusing
exactly on specific problematic decisions the programs need
to make.

Recently, Andersson, Larsson, Holmqvist, Stridh, and
Nystrom (2017) published a major study on a new evaluation
method for comparing the results of many algorithms. This
approach started with 34 recordings that two human experts
had classified and compared the expert classifications to those
from many other algorithms. The results were expressed in

2 For a detailed discussion of the filter delay issue, see
“DiscussionOfTheFilterDelayIssueWithTheONH.docx™ at https:/digital.
library.txstate.edu/handle/10877/6874.

terms of the degree of agreement on a sample-by-sample ba-
sis, or by comparing the resulting distributions of basic param-
eters such as fixation duration or peak saccade velocity.
Although the evaluation approach described by Andersson
et al. was not used to detect the kinds of classification errors
we will emphasize in this report, it seems likely that their
approach could be modified to provide such data. However,
since this evaluation method requires human experts to clas-
sify, in many recordings, every sample as belonging to one
event type or another, this is a very cumbersome and ineffi-
cient method to get the kind of classification error counts that
we seek, especially when comparing only two or three algo-
rithms. However, we concede that the approach of Andersson
et al. would probably be faster when comparing more than
three algorithms.

During the review process, it was agreed that we would
also compare both the ONH and the MNH to two additional
algorithms, the EyeLink Parser (SR Research Ltd, Ottawa,
Ontario, Canada) and a modern, machine-learning-based eye
movement classification algorithm (Zemblys, Nichorster,
Komogortsev, & Holmgqvist, 2018). The EyeLink Parser is
provided with an EyeLink eye movement device similar to
the one employed by the EyeLink 1000 herein. This compar-
ison allowed us to document the performance of the MNH as
compared to a very commonly employed alternative algo-
rithm. It is important to note that the EyeLink Parser is a
real-time, online algorithm and was not designed to classify
PSOs.

With respect to the machine-learning-based algorithm, the
concern was that the ONH was not considered to be a state-of-
the-art algorithm at this time, and that an improvement on it
would possibly also not be competitive with state-of-the-art
algorithms. The algorithm of Zemblys et al. (2018) was cho-
sen because it is considered a modern, state-of-the-art algo-
rithm, because it classifies PSOs in addition to fixations and
saccades, and because it was simple for us to have our data
scored with this method. The Zemblys et al. algorithm is based
on a machine-learning approach termed “Random Forest,”
and thus Zemblys et al. refer to the algorithm as the IRF. At
the time that the decision to also evaluate these two compar-
isons was made, two members of the algorithm evaluation
panel (authors E.A. and I.R.) were no longer involved, so
these two additionial comparisons were based on a single
evaluator (author L.F.). For comprehensive reviews of eye
movement methods, see Andersson et al. (2017), Hein and
Zangemeister (2017), and Salvucci and Goldberg (2000).

We began with a taxonomy of error types (N =32, Table 1)
that would cover all the important decisions that an algorithm
would logically need to make. However, using this taxonomy
of errors, it is possible that the exact same samples might be
misclassified by different raters in more than one way. For
example, imagine the transition from the end of a saccade to
a PSO. One error could be that the saccade ends too late, so
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Table 1  Taxonomy of eye movement classification errors during reading

Type Noise Detection Type Noise Timing

1 Noise Misclassified as Fixation 17 Noise Starts Too Early

2 Noise Misclassified as Saccade 18 Noise Starts Too Late

3 Noise Misclassified as PSO 19 Noise Ends Too Early

4 Noise not Detected 20 Noise Ends Too Late
Type Fixation Detection Type Fixation Timing

5 Fixation Misclassified as Noise 21 Fixation Starts Too Early
6 Fixation Misclassified as Saccade 22 Fixation Starts Too Late
7 Fixation Misclassified as PSO 23 Fixation Ends Too Early
8 Fixation not Detected 24 Fixation Ends Too Late
Type Saccade Detection Type Saccade Timing

9 Saccade Misclassified as Noise 25 Saccade Starts Too Early
10 Saccade Misclassified as Fixation 26 Saccade Starts Too Late
11 Saccade Misclassified as PSO 27 Saccade Ends Too Early
12 Saccade not Detected 28 Saccade Ends Too Late
Type PSO Detection Type PSO Timing

13 PSO Misclassified as Noise 29 PSO Starts Too Early

14 PSO Misclassified as Fixation 30 PSO Starts Too Late

15 PSO Misclassified as Saccade 31 PSO Ends Too Early

16 PSO not Detected 32 PSO Ends Too Late

too many samples are labelled as saccade. But the same result
could be interpreted as a PSO that starts too late. We resolved
this problem by creating a hierarchy of decisions, described
below. In this hierarchy, saccades precede PSOs, so a late
transition from a saccade to a PSO would always be classified
as a saccade that ends too late. In this case, the error “PSO
Starts Too Late” would never occur.

We developed software to allow a rater to classify and
count the error types made by each algorithm. The goal of
the present report is to document the error types and rates
for each algorithm. In this process, we introduce a new algo-
rithm for eye movement classification and a new method for
evaluating any eye movement classification algorithm.

General method
Subjects for eye movement data

We report on 20 recordings from 20 different subjects, ran-
domly selected from a larger set of over 300 eye movement
recordings. The original data set was collected as part of an
effort to develop a biometric approach to identify subjects on
the basis of their eye movement characteristics (Rigas,
Komogortsev, & Shadmehr, 2016). The study subjects, all
undergraduate college students, were recruited using several
methods. Several instructors in the Computer Science,
Engineering, Math, and Psychology departments of Texas
State University mentioned the project to students and offered
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extra credit for participation. Also, an e-mail was sent to all
first- and second-year students explaining the study and
requesting participation. Students were not paid for their par-
ticipation for the round of data collection employed in this
work. We also selected four additional recordings to serve as
a training sample for the manual eye movement classification
procedure described below. The mean (with SD) age of the 20
subjects (seven females) was 22.5 years (5.5).

The reading task

The subjects in the original study viewed seven different
tracking tasks. Only the text-reading task is relevant to the
present report. Each subject was asked to read, silently, an
identical pair of quatrains from the famous nonsense poem
“The Hunting of the Snark,” written by Lewis Carroll (written
from 1874 to 1876). The text was displayed in Times New
Roman 20-point bold font and was single-spaced. The mean
letter interval for each piece of text was approximately
0.50 deg of visual angle. The height of the line of the text
was 0.92 deg of visual angle.

Eye movement recording

All recordings were conducted by trained operators who were
present with the subjects for the entire testing period. The
subjects were seated 55 cm in front of a computer monitor
with their heads resting on a chin/head rest. The monitor sub-
tends £ 23.3 deg of visual angle in the horizontal direction,
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11.7 deg to the top and 18.5 deg to the bottom. The EyeLink
1000 (SR Research Ltd., Kanata, ON, Canada), a video-
oculography system that employs detection of both the pupil
and the corneal reflection to determine gaze position, was used
to record eye movements. It records both vertical and horizon-
tal eye movements, binocularly. In the present study, only left
eye movements were collected. For 298 subjects, we have a
mean spatial accuracy of 0.50 (SD = 0.17, min = 0.20, max =
1.06). For further specifications, see the SR Research website
(www.sr-research.com). The sampling rate for our data was
1000 Hz. Prior to each task, a calibration dataset, consisting of
nine screen positions (primary position and eight peripheral
points), was collected by the EyeLink 1000. A position
calibration validation procedure was run immediately after
calibration. If there was little error (maximum error < 1.5
deg, average error < 1.0 deg), the calibration was accepted.
Otherwise, the equipment was readjusted and the calibration
was redone. During the recording, before each task, the
operator explained the next task (stimulus). The EyeLink
1000 transformed the raw records into gaze position data, in
visual angle units, using the calibration data collected at the
start of each task. The Stampe (1993) heuristic spike removal
algorithm was employed. (It was also used on the data
processed for the ONH.) We set the parameter File Filter
Setting = 2 on the Eyelink 1000. This means that the File
Sample Filter was set to Extra, meaning that the data re-
corded would be filtered using a two-stage recursive heu-
ristic filter of the type described in the Stampe article.
Over the course of several generations of EyeLink
eyetrackers, SR Research has made some small, proprie-
tary changes to the exact heuristics to further improve their
performance, but the fundamental approach remains the
same as the one outlined in the Stampe article. Our
EyeLink software version was 4.48. Also, blinks were de-
tected and removed from the data by the EyeLink 1000.
The eye movements were analyzed offline. Only the first
26 s of recordings for each subject were chosen for this
study, because one of the subjects chosen randomly fin-
ished reading the poem in approximately 26 s, and we
wanted the same amount of data from each subject to be
represented in each recording.

Experiment 1: ONH versus MNH

Method

Algorithm narrative

This is a description of the steps taken by the ONH (Nystrom

& Holmgqvist, 2010) and the MNH algorithms to classify eye
movements.

Load the data For the ONH, the data have 0 values for both
horizontal and vertical position during periods of eye clo-
sure. For MNH, periods of blinks have NaN values. In ad-
dition, the spikes in the MNH data were filtered using the
Stampe (1993) filter. [We were informed by Dr. Holmqvist
(personal communication) that the ONH data were also fil-
tered by the Stample filter.] As we will document below, it
appears from our results that the data used in the original
Nystrom and Holmqvist (2010) were substantially noisier
than ours.

Filter the data Smooth the data and compute the smoothed
position trace, smoothed velocity trace, and smoothed accel-
eration trace. Both the ONH and the MNH use the Savitzky—
Golay filter function sgolay to compute filter coefficients
(Both algorithms were written in Matlab code and run in
Matlab [Version R2015b; The MathWorks, Natick, MA].)
Both algorithms employ the filter routine to apply the filter
coefficients, to compute the smoothed position signal, the ve-
locity signal and the acceleration signal. Note that despite the
claims by Nystrdom and Holmgqvist (2010, p. 192), the filter
delay is not removed. Use of the conv function (convolution),
as in conv(X,g(:,1),’same’), where X is the signal and g are
the filter coefficients, would have removed the delay. Use of
the sgolayfilt function would also have removed the delay.
Note that, for 1000 Hz, the ONH filter width was 19 samples
(i.e., 19 ms), but MNH changes this to 7 ms. Both algorithms
used the same filter order—that is, 2.

Compute radial velocity and radial acceleration If Vely is the
velocity for the horizontal eye movement signal and Vely is
the velocity of the vertical eye position, then

radial velocity = 4/ Vel* + Velf (1)

If Accy is the acceleration for the horizontal eye movement
signal and Accy is the acceleration of the vertical eye position,
then

radial acceleration = y/Acc? + Accﬁ (2)

From this point forward, all references to velocity refer to
radial velocity and all references to acceleration refer to radial
acceleration.

Detect and classify noise and artifact Artifact occurs in the
ONH when the velocity signal is greater than 1,000 deg/s or
when the acceleration signal is greater than 100,000 deg?/s.
For the ONH, signal values of 0 in the raw horizontal and raw
vertical position trace indicate artifact (eyes closed), and these
samples are therefore marked as artifact. For the MNH, we
defined an artifact as any period when the velocity signal was
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greater than 1,500 deg/s or the acceleration signal was greater
than 100,000 degz/s. In the case of the MNH, blinks are auto-
matically detected by the eyetracker, and signal values are
replaced with the code NaN. For the MNH, these samples
are also marked as artifacts.

The MNH also used a routine to remove a distinct type of
noise that we call “Rapid Irregularly Oscillating Noise of Eye
Positional Signal” (RIONEPS) (Fig. 1) (Abdulin, Friedman, &
Komogortsev, 2017). Our evidence suggests that this type of
noise is caused by intermittent failures of the eye-tracking system
to properly detect either the pupil center of mass or the corneal
reflection center of mass. An article describing this noise, pro-
viding examples from multiple vendors and presenting our algo-
rithm to detect it, is available as Abdulin et al. (2017)

Extend artifact blocks backward and forward in time It is
reasonable to assume that some signal before and after an
artifact might also be contaminated by the artifact, so both
algorithms extend the data marked as artifact forward and
backward in time. The two algorithms use the identical meth-
od, but the thresholds used are completely different. For the
ONH, a velocity threshold is set to be the median of the entire
velocity signal (all samples in the recording) multiplied by
2.0. This is in contrast to the threshold described by
Nystrdom and Holmqvist (2010), page 193, which states that
the threshold is the median of the entire signal but not multi-
plied by 2. Artifacts are extended both forward and backward
in time until the velocity is less than or equal to this threshold.
For the 20 subjects in the present study, the median velocity
threshold value was 5.59 (25th percentile = 5.03, 75th percen-
tile = 6.43). We found that, for our data, this threshold led to
the removal of much more signal before and after each artifact
block than was reasonable when compared to the ground truth
represented by visual inspection. For the MNH, we computed
our own threshold. First, we divided the signal into two cate-
gories: samples in which the velocity was above 100°/s and
samples in which the velocity was below 100°/s. We consid-
ered the velocity samples below 100°/s to be a crude estimate
of the velocity during fixation. Any “fixation” blocks of con-
tinuous samples that were shorter than the minimum fixation
duration (for MNH: 0.030 s) were excluded from further anal-
ysis. To obtain the most stable fixation velocity values, for
each remaining fixation block, data were rejected that were
within 5 ms of the start and end of each fixation block. This
procedure would leave in place only the central portions of
each fixation block, where the signal would likely be most
stable. We combined the velocities from these remaining fix-
ation samples and computed the 90th percentile of the velocity
noise distribution. This is the only adaptive threshold in the
MNH. We used this as our threshold for deciding how much
data to exclude before and after each artifact block. (The
MNH also uses this threshold to determine the end of a PSO
[see below].) In the 20 subjects in the present study, the
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median 90th-percentile velocity threshold was 14.66°/s (25th
percentile = 10.81, 75th percentile = 16.87). This threshold is
2.6 times greater than the threshold used by the ONH algo-
rithm, and therefore excludes much less data before and after
each artifact block. This produced much better results with our
data.

Description of the general approach to finding saccades in
the ONH The general approach to finding saccades for the
ONH is illustrated in Fig. 2A. All nonartifact velocity signals
greater than the “saccade peak velocity” threshold are labeled
as potential saccades, assuming there are a minimum of two
contiguous samples above this threshold (for the data used in
Nystrom & Holmgvist, 2010, three contiguous samples). To
identify the start of a saccade, the algorithm steps backward in
time, one sample at a time, to determine whether the velocity
crosses below what we call the “saccade subthreshold,” which
is always substantially lower than the saccade peak velocity
threshold. If the event crosses below the saccade subthreshold,
then the algorithm steps back in time to find the first local
velocity minimum. This is the saccade start. To identify the
end of the saccade, the algorithm steps forward time, to deter-
mine whether the velocity crosses below what is called the
“local velocity noise threshold,” which is determined for each
saccade on the basis of a weighted sum:

Local Velocity Noise Threshold
= 0.7*Saccade Subthreshold (3)

+ 0.3*Local Velocity Noise

The velocity signals that contribute to local velocity noise
are from the saccade start backward for 0.040 s (at 1000 Hz,
40 samples; see open circles in Fig. 2A).

Local Velocity Noise = mean(velocity signals)
+ 3*SD(velocity signals) 4)

If the event crosses below the local velocity noise thresh-
old, then the algorithm steps forward in time to find the first
local velocity minimum. This is the saccade end. A saccade is
rejected if the local velocity noise is greater than the saccade
peak velocity threshold.

Computing the adaptive thresholds for saccade peak velocity
and saccade subthreshold in the ONH For the ONH, the peak
velocity of a saccade must exceed the saccade peak velocity
threshold. This threshold is computed iteratively in a loop.
Initially, the saccade peak velocity threshold is set at 100°/s.
During each iteration of the loop, values below this threshold
are considered as potential fixation periods. Any “fixation”
blocks of continuous samples that were shorter than the
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minimum fixation duration (for ONH: 0.040 s) were
excluded from further analysis. To obtain the most sta-
ble fixation velocity values, for each remaining fixation
block, data were rejected that were within 5 ms of the
start and end of each fixation block. This procedure
would leave in place only the central portions of each
fixation block in which the signal would likely be most
stable. The mean (u) and standard deviation (o) of the
distribution of the velocities during these “fixation
periods” were calculated. The updated peak saccade ve-
locity threshold was defined as:
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The loop continues to iterate until the difference between
the last threshold calculation and the current calculation is less
than or equal to 1.0. The saccade subthreshold is calculated as:

Saccade Subthreshold = ;1 + 3*0 (6)

This approach assumes that the velocities during these po-
tential fixation periods are reasonably normally distributed, or
at least unimodal and symmetric. With our data, this
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assumption was completely unsupported. These distributions
were highly skewed. We hypothesize that any such distribu-
tion, from any similar dataset, would be similarly skewed. A
measure of skewness is kurtosis. For a normal distribution, the
kurtosis should be near 3.0. Below we present the kurtosis for
each of the 20 datasets employed in this study. The median
kurtosis was 7.56. Also, tests of normality (Pearson chi-square
goodness-of-fit tests) indicated that these distributions were not
normal (all p values were essentially 0.0, meaning that we can
reject the null hypothesis that the distribution was drawn from a
normal population). In Fig. 3, we present the distribution of the
velocities in question for the subject closest to the median kurto-
sis of the set.

The mean is a poor choice to represent the central tendency of
such a distribution. The median is a better choice. The standard
deviation is likewise a poor choice to represent the spread of such
a distribution. Some sort of percentile measures (e.g., the inter-
quartile range or something similar) would be a better choice. We
believe that the failure of the ONH algorithm to properly char-
acterize the central tendency and spread of these distributions is
responsible for a number of classification errors produced by the
ONH.

To illustrate the variability in these adaptive thresholds and the
kurtosis from subject to subject, we present the adaptive saccade
thresholds and kurtosis for the 20 subjects in the present study in
Table 2. As a general matter, the saccade peak velocity thresholds
computed for our data are in the range of 10°-20°/s, which is
substantially lower than the 33°/s reported by Nystrém and
Holmqvist (2010). Our data are substantially less noisy than the
data they report on. Note that this is true even though we
employed a much shorter, and thus potentially noisier, smoothing
window for the calculation of velocity. Note the high intersubject
variability in these thresholds, as well as the extremely high
thresholds and the extremely high measure of kurtosis for one
subject.

Description of the general approach to finding saccades in
the MNH The general approach to finding saccades in the MNH
is illustrated in Fig. 2B. The saccade peak velocity threshold was
fixed at 55°/s, and the saccade subthreshold was fixed at 45°/s.
(We question the need for the saccade subthreshold, but have not
studied its role sufficiently to decide whether it could be dropped
without affecting classification performance.) There must be two
samples above the saccade peak velocity threshold for a set of
samples to be labeled as the peak portion of a saccade. To find the
start of a saccade, the algorithm steps backward, one sample at a
time, to see if the velocity crosses below the saccade subthresh-
old. If the samples do cross this threshold, then the algorithm
steps backward, one sample at a time, until a local velocity min-
imum is found. We have found that using the velocity local
minimum as the start of a saccade makes sense if one is trying
to classify the velocity trace, but if one is trying to classify the
position trace, the result of using the local velocity minimum is
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that many, if not most, saccades will appear to start too early in
the position trace. Therefore, after we have found the local min-
imum, we step forward a variable number of samples (depending
on the number of samples between the point at which a saccade
passes below the saccade subthreshold and the point of local
minimum) to mark the start of each saccade. In the case of Fig.
2B, we stepped forward five samples. To find the end of a sac-
cade, the velocity must cross under the saccade subthreshold, and
then, moving forward one sample at a time, the local velocity
minimum is once again found. If the saccade is followed by a
PSO, then this local velocity minimum is the saccade end point.
Ifthe saccade is not followed by a PSO, then we step backward a
variable number of samples (also depending on the number of
samples between the point at which a saccade passes below the
saccade subthreshold and the point of local minimum) to mark
the end of the saccade. In the case of Fig. 2B, we stepped back
five samples.

Detecting PSOs with the ONH algorithm The ONH algorithm
for detecting PSOs is illustrated in Fig. 4A and B. The ONH
defines two types of PSOs, “weak” (Fig. 4A) and “strong”
(Fig. 4B). The ONH searches for evidence of a velocity peak
from the end of the saccade to 40 ms (minimum fixation dura-
tion) after the end of the saccade. This does not mean that the
entire PSO must be completed in this window, just that a poten-
tial PSO is not a PSO if'it does not meet the peak velocity criteria
in this window. Weak PSOs occur when the velocity during this
period crosses above the local saccade velocity threshold. Strong
PSOs occur when the velocity during this period crosses above
the saccade peak velocity threshold. If the velocity during this
period does not cross above the local saccade velocity threshold,
then no PSO is present. Each time the signal crosses above and
below this threshold, one potential weak PSO is defined. The
velocity during this period can cross above and below the local
saccade velocity threshold more than once, as in Fig. 4A. In
this case, the event is labeled as a weak PSO, with two weak
PSO peaks. The end of the PSO is the first local velocity
minimum after the velocity crosses below the local saccade
velocity threshold for the last time within this 40-ms win-
dow. This local velocity minimum must occur within 80 ms
of the end of the previous saccade.

In Fig. 4B, we illustrate a strong PSO. Note that the velocity
during the peak window crosses above and below the saccade
peak velocity threshold, and subsequently crosses above and
below the local saccade velocity threshold twice. This event
would be labeled a strong PSO, with two weak PSO peaks and
one strong PSO peak. Note that the end point of this PSO occurs
after the 40-ms peak PSO window.

For both types of PSOs, the event is rejected if the peak
velocity during the 40-ms peak PSO window is greater than
the peak velocity of the prior saccade, if the local minimum
PSO end occurs more than 80 ms after the end of the prior
saccade, or if artifact data are present within the 80-ms window.
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Fig. 3 Distribution of velocities during potential fixation periods

Detecting PSOs with the MNH algorithm Figure 5 illustrates
the PSO detection steps for the MNH algorithm. The start of
every potential PSO is the sample following the end of the
saccade. To find the end of each PSO, we search for five
consecutive points that are all below the 90th percentile of
the velocity noise distribution during fixation (defined in

Step 5 above). The first of the five consecutive points is the
PSO end. PSOs are classified as small, moderate, and large. If
the velocity during a PSO crosses above the saccade peak
velocity threshold, then the PSO is large. If the velocity during
a PSO crosses above the saccade subthreshold and below the
saccade peak velocity threshold, then the PSO is moderate. If

Table 2 Saccade detection thresholds for 20 datasets scored by the ONH
Subject ID  Saccade Peak Velocity Threshold ~ Saccade Subthreshold ~ Mean Local Velocity Saccade Threshold — Kurtosis
1 10.06 5.95 5.26 8.71
35 10.70 6.40 5.84 6.48
23 10.93 6.49 5.90 7.12
2 11.13 6.64 5.99 7.13
17 1241 7.57 7.24 5.25
34 12.54 7.58 7.07 6.09
29 12.65 7.57 6.83 7.98
31 12.80 7.63 6.86 6.65
10 14.39 8.55 7.73 8.82
3 14.58 8.68 7.99 8.45
12 14.70 8.76 7.92 9.38
19 15.51 9.44 8.93 5.89
33 15.59 9.22 8.20 8.45
14 15.82 9.58 8.99 6.30
37 15.86 9.26 8.15 8.38
40 17.10 10.02 8.70 8.57
38 17.78 10.89 10.31 4.83
26 21.76 12.89 11.54 8.11
13 24.15 14.58 13.55 6.97
22 102.34 55.08 40.49 12.19
25th percentile 12.51 7.57 6.85 6.44
Median 14.64 8.72 7.96 7.56
75th percentile 16.17 9.69 8.945 8.48
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Fig. 4 Illustration of PSO detection [“weak PSO” (A) and “strong PSO” (B)] in the ONH algorithm

the velocity during a PSO crosses above the small PSO veloc-
ity threshold (fixed at 20°/s) and does not cross the saccade
subthreshold, then the PSO is small.

Detection of fixation with the ONH Nystrom and Holmqvist
(2010), in their Table 1 (p. 191) state that potential fixations
are defined by samples that are neither saccades, PSOs, nor
noise. However, this is not how the code is written. In the
code, all samples not considered saccades or PSOs are con-
sidered to be potential fixations. The presence of noise
(artifact) is not considered. Potential fixations that do not in-
clude more samples than the minimum fixation duration (40
samples of 1 ms each, with the ONH at 1000 Hz) are left
unclassified. If the peak velocity during the fixation is greater
than the saccade peak velocity threshold, then the event is also
left unclassified. Finally, if a potential fixation contains any

artifact, the event is left unclassified. All potential fixations
passing these filters are considered to be true fixations.

Detection of fixation with the MNH All samples not consid-
ered saccades or PSOs or artifacts are considered to be poten-
tial fixations. Note this important difference between the two
algorithms: For the ONH, samples that are not part of saccades
or PSOs are considered potential fixations, whereas for the
MNH, samples that are not part of saccades, PSOs, or artifacts
are considered potential fixations. In this way, in the MNH,
periods of fixation can be either preceded or followed by arti-
facts. This allows for many fixation periods, missed by the
ONH, to be classified as such by the MNH. Since the ONH
rejects any potential fixation period in which an artifact oc-
curs, this precludes the possibility that long periods of true
fixation might precede or follow an artifact. In our view, this

70
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Fig. 5 Illustration of PSO detections in the MNH algorithm
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exclusion is not justified, since the MNH scores many periods
that look like perfectly good fixation periods as fixations,
whereas the ONH leaves such periods unscored. Below we
will see examples of fixations not detected by the ONH for
this reason. For the MNH, potential fixations that do not have
more samples than the minimum fixation duration (30 samples of
1 ms each, with the MNH at 1000 Hz) are unclassified. We chose
30 ms as the minimum fixation duration, as opposed to the 40-ms
minimum employed by the ONH. We made this choice after
inspecting fixations in the range of 30-40 ms in duration. All
the fixations we observed in this range appeared to be valid
fixations. The maximum difference between any two points in
the potential fixation block must be smaller than 2 deg, for both
the horizontal and vertical position signals. All potential fixation
blocks that pass these criteria are considered true fixations.

For a list of all the parameters set for the MNH, see Table 3.

Error classification guidelines

As we mentioned above, we had a hierarchy of error types,
based on the order in which the original Nystrom and
Holmgqvist (2010) algorithm works. In that algorithm, artifac-
tual events (often referred to as “noise”) are first classified as
such. Then saccades are classified, followed by PSOs, if they
are present. Everything else is classified as fixation. So, our
guidelines state the following:

In what follows, “misclassification” refers to both mis-
classification and mistiming. Any misclassification error
that can be attributed to noise misclassification should
be scored as noise misclassification. After deciding if
there are any noise misclassifications, any misclassifica-
tion that can be attributed to saccade misclassification
should be attributed to saccade misclassification. Any
misclassification that cannot be attributed to noise mis-
classification or saccade misclassification, but can be
attributed to PSO misclassification should be attributed

to PSO misclassification. Any misclassification that
cannot be attributed to noise misclassification or saccade
misclassification, or PSO misclassification should be
attributed to fixation misclassification. With this hierar-
chy, some of the 32 classification failures should be
relatively rare, especially timing errors. We do not ex-
pect many, or any, errors of the type “PSO starts too
early” or “PSO starts too late,” since these would, under
normal circumstances, be classified as “saccade ends
too early” or “saccade ends too late.” Further, under
normal circumstances, given this hierarchy, we do not
expect any fixation timing errors.

We defined a “saccade that starts too early” or that
“ends too late” as a saccade whose timing was off by
more than three samples (i.e., 3 ms) from the human
expert judgement. The same applies to saccades that
end too late.

There is also a special rule for short, unclassified fixation
periods that can occur amid an artifact. In the original ONH
(Nystrom & Holmqvist, 2010) publication, a fixation needed
to be at least 40 ms in duration. Therefore, any fixation period
that is unclassified, that is shorter than 40 ms, was not classi-
fied as “fixation not detected.”

We did not classify the first event in any recording, since
neither algorithm would have sufficient data to make a classi-
fication at this starting stage.

Finally, especially for the ONH, there were many unclassi-
fied periods that probably should have been classified as an
artifact. We did not score this error. Of course, any unclassified
signal that looked like a fixation, saccade or a PSO was clas-
sified as an error.

We defined a saccade according to the appearance of the
position channels. We believe that there is general agreement
about what the profile of a saccade in the position signal
should looks like. PSOs were defined on the basis of their
appearance in the velocity trial. A PSO must:

Table 3  Fixed parameters used in the MNH

Parameter Value
Length of Savitzky—Golay filter window 0.007 s
Velocity above which data are rejected as noise 1500°/s
Acceleration above which data are rejected as noise 100,000°/s>
Initial temporary threshold for fast determination of noise distribution during fixation. 100°/s
RIONEPS threshold 100
Minimum fixation duration 0.030 s
Saccade peak velocity threshold 55%/s
Saccade subthreshold 45°/s
Minimum saccade duration 0.010s
Minimum threshold for a small PSO 20%s
Within a single potential fixation, the maximum allowable amplitude difference between 2 points 2 deg
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(1) start immediately after a saccade

(2) include any velocity peaks that are contiguous

(3) have a peak velocity less than the previous saccade

(4) have a peak velocity greater than the following fixation
noise.

Software for error classification

We employed a custom graphical user interface program to view
the vertical and horizontal position traces as well as a radial
velocity trace. The program displayed 1 s of data per page.
Fixations were shown in red, saccades in green, PSOs in blue,
artifacts in white, and unclassified data in black. The program
was designed with a built-in magnifying function—if you
clicked the left mouse button at any point in the signal trace,
the region where you clicked was magnified by a factor of 10
so that individual samples could be discerned. Pushbuttons
brought up dialogs to count the number of any error type per
page. All the error classification results were written to an output
file for further analysis.

Human raters

There were three human raters, all of whom are authors on this
report. Rater “L” has been studying eye movements, on and off,
for more than 25 years. He has 12 peer-reviewed publications
that report on eye movement results. He is also the programmer
who created the MNH. Rater “I” has 5 years of research on eye
movements, with special focus on biometrics, human-computer
interaction, and computer vision. Rater “E” has been working
with eye movements for 4 years. He has implemented and tested
several classification algorithms, developed novel noise detection
methods for eye movement signals, and worked on eye move-
ment biometrics.

Rater training

Prior to classifying the main set of 20 subjects, all raters practiced
on four “training subjects,” each scored by both algorithms
(eight studies). During this period, open discussion between the
raters was encouraged. After each rater scored all eight training
studies, their results were compared in detail and, in multiple
discussions, an attempt at consensus was sought. Then the three
raters scored the training set again, and the results and any dis-
crepancies were again discussed. At this point, the raters began
independently rating the main data set, and no further interrater
communication was allowed.

Statistical analysis

The number of errors for each error type was not normally dis-
tributed, so interrater reliability was assessed with the Kendall
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coefficient of concordance (KCC; Siegel & Castellan, 1988).
This statistic evaluates the reliability of the three raters taken
together. If the KCC was above .7, the error type was included
in the final analysis. Only four error types had a sufficient number
of errors (more than a total of 30 across all raters and subjects)
and had KCCs above .70. These four error types accounted for
approximately 90% of all errors.

With 20 subjects and paired data, we had more than a .8
statistical power to detect effect sizes (Cohen’s d) of 0.68 and
above. Most of the key effect sizes in this report were gigantic
(>17.0), but some were in the range of 1.0 or so. Thus, we had
adequate statistical power, considering the effect sizes we found.

To compare the error rates between methods, we employed
the sign test (Siegel & Castellan, 1988). This is a paired test that
converts each comparison between an ONH scoring and an
MNH scoring for the same subject (a set) as a series of ones
and zeros. If the ONH is greater than the MNH, this is represent-
edas a 1. If the MNH is greater than the ONH, this is represented
as a (. The sign test evaluates the probability of getting X number
of ones for Y trials (in this case, Y = 20 trials). Effect sizes
(Cohen’s d; Cohen, 1988) were calculated for these tests by
converting from an exact p value (15 digits) to a Z score. The
Z score was converted to an equivalent Pearson 7 correlation
coefficient, which was then converted to Cohen’s d (Cooper &
Hedges, 1994). Given the precision of the computer system, the
maximum d that could be estimated was 17.1, a truly giant effect
size.

To compare the numbers of events (fixations, saccades, PSOs,
artifacts, and unclassified) scored by each algorithm and the
lengths of time spent occupied by these events, paired ¢ tests were
employed. Effect sizes (Cohen’s d) were computed by transfor-
mation of the # values (Cooper & Hedges, 1994).

Results: ONH versus MNH
Signal examples showing typical errors

Example recordings are shown in Figs. 6, 7, 8, 9, 10, and
11. Figure 6 illustrates a near total failure of the ONH sys-
tem. Note the long stretch of saccades that are not detected
by the ONH. In this case, there were many such examples in
the recording, so we considered this case a failure of classi-
fication and completely removed the data from this set for
all further calculations. (A “set” consists of one subject
scored by two algorithms.) We also found such an example
in the training set of four subjects we evaluated. So, our best
estimate is that this occurs in two out of 24 subjects, or
approximately 8.3% of the time. In both cases of total fail-
ure, the distribution of velocity noise during fixation was
extremely skewed (kurtosis values = 12.1 and 12.29, the
highest kurtosis values observed in this study). This led to
saccade velocity peak detection thresholds of either 102.3°/s
or 104.0°s, respectively. In our view, these total failures
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Fig. 6 Horizontal and vertical position traces, plus velocity traces from
the same section of eye movement data, classified by two different
algorithms (left, ONH; right, MNH). Each true subject is scored twice,
once by the ONH and once by the MNH. For purposes of blinding the
raters, these two scorings were referred to as different subject numbers. A
“set” consists of these two scorings. For example, in this figure true
Subject 1,297 is scored by the ONH and referred to as Subject 22, and

ONH: Set =02, Sub =02, msec =6831

Vert Pos
~ feo] ©

20 40 60

-5
b -6
a
o]
=

0 20 40 60

o

100

20 40 60

o

400

300

200

100

Velocity
()}
o o

o

MNH: Set =10, Sub =32, msec =15000

2500

5-

500

0 500 1000 1500 2000

-10

1000 1500 2000 2500

o

0
0 500 1000 1500 2000 2500

also scored by the MNH and referred to as Subject 32. Both samples start
15,000 ms into the recording, and the numbers on the x-axis are
increments from this starting point. In this case, both samples end at
about 17,500 ms. The data classified in red are fixations, those in green
are saccades, and those in blue are PSOs. Unclassified samples are shown
in black and are not present in this example. Artifact samples are shown in
white and are also not present here
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Fig. 7 Illustration of a saccade that starts too early and ends too late according to the ONH. See the caption to Fig. 6 for details on the figure conventions.
On the left is a saccade classified by the ONH, and on the right is the same saccade classified by the MNH
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Fig. 8 A saccade that, as scored by the ONH, includes a portion of the subsequent PSO. See the Fig. 6 caption for the figure conventions

stemmed from the fact that the ONH algorithm uses metrics
appropriate for a unimodal symmetric distribution, whereas
the actual distributions are highly skewed.
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Figure 7 illustrates a saccade that starts too early and ends
too late as scored by the ONH. Note how early the saccade on
the left starts and how late it ends. Although the saccade on the
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Fig. 9 Different performance of the two algorithms near a blink artifact. See the Fig. 6 caption for the figure conventions
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Fig. 10 Examples of saccades not detected by the ONH. See the Fig. 6 caption for the figure conventions

determined by the human observer. This was the rule for all
timing decisions: Classified events had to be more than 3 ms
off from the choice a human expert might make. In this figure,

right might start a little too early, it would not have been
classified as starting too early, since the true estimate of the
start is less than 3 ms different from the detected saccade start
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Fig. 11 A small saccade (0.43 deg) that is correctly classified by the ONH but missed by the MNH. See the Fig. 6 caption for the figure conventions
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you can also see that the more sensitive and responsive veloc-
ity trace is for the MNH as compared to the ONH. There were
many, many such saccades, especially when the recordings
were classified by the ONH. These two errors (“saccade starts
too early” and “saccade ends too late”) were, by far, the most
frequent of all errors. We suggest that these errors occur be-
cause the saccade starts and ends were defined by the ONH as
the local velocity minima. Although these points fit the veloc-
ity data well, in the position trace this mark of the start of a
saccade starts too early, and this mark of the end of the saccade
ends too late.

In Fig. 8, we show a saccade that, when scored by the ONH,
ends so late that the saccade includes a portion of the subsequent
PSO. Here we see a saccade that is classified as ending too late
for the ONH algorithm but does not end too late when classified
by the MNH algorithm. Note that in this case the ONH-classified
saccade includes part of the adjacent PSO, but the MNH-
classified saccade ends before the PSO. This occurs because
the PSO immediately following the saccade begins at a velocity
above the saccade subthreshold (in this case, 8.7°/s). We think
that this is an unreasonably small saccade subthreshold that is
produced by the adaptive methods for the ONH. The MNH
algorithm, which uses more reasonable and fixed thresholds for
saccade detection, has no problem recognizing the PSO as a
PSO.

In Fig. 9, we show an example of the different per-
formance of the two algorithms near a blink artifact.
The EyeLink 1000 automatically detects blinks and re-
places the data during the blink with NaN values. For
display purposes, during blinks, we set the horizontal
and vertical position to 0.0, and set the velocity to
300. These blink artifacts are shown in white. Both
algorithms also typically exclude some data before and
after such blinks. These periods are also shown in
white. Note how, for the ONH, the fixation periods
before and after an artifact period are not scored.
These fixation periods are properly scored with the
MNH. The ONH defines the set of all potential fixa-
tions as those periods that are not saccades and not
PSOs. Therefore, the stretch of the recording that starts
near 1,350 ms and ends near 1,875 ms is not considered
as a potential fixation period because it contains an
artifact. The MNH defines the set of all potential fixa-
tions as those periods that are not saccades and not
PSOs and not artifacts. Therefore, the periods from
1,350 to 1,520 and from 1,730 to 1,875 are considered
as potential fixations. We think that these are fixation
periods and should be counted as such.

In Fig. 10, we see that the ONH has not only not
classified fixation periods near an artifact but also has
not classified many obvious saccades. The MNH clas-
sifies these data correctly. The problem here is really
the problem of allowing adaptive thresholds to obtain
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such small values. The saccade peak velocity threshold
for the ONH scoring on the left is 10.06, which is the
smallest in the study and, to us, is unreasonably small.
In the case of the three saccades that are not scored by
the ONH in the middle of this figure, these saccades are
rejected because the local velocity noise (11.20, 14.96,
and 12.94, respectively) is greater than the saccade peak
velocity threshold. These are clearly saccades, and their
rejection is a by-product of the adaptive estimation of
the saccade peak velocity threshold. The MNH uses a
fixed saccade peak velocity threshold of 55°/s and
scores these events accurately.

In Fig. 11 we show a small saccade (0.43 deg) that is correctly
classified by the ONH algorithm but is missed by the MNH
algorithm. Since the MNH uses a fixed velocity threshold (55°/
s) for the peak of a saccade, this saccade was not detected.

Results of the error classification

Many errors occurred so infrequently that they were not analyzed
(“noise misclassified as fixation,” “noise not detected,” “noise
starts too late,” “noise ends too early,” “noise ends too late,”
“noise starts too early,” “noise misclassified as PSO,” “fixation
ends too late,” “fixation ends too early,” “fixation misclassified
as noise,” “fixation starts too early,” “fixation starts too late,”
“fixation misclassified as saccade,” “saccade misclassified as
PSO,” “saccade starts too late,” “saccade misclassified as
noise,” “PSO misclassified as noise,” “PSO misclassified as
saccade,” “PSO starts too early,” and “PSO starts too late”).
The total number of errors is a sum of each error for all raters
and sets (pairs of subjects). We considered that if there were
fewer than 30 errors (across 20 subjects scored by both the
ONH and the MNH), then there was insufficient data to perform
a statistical analysis.

A number of errors occurred with sufficient frequency but
were not rated reliably (“noise misclassified as saccade,”
“fixation misclassified as PSO,” “saccade ends too early,”
“saccade misclassified as fixation,” “PSO misclassified as
fixation,” “PSO not detected,” “PSO ends too early,” and
“PSO ends too late™). For these errors, at the least, more specific
guidelines and rounds of practice, including consensus discus-
sions, would be required in order to improve the reliability of
error detection. It is also possible that human raters might not be
able to classify some of these events reliably, regardless of
practice.

Table 4 lists the error types that account for many of the errors
and that were detected reliably. Although there are only four such
error types, they account for nearly 90% of all errors. All have
very high interrater reliability (>.70) as assessed by the KCC.
The scale run runs from 0 to 1.0, and anything above .7 is con-
sidered good to excellent reliability.

Figure 12A presents the rates for the error “saccade starts too
early.” For all the boxplots in Fig. 12, the heavy horizontal lines
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Table 4  Errors that were detected reliably

Count Error Number Error Names Total Errors Percentage of All Errors Kendall Coefficient of Concordance”
1 12 Saccade not detected 105 0.93 15
2 8 Fixation not detected 711 6.29 .88
3 25 Saccade starts too early 5914 52.33 94
4 28 Saccade ends too late 3,420 30.26 95
Sum 10,150 89.82

“Kendall coefficient of concordance comparing all raters

are at the median, and the diamond shapes represents the mean.
A few extreme outliers are not shown, so as to enhance clarity,
but all values were entered into the statistical evaluation (sign
test) and the estimation of effect size. The effect sizes (Cohen’s
d) for these comparisons are either large or gigantic, considering
that an effect size of 0.8 is, in many circumstances, considered
“large” (Cohen, 1988).

The “saccade starts too early” error type accounted for
52% of all errors. The median number of saccades that start
too early is always above 75 for ONH and less than 26 or so
for the MNH. Given the very high numbers of saccades that
start too early when scored by the ONH, we wondered what
percentage of all saccades were scored with this error. These
results are presented in Fig. 12B. A median of 78% of all
saccades started too early for the ONH, whereas for the
MNH this result was 19%. For all raters, more than 70% of
all saccades started too early for the ONH, and fewer than
30% for the MNH.

Figure 12C presents the data for the error “saccade ends too
late.” There were many more of these errors when scored by
the ONH than when scored by the MNH. These errors were
30.26% of all errors. The differences between the ONH and
MNH are great and highly statistically significant, and the
effect sizes (d) are huge. The median number of saccades that
end too late is above 40 for all raters for ONH, but below 20
for MNH. Some of these saccades that ended too late included
some of the adjacent PSO. The numbers of this error were
rated by a single rater (rater “L”) after the main ratings had
been finished (Fig. 12D). Significantly more such saccades of
this type were found for the ONH than for the MNH (p <
.002).

Figure 12E presents the data for the error “fixation not
detected.” These represent 6.29% of all errors. An average
of approximately ten fixations were not detected per recording
for the ONH. This error almost never occurred for the data
scored with the MNH, but many more fixations went unde-
tected when scored by the ONH than when scored by the
MNH. A substantial number of these occurred near an artifact.
The ONH leaves unclassified what we would consider per-
fectly good fixation periods before and after artifacts.

Figure 13F presents data for the error “saccade not
detected.” These accounted for only 0.93% of all errors.

More saccades were not detected by the ONH than by the
MNH, but this difference was only statistically significant
for rater “E.” Even in the worst case, the median number of
undetected saccades for the ONH was two. So, this error type
is not important.

Comparisons of numbers of fixations, saccades, PSO,
and unclassified events and total lengths of time spent
in each event type for both systems

Figure 13A and B compare the numbers of periods of
fixation as scored by both algorithms (A) and the
amounts of time spent in fixation (B). The means and
SDs for these calculations are in Table 5. The MNH
scores significantly more fixations and results in signif-
icantly more time spent in fixation. Figure 13C and D
compare the numbers of saccades as scored by both
algorithms (C) and the time spent in the saccades (D).
The MNH scores significantly fewer saccades and re-
sults in significantly less time making saccades.
Figure 13E and F compare the numbers of PSOs as
scored by both algorithms (E) and the time spent in
making PSOs (F). The MNH scores significantly more
PSOs, but the lengths of time spent making PSOs were
not significantly different between the two algorithms.
Figure 13G and H compare the numbers of unclassified
periods as scored by both algorithms (G) and the time
spent in unclassified periods (H). The MNH has signif-
icantly fewer unclassified events and spends significant-
ly less time in unclassified periods. The MNH spends
1% of the time that the ONH does in unclassified
events (Table 5). Figure 131 and J compare the numbers
of artifact periods as scored by both algorithms (I) and
the time spent in artifact periods (J). The two algorithms
are not statistically different in terms of the number of
artifact periods, but the MNH spends significantly more
time in artifact periods.

It is interesting to note that for the ONH, 49% of all
saccades were followed by PSOs, whereas for the
MNH, 61% of all saccades were followed by PSOs
(Table 5).
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Fig. 12 Boxplots of error types for each rater

Experiment 2: IRF?
Method

Raimondas Zemblys kindly provided classification of our
data by his algorithm (Zemblys et al., 2018), for which we
are most grateful. As we noted above, the algorithm is
based on machine learning, but Zemblys’s article claims
that some logical postprocessing of the machine-learning

3 This section is abbreviated due to space limitations. In particular, the tables
and figures illustrating the results have been removed. For the complete section
including tables and figures, see
Full Report On_the Classification_of the Zemblys etal 2017...docx at
https://digital.library.txstate.edu/handle/10877/6874.
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results is also performed as part of the IRF algorithm.
These postprocessing steps are listed on the eighth page
of that report.

A single rater (first author, L.F.) evaluated the same 20
recordings as in Experiment 1, as classified by the Zemblys
et al. (2018) algorithm (the “IRF” algorithm). Since this
evaluation occurred after the ONH-MNH comparison, the
rater was not blind to the classification method. Reducing
the evaluation to one versus three raters would lower the
generalizability of the results to a potential population of
raters. Also, with only one rater, the issue of interrater reli-
ability was not relevant. All of the single rater’s evaluations
of every type of error in the ONH and MNH algorithms
were compared to all of the single raters’ evaluations of
the IRF algorithm.
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Fig. 13 Boxplots of basic statistics

The statistical significance of differences in error numbers
and corresponding effect sizes were calculated as above for
Experiment 1.

Results: IRF*
General impressions

There are several general impressions that one has after
reviewing the classification results from the IRF. First,
on the positive side, this algorithm is amazingly accu-
rate for saccade timing. It is a remarkable fact that we
did not find a single saccade with an onset timing that
was either too soon or too late. And the offset timing of
saccades, although not as perfect as the onset timing,
was extremely good as well. For saccade timing, the
IRF wins decisively. This will clearly be borne out
when we review the evaluation results.

The second aspect that one notices is that this algo-
rithm does a very poor job of rejecting unusual or artifac-
tual events. As we noted above, there are periods,

* This section is abbreviated due to space limitations. In particular, the tables
and figures illustrating the results have been removed. For the complete sec-
tion, including tables and figures, see
Full Report On_the Classification_of the Zemblys etal 2017...docx at
https://digital.library.txstate.edu/handle/10877/6874.
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typically during blinks, when the EyeLink 1000 does
not return a position value, but rather indicates missing
data (“not a number,” or NaN). The IRF interpolates
across such blinks, treats the interpolated data as if they
were good data, and attempts to classify such periods like
all the good data in the recording. During postprocessing,
the IRF removes the longer blink periods from classifica-
tion. For our evaluation of the IRF, we simply declared all
of these blink periods as noise/artifacts. Both the ONH
and the MNH exclude some data before and after each
blink (“peri-blink” data). Although the IRF claims to do
this during postprocessing, our results indicate that no
such postprocessing step was actually conducted (see be-
low). The IRF results are severely contaminated because
the IRF attempts to classify these peri-blink recording
periods. We have many cases in which the IRF classifies
what is obviously noise as fixation, saccade, or PSO. If
these types of artifactual events are not handled properly,
we see events in the midst of noise/artifact, where noise is
classified as a saccade of 1-ms duration. These 1-ms
“saccades” can have extremely high velocities (700°/s
and above). Again, this is not supposed to happen with
the IRF. Such artifactual “saccades” severely distort main
sequence relationships. Finally, noise also affects the clas-
sification of fixations. With the IRF, we found six fixa-
tions that were less than 10 ms, even though the
postprocessing steps claim to remove fixations less than
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Table 5 Means (SD) for event counts and lengths of time
Measure ONH MNH Ratio MNH/ONH
Mean SD Mean SD
Number of fixations 90.68 10.95 100.47 7.72 1.11
Number of saccades 97.26 9.37 94.74 10.08 0.97
Number of PSOs 47.47 25.94 57.89 25.85 1.22
Number of artifacts 5.79 4.04 6.68 5.06 1.15
Number of unclassified events 12.00 7.19 5.16 4.79 0.43
Length of time spent in fixations (s) 17.36 191 20.65 0.94 1.19
Length of time spent in saccades (s) 4.49 0.60 3.09 0.49 0.69
Length of time spent in PSOs (s) 1.00 0.51 0.98 0.59 0.97
Length of time spent in artifacts (s) 1.09 0.85 1.25 0.98 1.15
Length of time spent in unclassified events (s) 2.06 1.16 0.03 0.03 0.01
Derived Statistics:
Percent of saccades followed by PSO 48.81 61.10 1.25
Length of average fixation (ms) 191.42 205.51 1.07
Length of average saccade (ms) 46.15 32.61 0.71
Length of average PSO (ms) 21.16 1691 0.80
Length of average artifact (ms) 188.58 187.69 1.00
Length of average unclassified event (ms) 171.38 5.72 0.03

50 ms. No such short fixations were noted for the ONH or
the MNH. There were also a number of fixation periods
with extremely high velocity samples with the IRF.

Also, the IRF has several problems classifying PSOs. For
example, the IRF classifications have PSOs occurring after
fixations, whereas, by definition, PSOs occur after saccades
only. The IRF is supposed to prevent this, but apparently this
postprocessing step also failed. Furthermore, there are some
extremely short PSOs (even 1-ms PSOs) when classified by
the IRF.

Likewise, many of the PSOs scored by the IRF would not
meet our criteria for PSOs (see above). PSOs scored by the
IRF often have no velocity peaks that are above those seen in
the surrounding random fixation noise. Our criteria are similar
to those used for the ONH, as indicated by the algorithm used
to detect PSOs with the ONH and also with the example fig-
ures (their Figs. 1 and 9) illustrating PSOs in the original ONH
article (Nystrom & Holmgqvist, 2010). Indeed, the IRF clas-
sifies more than twice as many PSOs as the ONH (2,210 vs.
1,051)—an increase of 110%.

Error classification for the IRF versus the ONH and the MNH

For the ONH-IRF comparison, the ONH had higher numbers
of errors than the IRF for four error types, and the IRF had
more errors than the ONH for four other error types. For the
MNH-IRF comparison, the MNH has significantly more er-
rors than the IRF for one error type, and the IRF had more
errors than the IRF for six error types.

@ Springer

Given the absence of methods to handle unusual or artifac-
tual events in the IRF, many more noise periods were classi-
fied as fixations by this method than by the ONH and MNH
methods. The IRF also had more noise periods classified as
saccades than the MNH, but not than the ONH. Many more
fixation periods were misclassified as PSOs for the IRF than
for the ONH or, more dramatically, for the MNH. The IRF had
fewer fixations and PSOs that were not detected than the
ONH. The IRF had no saccades that started too early, whereas
the MNH and, especially, the ONH had many more such
events. Although the numbers are small, the IRF had more
saccades that ended too early than either the ONH or the
MNH. The IRF has fewer “saccades that end too late” errors
than either of the other algorithms, although the effect was
statistically significant only versus the ONH. The IRF has
significantly more PSOs that end too early than either other
algorithm. The IRF also has more PSOs that end too late than
both algorithms, but this increase was statistically significant
versus the MNH only.

Experiment 3: EyeLink Parser
Method

The EyeLink Parser algorithm is an online, real-time classifier,
which classifies eye movement data into fixations and sac-
cades. It does not classify PSOs. This may or may not be an
issue for online, real-time users. However, it is frequently
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employed offline for event classification, and for this task, not
detecting PSOs is a real drawback, in our view. As we were
informed by SR Research staff, the algorithm works as follows:
Under the standard parser configuration, saccade onset is sig-
naled when either velocity or acceleration go above thresholds
of 30 deg/s and 8,000 deg/s, respectively, and the eye has trav-
eled at least 0.1 deg. The velocity threshold is adjusted by an
average velocity from the preceding 40 ms in order to ensure
reliable detection of saccades during smooth-pursuit eye move-
ments. Saccade offset is signaled when velocity drops below a
threshold. Verification delays for saccade onset (4 ms) and offset
(20 ms) ensure a stable state before saccade onset/offset is sig-
naled. The EyeLink Parser does no filtering of the eye movement
data prior to classification, other than the Stampe (1993) filter
mentioned above. Since the details of the calculation of radial
velocity employed by the EyeLink Parser are proprietary, we
used the following simplified calculation, suggested by SR
Research staff, as an approximation of the velocity calculation
done by the EyeLink host software:

Velr (vy) = (X2 + X 1=X-17%2) /6 (7)

where x is the x horizontal position signal, y is the vertical posi-
tion signal, and ¢ is the current sample (in milliseconds).
Radial velocity is:

Velraial = SR*\/ Vel + Vel (8)

where SR is the sampling rate (1000 Hz).

A single rater (the first author, L.F.) evaluated the same 20
recordings as in Experiment 1 as classified by the EyeLink Parser
algorithm. Since this evaluation occurred after the ONH-MNH
comparison, the rater was not blind to the classification method,
as had also been the case with the IRF algorithm. Reducing the
evaluation to one versus three raters would lower the generaliz-
ability of the results to a potential population of raters, as with the
IRF algorithm. Also, with only one rater, the issue of interrater
reliability was not relevant.

Statistical significance of the differences in error numbers and
the corresponding effect sizes were calculated as above for
Experiment 1.

Results: EyeLink Parser’
General impressions

There are several general impressions that one has after
reviewing the classification results from the EyeLink Parser.

> This section is abbreviated due to space limitations. In particular, the tables
and figures illustrating the results have been removed. For the complete sec-
tion, including tables and figures, see
Full Report On_the Classification of the EyeLink Parser.docx at https://
digital.library.txstate.edu/handle/10877/6874.

First, the EyeLink Parser does not classify PSOs, and there were
many PSOs in these recordings. We understand that PSOs are
intended to be ignored by the EyeLink Parser. We also under-
stand that, for certain real-time applications, the failure to detect
PSOs may still allow for some meaningful online calculations.
Nonetheless, PSOs are real events (although they may not be real
eye movements; Hooge, Holmqvist, & Nystrom, 2016;
Nystrom, Hooge, & Holmqyvist, 2013), and we consider the fail-
ure of this algorithm to detect them is a flaw in the parser, espe-
cially when it is used for offline analysis. The ONH found 1,051
PSOs, and the MNH found 1,350 PSOs. Since our focus is on
offline analysis, from our point of view the failure to detect these
PSOs is considered to generate classification errors. Second, all
blink periods (missing data) are both preceded and followed by
“saccades.” SR Research refers to these events as “blink-
saccades,” and makes no judgment regarding whether the sac-
cades are true saccades or artifacts. In our sample, all such events
were artifacts. SR Research informs users in its user manual that
these events should be removed, so we will henceforth consider
them removed. During online processing, there is not sufficient
time to discriminate between the blink—saccades and regular sac-
cades, and therefore these events remain classified as saccades. It
is up to the user to remove them.

In general, the EyeLink Parser performs very well when de-
termining saccade onset. However, a large number of saccades
ended too early. The EyeLink Parser does a reasonably good job
determining the end of saccades in the absence of PSOs. But in
the presence of PSOs, we find many saccades that end too late
and include a portion of the following PSO.

Error classification for the EyeLink Parser versus the ONH
and the MNH

For the ONH-EyeLink Parser comparison, the ONH had higher
numbers of errors than the EyeLink Parser for two error types,
and the EyeLink Parser had more errors than the ONH for one
type of error. For the MNH-EyeLink Parser comparison, the
MNH has significantly more errors than the EyeLink Parser for
one error type (“saccades that start too early”), and the EyeLink
Parser had more errors than the MNH for one error type
(“saccades that end too early™).

The EyeLink Parser scores a trivially small number of sac-
cades that start too early (or those that start too late, data not
shown). So, one would have to conclude that the EyeLink
Parser performs very well in determining the onset of each sac-
cade. The ONH finds many saccades that end too late—far more
than the EyeLink Parser—whereas the MNH finds fewer of these
errors than the EyeLink Parser (but not significantly so).

PSO study

We also wanted to know what the EyeLink Parser does with
PSOs, as defined by the MNH. There were 1,083 MNH-

@ Springer


https://digital.library.txstate.edu/handle/10877/6874
https://digital.library.txstate.edu/handle/10877/6874

1394

Behav Res (2018) 50:1374-1397

defined PSOs, consisting of a total of 17,125 samples (i.e., mil-
liseconds) of data, and only 2,093 samples were classified as
saccades (12.2%). For each PSO found by the MNH, we deter-
mined what percentage of the PSO was classified as fixation by
the EyeLink Parser. The percentage of all MNH-defined PSOs
that were classified as 100% fixation was 56%. The percentage
of all MNH-defined PSOs that were, in part, assigned to saccades
was 44%. We also looked, subject by subject, at the percentage of
all MNH-defined PSOs that consisted of 20% or more saccade,
as classified by the EyeLink Parser. For three subjects, roughly
50% of all the MNH-defined PSOs consisted of 20% or more
saccade according to the EyeLink Parser.

Discussion
Experiment 1: ONH versus MNH

The main findings of this part of the study are that our modified
version of the Nystrom and Holmgvist (2010) algorithm (MNH)
has markedly fewer errors in the timing of the onset and offset of
saccades and the number of undetected fixations and saccades
than the original algorithm (ONH; Nystrém & Holmqvist, 2010).
In a small, but not insignificant, number of subjects, the ONH
completely fails (our best estimate is in 8.3% of subjects). The
MNH does underperform with respect to the ONH, however, in
the detection of very small saccades. As a result, the MNH scores
significantly more fixations, fewer saccades, more PSOs, and
leaves fewer periods unclassified than does the ONH. Also, data
scored by the MNH result in significantly more time in fixation,
significantly less time in saccades, and much less time in unclas-
sified periods than does the ONH.

We found the following issues with the ONH as applied to
our data: (1) In our view, it uses too much smoothing of the
position and velocity signals; (2) it uses a threshold for ex-
tending an artifact forward and backward in time that is much
too small for our data; (3) it uses nonoptimal metrics to define
the central tendency and spread of the highly skewed fixation
velocity noise distribution; (4) the adaptive thresholds it com-
putes for our data are unreasonably small, (5) by not consid-
ering the position trace, it consistently marks the start of sac-
cades too early and the end of saccades too late; and (6) by not
allowing fixation periods to start or end with artifact, it dra-
matically underscores fixation. Because of these issues with
the ONH, as applied to our data, the ONH scores many more
saccades as starting too early, or ending too late, and it fails to
detect many fixations.

Eight error types were not reliably detected across raters.
This indicates that, at least, more time writing guidelines,
practicing, and having consensus discussions will be required
before these error types can be reliably classified. Of course,
there is no guarantee that these error types can, in the final
analysis, be scored reliably. Although the raters were only
highly reliable for four error types, these error types accounted
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for approximately 90% of all errors, so most of these error
classifications were performed reliably. The reliability of rat-
ings of saccade timing was excellent, and this was probably
due to the ability of the rater to zoom into the recording to see
each sample individually, as well as to the precise, 3-ms rule
we used. Undetected fixations and saccades are easy to iden-
tify. Human classification of PSO-related errors was difficult
and not reliable—more work is required in the future to re-
solve this issue.

In the original article, Nystrom and Holmqvist (2010)
raised a concern that the Stampe (1993) heuristic spike filter
employed by the EyeLink system might have the effect of
removing the number of PSOs. Since both data-recording sys-
tems applied the Stampe filter, and both found many PSOs,
this concern was apparently unfounded. The algorithms did
not differ in terms of the time spent making PSOs.

Although generally the MNH far outperformed the ONH, the
MNH is clearly not perfect, and certain aspects of it could be
improved. For example, although there were fewer saccade
timing errors with this method, there were still a substantial num-
ber of such errors. In our view, to further improve the perfor-
mance of the MNH for saccade timing, the position trace signals
need to be taken into consideration as well as the velocity trace.
The performance of the MNH in detecting very small saccades
could be improved by the development of a special subroutine
devoted to this task. A simple solution of lowering the fixed
saccade velocity detection thresholds might work, or it might
create unforeseen issues with the scoring of other events. In the
future, we plan to try several approaches to deal with this issue.

We think that the present method used to evaluate error
types provides an unusually rich source of information for
an algorithm developer. Obviously, before others use this
method, they might consider methods for enhancing the reli-
ability of the detection of several error types. The creation of
detailed instructions for how to detect certain errors may re-
quire an iterative process of drafting guidelines, scoring a
sample of data, and having a follow up consensus discussion.
But the method has the potential to provide information on all
of the decisions such an algorithm needs to make, and in our
evaluation, it is much less cumbersome than other methods
that require human expert classification of every event in a
recording (Andersson et al., 2017), which is an extremely time
consuming and tedious procedure.

One caveat of the present study is that, given that the two
algorithms smooth the data to different extents, it was possible
for raters to determine which of the two algorithms classified the
data being scored. We could not think of a way around this, but it
is a threat to the extent to which the recordings were “blindly”
rated. Furthermore, we make no claim that our algorithm is bet-
ter, in every instance, with every kind of eye movement data. We
had only our sample of subjects studied with the EyeLink 1000 at
1000 Hz to evaluate during a reading task, and, for the time
being, our results must be considered limited in this way.
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The MNH algorithm, with fixed thresholds for classifying
saccades, performed much better than the adaptive method
employed by the ONH algorithm. Although Nystrom and
Holmgqvist (2010) emphasize the value of adaptive thresholds,
it seems to the present authors that Nystrom and Holmqvist do
not provide either a theoretical or empirical foundation for the
use of adaptive filters. It is not obvious that thresholds for
saccade definition, or any event definition, should be adjusted
for the level of fixation noise in a recording. The approach
seems reasonable, and apparently works well with Nystrom
and Holmgqvist’s data. But the opposite notion, that the veloc-
ity thresholds for classifying eye movement events should be
constant across subjects, is also reasonable. With adaptive
thresholds, the definition of a saccade, for example, is formal-
ly different for each subject, and even for the same saccade
occurring in different contexts in the same recording. Why
should this be so? Using the same thresholds for each subject
lead to events that are identically defined across subjects. In
our context, in which we use eye movements to biometrically
recognize humans at various time intervals, the same event
definition will lead to more stable classification results and
better biometric performance. As applied to our data, the adap-
tive thresholds for saccade peak velocity detection are often
unreasonably small (10°-20°/s), whereas, Nystrom and
Holmgvist report a mean value of 33°/s. Since these adaptive
thresholds are based on velocity noise during fixation, it
would appear that our data were substantially less noisy than
theirs. This is true despite our use of much less smoothing. If
we were to try to reinstate the adaptive filter approach going
forward, we would use statistical metrics that match the highly
skewed distribution of velocity noise during fixation, and set a
lower limit on the threshold levels.

We must acknowledge that this article was written in the
belief that the classification of eye movements by human be-
ings can be a gold standard. We are aware that Hooge,
Niehorster, Nystrom, Andersson, and Hessels (2017) have
stated that this view cannot be supported. We disagree with
Hooge et al. (2017) and believe their analysis is based on an
incomplete interrater reliability study. They studied the reli-
ability of experienced oculomotor researchers at a single point
in time, without any rater training or consensus discussions.
There is a very large literature on the beneficial effects of rater
training (Abaza & Ross, 2009; Abbo, Okello, & Nakku, 2013;
Alcott, Swann, & Gratham, 1999; Angkaw, Tran, & Haaga,
2006; Bank et al., 2002; Buijze, Guitton, van Dijk, Ring, &
the Science of Variation Group, 2012; Chan & Yiu, 2002;
Chapman et al., 2016; Cusick, Vasquez, Knowles, & Wallen,
2005; Degenhardt, Snider, Snider, & Johnson, 2005; Haj-Ali
& Feil, 2006; Istriana et al., 2013; Iwarsson & Reinholt
Petersen, 2012; Lievens, 2001; Lou et al., 2014; Lundh,
Kowalski, Sundberg, & Landen, 2012; Magnan &
Maklebust, 2009; Mist, Ritenbaugh, & Aickin, 2009; Rosen
et al., 2008; Sattler, McKnight, Naney, & Mathis, 2015;

Schredl, Burchert, & Gabatin, 2004; Solah et al., 2015;
Staelens et al., 2014; Store-Valen et al., 2015; Taninishi
etal., 2016). There is also a literature on the beneficial effects
of having consensus discussions and employing consensus
guidelines (Beerbaum et al., 2009; Degenhardt et al., 2005;
Foppen, van der Schaaf, Beek, Verkooijen, & Fischer, 2016;
Iwarsson & Reinholt Petersen, 2012; Meade et al., 2000;
Weinstock et al., 2001). The first author of this article has
conducted many human interrater reliability studies, with
humans classifying complex signals, images, or behaviors,
over his career. In no case, upon first testing, were humans
found to be reliable. However, using an iterative process of
assessing reliability, having consensus discussions, and devel-
oping consensus guidelines has always led to much higher,
and quite useful levels of interrater reliability. In his view,
human raters are generally not reliable in rating complex phe-
nomena without training and consensus discussion.

Recent findings have called into question the usefulness
and accuracy of video-based eyetrackers, which rely on esti-
mates of the pupil position and the corneal reflection position
(Hooge et al., 2016; Nystrom et al., 2013). PSOs in particular
are seen, at least partially, to be an artifact of the differing
temporal dynamics of the pupil and the corneal reflection.
The claim is also made that these devices are not suitable for
studying the detailed dynamics of eye movements. We have
nothing to contribute to this discussion, and we leave it to the
user to decide whether or not to treat the PSOs detected by the
MNH as eye movements. Perhaps some may choose to in-
clude PSO time in the postsaccadic fixation period. We want
to simply state that, to define PSO events, we relied on the
definitions provided in Nystrom and Holmqvist (2010), par-
ticularly as displayed in their Figs. 1 and 9. We are not aware
of any retraction on the part of these authors as to this defini-
tion of the appearance of PSOs in recordings from video-
oculographic eye movement recording systems.

Experiment 2: Machine-learning algorithm

Our analysis of the IRF machine-learning algorithm of
Zemblys et al. (2018) revealed several serious flaws in the
output of this method. Although the IRF is amazingly accurate
for saccade timing, there were a number of serious problems
with the output of this method. Although the IRF algorithm
states that it includes a number of postprocessing steps de-
signed to remove unusual events, the evidence suggests that
many postprocessing steps were either inadequately applied or
not applied at all. Without these postprocessing steps, the out-
put of the IRF is so replete with errors that we cannot recom-
mend its use at this time.

The machine-learning methods employed in the IRF re-
quire training from human classifiers. It would appear that
the human classifiers who trained this version of the algorithm
have an unusual definition of what a PSO must look like—
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certainly completely different from that of Nystrdm and
Holmgqvist (2010), the authors of the ONH. The IRF algorithm
classified more than twice as many PSOs as the ONH, and
many of these “PSOs” had no evidence of noticeable velocity
peaks at all. Also, some PSOs occurred after a fixation.®

Experiment 3: EyeLink Parser

The Eyelink Parser does not classify PSOs. Although this may
or may not be an issue for those who use the algorithm for
online processing and decision making, in our view, it is def-
initely an issue for offline analysis. There were approximate
1,000 PSOs in the recordings analyzed herein for 520 total
seconds analyzed, so approximately two PSOs per second
were missed. The EyeLink Parser does an excellent job deter-
mining the timing of saccade onset, but it tends to classify
more saccades that end too early than either the ONH or the
MNH.

Conclusion

In conclusion, we have modified the original Nystrom and
Holmgvist (2010) algorithm (ONH) so that we now have a
new algorithm, the modified Nystrom and Holmgqvist method
(MNH). It makes dramatically fewer errors, with our data, in
saccade timing, and it detects fixations and saccades that
remain unclassified by the ONH. The MNH never has
complete failures, whereas in some cases the ONH did
completely fail. The MNH algorithm does not detect very
small saccades, however. The IRF algorithm of Zemblys
et al. (2018) does a very poor job of dealing with unusual or
artifactual noise in recordings and produces PSO classifica-
tions that do not look like PSOs. At this stage, we cannot
recommend its use. The EyeLink Parser misses all PSOs and
tends to find saccades that end too early, but it does very well
detecting the timing of the onset of saccades.

Author note We acknowledge the support to O.V.K. from the
National Science Foundation (Grant CNS-1250718) and the
National Institute for Standards and Technology (Grants
60NANB15D325, 60NANB16D293). We also express our
gratitude to Raimondas Zemblys for scoring our data with
his algorithm. Sam Hutton is a staff scientist at SR Research.
He helped us describe the workings of the EyeLink Parser and
review this section for errors and comments. None of the
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® For a more full discussion of the PSO detection in the Zemblys et al. (2018)
article, see the document labeled “Report on PSO Detection in the Zemblys
et al. (2018) Paper.docx” at https://digital.library.txstate.edu/handle/10877/
6874.
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