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Abstract
Orthography–semantics consistency (OSC) is a measure that quantifies the degree of semantic relatedness between a word and its
orthographic relatives. OSC is computed as the frequency-weighted average semantic similarity between the meaning of a given
word and the meanings of all the words containing that very same orthographic string, as captured by distributional semantic
models.We present a resource including optimized estimates of OSC for 15,017 English words. In a series of analyses, we provide
a progressive optimization of the OSC variable. We show that computing OSC from word-embeddings models (in place of
traditional count models), limiting preprocessing of the corpus used for inducing semantic vectors (in particular, avoiding part-
of-speech tagging and lemmatization), and relying on a wider pool of orthographic relatives provide better performance for the
measure in a lexical-processing task.We further show that OSC is an important and significant predictor of reaction times in visual
word recognition and word naming, one that correlates only weakly with other psycholinguistic variables (e.g., family size, word
frequency), indicating that it captures a novel source of variance in lexical access. Finally, some theoretical and methodological
implications are discussed of adopting OSC as one of the predictors of reaction times in studies of visual word recognition.

Keywords Orthography–semantics consistency . Form–meaningmapping .Word recognition . Lexical resources .Distributional
semanticmodels

Many factors influence the identification of words presented vi-
sually. Behavioral studies, mainly through lexical decision and
word naming tasks, singled out a number of properties that affect
response times at both the orthographic and semantic levels. The
number of orthographic neighbors of a word (e.g., Andrews,
1997; Grainger, 1990), for example, is known to affect its recog-
nition latencies. At the same time, properties associated with
word meaning, such as concreteness (e.g., Brysbaert, Warriner,
& Kuperman, 2014; Samson & Pillon, 2004), and valence (e.g.,
Kuperman, Estes, Brysbaert, & Warriner, 2014; Warriner,
Kuperman, & Brysbaert, 2013), have shown to affect response
latencies in the lexical decision task. Other measures of semantic
richness like the number of semantic neighbors, the number of

semantic features, or contextual dispersion also have been shown
to influence response times in lexical decision and semantic cat-
egorization tasks (e.g., Buchanan, Westbury, & Burgess, 2001;
Pexman, Hargreaves, Siakaluk, Bodner, & Pope, 2008; see also
Yap, Pexman,Wellsby, Hargreaves, &Huff, 2012, andYap, Tan,
Pexman, & Hargreaves 2011, for a comprehensive report of
semantic richness effects in an array of tasks).

Of course, when investigating visual word recognition, the
interface between orthography and semantics is a fundamental
issue. On the one hand, orthographic information directly af-
fects visual uptake. On the other hand, semantics is at the core
of word comprehension. Early models of visual word identifi-
cation argued in favor of the activation of purely orthographic
representation of words (devoid of meaning) before semantic
representations could be accessed. In more recent times, a plu-
rality of studies investigating the processing of polysemous
words assigned an important role to feedback semantics at the
early stages of word recognition, that is, some aspects of word
meaning are activated early on during word recognition and are
thus entangled with the orthographic components (e.g., Pecher,
2001; Pexman, Lupker, & Hino, 2002). It has also been shown
that during visual word recognition, meanings of orthographic
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neighbors (e.g., leopard and leotard) are activated in parallel
and this in turn affects semantic categorization (see Rodd,
2004). Similarly, Bowers, Davis, and Hanley (2005) have dem-
onstrated that the meanings of an embedded string and its em-
bedding word are both active (even when there is no morpho-
logical or semantic relation between the two of them; e.g., hat
in chat), and this co-activation affects semantic categorization.
In conclusion, there is now general agreement around the fact
that during word identification the activation of orthographic
representations gives way to the activation of semantic proper-
ties and these in turn affect the recognition of the word.

The interface between orthography and semantics is a chal-
lenging territory for the study of visual word recognition,
which could be captured by means of consistency measures.
These are not new in the study of word recognition.
Phonological–orthographic consistency has received wide at-
tention in the literature (e.g., Balota, Cortese, Sergent-
Marshall, Spieler, & Yap, 2004; Coltheart, Rastle, Perry,
Langdon, & Ziegler, 2001), indicating that consistent map-
ping between phonological and orthographic representation
facilitates word recognition. Accordingly, on the methodolog-
ical side it is now easy to automatically estimate the consis-
tency between orthography and phonology (e.g., by relying on
computational proposals such as the DRC; Coltheart et al.,
2001). However, the interface between orthography and se-
mantics did not receive the same attention (with a few
exceptions; e.g., Hino, Miyamura, & Lupker, 2011,
comparing Kana and Kanji words in Japanese). This is mostly
due to the fact that, although it is easy to trace the boundaries
of orthographic units, it is more difficult to capture the seman-
tic dimensions associated with it, especially since semantics is
often underspecified if not absent from current reference
models of word recognition (e.g., the Bayesian Reader,
Norris, 2006; or the original proposal for the Naïve
Discriminative Reader, Baayen, Milin, Đurđević, Hendrix,
& Marelli, 2011; but see the newer implementations by
Milin, Divjak, & Baayen, 2017a, and Milin, Feldman,
Ramscar, Hendrix, & Baayen, 2017b). Recently, we proposed
to investigate the degree of systematicity between orthogra-
phy and semantics and the impact it has on word recognition
by proposing a new, bottom-up measure: The orthography–
semantics consistency (OSC; Marelli, Amenta, & Crepaldi,
2015). This measure was developed after observing the result
pattern of a large number of morphological masked priming
studies, and noticing an overlooked yet consistent side effect:
Monomorphemic targets belonging to the Btransparent^
condition (i.e., the condition in which the related prime is a
morphologically complex word that is morphologically and
semantically related to the target—e.g., dealer–deal) were
processed faster than targets in other conditions (e.g., the
Bopaque^ condition, in which the related prime was a
pseudo-morphologically complex word that does not entertain
any semantic relationship to the target—e.g., corner–corn; or

the Bform^ condition, in which the related prime was also
monomorphemic and only has a surface relationship with
the target—e.g., scandal–scan), independently from the fact
that they were preceded by a related or unrelated (i.e., random)
prime. The explanation of the curious fact (whose validity was
backed by a meta-analysis of ten studies in different lan-
guages) was indeed found at the interface between orthogra-
phy and semantics. Let’s look at items that were typically
included in either the transparent condition—for example,
widow—or in the opaque condition—for example, whisk.
Every time the string widow is encountered in the lexicon,
even as part of other words (widower, widowhood, widowed),
it is connected to the concept WIDOW. In this case, we can
argue that upon encountering the stringwidow, the probability
that it refers to the concept WIDOW is very high, that is, the
mapping between the form widow and the meaning WIDOW
is highly consistent making the string widow a reliable cue for
the meaning WIDOW. On the contrary, when the string whisk
is encountered, it may be connected to different meanings.
Words such as whisker, whiskered, whiskery, and whiskey all
embed the string whisk, but are not semantically related to the
concept WHISK. Hence, we can argue that whisk is not a
reliable cue for the meaningWHISK, since when it is encoun-
tered in the lexicon, it is related to many different meanings
and therefore the mapping between the form whisk and the
meaning WHISK is less consistent. This approach is in line
with theoretical proposals originating from learning perspec-
tives (e.g., Baayen et al., 2011; Harm & Seidenberg, 2004).
Following this reasoning we can describe orthographic strings
as cues that are exploited to reduce uncertainty in the semantic
system: The less consistent the form–meaning mapping, the
less predictable the status of the semantic system when pro-
cessing that given form.

To quantify this degree of consistency, and to investigate its
impact on word processing, we developed OSC (Marelli et al.,
2015). This measure quantifies the relationship between a let-
ter string and the meanings of all the words that share that
same sequence in a corpus. We computed OSC exploiting
methods borrowed from distributional semantics (Turney &
Pantel, 2010), that have shown to be able to provide estimates
of semantic association that are sound for behavioral research
(e.g., LSA: Landauer & Dumais, 1997; HAL: Lund &
Burgess, 1996). The base assumption of this approach is that
the meaning of a word can be learned through the way in
which it co-occurs with other words in the lexicon. In a dis-
tributional semantic model (DSM), word meanings are repre-
sented as vectors induced from these lexical co-occurrences.
The more two words tend to occur in similar contexts, the
more their vectors will be close, and the more their meanings
will be considered to be similar. Geometrically, this amounts
to measuring the cosine of the angle formed by the two vec-
tors. Capitalizing on this approach, OSC is computed as the
frequency-weighted average cosine similarity between the
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vector of a word and the vectors of all the words that contain
that very same word. OSC is therefore a continuous estimate
of the orthography-semantics consistency between a string of
letters and the meanings of all the words that contain it.

To verify the ability of OSC to explain response latency on
the visual recognition of a wide sample of words, we tested it
in a simple lexical decision task, extracting 1821 random
words from the British Lexicon Project (BLP; Keuleers,
Lacey, Rastle, & Brysbaert, 2012). We showed that OSC
scores were significant predictors of reaction times in
unprimed lexical decision, over and above family size, word
length and frequency effects (Marelli et al., 2015). That is,
words with higher scores of OSC (hence, more consistent)
are also faster to recognize (see also Jared, Jouravlev, &
Joanisse, 2017, for converging evidence).

The relevance of OSC for the visual word recognition lit-
erature was further proved in newer studies, in which it was
shown that OSC also contributed to explain morphological
priming at short SOAs (Amenta, Marelli, & Crepaldi, 2015),
and interacted with its phonological counterpart explaining
phonological effects in visual words recognition (Amenta,
Marelli, & Sulpizio, 2016). These data indicate that, even if
the aspect of form–semantics consistency has been rarely tak-
en into account in psycholinguistic studies, it retains indeed a
great importance in the study of language processing.

The measure we proposed has noticeable merits, as it is
quantitatively and automatically derived, it provides quantita-
tive information that is easy to interpret, and it is mainly athe-
oretical since it is based on observed quantitative relations
between words in a given text corpus. The simplicity of the
interpretability of OSC is however countered by the technical
expertise and resources necessary to compute it: OSC is easy to
use, but requires some technical effort in order to be obtained.

Computing orthography–semantics
consistency

OSC was originally computed for a list of 325 monomorphemic
target words included in the morphological priming studies con-
sidered byMarelli et al. (2015). For each target we first computed
a list of Borthographic relatives.^We considered, as orthographic
relative, each word beginning with the target (e.g., flux was a
relative of flu, but influence was not) from a list including the
top 30,000 most frequent content words (i.e., adjectives, nouns,
verbs, and adverbs) in a 2.8-billion-word corpus (a concatenation
of ukWaC, http://wacky.sslmit.unibo.it/, Wikipedia, http://en.
wikipedia.org/, and BNC, http://www.natcorp.ox.ac.uk/).

The same corpus (part-of-speech tagged and lemmatized)
was also employed to compute the semantic similarity between
a target and each of its relatives, defined in geometrical terms
through distributional semantics techniques. We focused on
word-to-word co-occurrences involving the top 30,000 most

frequent content words, collected using a five-word window.
Raw counts were reweighted using positive pointwise mutual
information (Church & Hanks, 1990), and we reduced matrix
dimensions by means of nonnegative matrix factorization
(Arora, Ge, &Moitra, 2012), setting the number of dimensions
of the reduced space to 350.Mathematically, OSC is computed
as the frequency-weighted average semantic similarity be-
tween the vector of a word and the vectors of all words that
contain that very same word, and can be written as

OSC tð Þ ¼
∑k

x¼1cos t!;rx!
� �

* f rx

∑k
x¼1 f rx

where t is the target word, rx each of its k orthographic rela-
tives, and frx the corresponding frequencies. The equation can
also be expressed in probabilistic terms:

OSC tð Þ ¼ ∑k
x¼1px*cos t!; rx!

� �

where px is the probability of a given relative in the considered
relative set. In these terms, OSC estimates represent the expect-
ed semantic similarity between a word and its orthographic
relatives (Amenta et al., 2016).

The main scope of the present article is to release a new
resource including OSC values for a list of 15,017 words. The
measure we describe here represents an improvement with re-
spect to the one used in Marelli et al. (2015) and described
above, both in terms of the employed semantic space and the
definition of orthographic relatives. In the first analysis we will
show how we can achieve an improvement in the performance
of OSC by adopting word-embeddings models (Mikolov,
Sutskever, Chen, Corrado, & Dean, 2013), based on neural-
network techniques, in place of traditional DSMs (e.g., Turney
& Pantel, 2010), based on raw co-occurrence counts. Moreover,
we will demonstrate that both part-of-speech tagging and
lemmatization of the source corpus are unnecessary preprocess-
ing steps in the computation of OSC values. In the second
analysis, we show how we can further improve the OSC per-
formance in predicting response latencies by relaxing the posi-
tional constraints in the selection of orthographic relatives, and
investigate how the size of the initial pool of potential relatives
can influence the measure performance. Finally, we explore the
obtained measure and describe its distribution as well as its
association with other typical predictors in psycholinguistics.

Analysis 1: The semantic space used

Analysis 1 aims at optimizing the semantic space used to
obtain the semantic association estimates that are in turn used
for the computation of OSC. The rationale for this analysis is
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twofold. First, we turn to word-embeddings models, in place
of traditional approaches based on co-occurrence counts, as
the former are both better in predicting human responses and
more sound from a cognitive point of view (e.g., Mandera,
Keuleers, & Brysbaert, 2017). Second, we relax the assump-
tions at the basis of the original OSC measure, limiting the
preprocessing of the corpus used for inducing semantic vec-
tors (in particular, part-of-speech tagging and lemmatization).

The new semantic spaceswere trained on a concatenation of
BNC, ukWaC, and English Wikipedia, for a total of 2.8 billion
tokens, using the freely available word2vec tool (Mikolov
et al., 2013). The parameters were set following Baroni,
Dinu, and Kruszewski (2014b), who identified as the best
performing model, across a number of tasks, the one with the
following settings: CBOW (continuous bag of words) method,
five-word co-occurrencewindow, 400-dimension vectors, neg-
ative sampling with k = 10, and subsampling with t = 1e–5.
Vector representations were induced for each item in the cor-
pus with a frequency of 100 or higher. Three semantic spaces
were trained. The first space considered lemma and part-of-
speech information in inducing the vectors. As a result, the
space encoded different representations for the same word with
different grammatical class (e.g., run when used as a verb and
run when used as a noun are associated to different vectors).
Moreover, inflectional variants of the sameword are associated
to a unique vector (the verb forms speak, speaks, speaking,
spoke, and spoken are all associated to the same representa-
tion). The second space only considered part of-speech infor-
mation in inducing the vectors: The space encoded different
representations for the same word with different grammatical
class (again, run when used as a verb and run when used as a
noun are associated to different vectors), but each inflectional
variant is associated to its own representation (each of the verb
forms speak, speaks, speaking, spoke, and spoken is encoded
as a separate vector). Finally, the third space did not contem-
plate any kind of preprocessing information: Each form is
encoded as a separate representation, with no differentiation
for grammatical class (run used as a verb and run used as a
noun are associated to the same vector). Lemmatization and
PoS-tagging were obtained through TreeTagger (Schmid,
1995).

The three semantic spaces were used to compute three OSC
measures following the procedure described in the introduc-
tion. As the initial relative pool, we considered word forms
associated to the top 30,000 content-word lemmas in the cor-
pus. An orthographic relative was defined as a word contain-
ing the target item at its orthographic onset (as a result, corner
was considered an orthographic relative for corn, but scorn
was not). These settings were kept fixed to ensure compara-
bility with the OSC measure we proposed in Marelli et al.
(2015). The obtained new OSC measures were labeled as
OSC-tagged lemmas (based on the lemmatized and PoS-
tagged corpus), OSC-tagged forms (based on the PoS-tagged

corpus), and OSC forms (based on the corpus with no prepro-
cessing). The original OSCmeasure fromMarelli et al. (2015)
was labeled as OSC-2015.

The quality of the four measures was tested in terms of their
ability to explain data variance that is relevant in a cognitive
perspective. As a test set, we considered the dataset used in
Experiment 3 in the study by Marelli et al. (2015). This con-
sists of 1,818 items (three items of the original set were
discarded for technical reasons) with the corresponding lexical
decision latencies from the BLP. Table 1 reports the correla-
tion matrix between the four OSC measures in the item set.

Following Marelli et al. (2015), the OSC measures were
assessed against a baseline regression model including target
frequency, orthographic length, and family size. Frequency
was obtained from the RTC Twitter corpus (Herdağdelen,
2013), since Herdağdelen and Marelli (2017) have shown that
social media provide the best frequency estimates for
explaining lexical decision latencies. Family size estimates
were obtained from the morphological annotation of CELEX
(Baayen, Piepenbrock, & vanRijn, 1993). Both response times
and family size were log-transformed. Frequency was
expressed on a Zipf scale (Van Heuven, Mandera, Keuleers,
& Brysbaert, 2014). We then run a model for each OSC esti-
mate that was included in the analysis along the baseline pre-
dictors. Table 2 summarizes the results of the models, reporting
for each OSC estimate its effect as well as the variance ex-
plained by the corresponding model.

All OSC estimates have significant effects, and provide a
significant improvement in the model fit with respect to the
baseline (largest p is .0011 at the goodness-of-fit tests com-
paring each test model with the baseline). The results hence
show that the effect of OSC is relatively stable, and different
manipulations don’t hurt the measure performance, speaking
for its robustness. However, a certain variability between the
models including different OSC measures is also observed:
The results indicate that the performance of the measure can
be improved by (a) adopting a better technique to induce se-
mantic vectors (the word-embeddings method by Mikolov
et al., 2013) and (b) relaxing the assumptions concerning the
source corpus to be used. Indeed, the less preprocessing is
applied to the corpus, the better the measure performance,
with the highest variance explained observed for the measure

Table 1 Correlation matrix for the four different OSC measures in the
item set

OSC-2015 OSC-Tagged
Lemmas

OSC-Tagged
Forms

OSC
Forms

OSC-2015 1 .75 .71 .63

OSC-tagged lemma .75 1 .85 .69

OSC-tagged forms .71 .85 1 .85

OSC forms .63 .69 .85 1
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based on the raw corpus: OSC-forms does not only signifi-
cantly outperform OSC-2015, based on traditional co-
occurrence-count techniques, but also the other measures
based on word embeddings (OSC-tags lemmas and OSC-
tags forms). It seems that complex preprocessing of the source
text data is not needed for using OSC to study word recogni-
tion—actually, it even hurts the quality of the measure. In the
following analyses, and in the final resource we will hence
focus on the OSC measure based on a semantic space that (a)
is trained on the raw corpus and (b) adopts the word-
embeddings approach.

Having established that corpus preprocessing does not pos-
itively contribute to the measure performance, in a follow-up
analysis we considered to what extent variations in the param-
eter space of the distributional model can affect the OSC esti-
mates. Parameters of word-embeddings models have been op-
timized in previous research efforts, using both online and
offline behavioral measures as gold standard (Baroni et al.,
2014b; Mandera et al., 2017), and in the present study we
indeed adopted a set of parameters associated to good perfor-
mances in explaining human data. However, it is still interest-
ing to evaluate the robustness of the OSC effect with respect to
these parameters. To this purpose, we varied both the size of
the co-occurrence window (that defines how large is the con-
text considered during model training in terms of number of
words), and the number of vector dimensions (which indicates
how many nodes are included in the hidden layer of the net-
work). Moreover, over and above the CBOW approach, we
also trained the model using the skipgram system: Whereas in
CBOW the estimated weights (i.e., vector dimensions) cap-
ture to what extent a target word is reliably predicted by the
contexts in which it appears, skipgram weights indicate how
well contexts are predicted by the target word. We considered
co-occurrence windows of three, five, or seven words, and
vectors of either 200 or 400 dimensions, for a total of 12
different semantic spaces (six CBOW models and six
skipgram models), and 12 corresponding variants of OSC.
These latter were tested against the same dataset and using
the same method described above; that is, we evaluated ex-
plained variance in (log-transformed) lexical decision laten-
cies for 1,818 items from BLP, using OSC as predictor in a

regression model along with Zipf-transformed frequencies,
log-transformed family size, and length. The results are report-
ed in Table 3.

As evident from Table 3, changes to the parameter space
lead to minimal variations in the measure performance. The
OSC effect is very robust to modifications in the training
settings of the DSM. Indeed, OSC estimates are very consis-
tent across semantic spaces: The lowest correlation between
all possible pairwise comparisons of the 12 OSC variants is
r = .967 (median correlation is r = .995).

Analysis 2: Parameters in the selection
procedure for orthographic relatives

In Analysis 2, we move to investigate the effect of the initial
pool of orthographic relatives considered, as well as the con-
straints imposed on the associated search procedure. In prin-
ciple, these aspects can largely influence the performance of
the OSC measure: Search strategies that are not inclusive
enough may lead to the exclusion of orthographic relatives
of potentially high impact, in turn leading to wrong estimates
of the orthographic-semantic consistency associated to a given
target. This is particularly evident when considering the posi-
tional constraints that we imposed in Marelli et al. (2015), in
which we defined as orthographic relatives only words that
contained the target at their onset. This criterion excludes not
only cases like the corn–scorn example reported above, but

Table 2 Results of Analysis 1

Type of Semantic Space Corpus Preprocessing OSC Effect Variance Explained AIC

Baseline – – – – .5383 – 4,823.56

OSC-2015 Traditional DSM Lemmatization and PoS tagging t = 3.29 p = .0011 .5408 – 4,832.37

OSC-tags lemmas Word embeddings Lemmatization and PoS tagging t = 4.17 p = .0001 .5424 – 4,838.92

OSC-tags forms Word embeddings PoS tagging t = 4.62 p = .0001 .5434 – 4,842.85

OSC forms Word embeddings none t = 5.28 p = .0001 .5451 – 4,849.33

The OSCmeasures are tested against a baseline includingword frequency, length, and family size. Associated effects are reported for eachOSC estimate,
along with the explained variance of the corresponding model.

Table 3 Effects of the word-embeddings parameters on the OSC
measure performance

Co-Occurrence
Window

CBOW Models Skipgram Models

200
Dimensions

400
Dimensions

200
Dimensions

400
Dimensions

Three words .5439 .5448 .5428 .5437

Five words .5441 .5451 .5426 .5434

Seven words .5443 .5453 .5426 .5434

Explained variance is reported for regression models including different
OSC variants along with word frequency, length, and family size.

1486 Behav Res (2018) 50:1482–1495



also morphologically associated elements such as prefixed
words (replay for play) and compounds (swordplay for play)
that would have an obviously large impact on the OSC esti-
mates. However, the problem is also related to the initial pool
of relatives considered: If it is too small, many perfectly ac-
ceptable relatives will not be extracted simply because they
were not considered as candidates to begin with. On the other
hand, we do not want to be too inclusive in the selection of
relatives for technical reasons: Vector representations for in-
frequent words tend to be unreliable because of the sparsity
issue in the training data, hence considering such elements in
the computation of OSC will only add noise to the estimates.

The potential issues associated to the selection of the rela-
tives can influence the precision of the OSC measure in a
negative way. Indeed, very restrictive criteria may lead tomost
target words being assigned an OSC of 1, that in principle
should only happen when a target has only itself as ortho-
graphic relative. From a theoretical perspective, OSC = 1 is
not necessarily bad. It suggests that the word is a perfect cue
for its meaning, as it always appears in orthographic contexts
where exactly that meaning is expressed. It is easy to think of
examples in which that is really the case—consider long ad-
verbs (e.g., sympathetically, seamlessly, meaningfully, etc.):
As adverbs, they have no inflected variants, and they rarely
act as stem in derived forms, and since they are long they are
unlikely to be embedded in other words by sheer chance.
However, the interpretation of OSC = 1 is not always so
straightforward: Such an outcome may be due to simply erro-
neous exclusion of relatives because of the restrictive criteria
adopted, leading to a wrong estimate of the target property.
There is not an easy, automatic way to discriminate between
actual case of OSC = 1 and cases in which this latter is the
results of uninformative technical issues. Therefore, we aim at
reducing such cases by properly setting the selection proce-
dure of the orthographic relatives.

To pursue these objectives, for the present section we eval-
uated 18 variants of the OSC measure. All these variants were
based on the semantic space with the best performance in the
previous analysis (that is, the word-embeddings space trained
on a non-preprocessed corpus), and differ for the selection
procedure for orthographic relatives. In particular, we manip-
ulated the size of the initial pool of relative candidates (rang-
ing from the top 25.000 to the top 65.000 most frequent words
in the space, with an interval of 5,000 words) and the con-
straint concerning the position of the target word within the
potential relatives (word onset vs. no constraints). OSC esti-
mates were obtained for all the content words (nouns, verbs,
adjectives, and adverbs) found in both the BLP and our se-
mantic space.

The obtained measures were first tested in terms of their
ability to predict lexical decision latencies in a new test set. In
fact, the set used in the previous analysis included items from
Marelli et al. (2015) that, although randomly extracted, were

based on an initial word sample related to the derived words
used in morphological priming experiments. As a result, they
could have been biased toward the onset-locked measures,
making them an unfit test set for the present evaluation.
Therefore, in this analysis we extracted, as test items, all
words in BLP for which OSC was different from 1 for all
the 18 variants considered. The resulting set consisted of
3,065 words. As in previous analyses, the OSCmeasures were
assessed against a baseline regression model including target
frequency, orthographic length, and family size. Frequency
norms were obtained from the RTC Twitter corpus
(Herdağdelen, 2013), family size estimates were obtained
from CELEX (Baayen et al., 1993), and lexical-decision la-
tencies were extracted from the BLP. These three variables
were log-transformed (frequency on a Zipf scale; Van
Heuven et al., 2014). We then tested a model for each of the
OSC variants computed, by including this latter measure
alongside the baseline predictors.

Figure 1 summarizes the results of the analysis, reporting
for each OSC variant the explained variance of the corre-
sponding model. Additional information is reported in
Table 4. There is not much variability in the measure perfor-
mance with respect to the size of the initial relative pool: The
observed explained variance is relatively stable across the dif-
ferent sizes considered. However, the results indicate a nega-
tive impact of the positional constraint: Although for both
conditions an improvement with respect to the baseline is
observed, said improvement is more marked for the case in
which the relative selection is not limited to candidates that
share the orthographic onset with the target (see also Bowers
et al., 2005). In line with Analysis 1, these results (i) speak for
the robustness of the measures, whose performance is essen-
tially unaffected by the pool size considered, and (ii) indicate

Fig. 1 Impacts of the size of the initial relative pool and the onset
positional constraint on the measure’s performance.
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that we can further relax our assumptions concerning the com-
putation of OSC, namely by dropping the positional con-
straints in the relative selection.

However, this does not indicate that a larger candidate pool
for orthographic relatives is not useful at all. For the sake of
comparability between measures, we have limited our com-
parison to a set of words for which all variants had OSC
different from 1. However, as we argued above, it is the case
that the present manipulations can influence the probability of
producing erroneous estimates of OSC = 1, an outcome that
we would like to limit as much as possible. Hence, we evalu-
ated to what extent the probability of predicting OSC = 1
changes in relation to the initial relative pool size and the
positional constraints in relative selection. The results of the
analysis are represented in Fig. 2. These data are based on the
full set of 15,017 words for which we have obtained OSC
estimates.

As expected, the parameters have an impact on the estimat-
ed proportion of OSC = 1 items. In line with the previous
analysis, positional constraints have an undesired impact, rais-
ing this proportion in comparison to the condition without

such constraints. Moreover, the initial pool size has also an
effect: The larger the pool of initial candidates, the lower the
proportion of OSC = 1 items. This outcome has to be expect-
ed: Both the lack of positional constraints and a larger candi-
date pool makes orthographic candidates more likely to be
found, in turn leading to more well-distributed (and arguably
more reliable) OSC estimates. On the basis of these results, we
opt for focusing on the measure without positional constraints
and based on the largest relative pool for the released resource.

However, until now we have defined orthographic relatives
considering the whole string constituting the target word: An
orthographic relative is a word that fully embeds the target (rel-
atives of part are, for example, partial, apart, partner . . .).
This stems naturally from our initial objective of explaining
human performance in word-processing experiments, in
which words are typically presented as orthographic strings
in isolation. The operationalization of the orthographic rela-
tives (and consequently of OSC) moves from this practical,
atheoretical observation, and hence uses the very strings pre-
sented to participants as probes to extract the orthographic
cohorts related to each target. Although some works in the
psycholinguistic literature have followed a similar approach
(e.g., Bowers et al., 2005), other studies on the effect of a
word’s orthographic neighborhood have considered more nu-
anced operationalizations of this aspect. An ideal example in
this respect is the work by Yarkoni, Balota, and Yap (2008), in
which orthographic relatives are not defined in binary terms,
but rather as a function of their orthographic distance from the
target: Aword can be more or less Bneighborly^ with respect
to a given target depending on the Levenshtein distance (LD;
Levenshtein, 1966) between the two strings. According to this
metric, the distance between two words is the minimum num-
ber of substitution, insertion, or deletion operations required to
turn one word into the other (e.g., the LD between cast and
cost is 1; the LD between cast and casting is 3; and the LD
between cast and costing is 4). Since the LD has been showed
to be an ideal metric to characterize orthographic neighbor-
hoods in word recognition studies (Yarkoni et al., 2008), one
may wonder whether using such metric to define orthographic
relatives for the computation of OSC could further improve
the measure performance.

Table 4 Performance of different OSC variants, showing the impacts of the size of the initial relative pool and of the onset positional constraint

Initial Pool Size of Relative Candidates Onset-Locked Relative Selection OSC Effect Variance Explained AIC

Baseline Baseline – – .5254 – 6,452.43

25.000 TRUE t = 3.38 p = .0007 .5271 – 6,461.84

65.000 TRUE t = 3.33 p = .0009 .5269 – 6,461.50

25.000 FALSE t = 6.69 p = .0001 .5321 – 6,494.99

65.000 FALSE t = 6.75 p = .0001 .5322 – 6,495.73

The OSCmeasures are tested against a baseline including word frequency, length, and family size. Associated effects are reported for each OSC variant,
along with the explained variance of the corresponding model.

Fig. 2 Impacts of the size of the initial relative pool and the onset
positional constraint on the proportion of words for which OSC equals 1.
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To assess this possibility, we used the LD between a target
and each other word in the lexicon as an index to select ortho-
graphic relatives, in turn obtaining six novel variants of OSC.
Three of these variants (OSC-top10, OSC-top20, OSC-top30)
were based on relative sets defined in terms of top orthograph-
ic neighbors: OSC was computed as the (frequency-weighted)
average semantic similarity between a target and its n ortho-
graphically closest word, where n could be 10, 20, or 30. In
the other three variants (OSC-LD1, OSC-LD2, OSC-LD3),
relatives were extracted on the basis of a previously defined
maximum distance: OSC was computed as the (frequency-
weighted) average semantic similarity between a target and
all the words with a maximum LD of n from it, where n could
be 1, 2, or 3; in other terms, in these latter variants relatives
where defined as words that could be obtained by deleting,
adding, or substituting 1/2/3 letters from the target. Semantic
estimates used to compute these OSC variants were based on
the same word-embeddings space employed in the previous
evaluations, and we considered as initial pool of relative can-
didates the same set of 65.000 words presented above.

The performance of the novel six OSC variants was
assessed using the same procedure described in the previous
evaluation: We employed a dataset of 3,065 items from the
BLP, and we computed the variance explained in human la-
tencies by a regression model including OSC along with Zipf-
transformed frequency, log family size, and length. Table 5
reports the results of this evaluation, comparing the perfor-
mance of each of the novel six OSC variants with the best-
performing OSC measure from the previous analysis.

The analysis showed that, when OSC is computed on the
basis of LD-defined relatives, its ability to explain variance in
human behavior is lower than when orthographic relatives are
selected through the substring approach described in Marelli
et al. (2015). The approach based on LD still looks promising,
with significant effects when the relatives are defined in terms
of a maximum LD from the target, but it is largely
outperformed by the original characterization of OSC. This
suggests that, in this kind of word-processing experiment,

semantic information may be mainly accessed through the
whole string constituting a word, with subword orthographic
units playing a more limited role in informing meaning. Of
course, this does not imply that LD-based measures, such as
OLD20 (Yarkoni et al., 2008), are not viable options to char-
acterize neighborhoods on a purely orthographic level; rather,
it suggests that, when the purpose is capturing orthographic-
semantic relations, focusing on orthographic chunks leads to
more informative estimates.

Description of the resource and evaluation
on megastudies

We release a dataset of OSC values for the content words
included in the BLP (Keuleers et al., 2012). The final set
includes 15,017 items. The reported OSC measure is based
on the best-performing parameter settings, as estimated by the
analyses described in the previous sections. We excluded
grammatical words from the present item set since it is typi-
cally difficult to obtain high-quality semantic vectors for such
element (Baroni, Bernardi & Zamparelli, 2014a): In these
cases, contexts are typically not particularly informative, since
grammatical words tend to frequently co-occur with all the
other words in the corpus (i.e., they have low predictive pow-
er). The uninformative vectors that are usually obtained for
grammatical words, paired with their extremely high frequen-
cy, would lead to low-quality OSC estimates. We also opted
for not including in the database words with very low frequen-
cy, since these items may present an issue that is opposite to
the one described for grammatical words: DSMs cannot in-
duce reliable vector representations for rare words, because of
the scarcity of training data (Turian, Ratinov, & Bengio,
2010). Finally since, in principle, every word is an ortho-
graphic relative of itself, all the items of the database are also
included in the pool of 65,000words fromwhich orthographic
relatives were selected. The exact meaning similarity of a
word with itself is a crucial piece of semantic information in

Table 5 Performance of different OSC variants when using LD to select orthographic relatives

Type of Relatives OSC Effect Variance Explained AIC

Baseline – – – .5254 – 6,452.43

OSC Words that embed the target t = 6.75 p = .0001 .5322 – 6,595.73

OSC-top10 Top 10 LD-defined neighbors t = 0.27 p = .7821 .5254 – 6,450.50

OSC-top20 Top 20 LD-defined neighbors t = 1.75 p = .0805 .5257 – 6,453.49

OSC-top30 Top 30 LD-defined neighbors t = 1.41 p = .1601 .5256 – 6,452.40

OSC-LD1 Words with maximum LD = 1 t = 2.19 p = .0288 .5259 – 6,455.21

OSC-LD2 Words with maximum LD = 2 t = 2.03 p = .0421 .5259 – 6,454.57

OSC-LD3 Words with maximum LD = 3 t = 1.36 p = .1751 .5255 – 6,452.27

OSC measures are tested against a baseline including Zipf-transformed word frequency, length, and log family size. Associated effects are reported for
each OSC estimate, along with the explained variance of the corresponding model.
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the computation of OSC since it is the only relation, within the
activated orthographic cohort, that perfectly captures the
meaning associated to the target. Words that were not part of
this relative pool are hence not included in the released re-
source because their corresponding OSC estimates could not
be properly computed.

In the present section we first investigate the proportion of
items for which OSC equals 1 in the final dataset. As we
discussed, it is difficult to establish a priori whether these are
erroneous estimates related to technical limitations, or proper
cases in which a word has no orthographic relatives to be
found. The manipulations described in the previous section
has lowered the number of OSC = 1 items, arguably correcting
a number of erroneous estimates. However, a large number of
such items can still be observed (about 46% of the words).
Table 6 suggests why this may be the case (the considered
variables were obtained as described in the previous sections).

Items with OSC = 1 are less frequent, are longer, and have
smaller family sizes than items whose OSC is not 1. This
pattern of results is sensible for cases for which OSC = 1 is
a reliable estimate. In fact, smaller family sizes make it less
likely for a word to be related to derived forms and/or com-
pounds that would be included in its relative selection; longer
words are less likely to be embedded in other words by sheer
chance, hence further diminishing the probability of having
orthographic relatives; and less frequent words would have
inflectional variants (if any) that are even less frequent, hence
they won’t be found in the lexicon of the semantic space. To
summarize, the results suggest that OSC = 1 items could be, to
a large extent, genuine cases.

A large number of OSC = 1 items makes sense if we con-
sider the lexicon a set of signs shared by a number of speakers.
To ensure communication, we would not expect such a system
to be extremely arbitrary.1 That is, we may expect that most
words will be good cues for their meanings (e.g., Dingemanse
et al., 2015; Monaghan & Christiansen, 2006). Indeed, this is
confirmed by the distribution of OSC (when it is different from
1) in the whole dataset (Fig. 3): Even when not considering the
OSC = 1 cases, the variable is quite skewed, with many word
having OSC higher than .80. The distribution of items with
OSC equals to 1 vis-à-vis different from 1 could be related to
hapax legomena. This cannot be tested directly with the pres-
ent approach since, for technical reasons, high-quality seman-
tic vectors for rare words are very difficult to obtain (e.g.,
Turian et al., 2010), and the OSC computation is based on
the availability of reliable semantic representations. We may
nevertheless conjecture that hapax legomena would be quite in

line with our description of OSC = 1 items, to the very least
when they represent relatively novel lexical entries. In fact,
these elements are often the consequence of morphological
productivity (affixation or compounding processes), thus they
tend to be orthographically long words. For this reason, they
are unlikely to be subject to morphological operations them-
selves, and hence to be included in complex forms. Similarly,
being so rare they are unlikely to be observed also in inflected
forms. As a result, hapax legomena will rarely have ortho-
graphic relatives over and above themselves, hence resulting
in a OSC of 1. Indeed, these considerations about hapax
legomena fit well the data pattern described in Table 6: OSC
= 1 items tend to have lower family size, higher orthographic
length, and lower frequency.

Finally, we test OSC on latencies from megastudies. We
extracted response latencies from the BLP and focused on
items for which OSC is different from 1 (7,990 data points).
Similarly to previous analyses, we also included in the regres-
sion model item length, Zipf-transformed frequency, and log-
transformed family size. OSC has a negligible correlation with
the latter measure (r = .09), and a moderate correlation with
the former two (r = .43 and .27, respectively). The effect of
OSC on response latencies is however significant (t = 4.51, p

1 With this term we do not make reference to the fact that words are arbitrary
symbols for concepts; rather, we point out that, at a lexical level, words that
have associated orthographic forms often share associated meanings. The term
is thus intended to be interpreted exclusively in a Bdistributional^ sense, refer-
ring to the distribution of orthographic forms in the lexicon (see Dingemanse,
Blasi, Lupyan, Christiansen, & Monaghan, 2015, for further discussion). Fig. 3 OSC density distribution.

Table 6 Comparison of items for which OSC equals 1 vis-à-vis items
for which OSC is smaller than 1

Items in which
OSC = 1

Items in which
OSC < 1

t p

N 7,027 7,990 – –

Frequency 1.76 ± 0.016 2.87 ± 0.017 47.56 .0001

Family size 0.38 ± 0.006 1.26 ± 0.011 74.61 .0001

Length 6.94 ± 0.017 5.49 ± 0.017 60.03 .0001
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= .0001) and holds also when removing from the whole
dataset items with average accuracy lower than .66
(following Brysbaert & New, 2009; t = 7.74, p = .0001). In
both cases, the higher OSC, the faster the response times, in
line with the results reported in Marelli et al. (2015).

However, the covariates we considered do not exclude the
possibility of a semantic confounding in the OSC effect. In
particular, since the measure is based on meaning association
estimates from DSMs, it is in principle possible that the effect
of OSC is simply explained by the semantic dimensions cap-
tured by the vector model, rather than a combination of ortho-
graphic and semantic features. To exclude this hypothesis, we
adopted the methodology proposed by Hollis and Westbury
(2016), who showed that semantic metrics obtained by apply-
ing principal-component analysis on a DSM are significant
predictors of lexical decision latencies. Following Hollis and
Westbury’s (2016) procedure, we applied principal compo-
nent analysis on the very same semantic space we used to
compute OSC, after having mean-centered each dimension
and scaled it to have unit variance. The procedure resulted in
356 principal components (PCs) accounting for 95% of the
variance between vector dimensions. These 356 PCs were
included as predictors in a regression model on the BLP re-
sponse times along with Zipf-transformed frequency, log-
transformed family size, orthographic length, and OSC. The
analysis was run on the same set of 7,990 words described
above. Of the 356 PC predictors, 34 were found to have a
significant effect at p = .10. However, their inclusion does
not affect the impact of OSC, whose effect holds in the new
analysis (t = 4.27, p = .0001). The results of this test indicate
that the OSC effect cannot be reduced to the impact of seman-
tic features directly extracted from the source DSM. The evi-
dence supports the OSC characterization as a hybrid measure
capturing the mapping between orthographic and semantic
information.

Testing OSC in predicting the response times from the BLP
is straightforward, and consistent with the source data used to
compute the measure (mostly based on British English).
However, it is known that such source data can have an impact
on measure performances, even when considering relatively
similar language variants such as British and American
English (see Keuleers et al., 2012, and Herdağdelen &
Marelli, 2017). Therefore, it is important to establish that our
OSC estimates are also significantly associated with data from
American English. We thus turn our attention to the ELP
(Balota et al., 2007), that collects response latencies in lexical
decision from American speakers. Moreover, the ELP data
also offer the opportunity to test the measure performance
on different experimental tasks, since they also report latencies
for word naming.

For the analysis on the ELP data, we considered all the
items that are also included in our OSC set. Similarly to the
procedure above, we focused only on the items with OSC

different from 1 (7,108 data points), and we included as pre-
dictors also Zipf-transformed frequency, log-transformed fam-
ily size, and length. When considering lexical decision laten-
cies, the effect of OSC is significant (t = 4.97, p = .0001) and
holds when considering only items with average accuracy
higher than .66 (t = 5.59, p = .0001). A similar pattern of
results is observed for response times in word naming, with
again significant effects for both item sets (t = 3.17, p = .0016;
t = 2.74, p = .0061). The results on the ELP speak again for the
robustness of the OSC measure we release, for which we
observed solid effects across language variants (British vs.
American English) and experimental tasks (lexical decision
vs. word naming).

As a further test of the measure robustness, we evaluated
the OSC effect when controlling for frequency estimates from
different sources. In fact, since frequency plays an important
role in the computation of OSC, it is possible that OSC ac-
counts for behavioral variance above and beyond word fre-
quency because it has been calculated over a different lan-
guage distribution than the frequency measure employed in
the previous analyses. We thus considered frequency esti-
mates from the corpus used to compute OSC (a concatenation
of BNC, ukWaC, and EnglishWikipedia), along with frequen-
cy norms based on television subtitles (SUBTLEX-UK: Van
Heuven et al., 2014; and SUBTLEX-US: Brysbaert & New,
2009; Brysbaert, New, & Keuleers, 2012). The OSC interplay
with these frequency measures was evaluated in the three
datasets considered above, including items with OSC different
from 1. For each of these datasets, Table 7 reports the corre-
lation between OSC and log-transformed frequency (in terms
of Kendall’s tau and Pearson’s r) and the OSC effects in a
regression model when including, as covariate, the respective
log-transformed frequency measure, along with orthographic
length and (log-transformed) family size.

Table 7 shows that the OSC impact on behavioral data is
relatively stable across different frequency covariates. The
effects are smaller when frequency norms are obtained from
the same source used to calculate OSC, which is to be expect-
ed since lexical frequencies are included in the OSC compu-
tation. However, importantly, the effect of the measure holds
also in these cases.

A further influence of lexical frequency on OSC perfor-
mance could in principle emerge from the orthographic rela-
tives included in the OSC computation, since the semantic
impact of these latter is weighted for their frequency. Indeed,
one may wonder to what extent OSC may simply reflect the
inhibitory effect of high-frequency relatives. However, this is
highly unlikely. Certainly the impact of the different relatives
of a given word will depend on their frequency, but it won’t be
necessarily inhibitory: Actually, the way OSC is formalized
ensures that relatives can have either an inhibitory (i.e., lead-
ing to lower OSC values) or facilitatory role (i.e., leading to
higher OSC values), depending on their semantic association
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with the target. In line with this theoretical consideration, we
fail to observe any correlation between the average frequency
of the orthographic relatives and the corresponding OSC esti-
mates (r = .004); moreover, the OSC effects reported in these
section analyses hold when including the average frequency
of the relatives as covariate in the regression models.

Conclusions

In the present work, we present the orthography–semantics
consistency (OSC) measure as a valid and effective predictor
of response latencies in visual word recognition, tested on a
large number of words in lexical decision and word naming
paradigms in American and British English. We provide a
complete resource containing OSC values for 15,017
English content words, so that the measure can be readily
available and easily accessible by the entire psycholinguistic
community. Along the OSC norms we release the correspond-
ing log-transformed frequency values (as extracted from our
source corpus) for experimental-control purposes. The com-
plete database can be downloaded from www.marcomarelli.
net/resources/osc.

The OSC measures provided here is the most updated and
best-performing version to present. In a series of analyses, we
have in fact shown that previous constraints imposed on the
measure led to a worse performance in predicting response
times, in comparison to the new and improved version. With
respect to the considered parameters, we propose here a sim-
plified version of OSC that does not rely on part-of-speech
tagging and lemmatization and is free from positional con-
straints in the selection of orthographic relatives. Moreover,
we extended the search pool for orthographic relatives to the
top 65,000 most frequent content words in the lexicon. This
version proved to explain the most variance in lexical decision
(and proved to be a significant predictor also in word naming).
It is worth noting, however, that although the measure that we
release is the best option at the moment, all the versions tested
in this article were valid predictors of significant portions of
variance in lexical decision. OSC therefore proved to be a

robust measure, not particularly sensitive to changes in the
associated parameters.

From a theoretical perspective, the results presented in this
study are informative of the role of meaning in word recogni-
tion. As a measure, OSC has a strong semantic nature: It quan-
tifies the mapping between orthographic strings and their as-
sociate meanings. Its impact in visual word recognition is fur-
ther proof of the crucial role played by semantics in lexical
access, even in tasks whose nature is not explicitly semantic
(e.g., lexical decision). Our results are also consistent with
Bowers et al. (2005) data on subset–superset activation. In their
seminal work, Bowers and colleagues showed that subsets
(e.g., hat) are activated independently from their position with-
in the superset (e.g., hatch or chat), and that the semantics of
the subset interferes with the processing of the superset. Their
results have implications for both orthographic-coding theories
and theories on semantic activation. Our results provide con-
verging evidence for both these stances. Relative to ortho-
graphic coding, it should be noted that our best performing
formalization of OSC includes the selection of orthographic
relatives that embed the full target word in either initial, mid-
dle, or final position. In other words, the semantics of ortho-
graphic relatives contributes to the definition of the target OSC
independently of the position of the embedded string (i.e., the
target word). As Bowers and colleagues suggested, this poses
an issue for models of orthographic encoding based on serial
activation (e.g., Coltheart et al., 2001), and support alternative
proposals based on parallel coding (e.g., Davis, 1999; Davis &
Bowers, 2004). Concerning semantic activation, OSC has been
described in this article as a measure of similarity between the
meaning of a target word and the meanings of its orthographic
relatives. In this sense, we can redefine OSC as an index of
orthographically informed semantic activation, as it indicates
that, when we read a word, not only the orthographic form of
its relatives is activated, but also their semantic representations.
Hence, our results support the conclusions of Bowers and col-
leagues relative to the cascaded activation of semantic repre-
sentation from orthographic input. It is worth noting, however,
that differently from Bowers et al. our task did not ask for an
explicit semantic judgment, providing further evidence that

Table 7 Interplay between OSC and frequency norms from different corpora

BLP ELP

Kendall’s
Tau

Pearson’s r OSC Effect Lexical
Decision

Kendall’s
Tau

Pearson’s r OSC Effect Lexical
Decision

OSC Effect
Word Naming

RTC (Twitter) .171 .269 t = 4.51 .113 .171 t = 4.97 t = 3.17

BNC + UkWac +Wikipedia .276 .369 t = 2.49 .239 .319 t = 2.45 t = 2.67

SUBTLEX-US .169 .219 t = 6.55 .121 .143 t = 5.85 t = 1.84

SUBTLEX-UK .157 .196 t = 6.93 .128 .148 t = 5.61 t = 2.09

The table reports (1) correlations (in terms of Kendall’s tau and Pearson’s r) between OSC and frequency and (2) the effect of OSC when the
corresponding frequency estimates are included as a covariate in a regression model against behavioral data.
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word meaning is active in word recognition also when the
experimental task does not invoke it directly. In this respect,
the effect of OSC on word naming data is particularly interest-
ing. The effect of semantics in word naming has produced
divergent results, often depending on the way that semantics
was operationalized (see, e.g., Bates, Burani, d’Amico, &
Barca, 2001, vs. Buchanan et al., 2001). In our study, seman-
tics was operationalized in distributed terms, in a way related to
the one intended by Buchanan et al. (2001), which used HAL
to quantify semantic neighborhood size. Indeed, our results are
coherent with their work, as in both our and their analyses
semantic effects are observed. However, even if founded on
similar distributional underpinnings, OSC provides a different
semantic characterization. On the one hand, in the present ar-
ticle the measure we computed is based on word embeddings,
an approach that has proven to outperform traditional distribu-
tional models in a number of different tasks (Baroni et al.,
2014b; Mandera et al., 2017), and produces more nuanced
and cognitively plausible representations (Keith, Westbury, &
Goldman, 2015; Mandera et al., 2017). On the other hand,
OSC captures semantic information that is tightly entangled
with the word orthography and has an effect on lexical access
that is independent from the one associated with the sheer
semantic neighborhood (Amenta et al., 2015). As such, OSC
describes a hybrid component that provides consistent but nov-
el evidence concerning the role of semantics in word naming.
The composite nature of the phenomenon captured through
OSC is theoretically in line with word learning models that
builds on reliable patterns between forms and meanings (e.g.,
Baayen et al., 2011; Harm & Seidenberg, 2004). Indeed, it is
conceivable that the OSC effect could be a by-product of such
learning systems. For example, recent developments of the
NDL architecture (e.g., Milin et al., 2017), that integrate se-
mantics as associations between higher-level units (lexomes),
could be able to provide a computational explanation of the
OSC impact in word recognition.

From a methodological perspective, the resource presented
here ideally complements previous efforts to quantify consis-
tency in language systems, typically focused on the mapping
between orthography and phonology (e.g., Balota et al., 2004),
and constitutes an important source of data to be considered by
researchers interested in word recognition. In fact, the results by
Marelli et al. (2015) indicate how not accounting for the OSC
contribution could lead to serious confounding, and be the
source of unexpected (and apparently inexplicable) side effects.
In the present article, we further provide evidence for the impact
of OSC in large datasets, with effects that are reliable across
different tasks and language variants. Moreover, we show that
OSC correlates only weakly with family size, capturing a dif-
ferent, largely unexplored component of the word recognition
process. On par with this measure, it is recommended to always
address the role of OSC or, at the very least, to include it as a
covariate in studies of visual word recognition.

The present focus of the proposed database on a relatively
limited set of items (i.e., a set that excludes most function and
rare words) is mostly related to present technical limitations of
DSMs, rather than of the OSC measure itself. This particularly
pertains to low-frequency words. Certainly, vectors for rare
words can be directly obtained through an incremental proce-
dure such as the CBOWone, but such representations tend to be
particularly noisy due to data scarcity (Turian et al., 2010). This
is not necessarily a drawback if DSMs are taken as models of
how humans can extract meaning from language usage
(Mandera et al., 2017): Similarly to a distributional model, hu-
man speakers will not have a precise idea of the meaning of a
word from observing it in context just once or twice. On the
other hand, this limitation may be a problem if one’s scope is to
obtain reliable representations for practical purposes (e.g., devel-
oping a resource, like in the present study). Solutions to this
problem are being proposed, often focused on exploiting mean-
ings of sublexical strings to induce representations for low-
frequency words (e.g., Bojanowski, Grave, Joulin, & Mikolov,
2016; Lazaridou,Marelli, Zamparelli, &Baroni, 2013) and even
novel words that never appear in the training corpus (Marelli &
Baroni, 2015). Other methods rely on enriching the new seman-
tic vector through multimodal data, based on the lexical context
in which the rare word is found (Lazaridou, Marelli, & Baroni,
2017). As for grammatical words, promising approaches have
been advanced in the domain of compositional distributional
semantics (Baroni et al., 2014a; Bernardi, Dinu, Marelli, &
Baroni, 2013). These ongoing developments may provide the
possibility of inducing higher quality vectors for such problem-
atic elements in the next future, and hence allow databases of
measures relying on DSMs (such as OSC) to be further
developed.

Author note Authors contributions are as follows: M.M. and
S.A. designed the study; M.M. developed the models and ran
the statistical analyses; M.M. and S.A. drafted the article. This
study was supported by the Flanders Research Foundation
(FWO) Research Grant No. FWO.OPR.2017.0014.01 on pro-
ject No. G011617N.

References

Amenta, S., Marelli, M., & Crepaldi, D. (2015). Semantic consistency
measures in priming paradigms. Paper presented at the 1st
Quantitative Morphology Meeting, Belgrade, Serbia.

Amenta, S., Marelli, M., & Sulpizio, S. (2016). From sound to meaning:
Phonology-to-semantics mapping in visual word recognition.
Psychonomic Bulletin & Review, 24, 887–893. doi:https://doi.org/
10.3758/s13423-016-1152-0

Andrews, S. (1997). The effect of orthographic similarity on lexical re-
trieval: Resolving neighborhood conflicts. Psychonomic Bulletin &
Review, 4, 439–461. doi:https://doi.org/10.3758/BF03214334

Behav Res (2018) 50:1482–1495 1493

https://doi.org/10.3758/s13423-016-1152-0
https://doi.org/10.3758/s13423-016-1152-0
https://doi.org/10.3758/BF03214334


Arora, S., Ge, R., & Moitra, A. (2012). Learning topic models—Going
beyond SVD. In Proceedings of the 53rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS) (pp. 1–10).
Washington, DC: IEEE Press. doi:https://doi.org/10.1109/FOCS.
2012.49

Baayen, R. H., Milin, P., Đurđević, D. F., Hendrix, P., & Marelli, M.
(2011). An amorphous model for morphological processing in visu-
al comprehension based on naive discriminative learning.
Psychological Review, 118, 438–481. doi:https://doi.org/10.1037/
a0023851

Baayen, R. H., Piepenbrock, R., & van Rijn, H. (1993). The CELEX
lexical database (CD-ROM). Philadelphia, PA: Linguistic Data
Consortium, University of Pennsylvania.

Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., &
Yap, M. J. (2004). Visual word recognition of single-syllable words.
Journal of Experimental Psychology: General, 133, 283–316. doi:
https://doi.org/10.1037/0096-3445.133.2.283

Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B.,
Loftis, B., . . . Treiman, R. (2007). The English Lexicon Project.
Behavior Research Methods, 39, 445–459. doi:https://doi.org/10.
3758/BF03193014

Baroni, M., Bernardi, R., & Zamparelli, R. (2014a). Frege in space: A
program for compositional distributional semantics. Linguistic
Issues in Language Technology, 9, 241–346.

Baroni, M., Dinu, G., & Kruszewski, G. (2014b). Don’t count, predict! A
systematic comparison of context-counting vs. context-predicting
semantic vectors. In Proceedings of the Association for
Computational Linguistics (ACL) (pp. 238–247). New York, NY:
ACM Press.

Bates, E., Burani, C., d’Amico, S., & Barca, L. (2001). Word reading and
picture naming in Italian. Memory & Cognition, 29, 986–999. doi:
https://doi.org/10.3758/BF03195761

Bernardi, R., Dinu, G., Marelli, M., & Baroni, M. (2013). A relatedness
benchmark to test the role of determiners in compositional distribu-
tional semantics. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (pp. 53–57). East
Stroudsburg PA: ACL.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching
word vectors with subword information. Retrieved from arXiv:
1607.04606

Bowers, J. S., Davis, C. J., & Hanley, D. A. (2005). Automatic semantic
activation of embedded words: Is there a Bhat^ in Bthat^? Journal of
Memory and Language, 52, 131–143.

Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A
critical evaluation of current word frequency norms and the intro-
duction of a new and improved word frequency measure for
American English. Behavior Research Methods, 41, 977–990. doi:
https://doi.org/10.3758/BRM.41.4.977

Brysbaert, M., New, B., & Keuleers, E. (2012). Adding part-of-speech
information to the SUBTLEX-US word frequencies. Behavior
Research Methods, 44, 991–997. doi:https://doi.org/10.3758/
s13428-012-0190-4

Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness
ratings for 40 thousand generally known English word lemmas.
Behavior Research Methods, 46, 904–911. doi:https://doi.org/10.
3758/s13428-013-0403-5

Buchanan, L., Westbury, C., & Burgess, C. (2001). Characterizing se-
mantic space: Neighborhood effects in word recognition.
Psychonomic Bulletin & Review, 8, 531–544.

Church, K. W., & Hanks, P. (1990). Word association norms, mutual
information, and lexicography. Computational Linguistics, 16, 22–
29.

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001).
DRC: A dual route cascaded model of visual word recognition and
reading aloud. Psychological Review, 108, 204–256. doi:https://doi.
org/10.1037/0033-295X.108.1.204

Davis, C. J. (1999). The self-organising lexical acquisition and recogni-
tion (SOLAR) model of visual word recognition (Doctoral disserta-
tion, University of New South Wales, 1999). Dissertation Abstracts
International, 62(1-B), 594. Available fromwww.maccs.mq.edu.au/
~colin.

Davis, C. J., & Bowers, J. S. (2004). What do letter migration errors
reveal about letter position coding in visual word recognition?.
Journal of Experimental Psychology: Human Perception and
Performance, 30, 923–941. doi:https://doi.org/10.1037/0096-1523.
30.5.923

Dingemanse, M., Blasi, D. E., Lupyan, G., Christiansen, M. H., &
Monaghan, P. (2015). Arbitrariness, iconicity, and systematicity in
language. Trends in Cognitive Sciences, 19, 603–615.

Grainger, J. (1990). Word frequency and neighborhood frequency effects
in lexical decision and naming. Journal of Memory and Language,
29, 228–244. doi:https://doi.org/10.1016/0749-596X(90)90074-A

Harm, M. W., & Seidenberg, M. S. (2004). Computing the meanings of
words in reading: Cooperative division of labor between visual and
phonological processes. Psychological Review, 111, 662–720. doi:
https://doi.org/10.1037/0033-295X.111.3.662

Herdağdelen, A. (2013). Twitter n-gram corpus with demographic meta-
data. Language Resources and Evaluation, 47, 1127–1147.

Herdağdelen, A., & Marelli, M. (2017). Social media and language pro-
cessing: How facebook and twitter provide the best frequency esti-
mates for studying word recognition. Cognitive Science, 41, 976–
995

Hino, Y., Miyamura, S., & Lupker, S. J. (2011). The nature of orthograph-
ic–phonological and orthographic–semantic relationships for
Japanese kana and kanji words. Behavior Research Methods, 43,
1110–1151.

Hollis, G., &Westbury, C. (2016). The principals of meaning: Extracting
semantic dimensions from co-occurrence models of semantics.
Psychonomic Bulletin & Review, 23, 1744–1756.

Jared, D., Jouravlev, O., & Joanisse, M. F. (2017). The effect of semantic
transparency on the processing of morphologically derived words:
Evidence from decision latencies and event-related potentials.
Journal of Experimental Psychology: Learning, Memory, and
Cognition, 43, 422–450.

Keith, J., Westbury, C., & Goldman, J. (2015). Performance impact of
stop lists and morphological decomposition on word–word corpus-
based semantic space models. Behavior Research Methods, 47,
666–684.

Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British
Lexicon Project: Lexical decision data for 28,730 monosyllabic and
disyllabic English words. Behavior Research Methods, 44, 287–
304. doi:https://doi.org/10.3758/s13428-011-0118-4

Kuperman, V., Estes, Z., Brysbaert, M., & Warriner, A. B. (2014).
Emotion and language: valence and arousal affect word recognition.
Journal of Experimental Psychology: General, 143, 1065–1081.
doi:https://doi.org/10.1037/a0035669

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem:
The latent semantic analysis theory of acquisition, induction, and
representation of knowledge. Psychological Review, 104, 211–240.
doi:https://doi.org/10.1037/0033-295X.104.2.211

Lazaridou, A., Marelli, M., & Baroni, M. (2017). Multimodal word
meaning induction from minimal exposure to natural text.
Cognitive Science, 41(Suppl. 4), 677–705.

Lazaridou, A., Marelli, M., Zamparelli, R., & Baroni, M. (2013).
Compositionally derived representations of morphologically com-
plex words in distributional semantics. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics
(pp. 1517–1526). East Stroudsburg, PA: ACL.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions and reversals. Soviet Physics Doklady, 10, 707–710.

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic
spaces from lexical co-occurrence. Behavior Research Methods,

1494 Behav Res (2018) 50:1482–1495

https://doi.org/10.1109/FOCS.2012.49
https://doi.org/10.1109/FOCS.2012.49
https://doi.org/10.1037/a0023851
https://doi.org/10.1037/a0023851
https://doi.org/10.1037/0096-3445.133.2.283
https://doi.org/10.3758/BF03193014
https://doi.org/10.3758/BF03193014
https://doi.org/10.3758/BF03195761
https://doi.org/10.3758/BRM.41.4.977
https://doi.org/10.3758/s13428-012-0190-4
https://doi.org/10.3758/s13428-012-0190-4
https://doi.org/10.3758/s13428-013-0403-5
https://doi.org/10.3758/s13428-013-0403-5
https://doi.org/10.1037/0033-295X.108.1.204
https://doi.org/10.1037/0033-295X.108.1.204
http://www.maccs.mq.edu.au/~colin
http://www.maccs.mq.edu.au/~colin
https://doi.org/10.1037/0096-1523.30.5.923
https://doi.org/10.1037/0096-1523.30.5.923
https://doi.org/10.1016/0749-596X(90)90074-A
https://doi.org/10.1037/0033-295X.111.3.662
https://doi.org/10.3758/s13428-011-0118-4
https://doi.org/10.1037/a0035669
https://doi.org/10.1037/0033-295X.104.2.211


Instruments, & Computers, 28, 203–208. doi:https://doi.org/10.
3758/BF03204766

Mandera, P., Keuleers, E., & Brysbaert, M. (2017). Explaining human
performance in psycholinguistic tasks with models of semantic sim-
ilarity based on prediction and counting: A review and empirical
validation. Journal of Memory and Language, 97, 57–78.

Marelli, M., Amenta, S., & Crepaldi, D. (2015). Semantic transparency in
free stems: The effect of Orthography–Semantics Consistency on
word recognition. Quarterly Journal of Experimental Psychology,
68, 1571–1583. doi:https://doi.org/10.1080/17470218.2014.959709

Marelli, M., & Baroni, M. (2015). Affixation in semantic space:
Modeling morpheme meanings with compositional distributional
semantics. Psychological Review, 122, 485–515. doi:https://doi.
org/10.1037/a0039267

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013).
Distributed representations of words and phrases and their
compositionality. In C. J. C. Burges, L. Bottou, M. Welling, Z.
Ghahramani, & K. Q. Weinberger (Eds.), Proceedings of the 26th
International Conference onNeural Information Processing Systems
(Vol. 2, pp. 3111–3119). New York, NY: Curran Associates.

Milin, P., Divjak, D., & Baayen, R. H. (2017a). A learning perspective on
individual differences in skilled reading: Exploring and exploiting
orthographic and semantic discrimination cues. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 43,
1730–1751. doi:https://doi.org/10.1037/xlm0000410

Milin, P., Feldman, L. B., Ramscar, M., Hendrix, P., & Baayen, R. H.
(2017b). Discrimination in lexical decision. PLoS ONE, 12,
e0171935. doi:https://doi.org/10.1371/journal.pone.0171935

Monaghan, P., & Christiansen, M. H. (2006). Why form-meaning map-
pings are not entirely arbitrary in language. In Proceedings of the
28th Annual Conference of the Cognitive Science Society (pp.
1838–1843). Mahwah, NJ: Lawrence Erlbaum.

Norris, D. (2006). The Bayesian reader: Explaining word recognition as
an optimal Bayesian decision process. Psychological Review, 113,
327–357. doi:https://doi.org/10.1037/0033-295X.113.2.327

Pecher, D. (2001). Perception is a two-way junction: Feedback semantics
in word recognition. Psychonomic Bulletin & Review, 8, 545–551.
doi:https://doi.org/10.3758/BF03196190

Pexman, P. M., Hargreaves, I. S., Siakaluk, P. D., Bodner, G. E., & Pope,
J. (2008). There are many ways to be rich: Effects of three measures
of semantic richness on visual word recognition. Psychonomic
Bulletin & Review, 15, 161–167. doi:https://doi.org/10.3758/PBR.
15.1.161

Pexman, P. M., Lupker, S. J., & Hino, Y. (2002). The impact of feedback
semantics in visual word recognition: Number-of-features effects in
lexical decision and naming tasks. Psychonomic Bulletin & Review,
9, 542–549.

Rodd, J.M. (2004).When do leotards get their spots? Semantic activation
of lexical neighbors in visual word recognition. Psychonomic
Bulletin & Review, 11, 434–439. doi:https://doi.org/10.3758/
BF03196591

Samson, D., & Pillon, A. (2004). Orthographic neighborhood and con-
creteness effects in the lexical decision task. Brain and Language,
91, 252–264.

Schmid, H. (1995). Improvements in part-of-speech tagging with an ap-
plication to German. In S. Armstrong, K. Church, P. Isabelle, S.
Manzi, E. Tzoukermann, & D. Yarowsky (Eds.), Natural language
processing using very large corpora (pp. 13–25). Berlin, Germany:
Springer.

Turian, J., Ratinov, L., & Bengio, Y. (2010). Word representations: A
simple and general method for semi-supervised learning. In
Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics (pp. 384–394). East Stroudsburg, PA:
Association for Computational Linguistics.

Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector
space models of semantics. Journal of Artificial Intelligence
Research, 37, 141–188.

Van Heuven, W. J. B., Mandera, P., Keuleers, E., & Brysbaert, M. (2014).
SUBTLEX-UK: A new and improved word frequency database for
British English. Quarterly Journal of Experimental Psychology, 67,
1176–1190. doi:https://doi.org/10.1080/17470218.2013.850521

Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of va-
lence, arousal, and dominance for 13,915 English lemmas. Behavior
Research Methods, 45, 1191–1207. doi:https://doi.org/10.3758/
s13428-012-0314-x

Yap, M. J., Pexman, P. M., Wellsby, M., Hargreaves, I. S., & Huff, M. J.
(2012). An abundance of riches: Cross-task comparisons of seman-
tic richness effects in visual word recognition. Frontiers in Human
Neuroscience, 6, 72. doi:https://doi.org/10.3389/fnhum.2012.00072

Yap, M. J., Tan, S. E., Pexman, P. M., & Hargreaves, I. S. (2011). Is more
always better? Effects of semantic richness on lexical decision,
speeded pronunciation, and semantic classification. Psychonomic
Bulletin & Review, 18, 742–750. doi:https://doi.org/10.3758/
s13423-011-0092-y

Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond Coltheart’s N:
A new measure of orthographic similarity. Psychonomic Bulletin &
Review, 15, 971–979. doi:https://doi.org/10.3758/PBR.15.5.971

Behav Res (2018) 50:1482–1495 1495

https://doi.org/10.3758/BF03204766
https://doi.org/10.3758/BF03204766
https://doi.org/10.1080/17470218.2014.959709
https://doi.org/10.1037/a0039267
https://doi.org/10.1037/a0039267
https://doi.org/10.1037/xlm0000410
https://doi.org/10.1371/journal.pone.0171935
https://doi.org/10.1037/0033-295X.113.2.327
https://doi.org/10.3758/BF03196190
https://doi.org/10.3758/PBR.15.1.161
https://doi.org/10.3758/PBR.15.1.161
https://doi.org/10.3758/BF03196591
https://doi.org/10.3758/BF03196591
https://doi.org/10.1080/17470218.2013.850521
https://doi.org/10.3758/s13428-012-0314-x
https://doi.org/10.3758/s13428-012-0314-x
https://doi.org/10.3389/fnhum.2012.00072
https://doi.org/10.3758/s13423-011-0092-y
https://doi.org/10.3758/s13423-011-0092-y
https://doi.org/10.3758/PBR.15.5.971

	A database of orthography-semantics consistency (OSC) estimates for 15,017 English words
	Abstract
	Computing orthography–semantics consistency
	Analysis 1: The semantic space used
	Analysis 2: Parameters in the selection procedure for orthographic relatives
	Description of the resource and evaluation on megastudies
	Conclusions
	References


