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Abstract
Behavioral researchers often linearly regress a criterion on multiple predictors, aiming to gain insight into the relations between
the criterion and predictors. Obtaining this insight from the ordinary least squares (OLS) regression solution may be troublesome,
because OLS regression weights show only the effect of a predictor on top of the effects of other predictors. Moreover, when the
number of predictors grows larger, it becomes likely that the predictors will be highly collinear, which makes the regression
weights’ estimates unstable (i.e., the Bbouncing beta^ problem). Among other procedures, dimension-reduction-based methods
have been proposed for dealing with these problems. These methods yield insight into the data by reducing the predictors to a
smaller number of summarizing variables and regressing the criterion on these summarizing variables. Two promising methods
are principal-covariate regression (PCovR) and exploratory structural equation modeling (ESEM). Both simultaneously optimize
reduction and prediction, but they are based on different frameworks. The resulting solutions have not yet been compared; it is
thus unclear what the strengths and weaknesses are of both methods. In this article, we focus on the extents to which PCovR and
ESEM are able to extract the factors that truly underlie the predictor scores and can predict a single criterion. The results of two
simulation studies showed that for a typical behavioral dataset, ESEM (using the BIC for model selection) in this regard is
successful more often than PCovR. Yet, in 93% of the datasets PCovR performed equally well, and in the case of 48 predictors,
100 observations, and large differences in the strengths of the factors, PCovR even outperformed ESEM.
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In the behavioral sciences, researchers often linearly regress a
criterion variable y on J predictor variables X1, X2 . . . XJ, aiming
to gain insight into the relations between the predictors and the
criterion (Johnson, 2000). Obtaining this insight from the ordi-
nary least squares regression (OLS) solution is troublesome,
however. First, OLS regression weights show only the addition-
al effect of a predictor on top of the others, and therefore do not
reveal their shared effects (Bulteel, Tuerlinckx, Brose, &
Ceulemans, 2016). For example, Bulteel et al. (2016) demon-
strated for a dataset with 11 depression-related symptoms that

only a small part of the explained variance of each variable was
attributable to the unique direct effects. Moreover, when the
number of predictors grows larger, it becomes likely that the
predictors will be highly collinear, which makes the regression
weights unstable as well (i.e., the bouncing beta problem; Kiers
& Smilde, 2007).

Several solutions have been proposed for dealing with the
Bbouncing beta^ problem. Most of them can be classified as
variable selection methods (such as forward selection and
backward elimination; Hocking, 1976), penalty methods
(such as ridge regression and Lasso; Hoerl & Kennard,
1970; Tibshirani, 1996), ensembles (such as random forests;
Breiman, 2001), and dimension reduction-based methods
(Kiers & Smilde, 2007). The first three solutions do not di-
rectly shed light on which predictors have similar effects on
the criterion. For instance, if a predictor gets a regression
weight close to zero when a lasso penalty is added to the
OLS regression, this can either mean that the predictor is un-
related to the criterion or that the effect of the predictor coin-
cides to a large extent with that of another predictor. In

* Marlies Vervloet
marlies.vervloet@kuleuven.be

Wim Van den Noortgate
wim.vandennoortgate@kuleuven.be

Eva Ceulemans
eva.ceulemans@kuleuven.be

1 KU Leuven, Leuven, Belgium

Behavior Research Methods (2018) 50:1430–1445
https://doi.org/10.3758/s13428-018-1022-y

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-018-1022-y&domain=pdf
mailto:marlies.vervloet@kuleuven.be


contrast, dimension-reduction-based methods do aim to yield
insight into the underlying mechanisms, by reducing the pre-
dictors to a smaller number of summarizing variables and
regressing the criterion on these summarizing variables.

The most popular dimension-reduction-based regression
methods are partial least squares (PLS; Wold, Ruhe, Wold,
& Dunn, 1984) and principal-component regression (PCR;
Jolliffe, 1982), which both extend principal-component anal-
ysis (PCA; Pearson, 1901) to the regression context. However,
neither of these two methods simultaneously optimizes reduc-
tion and prediction, in contrast to principal-covariate regres-
sion (PCovR; De Jong&Kiers, 1992). Indeed, PCovR explic-
itly searches for components that are not only good summa-
rizers of the predictors but also explain the variance of the
criterion, whereas PCR focuses exclusively on the former
and PLS on the latter. Not surprisingly, PCovR outperformed
PCR and PLS in a previous study (Vervloet, Van Deun, Van
den Noortgate, & Ceulemans, 2016) that investigated how
well the three methods recover the underlying components
that are relevant for predicting the criterion (i.e., they explain
some variance in the criterion), irrespective of their strength
(i.e., how much variance in the predictors they explain).

Within the factor-analysis-based framework, another
method is available that simultaneously combines reduc-
tion and prediction: exploratory structural equation
modeling (ESEM; Asparouhov & Muthén, 2009). When
ESEM is applied, latent factors are searched for that ex-
plain the correlations between the predictors, and these
factors are then used to predict the criterion variable.
PCovR and ESEM stem from different frameworks and
traditions, though, and the resulting solutions have not
yet been compared. It is thus unclear what the strengths
and weaknesses are of the two methods. It is important to
notice that the theoretical statuses of components and fac-
tors are not the same (Bollen & Lennox, 1991; Borsboom,
Mellenbergh, & Van Heerden, 2003; Coltman, Devinney,
Midgley, & Veniak, 2008): Whereas components are as-
sumed to be influenced by the observed variables (forma-
tive relationship), factors are assumed to cause the scores
on the observed variables (reflective relationship).
Moreover, components are linear combinations of the ob-
served variables, whereas factors are assumed to exist
independent of the observed variables (for a detailed
comparison of formative and reflective models, see
Coltman et al., 2008). Despite of these theoretical differ-
ences, it has been established that factor analysis and
component analysis often lead to the same conclusions
with respect to the dimensions underlying the data
(Ogasawara, 2000; Velicer & Jackson, 1990). A more
fundamental difference between the two methods is that
PCovR has a weighting parameter with which the user can
tune the degrees of emphasis on reduction versus predic-
tion, whereas no such parameter is available for ESEM. It

is therefore useful to investigate the extent to which ESEM
and PCovR lead to factors that can be similarly interpreted.

When comparing the performance of two methods, it is
crucial to specify the evaluation criterion that one is interested
in (Doove,Wilderjans, Calcagnì, &VanMechelen, 2017). In a
regression context, a lot of possibilities are conceivable, such
as predictive ability or the estimation accuracy of the regres-
sion weights of the separate predictors (e.g., Kiers & Smilde,
2007). In line with the research questions mentioned above,
we will focus in this article on the extent to which PCovR and
ESEM are able to extract factors or components that truly
underlie the predictor scores and that predict a single criterion.
To this end, simulated data will be used, since we can then
know for sure which factors or components were used to gen-
erate the data.

The remainder of this article has been structured as follows.
In the following two sections, we briefly recapitulate PCovR
and ESEM, respectively. Then we put both methods to the test
in two simulation studies, focusing on the number and the
nature of the estimated factors. Next we further illustrate the
performance of ESEM and PCovR, by applying them to a real
dataset, and we end with some discussion points and conclud-
ing remarks.

Principal-covariate regression

Model

PCovR combines two goals: reduction (Eq. 1) and prediction
(Eq. 2). The predictors X1, . . . XJ are reduced to R compo-
nents, which are linear combinations of the predictor scores
(i.e., formative relation), and the criterion y is regressed on
those components:

X ¼ TPX þ EX ð1Þ
y ¼ Tpy þ ey ð2Þ

X is a matrix that horizontally concatenates the J predic-
tors. PX and py are, respectively, the loading matrix and the
regression weight vector. The component scores are given by
T.EX and ey contain, respectively, the residualX and y scores.
Because component-based methods model the total variance
of a matrix, EX refers to the part of the observed scores that is
explained by the components that are not retained, and is
therefore of rank R − J or lower. Note that the columns of T
do not correlate with the columns of EX or with ey.

We assume that the data are centered around zero. This is
necessary for X, to ensure that PCovR models the correlation
or covariance structure of the data. Centering of y is optional,
but discards the need for an intercept in Eq. 2, as discussed by
Vervloet, Kiers, Van den Noortgate, and Ceulemans (2015).
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Estimation

The key feature of PCovR is that the two model aspects (re-
duction ofX and prediction of y) are optimized simultaneous-
ly, which can be seen in the following loss function:

L ¼ α
X−TPXk k2

Xk k2 þ 1−αð Þ y−Tpy
�� ��2

yk k2 ; ð3Þ

whereα (0 <α ≤ 1) is the prespecified weighting parameter
that determines to which degree reduction rather than predic-
tion is emphasized. A closed form solution always exists,
given a specific α and R value. This solution is obtained by
estimating T by the first R eigenvectors of matrix G:

G ¼ α
XX

0

Xk k2 þ 1−αð ÞHXy y
0
HX

yk k2 ; ð4Þ

with HX being a projection matrix that projects y on X.
Note that T is usually rescaled so that the columns have a
variance of 1, in order to resolve nonidentification. PX and
py can then be computed as follows:

PX ¼ T
0
X ð5Þ

Py ¼ T
0
y ð6Þ

Estimation usually ends with a rotation procedure, as
PCovR solutions with at least two components have rotational
freedom. Indeed, premultiplying PX and py by any transfor-
mation matrix, and postmultiplying T by the inverse of the
transformation matrix, does not change the reconstructed X
scores or the predicted y scores. This rotational freedom
implies that the loading matrix can for example be rotated
toward simple structure, in order to obtain a loading matrix
that is easier to interpret. Browne (2001) defines a simple
structure loading matrix as a matrix with only one nonzero
loading per predictor, and with more than R but fewer than J
zero-loadings per component. A distinction can be made be-
tween rotation criteria that change the correlation between
factors (i.e., oblique rotation criteria) or not (i.e., orthogonal
rotation criteria). In the R package PCovR (Vervloet et al.,
2015), the following rotation criteria are made available:
Varimax (Kaiser, 1958), Quartimin (Carroll, 1953), weighted
Varimax (Cureton &Mulaik, 1975), oblique (Browne, 1972b)
and orthogonal (Browne, 1972a) target rotation, and Promin
(Lorenzo-Seva, 1999). However, other rotation criteria could
be used as well.

Model selection

PCovR model selection consists of both the selection of the α
value and the number of components. In a previous study
(Vervloet et al., 2016), the so-called COMBI strategy led to

the best results in terms of retrieving the relevant components,
which is the performance criterion that we also focus on in this
study. This strategy, starts with the computation of the α value
that maximizes the likelihood of the data. On the basis of the
work of Gurden (n.d.), the following formula can be used:

αML ¼ Xdk k2

Xdk k2 þ ydk k2 σ
2
EX

σ2
ey

ð7Þ

For selecting the number of components given αML, two
approaches are combined. Firstly, the analysis is run with the
number of components varying from 1 to a specified number
Rmax. Subsequently, the model is selected (called the
ML_SCR model) that yields the optimal balance between this
loss function value and the number of components, by looking
after which number of components the decrease in L levels off
(i.e., a scree test procedure; Cattell, 1966; Ceulemans &Kiers,
2006). Secondly, we compute the cross-validation fit for the
models with 1 to Rmax components and retain the model with
the optimal cross-validation fit (called the ML_RCV model).
Note that instead of choosing the model with the highest av-
erage cross-validation fit (across several random partitions
into folds), we select the most parsimonious model among
all models with a cross-validation fit that differs less than 1.5
standard error from the highest average cross-validation fit
(Filzmoser, Liebmann, & Varmuza, 2009; Hastie, Tibshirani,
& Friedman, 2001).

The final COMBI model contains the components that are
present in both the ML_SCR and the ML_RCV model, indi-
cated by high Tucker congruencies (Tucker, Koopman, &
Linn, 1969) between components in both models. Moreover,
the components from the ML_RCV model that have at least a
moderate regression weight—that is, higher than .30 (Cohen,
1988)—are added. For full details of the COMBI strategy, see
Vervloet et al. (2016).

Exploratory structural equation modeling

Model

Structural equation models (Kline, 2015) consist of two parts.
The measurement part reflects how observed variables are
linked to underlying latent factors. In general, the structural
part specifies the relations between these latent factors.
Usually, structural equation models are confirmatory in that
the loading structure of the variables is (partly) specified be-
forehand. However, using such a confirmatory approach often
leads to biased structural model estimates, because typically
the loadings are restricted to have zero cross-loadings, leading
to inflated factor correlations (Marsh, Liem, Martin,
Nagengast, & Morin, 2011; Marsh, Morin, Parker, & Kaur,
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2014; Marsh et al., 2009). Asparouhov and Muthén (2009)
proposed ESEM as a general framework that integrates con-
firmatory factor analysis with structural equation modeling
and exploratory factor analysis, in which the loadings can be
free parameters that are estimated. Often, ESEM is used as a
confirmatory tool—for example, for measurement invariance
testing—but it has been demonstrated (Marsh et al., 2014) that
it is a valuable exploratory tool, as well. Specifically, we focus
in this article on how ESEM can be used to model a single
criterion1 that is regressed on latent factors in an exploratory
way, which comes very close to a PCovR model. Hence, the
same model formulae as in Eqs. 1 and 2 can apply here, but
with factors instead of components—thus implying that the
relations between the observed and latent variables are reflec-
tive. Both the residuals ofX and y are assumed to be normally
distributed with mean 0. EX refers to the part of the observed
scores that originates from unique variances of the predictors
and/or error variance, since factor-based methods only model
common variance. Note that ESEM further assumes that the
observed data are continuous and multivariate normal.

Estimation

ESEM has no closed-form solution. Hence, an iterative algo-
rithm is necessary for estimating the ESEM parameters. The
algorithm that is programmed in Mplus (the only software in
which ESEM is available) is based on the gradient projection
algorithm (Jennrich, 2001, 2002) and makes use of a maxi-
mum likelihood estimator, although other estimators are pos-
sible, as well (e.g., weighted least squares estimator or robust
alternatives; Marsh et al., 2014). The use of multiple starting
values is common practice, to avoid local minima. By default
inMplus, ESEM is performed with 30 random starting values.
Note that nonconvergence problems can occur, which is why
the default settings imply that the algorithm will be stopped
after a maximum of 1,000 iterations. For more details on the
estimation, see Asparouhov and Muthén (2009).

Again, the estimation step usually ends with a rotation pro-
cedure, in order to simplify the interpretation. In Mplus the
following rotation criteria are available, among others:
Varimax (Kaiser, 1958), Quartimin (Carroll, 1953), Geomin
(Yates, 1987), and target rotation (Browne, 1972a, 1972b).

Model selection

When running ESEM analyses, model selection consists of
determining the appropriate number of latent factors. In
Mplus, the following information criteria are available that
can be used for this task: the Bayesian information criterion
(BIC; Schwarz, 1978), the sample-size-adjusted BIC (SABIC;

Sclove, 1987), and the Akaike information criterion (AIC;
Akaike, 1974). The BIC value is calculated as follows:

BIC ¼ 2ln L̂̂
� �þ kln Nð Þ: ð8Þ

It can be seen that the BIC consists of a term involving L̂,
which is the maximized value of the likelihood function of the
model, and a penalty term. The k in this penalty term refers to
the number of free parameters:

k ¼ J þ 1ð Þ Rþ 2ð Þ− R2−R
2

; ð9Þ

which is the number of free parameters: the intercepts ofX
and y, the loadings, the residual variances of X and y, and the
regression weights, minus the number of correlations between
the factors. The number of factors that leads to the lowest BIC
value is preferred. Alternatively, model selection can be based
on the SABIC or AIC, which are calculated in similar ways,
but with different penalty terms:

AIC ¼ −2ln L̂̂
� �þ 2*k ð10Þ

and

SABIC ¼ −2ln L̂̂
� �þ kln

N þ 2

24

� �
: ð11Þ

From the formulae it can be concluded that the penalty term
will usually be highest for BIC and lowest for AIC. Therefore,
when comparing the models that are selected by the three
different strategies, BIC will often lead to the selection of
the least complex model, and AIC to the most complex
model. Bulteel, Wilderjans, Tuerlinckx, and Ceulemans
(2013) found, for instance, a very low success rate for AIC
at estimating the correct number of underlying factors in the
context of mixtures of factor analyzers, due to its tendency
toward selecting too many factors. BIC had much better per-
formance in their simulation study, but it underestimated the
number of factors in difficult conditions. Vrieze (2012) indi-
cates that the BIC is assumed to select the true model as the
sample size grows, as long as the true model is under consid-
eration, whereas the AIC selects the model that minimizes the
mean squared error of estimation, and can be preferred over
BIC if the truemodel is not among the candidate models being
considered.

Simulation studies

To make a solid comparison between PCovR and ESEM with
regard to the recovery of the underlying factors, both methods
were put to the test in two simulation studies. In the first study,
the number of true underlying factors was manipulated as well
as their strength, in order to investigate whether the

1 In this case, the latent criterion factor in the measurement model equals the
manifest criterion variable.
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performance of PCovR and ESEMwould be affected by these
(latent) data characteristics. Regarding the strength of the fac-
tors, Velicer and Fava (1998) showed that the more variables
load high on a factor, the more likely it is that this factor will
be recovered. Therefore, weak factors can be hypothesized to
be difficult to retrieve, especially in conditions with a lower
number of predictors. As we stated in the introduction, we also
wanted to investigate the influence of the relevance of the
factors. Yet, in the case that the number of true factors is
varied, it is difficult to come up with a balanced design in
which both the strength and the relevance of the factors can
be manipulated. For this reason, a second study was per-
formed as well, in which the number of factors was fixed to
four. In this way, the datasets in the second study could contain
factors with different strength–relevance characteristics. This
manipulation would be especially interesting, because in such
cases, balancing good reduction and prediction becomes more
important.

Next to the number, strength, and relevance of the factors,
the number of predictors, the number of observations, the
percentage of error variance in X, and the percentage of error
variance in y are other interesting data characteristics to ma-
nipulate, because they determine the amount of information
available in the data. The amount of error on the predictor
block, especially, has been shown to influence the perfor-
mance of PCovR (Vervloet et al., 2016). It can be hypothe-
sized, however, that ESEM will have fewer difficulties with
error on the predictor block, because factor-based methods
model common variance, whereas component-based methods
model the total variance (Widaman, 1993). The number of
observations was not manipulated in the study of Vervloet
et al. (2016), but for both factor-based and component-based
methods (Guadagnoli & Velicer, 1988), researchers have al-
ready found a connection in simulation studies between the
strength of the factors and the number of observations that is
recommended, with more observations being needed to re-
trieve weaker factors. Besides, for PCovR, the tuning of the
weighting parameter becomes more important in the case of
fewer observations (Vervloet, Van Deun, Van den Noortgate,
& Ceulemans, 2013).

In both simulation studies we inspected the numbers of
factors2 that were retained by PCovR versus ESEM. Next,
we explored the similarities and differences of the techniques
in retrieving optimal solutions. The definition of what consti-
tutes an optimal solution was based on the typology of factors
introduced by Vervloet et al. (2016). They classified estimated
factors as those identical to the true ones, merged factors (i.e.,
congruent to the sum of true factors), split factors (i.e., con-
gruent to a true factor when summed up), and noise-driven
factors. The true factors can further be divided into factors that

are relevant for predicting the criterion, and irrelevant factors.
A solution is considered optimal if all the true factors that are
relevant for predicting the criterion are revealed. In the second
simulation study irrelevant factors were also present, and
recovering these factors was unnecessary but not problematic.
Retrieving split, merged, or noise-driven factors is not
allowed.

To this end, Tucker congruencies were calculated between
each (sum of) factor(s) and each (sum of) true factor(s). In line
with the work of Lorenzo-Seva and ten Berge (2006), we
called factors with a congruence higher than .85 fairly similar,
and those higher than .95 equal. For the detection of merging
and splitting, the cutoff value C = .85 was used. For deciding
whether or not a true factor was missing, we inspected both
cutoff values, since this gives us extra information. If a factor
had a high congruency with both a true factor and the sum of
true factors, only the highest congruency counted. The same
held when the sum of two factors, considered as one factor,
was found to be congruent with a true factor.

Simulation Study 1

Data generation

In this simulation study, the following data characteristics
were manipulated in a full factorial design:

1. The number of predictors J: 30, 60
2. The percentage of error variance in X: 25%, 45%, 65%
3. The percentage of error variance in y: 25%, 45%, 65%
4. The number of observations N: 100, 200, 500, 1000
5. The number of factors R: 1, 2, 3, 4, 5
6. Strengths of the factors: equal versus unequal strength

(see Table 1)

For each of the 2×3×3×4×5×2 = 720 cells of the factorial
design, 200 datasets were constructed, yielding 144,000
datasets in total. The factor score matrix was sampled from a
standard normal distribution. Subsequently, the columns were
standardized and orthogonalized. The loading matrices were
created using only ones and zeros, with each predictor having
only one loading of 1 and with the number of 1s per factor
varying according to Table 1.3 The regression weights were

set to
ffiffiffiffiffiffiffiffi
1=R

p
, such that the sum of squared regression weights

equaled 1.
The error matrices of X and y were drawn from standard

normal distributions as well, and were also standardized and

2 For reasons of clarity, both (ESEM) factors and (PCovR) components will be
referred to as factors in the remainder of this article.

3 Note that in the case of only one factor underlying the data, no distinction can
be made between equal or unequal factors. Hence, both conditions are equiv-
alent. Moreover, for cases in which equal strengths of the factors was not
possible (R = 4, J = 30), the numbers of high-loading variables per factor
were set to be as similar as possible.
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orthogonalized. Furthermore, we made sure that the columns
of the factor score matrix and the error on ywere uncorrelated.
The error matrices were rescaled to obtain the desired average
percentage of error variance specified above (Data
Characteristics 2 and 3), in comparison with the total variance
per predictor. The exact amount of error per predictor, how-
ever, was varied such that one third of the variables contained
less error variance and one third contained more (see Vervloet
et al., 2016, for more details).

X was created by multiplying the factor score matrix with
the loading matrix and adding the error matrix ofX, according
to Eq. 1. The y vector was obtained by multiplying the factor
score matrix by the regression weight vector and adding the
error matrix of y, according to Eq. 2. Finally, X and y were
standardized.

Data analysis

All datasets were analyzed with PCovR and ESEM, using
from one up to seven factors. Afterward, for both methods
and each dataset, we determined the number of factors to
retain. For PCovR solutions we applied the COMBI strategy
described above, and for ESEM we used AIC, BIC, and
SABIC.

Since the estimated factors had rotational freedom, rotating
them was necessary to evaluate the recovery of the true fac-
tors. Target rotation toward the true factors might sound ap-
pealing here, but this was not feasible, because the estimated
models could differ in the number of factors from the true
models. Moreover, when analyzing real data in an exploratory
way, target rotation is not an option, either, because no target
structure is available. Thus, we opted for Varimax (Kaiser,
1958), the most often used orthogonal rotation criterion,

which enforces a simple structure of the loading matrices by
maximizing the following function:

f Pxð Þ ¼ ∑
R

r¼1

1

J
∑
J

j¼1
p2rj−p2r

� 	2
" #

: ð12Þ

Evaluation

We started by inspecting the numbers of factors selected by
the COMBI strategy for PCovR and by the AIC, BIC, or
SABIC information criteria for ESEM. This was not the main
research question, but it would already give some important
information, since it would indicate that the methods differed
in their sensitivity toward specific types of true factors.
Moreover, if more factors were selected than the true under-
lying number of factors, then factors had been included that
were noise-driven and/or the true factors had been split into
multiple fragments. In the case that fewer factors were select-
ed, the true factors could have been merged and/or not been
picked up at all. We could not be sure unless we compared the
scores of the observations for the true and estimated factors,
which would allow us to determine whether a so-called opti-
mal solution had been found.

Results

Because of the iterative nature of ESEM, it can be expected
that convergence will not always be reached. We will first
zoom in on whether and when nonconvergence occurred, be-
fore examining the numbers of factors that were retrieved and
inspecting the optimality of the obtained solutions.

Nonconvergence Nonconvergence occurred often with
ESEM, but only when extracting specific numbers of fac-
tors. For every dataset, convergence was reached for at least
one model, so a solution could always be selected.
Moreover, Fig. 1 shows that if a model with a specific num-
ber of factors failed to converge, the number of factors being
considered was in more than 99% of the cases higher than
the number of true factors.

Number of factorsTable 2 shows for each strategy under study
in which percentage of the datasets the correct number of
factors was recovered, or a lower or higher number, or no
solution at all.4

It can be seen that the PCovR COMBI and the ESEM BIC
strategies usually selected a number of factors that was too

4 PCovRyielded a model with no factors in two datasets, because the COMBI
strategy did not find a match between the factors of the ML_SCR model and
the ML_RCVmodel, and the ML_RCV did not yield any factors with regres-
sion weights higher than the cutoff value. Both datasets had 65% error on the
criterion.

Table 1 Numbers of high-loading variables per factor in the different
strength conditions

Condition Strength

Equal Unequal

J = 30

R = 1 30 30

R = 2 15–15 3–27

R = 3 10–10–10 3–10–17

R = 4 8–8–7–7 3–6–9–12

R = 5 6–6–6–6–6 3–5–6–7–9

J = 60

R = 1 60 60

R = 2 30–30 6–54

R = 3 20–20–20 6–20–34

R = 4 15–15–15–15 6–12–18–24

R = 5 12–12–12–12– 12 6–9–12–15–18
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low when the correct number was not selected, whereas
ESEM AIC and SABIC instead selected a model that was
too complex. For SABIC, this was the case in 22% of the
datasets.

When zooming in on the numbers of factors that were
selected per the true value of the number of factors (Fig. 2),
it can be concluded that whereas the ESEMAIC and BIC only
slightly misspecified the number of factors when the correct
number was not selected, PCovR COMBI and ESEM SABIC
deviated more from the true number. Even when the true
number equaled 1, SABIC sometimes selected up to seven
factors.

Optimality of the obtained solutions Looking at the selected
number of factors does not, however, provide complete infor-
mation about how the methods are performing. Indeed, even a
model with two merged factors and a noise-driven factor
might still be a model with the correct number of factors.

In the last column of Table 3, it can be seen that ESEMBIC
led most often to an optimal solution (in 60% of the datasets
withC = .95). If an optimal solution was not reached, this was
usually because a true factor was missing. Only in 4% of the

datasets did BIC yield noise-driven factors, which was a lower
percentage than for any of the other strategies. PCovR
COMBI and ESEMAIC led to similar percentages of optimal
solutions (respectively, 54% and 56%), but COMBI had more
missing true factors, whereas AIC had more noise-driven fac-
tors, explaining their tendencies toward, respectively,
selecting a lower and higher number of factors. PCovR
SABIC had the worst performance, with only 47% optimal
solutions. The nonoptimal solutions had split (6%) and/or
noise-driven factors (25%) and/or true factors that were miss-
ing (45%).

ESEM BIC yielded a higher percentage of optimal solu-
tions than did AIC or SABIC for both cutoff values. To focus
on the difference in performance between ESEM and PCovR,
we therefore will only consider the BIC strategy for ESEM for
the remainder of this section.

To explore which conditions are more challenging for
ESEM and which are more challenging for PCovR, we per-
formed an ANOVA (including all interaction effects) with the
six data characteristics as independent variables and the dif-
ference between PCovR and ESEM in proportions of replica-
tions for which optimal solutions were found as the dependent
variable. However, we left out the conditions with only one
true factor, because the strength of the factor could not be
manipulated as being Bequal^ or Bunequal^, thus leading to
an unbalanced design.

Only considering larger effects (ηp
2 > .20), we found for a

cutoff valueC= .95 effects of the amount of error onX and the
number of predictors J. Moreover, interaction effects were
found between the error on X and the strength of the factors,
between J and the error on X, and a three-way interaction with
the error onX, J, and the strength of the factors. When using C
= .85, we only found a large effect of the strength of the factors.

Figure 3 shows that ESEMmainly outperformed PCovR in
the case of low error onX, J = 30, and unequal strength, when
the strict cutoff value C = .95 was applied (right panels). With
C = .85 (left panels), the pattern was different: Differential
performance mainly occurred for high levels of error on X
and low numbers of observations. Usually, ESEM
outperformed PCovR in those conditions, but it was the other
way around with unequal strength and J = 60.

Overall, more optimal solutions are found when the data
contain fewer underlying factors, more predictors, and less
error on X and y. Also the number of observations plays a
big role, since the percentage of optimal solutions is always
near 100% with a less strict cutoff value, as long as the data
have 500 or more observations. Finally, the strength of the
factors is mainly an influence if other complicating data char-
acteristics co-occur, with weaker factors (i.e., in unequal-
strength conditions) being more difficult to recover. Note that
in many conditions, big differences were found between the
results with different cutoff values. Specifically, in many cases
the factors that were found were all similar to the true factors
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Fig. 1 Proportions of nonconvergence per considered number of factors
for each true number of factors.

Table 2 Percentages of datasets for which a lower, correct, or higher
number of factors was found than the true number

Lower Correct Higher No Solution

PCovR

COMBI 5% 93% 2% <1%

ESEM

AIC <1% 91% 8% 0%

BIC 6% 94% 0% 0%

SABIC <1% 78% 22% 0%
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(especially with 500 or more observations), but not perfectly
identical.

Finally, it should be noted that although differential perfor-
mance was usually in favor of ESEM (in around 5% of the
datasets), the performance for ESEM and PCovR was equally
good (or bad) in more than 93% of the datasets (Table 4).

Conclusions Although nonconvergence often occurred during
the ESEM analyses, at least one solution could be found for
each dataset.

In the majority of the datasets, ESEM (with the AIC, BIC,
and SABIC strategies) and PCovR (with the COMBI strategy)
selected models that corresponded with the true number of
underlying factors. In the case that this number was
misspecified, AIC and SABIC had a tendency to select a
too-complex model (consisting of noise-driven and/or split
factors), whereas BIC and COMBI instead underestimated
the number of factors, sometimes yielding models with
merged factors. All strategies mainly had difficulties recover-
ing the weakest factors in the unequal-strength conditions if a
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Fig. 2 Numbers of factors selected by the four strategies per the true number of factors. The segments of the bars are ranked such that higher segments
indicate a higher number of factors.

Table 3 Percentages of datasets in which the four strategies produced split, merged, or noise-driven factors, or failed to recover a true factor, and the
percentages of optimal solutions (C = .85/C = .95)

Model Selection Strategy Splitting Merging Noise Missing (Similar/Equal) Optimal (Similar/Equal)

PCovR

COMBI 1% 2% 8% 13%/46% 87%/54%

ESEM

AIC 2% 0% 13% 8%/41% 85%/56%

BIC 0% 1% 4% 9%/40% 91%/60%

SABIC 6% 0% 25% 13%/45% 73%/47%
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strict cutoff value was used, leading to missing factors in at
least 40% of the datasets.

In general, ESEM BIC had the highest percentage of opti-
mal solutions, whereas the lowest performance was found
with ESEM SABIC (25% of the SABIC models had noise-
driven factors). In more than 93% of the datasets, however, the
performance of ESEM BIC was equally as good (or bad) as
the performance of PCovR COMBI. In the remainder of the
datasets, ESEM BIC usually outperformed PCovR COMBI,

but the specific conditions in which this occurs depended on
the cutoff value used.

Simulation Study 2

Data generation, analyses, and evaluation

In the second simulation study, we fixed the number of factors
at four. The following data characteristics were manipulated in
a full factorial design:

1. The number of predictors J: 24, 48
2. The percentage of error variance in X: 25%, 45%, 65%
3. The percentage of error variance in y: 25%, 45%, 65%
4. The number of observations N: 100, 200
5. The strength of the factors, expressed in terms of the per-

centage of variance inX accounted for by the four factors:
13%–13%–38%–38%, 17%–17%–33%–33%, 21%–
21%–29%–29%, 25%–25%–25%–25% (see Table 5)
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Fig. 3 Effects of the number of observations, the error onX, the strength of factors, and the number of predictors on the percentage of optimal solutions
for PCovR (orange) and ESEM (green), for cutoff values C = .85 and .95.

Table 4 Proportions of datasets in which ESEM and PCovR yielded
optimal solutions

ESEM

PCovR Optimal Not Optimal

Optimal 85%/54% 1%/<1%

Not optimal 5%/ 6% 8%/40%

The cutoff values used were, respectively C = .85/C = .95.
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For each cell of the factorial design, 2×3×3×2×4 = 144 in
total, 200 datasets were constructed, using a data generation
procedure similar to that in Simulation Study 1. The regres-
sion weights of the four factors, however, were, respectively,
set to .60, 0, .80, and 0. Combined with the strength manipu-
lation (Data Characteristic 5), this resulted in datasets with
four factors that were, respectively, weak but relevant, weak
and irrelevant, strong and relevant, and strong but irrelevant.

The 28,800 datasets were analyzed with the same strategies
described for the first simulation study. The evaluation proce-
dure, however, was slightly adapted: Following Vervloet et al.
(2016), irrelevant but true factors were not required for con-
sidering a solution to be optimal, although the recovery of
these factors was allowed. The recovery of irrelevant factors
can give insight into the (parts of the) predictors that are not
helpful for explaining the criterion.

Results

Nonconvergence Also in this simulation study, ESEM
nonconvergence occurred only for specific numbers of fac-
tors, with a pattern similar to that in the first study (Fig. 4).
In 21 datasets, however, no convergence was reached for a
model with three factors (i.e., a lower number than the number
of true factors), and in 104 datasets even the model with four
factors (i.e., the number of true factors) failed to converge. The
latter datasets usually had only 24 predictors, 65% of error on
X, and large differences in the strengths of the factors (13%–
13%–38%–38%).

Number of factors Figure 5 shows the numbers of factors
selected by the different model selection strategies. It can be
seen that in the majority of datasets, four factors were selected
by eachmodel selection strategy, corresponding to the number
of truly underlying factors. The selection of a lower number of

factors mainly occurred with PCovR COMBI (20% of the
datasets) and ESEM BIC (10%), as was the case in
Simulation Study 1. Selection of a lower number, however,
was not necessarily problematic, given our definition of opti-
mality and the presence of irrelevant factors underlying the
datasets. It is alarming, though, that both ESEM AIC and
SABIC selected more than four factors in, respectively, 12%
and 43% of the datasets, since the data were generated on the
basis of four factors only.

Optimality of the obtained solutions Table 6 shows a pattern
very similar to that in Table 3 from the first simulation study.
ESEM BIC led most often to an optimal solution (45% of the
datasets, in the case of C = .95), followed by PCovR COMBI
(43%) and ESEM AIC (41%).

Fig. 4 Proportions of nonconvergence for each considered number of
factors.

Table 5 Numbers of high-loading variables in the different strength
conditions

Factor

Condition 1 2 3 4

J = 24

13%–13%–38%–38% 3 3 9 9

17%–17%–33%–33% 4 4 8 8

21%–21%–29%–29% 5 5 7 7

25%–25%–25%–25% 6 6 6 6

J = 48

13%–13%–38%–38% 6 6 18 18

17%–17%–33%–33% 8 8 16 16

21%–21%–29%–29% 10 10 14 14

25%–25%–25%–25% 12 12 12 12
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Fig. 5 Proportions of datasets in which specific numbers of factors were
selected.
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Also in this simulation study, ESEM BIC outperformed
AIC and SABIC, so we can focus on this strategy for the
comparison between ESEM and PCovR. Again, an ANOVA
was performed, for both C = .85 and C = .95, with the data
characteristics as independent variables and difference scores
for the percentages of optimality of ESEM and PCovR as the

dependent variable. The effects that were found can be seen in
Fig. 6.

As long as the error level on X was below 65%, the
relevant factors were always recovered to some extent
(i.e., with C = .85). In the case of 65% error, optimal
solutions were only found in the easier conditions (200

Table 6 Percentages of datasets in which the four strategies produced split, merged, or noise-driven factors or failed to recover a true factor, and the
percentages of optimal solutions (C = .85/C = .95)

Strategy Splitting Merging Noise Relevant missing (Similar/Equal) Optimal (Similar/Equal)

PCovR

COMBI 2% 5% 10% 13%/57% 84%/43%

ESEM

AIC 3% 0% 22% 8%/55% 77%/41%

BIC 0% 2% 8% 9%/55% 86%/45%

SABIC 10% 0% 49% 10%/55% 49%/25%
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Fig. 6 Effects of the strength of the factors, the error on X, the number of observations, and the number of predictors on the percentage of optimal
solutions per model selection strategy, for cutoff values C = .85 and .95.
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observations, factors with equal strength, 48 predictors . .
.). Mainly in these conditions, differential performance
can be seen, usually in favor of ESEM. In the case of
48 predictors, 100 observations, and large differences in
the strengths of the factors, PCovR outperformed ESEM
slightly, but still performs poorly (less than 50% optimal
solutions).

When the cutoff C = .95 was used, it turns out that in the
case of 65% error, no optimal solutions occurred at all. In the
case of 45% error on X, optimal solutions were found only
with 48 predictors and not too large differences in the
strengths of the factors, whereas in the case of 25% error,
mostly optimal solutions were found for both PCovR and
ESEM, except with 24 predictors and large differences in
strength. Again, differential performance is mostly seen in
those specific conditions.

Given the results in Fig. 6, it is not a surprise that ESEM
and PCovR performed equally well in at least 94% of the
datasets (Table 7). In the remaining datasets, ESEM usually
outperformed PCovR.

Conclusions The general patterns of the first simulation
study were replicated in this study. ESEM BIC and
PCovR COMBI again showed a tendency to select fewer
than the true number of underlying factors. However, in
this study, selecting fewer factors was not necessarily
problematic, given the presence of irrelevant factors in
the datasets. ESEM AIC and SABIC instead selected
overly complex models, leading even to 49% of models
with noise-driven factors in the case of SABIC. Overall,
BIC had the best performance, although PCovR had a
slight advantage in a few datasets.

Application

In this section, we reanalyze an empirical dataset collected by
Van Mechelen and De Boeck (1990). The dataset contains the
scores of 30 Belgian psychiatric patients on 23 psychiatric
symptoms and four psychiatric disorders (toxicomania,
schizophrenia, depression, and anxiety disorder). The patients
were examined by 15 psychiatrists, who each provided a bi-
nary score for each patient on each symptom and disorder,
reflecting its presence (1) or absence (0); we summed these
15 scores. With our PCovR and ESEM analyses, we aimed to
unravel whether the presence of subsets of the 23 psychiatric
symptoms could predict how many psychiatrists would diag-
nose someone with depression. However, we will also briefly
discuss the findings obtained for toxicomania, schizophrenia,
and anxiety disorder.

Preprocessing consisted of centering the data (i.e.,
subtracting the variable means from the original scores) and
scaling the scores on each variable to a variance of 1 (see the
Model section for principal-covariate regression). The
preprocessed data were analyzed with PCovR and ESEM
(see the Appendix for an exemplary Mplus input file).
Model selection was conducted in the same way as in the
simulation studies, using the COMBI strategy for PCovR
and the AIC, BIC, and SABIC criteria for ESEM. Again, the
numbers of factors that were considered ranged from one to
seven. The factors of all models were Varimax-rotated.

The four resulting models differed regarding the number of
factors that was selected. PCovR COMBI yielded a model
with one factor. Table 8 shows that the lowest AIC, BIC,
and SABIC values were found for models with, respectively,
five, two, and five factors. This result is consistent with the
simulation study finding that AIC and SABIC tend to select
more complex models than BIC and PCovR COMBI. It is
interesting, though, that ESEM BIC yielded a model with
more factors than PCovR COMBI, since ESEM BIC never
selected a too-complex model in the simulation studies,
whereas this problem sometimes occurred for PCovR
COMBI. Note that ESEM did not reach convergence for
models with three, six, or seven factors. Although it may seem
peculiar that the three-factor model could not converge,
whereas the four-factor model did, increasing the maximal

Table 7 Proportions of datasets in which ESEM and PCovR yield
optimal solutions

PCovR ESEM

Optimal Not optimal

Optimal 82%/43% 2%/<1%

Not optimal 4%/3% 12%/54%

The cutoff values used were, respectively, C = .85/ C = .95.

Table 8 AIC, BIC, and SABIC values per number of extracted factors for the ESEM analyses when predicting the criterion depression

Model selection procedure No. of extracted factors

1 2 3 4 5 6 7

AIC 2,064 1,965 / 1,935 1,928 / /

BIC 2,165 2,098 / 2,128 2,149 / /

SABIC 1,941 1,802 / 1,698 1,657 / /

The models with the lowest values (in bold) were selected.
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number of iterations to 50,000 did not help. A possible reason
for this nonconvergence is the negative residual variance that
Mplus yields for the predictor antisocial for the three-factor
model. Because the AIC and SABIC models consisted of
mostly irrelevant factors for understanding depression (only
one regression weight had an absolute value higher than .20),
and because both strategies have been shown to be less suc-
cessful in the simulation studies, we will focus on the results
obtained with PCovR COMBI and ESEM BIC in the remain-
der of this section.

Table 9 shows the loadings and the regression weights of
both models. It is striking that the first ESEM factor is almost
identical to the one PCovR factor (with a Tucker congruence
of .99). Moreover, this factor is the only factor that has a high
regression weight and that therefore can be considered to be a
relevant factor for predicting the diagnosis of depression. For
this reason, the PCovR and ESEM models can be seen as
equivalent, which corresponds with the finding in the simula-
tion studies that both methods mostly succeeded in retrieving
equally optimal solutions. When inspecting the predictors that

load highly on the relevant factor, mainly variables that indi-
cate depressive symptoms have positive loadings, and vari-
ables that indicate inappropriate behavior have negative load-
ings. The second ESEM BIC factor can be labeled Social
Impairment. Note that several predictors (e.g., agitation and
disorientation) have close-to-zero loadings, implying that they
are considered to be unimportant for predicting the criterion
according to the models.

When using anxiety disorder and schizophrenia as the cri-
terion variable, the results are very similar, whereas the factor
structure for toxicomania looks completely different. For both
anxiety disorder and schizophrenia, again only one factor was
found by PCovR COMBI, which was also picked up by the
ESEM models along with a few irrelevant factors.
Interestingly, some variables consistently load high on this
single factor across the analyses with different criteria (e.g.,
disorganized speech, hallucinations, inappropriate behavior,
depression, suicide, and denial), suggesting that the three syn-
dromes are partly characterized by a common symptom skel-
eton. This finding is in line with the high comorbidities of
anxiety disorder and depression (Hirschfeld, 2001) and
schizophrenia and depression (Buckley, Miller, Lehrer, &
Castle, 2009). Yet, for other symptoms the loadings varied
across the analyses, indicating that the presence or absence
of these symptoms was more tightly linked to one specific
syndrome (e.g., the absence of antisocial and grandeur for
depression). The latter finding illustrates that PCovR and
ESEM both extract factors that explain variance in both the
predictor and criterion blocks. Also, the loadings on the rele-
vant factor were almost identical across both analyses, which
is in line with previous research that has shown that PCA and
factor analysis often yield similar interpretations for empirical
data (Ogasawara, 2000; Velicer & Jackson, 1990).

Discussion

In this final section, we reflect on the results of the simulation
studies and the illustrative application. Subsequently we pro-
pose some directions for future research, and we end with a
brief conclusion.

Summary and reflections

In this article we have compared ESEM and PCovR, which
are, respectively, a factor- and a component-based regression
method. Both methods can shed light on the shared effects of
the predictors on the criterion, by capturing the main informa-
tion in a limited number of dimensions (called either factors or
components). ESEM as well as PCovR simultaneously opti-
mizes reduction and prediction, and these methods are there-
fore closely related. However, both methods stem from differ-
ent traditions, and their performance had not yet been

Table 9 Loading matrix and regression weights of the psychiatric
dataset of Van Mechelen and de Boeck (1990) after analysis with
PCovR COMBI and ESEM BIC

PCovR COMBI ESEM BIC

Variable Factor 1 Factor 1 Factor 2

Disorganized_speech – .36 – .38 .54

Agitation .01 – .01 .04

Hallucinations – .40 – .38 – .06

Inappropriate – .35 – .37 .60

Desorientation .17 .15 .10

Depression .97 .98 .07

Fear .31 .35 – .14

Suicide .69 .70 .02

Somatic_concern .14 .08 .14

Narcotics – .04 – .04 – .30

Antisocial – .37 – .34 – .03

Retardation .13 .07 .73

Social_isolation .33 .30 .74

Routine .05 .03 .75

Alcohol – .30 – .30 – .03

Negativism – .27 – .26 .17

Denial – .41 – .45 .23

Grandeur – .36 – .34 – .04

Suspicion – .04 – .05 – .03

Intellectual_obstruction .03 – .05 .34

Impulse_control – .08 – .07 .17

Social_leveling .01 – .05 1.00

Occupational_dysfunction .23 .17 .63

Depression .99 .97 .06

Loadings with absolute values higher than .35 are shown in bold.
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compared. Therefore, we performed two simulation studies in
which we examined the numbers of factors retained by each
method, and when and how often optimal solutions were
found.

While inspecting the number of factors, we noticed in both
simulation studies a tendency for AIC and SABIC to select an
overly complex model, because of splitting one or more true
underlying factors and/or including noise-driven factors.
Bulteel, Wilderjans, Tuerlinckx, and Ceulemans (2013) point-
ed out that this tendency of AIC has already be shown in the
context of many other methods when the sample size is large.
Indeed, for large sample sizes, the AIC assumption that each
observation contains new information about the underlying
model becomes unrealistic.

ESEM BIC performed best in both simulation studies: It
selected the true number of underlying factors most often and
yielded the highest proportion of optimal solutions. Moreover,
when using a strict cutoff score for indicating congruence with
the true factors, BIC was never outperformed by AIC and
SABIC, and was outperformed only in less than 1% of the
datasets by PCovR. Most of the datasets in which PCovR
outperformed ESEM BIC had 48 predictors, 100 observa-
tions, and large differences in the strength of the factors.
Note, however, that PCovR had outperformed ESEM in more
than 20% of the datasets in a pilot study with 48 predictors and
only 50 observations.

Although ESEM (when using BIC to decide on the number
of factors) in general has better performance than PCovR for
typical behavioral datasets, it should be noted that in 93% and
94% of the datasets in, respectively, the first and second sim-
ulation studies, ESEM BIC and PCovR COMBI performed
equally well. It is therefore not surprising that the real-data
application led to equivalent ESEM and PCovR models.
Indeed, bothmethods seemed successful at finding factors that
explain variance in both the predictor and criterion blocks,
whereas other dimension reduction methods only focus on
prediction (e.g., PLS) or only on reduction (e.g., PCR).
ESEM and PCovR will often be able to extract factors that
are both interpretable and relevant for the criterion. The results
for the illustrative application demonstrate that the criterion
under consideration indeed alters the extracted factors.

Because of the similar performance of ESEM and PCovR,
other aspects can be taken into account when choosing be-
tween these two methods as an applied researcher. Firstly,
although the convergence problems of ESEM (within a rea-
sonable number of iterations) may at first sight seem a limita-
tion, on the basis of our results, nonconvergence may be
interpreted as a signal that the requested number of factors is
too high, and could therefore prevent researchers from
selecting an overly complex model. Secondly, PCovR always
has a closed-form solution and therefore will never yield a
local minimum. ESEM relies on an iterative estimation proce-
dure, and thus may end in a local minimum. Thirdly, an R

package is available for conducting PCovR, implying that it
can be run for free on any computer, whereas ESEM can only
be performed with Mplus, which is a commercial software
package. The R package PCovR not only provides the actual
PCovR algorithm but also assists with the other steps of the
analysis: model selection, preprocessing, and so forth. Several
options are built in, but since R is code-based software, the
code can easily be adapted. Fourthly, ESEM, on the other
hand, comes with fit statistics, standard errors, p values for
the loadings, and so forth, which is an important advantage
when one wants to make inferences about which loadings
differ significantly from zero. Finally, we have focused on
single-block data until now, but both PCovR and ESEM have
extensions for analyzing multiblock data (i.e., data in which
the observations are nested in higher levels), called principal-
covariate clusterwise regression (PCCR; Wilderjans, Vande
Gaer, Kiers, Van Mechelen, & Ceulemans, 2017) and multi-
group ESEM, respectively. Because the two extensions have
different focuses, these extensions can be considered comple-
mentary, and it depends on a researcher’s questions which
extension will be more appropriate. Specifically, multigroup
ESEM can be used to test whether factor loadings significant-
ly differ across different subgroups of observations, whereas
PCCR can be used to infer which subgroups differ with re-
spect to the relevance of the underlying factors.

Future directions

Although PCovR rarely outperformed ESEM in the presented
simulation studies, we expect that PCovR might outperform
ESEM in datasets that are less typical for the field of behav-
ioral sciences. For example, several studies have claimed that
multiple observations are needed per variable when applying
factor-based methods (for an overview, see Velicer & Fava,
1998). Thus, PCovR can be expected to outperform ESEM if
the number of predictors approaches the number of observa-
tions. MacCallum, Widaman, Preacher, and Hong (2001)
demonstrated that low observations-to-variables ratios are es-
pecially problematic for factor-based methods in the case of
weak factors. Indeed, although ESEMwas able to find a mod-
el with an interpretation equivalent to that of the model found
by PCovR for our application that had an observations-to-
variables ratio of only 30:23, PCovR performed better than
ESEM in a pilot study with 50 observations and 48 predictors,
when some of the relevant factors explained less than 10% of
the variance in X.

It would also be useful to compare the performance of
PCovR and ESEM when analyzing data that are not normally
distributed. Because PCovR estimation does not rely on the
assumption of normality, we expect PCovR to outperform
ESEM in such cases if the default estimator (in Mplus) for
ESEM is used, but other ESEM estimation procedures are
available that attempt to deal with violations of normality.
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Conclusion

We conclude that although ESEM is usually used as a confir-
matory tool, we have shown that it is very valuable for explor-
atory research, as well. It can compete with state-of-the-art
exploratory component-based methods for typical behavioral
datasets.
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Appendix: Example of Mplus input file

For the ESEM analysis with five factors, the following Mplus
input file was used for the real-data application in the
Application section:
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