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Abstract Analyses are mostly executed at the population
level, whereas in many applications the interest is on the
individual level instead of the population level. In this paper,
multiple N = 1 experiments are considered, where partic-
ipants perform multiple trials with a dichotomous outcome
in various conditions. Expectations with respect to the per-
formance of participants can be translated into so-called
informative hypotheses. These hypotheses can be evalu-
ated for each participant separately using Bayes factors.
A Bayes factor expresses the relative evidence for two
hypotheses based on the data of one individual. This paper
proposes to “average” these individual Bayes factors in the
gP-BF, the average relative evidence. The gP-BF can be
used to determine whether one hypothesis is preferred over
another for all individuals under investigation. This mea-
sure provides insight into whether the relative preference of
a hypothesis from a pre-defined set is homogeneous over
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individuals. Two additional measures are proposed to sup-
port the interpretation of the gP-BF: the evidence rate (ER),
the proportion of individual Bayes factors that support the
same hypothesis as the gP-BF, and the stability rate (SR),
the proportion of individual Bayes factors that express a
stronger support than the gP-BF. These three statistics can
be used to determine the relative support in the data for the
informative hypotheses entertained. Software is available
that can be used to execute the approach proposed in this
paper and to determine the sensitivity of the outcomes with
respect to the number of participants and within condition
replications.

Keywords Bayes factor · Informative hypotheses · N = 1
studies · Within-subject experiment

Introduction

There is increasing attention for individual-centered analy-
ses (e.g., Molenaar, 2004; Hamaker, 2012). For example, in
personalized medicine, it is not relevant to find if a treat-
ment works on average in a group of individuals but rather
whether it works for any individual (Woodcock, 2007). This
paper is concerned with individual-centered analyses in the
form of multiple N = 1 studies. A core feature of this paper
is that multiple hypotheses are formulated for each person.
These hypotheses are first evaluated at the individual level
and subsequently conclusions are formed at the group level.
Specifically, this will be done in the context of a within-
subject experiment (see Kluytmans et al., 2014, for a pilot
study into using informative hypothesis in the context of
multiple N = 1 studies). In a within-subject experiment
each person i = 1, ..., P is exposed to the same set of
experimental conditions j = 1, . . . , J . By conducting R
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replications with a dichotomous outcome (0 = failure, 1 =
success) in condition j the number of successes xi

j of per-
son i can be obtained. This can be modeled using a binomial
model with R trials and unknown success probability πi

j .
This paper proposes a Bayesian method that evalu-

ates informative hypotheses (Hoijtink, 2012) for multiple
within-subject N = 1 studies. Researchers can formu-
late informative hypotheses based on (competing) theories
or expectations. This can be achieved by using the rela-
tions ‘>’ and ‘<’ to impose constraints on the parameters
π i = [πi

1, . . . , π
i
J ]. E.g. ‘πi

1 > πi
2’ states that πi

1 is larger
than πi

2 and reversely, ‘πi
1 < πi

2’ states that πi
1 is smaller

then πi
2. When a comma is used to separate two parameters,

such as ‘πi
1, π

i
2’, no constraint is imposed between these

parameters. For each person, multiple informative hypothe-
ses can be evaluated by means of Bayes factors (Kass &
Raftery, 1995). Using the Bayes factor, it can be deter-
mined for each person which hypothesis is most supported
by the data. Here, our method departs from traditional anal-
yses. Rather than evaluating hypotheses at the group level,
the hypotheses are evaluated for each person separately. In
social psychology, for example, it is often hoped or thought
that if a hypothesis holds at the group level, this also applies
to all individuals (see for example, Moreland & Zajonc,
1982; Klimecki, Mayer, Jusyte, Scheeff, & Schönenberg,
2016). Hamaker (2012) describes the importance of indi-
vidual analyses using an example: Cross-sectionally, the
number of words typed per minute and the percentage of
typos might be negatively correlated. That is, people that
type fast tend to be good at typing and thus make fewer mis-
takes than people that type slow. However, at the individual
level, a positive correlation exists between these variables,
i.e., if a fast typer goes faster than his normal typing speed,
the number of mistakes will increase (Hamaker, 2012). Sim-
ilarly, if multiple persons aim to score a penalty several
times, we might find that the average success probability is
smaller than 0.5, however this does not imply that each indi-
vidual has a penalty scoring probability smaller than 0.5.
Differently from Hamaker (2012) and Molenaar (2004), our
approach does not stop at a single N = 1 study. Rather,
when individual analyses have been executed, it is interest-
ing to see if all individuals support the same hypothesis.
Thus, when multiple hypotheses are evaluated for P indi-
viduals, two types of conclusions can be drawn. First, by
executing multiple N = 1 studies, it can be determined
for each person if any hypothesis can be selected as the
best, and if so, which hypothesis this is. Second, it can be
determined if the sample comes from a population that is
homogeneous with respect to the support of the specified
hypotheses, and if so, which hypothesis is supported most.

This paper is structured as follows: First, the difference
between analyses at the group level and multiple N =
1 analyses is elaborated upon by means of an example

that will be used throughout the paper. Second, it will be
described how informative hypotheses can be evaluated for
one N = 1 study. Third, it will be explained how multiple
N = 1 studies can be used to evaluate each hypothesis and
detect if any can be selected as the best hypothesis for all
individuals. The appropriate number of replications and the
number of participants can be determined using a sensitivity
analysis. The paper is concluded with a short discussion.

P-population and WP-population

An example of a within-subject experiment is Zedelius, Vel-
ing, and Aarts (2011). These researchers investigated the
effect of interfering information and reward on memory. In
each trial, participants were shown five words on a screen
and asked to remember these for a brief period of time. Dur-
ing this time, interfering information was presented on the
screen. Afterwards, they were asked to recall the five words
verbally in order to obtain a reward. Three factors with two
levels each were manipulated over the trials: Before each
trial started, participants were shown a high (hr) or a low
(lr) reward on the screen they would receive upon com-
pleting the task correctly. This reward could be displayed
subliminally (sub), that is, very briefly (17 ms) or supralim-
inally (sup), that is for a longer duration of 300 ms. Finally,
the visual stimulus interfering with the memory task was
either a sequence of letters, low interference (li), or eight
words that were different from the five memorized high
interference (hi). Combining these factors results in eight
conditions, for example hr-sub-hi and lr-sup-li. Seven tri-
als were conducted in each condition, resulting in a total of
56 trials per participant. After each trial, the participant was
given a score of 1 if all five words were recalled and 0 if not.

Zedelius et al. (2011) specified expectations regarding
the ordering of success probabilities that can be translated
in many different hypotheses. One example of an informa-
tive hypothesis based on the expectations of Zedelius et al.
(2011) is

H1 : hr-sup-li > hr-sup-hi>hr-sub-li>hr-sub-hi

> lr-sup-li> lr-sup-hi> lr-sub-li> lr-sub-hi,

(1)

where hr-sup-li is πhr-sup-li, the success probability in con-
dition hr-sup-li. For simplifications in the remainder of this
paper, π is omitted in the notation of all examples using
the conditions from Zedelius et al. (2011). Alternatively, for
each person i the hypothesis could be formulated as:

Hi
1 : hr-sup-lii > hr-sup-hii >hr-sub-lii >hr-sub-hii

> lr-sup-lii > lr-sup-hii > lr-sub-lii > lr-sub-hii ,
(2)
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where hr-sup-lii is the success probability in condition hr-
sup-li of person i.

To illustrate the difference between Eqs. 1 and 2 let us
consider a population of persons (P-population from here
on) and a within-person population (WP-population from
hereon). Each individual in the P-population has their own
success probabilities π i . The averages of these individ-
ual probabilities are the P-population probabilities π =
[π1, ..., πJ ], where πj = 1

P

∑P
i=1 πi

j . Equation 1 is a
hypothesis regarding the ordering of these P-population
probabilities. Equation 2 is a hypothesis regarding the order-
ing of the WP-population probabilities for person i. Evalu-
ating this hypothesis for person i is an example of an N = 1
study.

Many statistical methods are suited to draw conclusions
at the P-population level. However, if a hypothesis is true at
the P-population level, there is no guarantee that it holds for
all WP-populations (Hamaker, 2012). Thus, a conclusion at
the P-population level does not necessarily apply to each
individual. Rather than π , this paper concerns the individual
π i . If multiple hypotheses are formulated for each person
i, it can be determined for each person which hypothesis is
most supported. Furthermore, it can be assessed whether the
sample of P persons comes from a population that is homo-
geneous with respect to the informative hypotheses under
consideration.

N = 1: how to analyze the data of one person

This section describes how the data of one person can be
analyzed. First, the general form of hypotheses considered
for every person are introduced. Subsequently, the statistical
model used to model the N = 1 data is introduced. Finally,
the Bayes factor is introduced and elaborated upon.

Hypotheses Researchers can formulate informative hypot-
heses regarding π i . The general form of the informative
hypotheses used in this paper is:

Hi
m : Rmπ i > 0, (3)

where m,m′ = 1, ...,M(m �= m′) is the label of a hypoth-
esis, M is the number of hypotheses considered and m′ is
another hypothesis than m, π i = [πi

1, ...π
i
J ] and Rm is the

constraint matrix with J columns and K rows, where K is
the number of constraints in a hypothesis. The constraint
matrix can be used to impose constraints on (sets of) param-
eters. An example of a constraint matrix R for J = 4 is:

R1 =
⎡

⎣
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎤

⎦ , (4)

which renders

Hi
1 : πi

1 > πi
2 > πi

3 > πi
4, (5)

which specifies that the success probabilities π i are ordered
from large to small. Note that the first row of R1 specifies
that 1 ·πi

1 − 1·πi
2 + 0 ·πi

3 + 0 ·πi
4 > 0, that is, πi

1 > πi
2. The

constraint matrix

R2 = [
.5 .5 −.5 −.5

]
, (6)

renders the informative hypothesis

Hi
2 : πi

1 + πi
2

2
>

πi
3 + πi

4

2
, (7)

which states that the average of the first two success proba-
bilities is larger than the average of the last two. Hypotheses
constructed using Eq. 3 are a translation of the expecta-
tions researchers have with respect to the outcomes of their
experiment into restrictions on the elements of π i .

Another hypothesis that is considered in this paper is the
complement of an informative hypothesis:

The complement states that Hi
m is not true in the WP-

population. Stated otherwise, the reverse of the researchers’
expectation is true. Finally, Hi

u denotes the unconstrained
hypothesis:

Hi
u : πi

1, π
i
2, . . . , π

i
J−1, π

i
J , (9)

where each parameter is ‘free’. An informative hypothesis
Hi

m constrains the parameter space such that only particular
combinations of parameters are allowed, comprises that

part of the parameter space that is not included in Hi
m and

the conjunction of Hi
m and is Hi

u. The difference in use

of Hi
u and will be elaborated further in the section on

Bayes factors.
Zedelius et al. (2011) formulated several expectations

concerning the ordering of success probabilities over the
experimental conditions. The main expectation was that
high-reward trials would have a higher success probability
than low-reward trials. This main effect and the expecta-
tions regarding the other conditions (interference level and
visibility duration) can be translated in various informative
hypotheses (Kluytmans et al., 2014). A first translation of
the expectations is

Hi
1 : hr-sup-lii > hr-sup-hii >hr-sub-lii >hr-sub-hii

> lr-sup-lii > lr-sup-hii > lr-sub-lii > lr-sub-hii ,
(10)

which states that for any person i the success probabilities
are ordered from high to low. To give some intuition for
this hypothesis, Fig. 1 shows eight bars that represent the
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experimental conditions, and its height indicates the success
probability in that condition, and the ordering of probabil-
ities adheres to Hi

1. Substantively, this hypothesis specifies
that all conditions with a high reward have a higher suc-
cess probability than those with a low reward, which in
Fig. 1 can be verified since all dark gray bars are higher than
any light gray bar. Furthermore, Hi

1 specifies that within
this main reward value effect, that is, looking only at high-
reward success conditions or only at low-reward conditions,
a supraliminally shown rewards (solid border) results in a
higher success probability than a subliminally shown reward
(dotted border). Finally, within the visibility duration effect,
that is, looking only at conditions with the same reward
and same visibility duration, low interference (no pattern)
results in a higher success probability than high interference
(diagonally striped pattern). Alternatively, two less-specific
hypotheses can be formulated that include the main effect
of reward and only one of the remaining main effects:

Hi
2 : hr-lii > hr-hii > lr-lii > lr-hii , (11)

and

Hi
3 : hr-supi > hr-subi > lr-supi > lr-subi , (12)

where hr-lii indicates the average success probability of
the hr-sup-lii and hr-sub-lii conditions. In Fig. 1, both Hi

2
and Hi

3 are true. Different from Hi
1, these hypotheses do

not state that any high-reward condition has a higher suc-
cess probability than any low-reward condition, but rather
that averaged over both interference level and visibility
duration high-reward conditions have a higher success prob-
ability than low-reward conditions. Additionally, Hi

2 further
specifies that averaged over visibility duration, the success

probability is always higher in high-reward conditions com-
pared to low-reward conditions. Within this main effect of
reward value, the success probability is higher for low inter-
ference than for high interference. Analogously, Hi

3 states
that averaged over interference level, the success probability
is always larger in high- compared to low-reward condi-
tions. Within this pattern, the success probability is larger
for supraliminally compared to subliminally shown rewards.

A fourth hypothesis relates to the interaction effect
between reward type and visibility duration:

Hi
4 : hr-supi − lr-supi > hr-subi − lr-subi , (13)

which states that the benefit of high reward over low reward
is larger when the reward is shown supraliminally com-
pared to when the reward is shown subliminally. This, too,
is presented in Fig. 1, since the difference between hr-
sup (average of the dark-gray, solid border bars) and lr-sup
(average of the light-gray, solid border bars) is larger than
the difference between hr-sub (average of the dark-gray,
dashed border bars) and lr-sub (average of the light-gray,
dashed border bars). Note that, other than Hi

2 and Hi
3, Hi

1
is not a special case of Hi

4. These hypotheses can both be
true, as is presented in the figure, but knowing that Hi

1 is
true gives no information about Hi

4.
Together, Hi

1, Hi
2, Hi

3 and Hi
4 form a set of compet-

ing informative hypotheses that can be evaluated for each
person.

Density, prior, posterior To evaluate hypotheses using a
Bayes factor, the density of the data, prior and posterior dis-
tribution are needed. For the type of data used in this paper,
that is, the number of successes xi = [xi

1, . . . , x
i
J ] observed

Supraliminally shown

0

1

π

Subliminally shown
High reward 
Low reward 

Low interference 
High interference 

hr-sup-li hr-sup-hi hr-sub-li hr-sub-hi lr-sup-li lr-sup-hi lr-sub-li   lr-sub-hi

Fig. 1 Graphical representation of all hypotheses by Zedelius et al. (2011)
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for person i in R replications in each condition j the density
of the data is

f (xi | π i ) =
J∏

j=1

(
R

xi
j

)

(πi
j )

xi
j (1 − πi

j )
R−xi

j , (14)

that is, in each condition j the response xi
j is modeled by

a binomial distribution. The prior distribution h(π i |Hi
u) for

person i is a product over Beta distributions

h(π i | Hi
u) =

J∏

j=1

�(α0 + β0)

�(α0)�(β0)
(πi

j )
α0−1(1 − πi

j )
β0−1, (15)

where α0 = β0 = 1, such that h(π i | Hi
u) = 1, that is,

a uniform distribution. As will be elaborated upon in the
next section, only h(π i | Hi

u) is needed for the computation
of the Bayes factors involving Hi

m, Hi
m′ and Hi

u (Klugkist,
Laudy, & Hoijtink, 2005). The interpretation of α0 and β0 is
the prior number of successes and failures plus one. In other
words, using α0 = β0 = 1 implies that the prior distribution
is uninformative. Consequently, the posterior distribution
based on this prior is completely determined by the data.
Furthermore, by using α0 = β0 = 1 for each π i the prior
distribution is unbiased with respect to informative hypothe-
ses that belong to an equivalent set (Hoijtink, 2012, p. 205).
As will be elaborated in the next section, unbiased prior
distributions are required to obtain Bayes factors that are
unbiased with respect to the informative hypotheses under
consideration.

The unconstrained posterior distribution is proportional
to the product of the prior distribution and the density of the
data:

g(π i | xi , H i
u) ∝ f (xi | π i ) · h(π i | Hi

u)

∝
J∏

j=1

�(α1 + β1)

�(α1)�(β1)
(πi

j )
α1−1(1 − πi

j )
β1−1,

(16)

where α1 = xi
j + α0 = xi

j + 1 and β1 = (R − xi
j ) +

β0 = (R − xi
j ) + 1. As can be seen in Eq. 16, the posterior

distribution is indeed only dependent on the data.

Bayes factor

We will use the Bayes factor to evaluate informative
hypotheses. A Bayes factor (BF) is commonly represented
as the ratio of the marginal likelihoods of two hypotheses
(Kass & Raftery, 1995). Klugkist et al. (2005) and Hoijtink
(2012, p. 51–52, 57–59) show that for inequality constrained
hypotheses of the form presented in Eq. 3 the ratio of
marginal likelihoods expressing support for Hi

m relative to

Hi
u can be rewritten as

BF i
mu = f i

m

ci
m

. (17)

The Bayes factor balances the relative fit and complexity
of two hypotheses. Fit and complexity are called relative
because they are relative with respect to the unconstrained
hypothesis. In the remainder of this text, referrals to fit and
complexity should be read as relative fit and complexity.
The complexity ci

m is the proportion of the unconstrained
prior distribution for Hi

u in agreement with Hi
m

ci
m =

∫

π i∈Hi
m

h(π i | Hi
u)δπ

i . (18)

Using Eq. 15 with α0 = β0 = 1 for each π i it is ensured that
the prior distribution is unbiased with respect to hypotheses
that belong to an equivalent set. Consider for example, H1 :
π1 > π2 > π3 > π4 and H2 : π1 > π2 > π4 > π3. These
hypotheses, and the other 22 possible ordering of π i , are
equally complex and should thus have the same complexity.
Using Eq. 15, this complexity is computed as 1

24 for each of
the set of 24 equivalent hypotheses (Hoijtink, 2012, p. 60).

The fit f i
m is the proportion of the unconstrained posterior

distribution in agreement with Hi
m:

f i
m =

∫

π i∈Hi
m

g(π i | xi , H i
u)δπ

i . (19)

The Appendix describes how stable estimates of the com-
plexity and fit can be computed using MCMC samples from
the prior and posterior distribution, respectively.

Since Eq. 17 is a ratio of two marginal likelihoods (one
for Hi

m and one for Hi
u) it follows that

BF i
mm′ = BF i

mu

BF i
m′u

= f i
m/ci

m

f i
m′/ci

m′
, (20)

and that

Three hypothetical N = 1 datasets with J = 4 and
R = 7 are presented in Table 1. Three possible informative
hypotheses regarding these data are Hi

1 from Eq. 5, and
Hi

2 from Eq. 7. The table presents the complexity, fit and
Bayes factors of these hypotheses. As can be seen in the
table, the complexity of Hi

1 is .04 = 1/24 and ci
2 = .5. The

table illustrates that complexity depends on the hypotheses
but not on the data: for each of the three data examples the
complexities are the same.

The first example (Person 1) in Table 1 contains data that
are in agreement with Hi

1, and therefore also with Hi
2, since

Hi
1 is a specific case of Hi

2. This is reflected by f 1
1 = .556

and f 1
2 = .996. Because Hi

1 is quite specific, it can easily

2280 Behav Res (2018) 50:2276–2291



Table 1 Complexity, fit, and Bayes factors for three hypothetical N = 1 studies with Hi
1 = πi

1 > πi
2 > πi

3 > πi
4 and Hi

2 = πi
1+πi

2
2 >

πi
3+πi

4
2

i xi
1 xi

2 xi
3 xi

4 ci
1 ci

2 f i
1 f i

2 BF i
1u BF i

2u BF i
12

1 7 5 4 1 .04 .50 .56 .99 13.16 2.00 28.39 6.59 99

2 7 2 5 1 .04 .50 .06 .89 1.40 1.79 1.43 .78 8.09

3 3 4 6 1 .04 .50 .01 .51 .24 1.01 .23 .24 1.04

conflict with the data. For example, based on x1
2 = 5 and

x1
3 = 4, it is not very certain that π1

2 > π1
3 . In contrast, Hi

2 is
less specific, does not involve the constraint π1

2 > π1
3 , and

therefore f 1
2 is larger than f 1

1 . Bayes factors balance com-
plexity and fit of the hypotheses, resulting in BF 1

1u = 13.16,
BF 1

2u = 2.00, BF 1
12 = 6.59 and . Interpreting

the size of Bayes factors is a matter that needs some dis-
cussion. Firstly, it is important to distinguish the different
interpretations of BF i

mu, BF i
mm′ and . In itself, BF i

mu

represents the relative change in the support for Hi
m and Hi

u

caused by the data. For example, in Table 1 we find that
the belief for H 1

1 has increased 13 times and the belief for
H 1

2 has increased 2 times. This shows that, although with
varying degrees, both hypotheses are supported by the data.
If we compute BF i

mm′ we can quantify the relative change
in support for Hi

m and Hi
m′ caused by the data. For exam-

ple, BF 1
12 = 6.6, indicating that the relative support for H 1

1
compared to H 1

2 has increased by a factor 6.6. However,
BF i

12 is only a relative measure of support, that is, the best
of the hypotheses involved may still be an inadequate repre-
sentation of the within person population that generated the
data. Note that BF i

mu and are always both larger or
smaller than 1. However, by definition BF i

mu ranges from

0 to
1

ci
m

and ranges from 0 to infinity. Therefore, we

prefer to interpret the latter to determine if the best of a set of
hypotheses is also a good hypothesis. By computing ,
we can determine whether the best hypothesis, in this case
Hi

m, is also a good hypothesis, because we get an answer
to the question “is or isn’t Hi

m supported by the data?”. In
Table 1, indicates that the data caused an
increase in believe for Hi

m compared to , which implies
that it is a good hypothesis. Note that this does not rule out
the possibility of other, perhaps better, good hypotheses.

A second issue is the interpretation of the strength of
Bayes factors. Although some guidelines have been pro-
vided (e.g. Kass & Raftery, 1995, interpret 3 as the demar-
cation for the size of BFab, providing marginal and positive
evidence in favor of Ha), we choose not to follow them. In
the spirit of a famous quote from Rosnow and Rosenthal
(1989), “surely God loves a BF of 2.9 just as much as a BF
of 3.1”, we want to stay away from cut-off values in order
not to provide unnecessary incentives for publication bias

and sloppy science (Konijn, Van de Schoot, Winter, & Fer-
guson, 2015). In our opinion, claiming that a Bayes factor
of 1.5 is not very strong evidence and that a Bayes factor
of 100 is strong evidence will not result in much debate. It
is somewhere between those values that scientists may dis-
agree about the strength. In this paper, we used the following
strategy to decide when a hypothesis can be considered best
for a person: a hypothesis m is considered the best of a set
of M hypotheses if the evidence for Hm is at least M − 1
times (with a minimum value of 2) stronger than for any
other hypothesis m′. This requirement ensures that the pos-
terior probability for the best hypothesis is at least .5 if
all hypotheses are equally likely a priori. For example, if
two hypotheses are considered, one should be at least two
times more preferred than the other, resulting in posterior
probabilities of at least .66 versus .33. If three hypothe-
ses are considered, the resulting posterior probabilities will
be at least .50 versus .25 and .25, which corresponds to a
twofold preference of one hypothesis over both alternatives.
For four hypotheses the posterior probabilities should be at
least .50 versus .16, .16 and .16, corresponding to relative
support of at least 3 times more for the best hypothesis than
for any other hypothesis. Note that, although these choices
seem reasonable to us, other strategies can be thought of and
justified.

For Person 2 in Table 1 Hi
2 has gained slightly more

belief than Hi
1, since BF 2

12 = .78 (BF 2
21 = 1.28). Based on

this Bayes factor, Hi
2 is not convincingly the better hypoth-

esis of the two. It is important to note that Bayes factors
for different persons do not necessarily express support in
favor of one or the other hypothesis. It is very possible that
Bayes factors for different persons are indecisive. Look-
ing at and , Hi

2 seems quite a

good hypothesis, whereas Hi
1 is not much more supported

than its complement. Finally, Person 3 in Table 1 shows
data that do not seem to be in line with either Hi

1 or Hi
2.

According to BF 3
1u = .24, the support for H 3

1 relative to
H 3

u has decreased after observing the data. According to
BF 3

2u = 1.01, the data do not cause a change in support for
H 3

2 relative to the unconstrained hypothesis. When we look
at BF 3

12 = .24 (BF 3
21 = 4.17), we find that Hi

2 is a some-

what better hypothesis than Hi
1. However, ,

indicating that although Hi
2 is better than Hi

1, it is not a very
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good hypothesis. The examples in Table 1 show the variety
in conclusions that can be obtained. There may or may not
be a best hypothesis, and the best hypothesis may or may
not be a good hypothesis.

Illustration

For Zedelius et al. (2011), the main goal was to select
the best hypothesis from Hi

1, Hi
2, Hi

3 and Hi
4 presented in

Eqs. 10, 11, 12 and 13. The Bayes factors presented in the
first four columns of Table 2 can be used to select the best
hypothesis for each person. If a best hypothesis is selected,
it is also of interest to determine whether this hypothesis
is a good hypothesis. The last four columns of Table 2 can
be used to determine whether the best hypothesis is also
‘good’.

For Person 1, H 1
3 is 1.98/.59 ≈ 3.36 times more sup-

ported than H 1
1 , 1.98/.93 ≈ 2.13 times more supported

than H 1
2 and 1.98/.26 ≈ 7.62 times more supported than

H 1
4 . Although H 1

3 is more supported than the other three
hypotheses, a Bayes factor of 2.13 does not seem very con-
vincing. Comparing the relative strength of the support for
all informative hypotheses for Person 1 leaves us with the
conclusion that no single best hypothesis could be detected.
This implies that for Person 1, we would not be quite cer-
tain which hypothesis best describes the data Thus, we may
conclude that for Person 1, it is difficult to select a best
hypothesis.

For Person 8, none of the informative hypotheses is pre-
ferred over the unconstrained hypothesis. Thus, for each of
the formulated hypotheses, our belief has decreased after
obtaining the data. If we have to select a best hypothe-
sis, however H 8

2 and H 8
4 are respectively .16/.03 ≈ 5.3

and .19/.03 ≈ 6.3 times more supported than H 8
3 and at

least .16/.01 ≈ .19/.01 ≈ 17 times more supported than
H 8

1 . However, based on and we

Table 2 Individual Bayes factors for the Zedelius data where Hi
1, H i

2, H i
3 and Hi

4 (Eqs. 10–13) are evaluated against Hi
u and their complement

i BF i
1u BF i

2u BF i
3u BF i

4u

1 0.59 0.93 1.98 0.26 0.59 0.93 2.06 0.15

2 3.33 1.49 4.67 0.45 3.33 1.52 5.54 0.29

3 1.02 1.31 1.63 1.41 1.02 1.33 1.68 2.37

4 0.03 0.10 0.58 1.22 0.03 0.10 0.57 1.55

5 3.79 2.39 4.92 1.02 3.79 2.55 5.91 1.04

6 543.90 17.95 13.74 1.43 551.21 68.72 30.30 2.51

7 1.44 3.45 2.88 1.23 1.44 3.87 3.14 1.58

8 < 0.01 0.16 0.02 0.19 < 0.01 0.15 0.02 0.10

9 3.06 6.16 3.25 1.94 3.06 7.95 3.59 30.74

10 2.60 3.41 2.75 0.99 2.60 3.81 2.97 0.97

11 0.05 0.24 0.55 1.21 0.05 0.23 0.54 1.53

12 1.29 1.70 1.55 0.44 1.29 1.76 1.58 0.28

13 0.30 3.50 2.66 0.79 0.30 3.93 2.86 0.65

14 0.55 6.53 0.56 0.78 0.55 8.61 0.55 0.64

15 21.84 2.01 6.41 1.73 21.85 2.10 8.35 6.28

16 0.18 0.45 3.21 1.22 0.18 0.44 3.54 1.56

17 22.30 5.15 3.88 1.91 22.31 6.28 4.42 20.64

18 0.32 1.37 0.55 0.62 0.32 1.39 0.54 0.45

19 < 0.01 < 0.01 0.03 1.96 < 0.01 < 0.01 0.03 40.41

20 < 0.01 < 0.01 0.01 0.79 < 0.01 < 0.01 0.01 0.65

21 0.09 0.41 0.40 1.43 0.09 0.40 0.39 2.50

22 15.78 5.59 4.82 1.58 15.78 6.98 5.77 3.68

23 20.92 4.39 7.62 1.60 20.93 5.15 10.64 3.92

24 0.15 1.16 0.32 1.01 0.15 1.17 0.31 1.02

25 7.21 3.16 3.26 0.76 7.21 3.49 3.61 0.61

26 0.06 0.13 0.38 0.58 0.06 0.13 0.37 0.41
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can conclude that although H 8
2 and H 8

4 are convincingly
preferred over the other two hypotheses, neither is a good
hypothesis for this person.

For Person 14, H 14
2 is 6.53/.55 ≈ 11.9 times more sup-

ported than H 14
1 , 6.53/.56 ≈ 11.7 times more supported

than H 14
3 and 6.53/.78 ≈ 8.4 times more supported than

H 14
4 . We find that , so besides the fact that H 14

3
is preferred over the other hypotheses it is a good hypothe-
sis, too. Thus, we may conclude that for Person 14 we can
find a best hypothesis that appears to be a good hypothesis,
too.

For Person 20, H 20
4 is at least 79 times more supported

than H 20
1 , H 20

2 and H 20
3 . Thus, H 20

4 is the best hypothesis
from the set. However, because we can con-
clude that even though H 20

4 was the best hypothesis, it is not
a good description of the data.

These examples show that it differs per person whether
a best hypothesis can be detected, which hypothesis this is,
and how strong the evidence is relative to the other hypothe-
ses. Based on Table 2, Zedelius et al. (2011) can conclude
for each individual what the best hypothesis is, and whether
it is a good hypothesis. We find that the sample contains per-
sons for whom a best hypothesis can be detected, but this
hypothesis is not a good hypothesis (Persons 20 and 21).
Additionally, there are individuals for whom a best hypothe-
sis can be detected and the best hypothesis is good (Persons
6, 14, 15, 16, 17, 19, 22, and 23). For the remaining indi-
viduals, no best hypothesis could be selected. Someone else
evaluating these Bayes factors might come to slightly differ-
ent conclusions, if they apply a different rule to decide what
makes a hypothesis the best from a set.

The second goal of this paper was to determine whether
the sample of individuals comes from a homogeneous pop-
ulation with respect to the support for the hypotheses of
interest. The first impression gained from Table 2 is that this
is not the case. However, this topic will be pursued in depth
in the next section.

A P-population of WP-populations

Looking at the Bayes factors in Table 2 is a rather ad hoc
manner to answer the question whether the sample comes
from a population that is homogeneous in its support for
the hypotheses under consideration and which hypothesis
is the best. By aggregating the individual Bayes factors
we can try to evaluate in more detail to what extent indi-
viduals are homogeneous with respect to a hypothesis.
If Hi

m is evaluated for P independent persons the corre-
sponding individual Bayes factors can be multiplied into a

P-population Bayes factor (Stephan & Penny, 2007):

P-BFmu =
P∏

i=1

BFi
mu, (22)

which expresses the support for Hm relative to Hu, where

Hm = H 1
m ∪ . . . ∪ HP

m , (23)

which states that Hi
m holds for every person i = 1, . . . , P ,

and

Hu = H 1
u ∪ . . . ∪ HP

u , (24)

which is the union of Hi
u for i = 1, . . . , P . In this section,

using the Bayes factor, Hi
m and Hm are compared with Hi

u

and Hu, respectively. However, analogously, Hi
u could be

replaced by Hi
m′ or rendering P-BFmm′ and ,

respectively. Note, that this is not the Bayes factor describ-
ing the relative evidence for Hm and Hm’ with regard to the
P-population parameters π . Individual data could be used
to evaluate a Bayes factor with respect to the P-population
π , but our focus here is on the collection of individual WP-
populations π i . Another way to interpret this P-BF is in the
context of synthesis of knowledge with respect to the indi-
vidual evaluated hypotheses Hi

m. Thus, it is a measure of
the extent to which a hypothesis holds for every individual,
rather than on average.

Table 3 shows seven hypothetical sets of six individual
Bayes factors comparing Hi

m to Hi
u. The P-BF is presented

for each set. For example, Set 1 results in a P-BF of 64,
indicating that it is 64 times more likely that Hi

m holds for all
persons i, than that it does not hold for all persons. However,
the table shows an undesirable property of P-BF, namely
that it is a function of P . As can be seen, both in Set 1, 2 and
3, the P-BF is 64. Nevertheless, it is clear that all individual
Bayes factors in Set 1 express stronger evidence than in Sets
2 and 3.

Stephan and Penny (2007) have suggested using the geo-
metric mean of the product of individual Bayes factors to
render a summary that is independent of P :

gP-BFmu = P
√

P-BFmu, (25)

which is a measure of the ‘average’ support in favor of Hm

relative to Hu found in P persons. In other words, it can
be interpreted as the Bayes factor that is expected for the
P + 1st individual sampled from the P-population.

As can be seen in Table 3, the gP-BFmu does not depend
on P . For example, in Set 1 the gP-BF is 8.00 and in the
larger Sets 2 and 3, the average support for Hm is 2.83 and
2.00, respectively, while the P-BFmu = 64 for each of these
sets.
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If multiple hypotheses are considered, gP-BFmm′ and
can be derived similar as BF i

mm′ and . It is
important to keep in mind that the gP-BFmu is a summary
measure and does not have the same properties as indi-
vidual Bayes factors. Such a property is that BF i

mu and
are always both smaller or larger than 1. For example,

if BF 1
1u = 0.2, then , and if BF 2

1u = 1.8 then
. This is not true for gP-BFmu and . To

continue the example based on the Bayes factors for persons
1 and 2, gP-BF1u = 0.6 and . For interpre-
tation of the gP-BF , it is important to keep in mind that
gP-BFmu is a summary of all BF i

mu, and thus cannot be
translated into , which is a summary of all .
Note that if a switch in direction occurs, both geometric
Bayes factors are generally both close to 1, therefore not
causing any very contradicting conclusions.

However, the gP-BFmu has another issue. Table 3 shows
that different sets of individual Bayes factors can lead to the
same gP-BFmu. For example, in Sets 3, 4, and 5 the same
gP-BF is obtained. Set 3 contains only Bayes factors that
are close to the gP-BF = 2 and all support Hi

m. Set 4 seems
similar in the strength of support in the individual Bayes
factors, although there seems to be more variation than in
Set 3, and we find one Bayes factor that does not support
Hi

m. Finally, Set 5 contains four Bayes factors that express
support for Hi

u over Hi
m, while two Bayes factors express

relatively strong support in favor of Hi
m over Hi

u. The fact
that the Bayes factors from Sets 3 and 4 come from popula-
tions that are more homogeneous in their preference for Hi

u

than Set 5 is not represented well by the gP-BFmu. There-
fore, an additional measure, the evidence rate (ERmu), is
introduced that describes the consistency in the preferred
hypothesis in multiple individual Bayes factors:

ERmu =
1
P

∑P
i=1 IBF i

mu<1 if gP-BFmu < 1
1
P

∑P
i=1 IBF i

mu>1 if gP-BFmu > 1
, (26)

where IBF i
mu>1 = 1 if BF i

mu > 1 and 0 otherwise. Thus, the

ERmu is the proportion of individual BF i
mu that expresses

support for Hi
m or for Hi

u if the gP-BFmu expresses support
for Hm or Hu, respectively. For example, if gP-BFmu > 1,
an ERmu of 1 indicates that all individual Bayes factors
express support for Hi

m. An ER of .5, indicates that 50% of
the individual Bayes factors expresses support for Hi

m, and
50% expresses support for Hi

u. An ER close to 1 indicates
homogeneity among the individual Bayes factors. The lower
the ER, the stronger the evidence that the ordering of the
individual success probabilities are not homogeneous with

respect to the hypotheses under consideration. Looking at
Table 3, we find that in Set 3 all individual Bayes factors
support Hi

m, this is reflected in an ERmu = 1. In Set 4 most,
but not all individual Bayes factors support Hi

m, resulting in
ERmu = .83. This implies that there is no perfect homo-
geneity among the individual Bayes factors. Finally, in Set
5, four of six individual Bayes factors support Hi

u, while
gP-BFmu supports Hi

m. The ERmu of .33 indicates that Set
5 is not likely to come from a homogeneous population with
respect to the hypotheses under consideration.

There is still one issue that needs to be resolved. Set 6
and 7 result in the same gP-BFmu and ERmu as Set 3, but
are not similar in individual contributions. Set 6 contains an
outlier that expresses strong evidence for Hi

m, whereas all
other cases express only weak support for Hi

m. Without this
outlier, the gP-BFmu would be much lower. Set 7 contains
two Bayes factors that express very little support for Hi

m,
whereas the other four cases express stronger support for
Hi

m. Without these two ‘weak’ cases, the gP-BFmu would
be somewhat higher. In contrast, Set 3 contains Bayes fac-
tors that are rather constant around gP-BF, removing any
of these cases would not affect the gP-BFmu too much. To
describe presence and direction of skewness among indi-
vidual Bayes factors with respect to the gP-BFmu, a final
measure is introduced: the stability rate.

The stability rate (SRmu) is a measure of skewness
among individual Bayes factors with respect to the gP-
BFmu. It can be written as:

SRmu =
1
P

∑P
i=1 IBF i

mu<gP-BFmu
if gP-BFmu < 1

1
P

∑P
i=1 IBF i

mu>gP-BFmu
if gP-BFmu > 1

, (27)

where IBF i
mu<gP-BFmu

= 1 if BF i
mu < gP-BFmu and 0 oth-

erwise. The SRmu describes the proportion of individual
Bayes factors that expresses support stronger than the gP-
BF for the hypothesis preferred by gP-BFmu. In Sets 1, 2,
3, and 4 of Table 3 the gP-BFmu prefers Hi

m over Hi
u. Indi-

vidual Bayes factors that express stronger support for Hi
m

than gP-BF are presented in bold in the table. For each of
these sets, the SRmu = .50, indicating that half of the indi-
vidual Bayes factors expresses support for Hi

m stronger than
gP-BF. The other half expresses support either for Hi

u or
weaker support for Hi

m. An SRmu close to .50 indicates that
the individual Bayes factors are evenly distributed around
gP-BF.

An SRmu smaller than .50, as in Set 5 and 6, indi-
cates that less than half of the individual Bayes factors
express stronger support for Hi

m than gP-BF. Consequently,
the gP-BFmu is relatively large because of a minority of
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Table 3 Hypothetical individual Bayes factors (P = 6), gP-BFmu, ERmu and SRmu underlined entries indicate individual Bayes factors smaller
than the gP-BF and bold entries indicate entries larger than the corresponding gP-BF

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

BF 1
mu 9.00 3.20 1.40 0.80 0.90 6.40 1.01

BF 2
mu 7.11 2.70 2.70 1.50 0.93 1.40 1.30

BF 3
mu – 2.30 1.80 2.50 0.85 1.80 2.50

BF 4
mu – 3.22 2.10 4.33 0.88 1.40 3.10

BF 5
mu – – 1.60 3.10 6.30 1.60 2.60

BF 6
mu – – 2.80 1.59 16.23 1.77 2.42

P-BFmu 64.00 64.00 64.00 64.00 64.00 64.00 64.00

gP-BFmu 8.00 2.83 2.00 2.00 2.00 2.00 2.00

ERmu 1 1 1 .83 .33 1 1

SRmu .50 .50 .50 .50 .33 .17 .67

individual Bayes factors that are relatively large. The gP-
BFmu is overestimated because of this minority. In Set 5
the gP-BFmu supports Hi

m, while the majority of individ-
ual Bayes factors support Hi

u. The gP-BFmu is no longer a
representative ‘average’ support. Reversely, an SRmu larger
than .50 indicates that only relatively few individual Bayes
factors express weaker support than gP-BF (see Set 7).
Thus, for SRmu > .50, the gP-BFmu is relatively close to
1 because of a minority of individual Bayes factors that
express support that is relatively weak. As an effect, the
strength of support is underestimated.

Thus, the gP-BFmu can be used to express the aver-
age support of the individual Bayes factors. In order to
assess whether the individual Bayes factors come from a
homogeneous population, the ERmu can be used. A high evi-
dence rate indicates high agreement in preferred hypothesis
among individual Bayes factors, and thus more homogene-
ity. Finally, the SRmu gives an indication of how the individ-
ual Bayes factors are distributed around the gP-BFmu. Note
that the equations presented for the ER and SR describe
those corresponding to gP-BFmu. If the interest is in gP-
BFmm′ or , the ER and SR should be computed
using the individual BF i

mm′s and . The individual
Bayes factors are the relevant quantities in the ER and SR,
and therefore these should be used.

Illustration

Using the individual Bayes factors presented in Table 2 the
gP-BFmu, ERmu and SRmu can be computed for the data
of Zedelius et al. (2011). The first row of Table 4 gives
the gP-BFmu based on the individual Bayes factors from
Table 2. The ERmu and SRmu are presented in the second
and third row. Based on the gP-BFmu we can conclude that
H3 receives approximately 1.125/.510 ≈ 2.21 times more
support than H1, and only about 1.125/.910 ≈ 1.125/.949

≈ 1.2 times more support than H2 and H4. Thus, H3 is
somewhat preferred over H1, but cannot be distinguished
from H2 and H4. Furthermore, since ,

and , it can be con-
cluded that none of the hypotheses is convincingly the best
description for all individuals and none of the hypotheses
are clearly a better description of all individuals than their
complement is.

Additionally, we find that the ERmu for the comparison
of H1 with Hu is .500, indicating that approximately half
of the individual Bayes factors expresses support for Hi

1,
while the other half expresses support for Hi

u. Similarly,
ER2u, ER3u and ER4u are .346, .615 and .423 indicating that
for these hypotheses, too, there is little homogeneity among
the individual Bayes factors. Only SR1u is rather close to
.50, and consequently, it is not likely that the gP-BFmu is
affected by one or more influential cases having a (much)
smaller BF than the majority. For the other hypotheses, there
is indication that the strength of the gP-BFmu is affected by
skewness among the individual Bayes factors.

Based on the gP-BFmu, ERmu, and SRmu, we can draw
the following conclusions. Firstly, using the gP-BFmu no
hypothesis could be selected as the best hypothesis from
the set. The SRmus indicate that for all hypotheses but
Hi

1 imbalance among individual Bayes factors was present.
Furthermore, the relatively low ERmus indicate that it is
unlikely that the individuals come from a homogeneous
population with respect to any of the specified hypothe-
ses. Finally, none of the hypotheses appears to be a good
description of the ordering of the individual success prob-
abilities. Thus, based on these findings it seems unlikely
the P-population is homogeneous with respect to the WP-
population hypotheses that were considered.

A within-person experiment, such as conducted by
Zedelius et al. (2011), is quite common in social and neuro-
psychological research. The theory and hypotheses for these
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Table 4 The gP-BF, ER and SR for the data of Zedelius et al. (2011) for the evaluation of Hi
1, H i

2, H i
3 and Hi

4 (Eqs. 10–13)

BF1u BF2u BF3u BF4u

gP-BF 0.510 0.910 1.125 0.949 0.511 1.014 1.235 1.412

ER 0.500 0.346 0.615 0.423 0.500 0.654 0.615 0.577

SR 0.423 0.308 0.615 0.385 0.423 0.654 0.615 0.500

experiments are often at the WP-population level. Examples
are Moreland and Zajonc (1982), who wonder “...whether
mere exposure to other people [...] is a sufficient condi-
tion for the enhancement of their perceived similarity to
ourselves.” (p. 397) and Klimecki et al. (2016), who hypoth-
esize that “... altruistic motivation is elicited by empathy
felt for a person in need.” (p. 1). Zedelius et al. (2011)
write that “...rewards cause people to invest more effort
in a task...”, “...the intriguing hypothesis that [...] reflec-
tive thoughts hinder ongoing performance...”(p. 355) and
“...participants performed significantly better...” (p. 356).
These fragments contain theory or expectations regarding
the behavior of individual people.

Although WP-population hypotheses are formulated, the
analyses are usually executed at the P-population level. In
the original Zedelius et al. (2011) paper, the data were ana-
lyzed by means of a repeated measures ANOVA, which
tests differences in the P-population means. The conclu-
sions obtained from this analysis imply that H2 holds at
the P-population level. Often the, usually implicit, assump-
tion is that if a hypothesis holds at the P-population level,
it holds for all individuals. The current analysis shows that
although H2 is a reasonable hypothesis at the P-population
level, it appears not to be the single best hypothesis under
consideration and is not a good hypothesis for all individu-
als. The assumption that an average conclusion holds for all
individuals is in this case violated. It is important that psy-
chological researchers are aware of the fact that conclusions
at the P-population level cannot be transferred to the indi-
vidual level without testing this. Within-person experiments
offer rich data that allow for the evaluation of individual
hypotheses, through which the assumption that a hypothesis
holds for everyone can be tested. This paper introduces an
approach with which this can be done.

Determining the sample size and number
of replications for a study

Say a researcher has a research question that he wants to
test by means of an experiment. This research question
defines which and how many conditions J should be con-
sidered and results in one or multiple hypotheses of interest.
The researcher is then left with two choices regarding the

experiment, namely, the number of replications R used in
each trial and the sample size P . This section will describe
a method to choose R and P .

In the previous section, a method to evaluate a set of
individual Bayes factors has been introduced in the form
of three measures: gP-BFmu, ERmu and SRmu. It is impor-
tant to investigate the properties of these measures as a
function of sample size and the number of replications. In
other words, if indeed all individuals are homogeneous with
respect to an individual informative hypothesis, which are
the sample size and number of replications required for gP-
BFmu, ERmu and SRmu to succeed in detecting this and,
analogously, if individuals are not homogeneous, can this be
derived from these measures?

Through a sensitivity analysis it can be determined for
which sample size and number of replications the gP-BFmu

can be expected to prefer the hypothesis that is in agreement
with the true P-population, the ERmu is sufficiently high
and SRmu is close to .5. The choice for what values the gP-
BFmu, ERmu and SRmu behave as desired is subjective. In
line with our reasoning for the interpretation of individual
Bayes factors as described on page 14, the choice for when
the strength of support in gP-BF is sufficient to prefer one
hypothesis over another is subjective and no guidelines are
provided. Additionally, we will consider .9 to be sufficiently
high for the ERmu, that is, a maximum 10% of individual
Bayes factors prefers a different hypothesis than the major-
ity, and a .1 margin around .5 to be reasonable for the SRmu,
that is, the proportion of individual Bayes factors expressing
stronger support than gP-BFmu is between .4 and .6.

Using R version 3.3.1 (R Core Team, 2013), software has
been developed with which such a study design analysis can
be executed.1 While discussing the options of this program,
we focus on the evaluation of , in order to arrive at
an appropriate study design to determine whether Hi

m holds
for everyone in the P-population. The program can analo-
gously be used for Study design analyses for gP-BFmm′ or
gP-BFmu. The required input and the algorithm used are

1The software with accompanying manual can be downloaded on
https://github.com/fayetteklaassen/OneForAll, or be obtained by con-
tacting the first author at klaassen.fayette@gmail.com. For assistance
with or questions about the software, please also contact the first
author.
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illustrated using Zedelius et al. (2011), as it could have been
conducted before starting the data collection.

The R program requires as input the number of condi-
tions J and hypotheses that a researcher wants to investi-
gate. Additionally, the numbers of replications R and the
sample sizes P that a researcher is willing to consider
should be specified. Using this input, the following steps are
executed:

• For each hypothesis of interest Hi
m, three P -populations

are specified, one where Hi
m is true for all WP-

populations, one where is true for all WP-
populations and a mixture of these two populations. In
the next section these P-populations are specified in
more detail for the example from Zedelius et al. (2011).

• For each P-population, the program generates 10,000
WP-populations, that is, parameter vectors π i of size J .

• For each R specified by the user, xi is sampled from π i .
• For each xi , is computed.

This results in 10,000 individual Bayes factors for each
combination P-population and R. For computational rea-
sons, this set will be used as a surrogate for the true
infinite P-population. For each surrogate P-population then
the following steps are followed:

• For each sample size P and number of replications R,
1000 sets of individual Bayes factors are sampled with
replacement from the surrogate P-population.

• For each set, the gP-BFmu, ERmu and SRmu are com-
puted, resulting in 1000 values of each measure for
every sample size P and number of replications R.

• From these 1000 values of gP-BFmu, ERmu and SRmu

the 2.5, 50 and 97.5 percentiles are obtained. The 50
percentile, the median, is used to summarize what val-
ues can be expected for each of these measures. The
desired values of these expectations are, as described
above subjectively defined, for the gP-BFmu, above .9
for the ERmu and within a .1 margin from .5 for the SR.
The 2.5 and 97.5 percentiles indicate the range in which
95% of the sampled gP-BFmu, ERmu and SRmu lay.
If this range is very wide and includes non-reasonable
values the combination of R and P might not be appro-
priate even when the expected value is of a desired level.
In the next section we will illustrate how this informa-
tion can be used to determine the R and P required to
execute a study.

Illustration

This section describes a sensitivity analysis for the determi-
nation of the number of replications R and sample size P ,
where the setup of Zedelius et al. (2011) will be used as

starting point. Of course, such an analysis should be exe-
cuted prior to the data collection, which was already done
by Zedelius et al. (2011). However, for the illustration we
will do the analysis as if no data has been collected yet. This
will provide us with the knowledge whether the eventually
chosen R and P were sufficient according to the sensitivity
analysis. The first step of the sensitivity analysis described
in the previous section requires a research question leading
to the number of conditions J and a set of hypotheses repre-
senting the researchers’ expectations. The research question
of Zedelius et al. rendered three hypotheses, Eqs. 10–12,
about the ordering of success probabilities in the J = 8
experimental conditions. For this illustration, only Hi

1 as in
Eq. 2 is considered. This results in the following parameters
for the sensitivity analysis:

• Number of conditions. Zedelius et al. (2011) considered
8 different conditions, so J = 8.

• Hypothesis. The hypothesis that will be considered
for this illustration is Hi

1. From this hypothesis, three
relevant P-populations are derived.

– P-population 1. In this P-population all indi-
viduals adhere to Hi

1. Using this population
the median values of the gP-BFmu, ERmu and
SRmu can be determined if Hi

m holds for every-
one. To compute these median values, the indi-
vidual parameters π i are repeatedly sampled
from the prior distribution under Hi

1:

h(π i |Hi
1) ∝ h(π i |Hi

u)Iπ i∈Hi
1
, (28)

where Iπ i∈Hi
1

= 1 if π i is in agreement with

Hi
1 and 0 otherwise.

– P-population 2. In this P-population all indi-
viduals adhere to . Using this population,
the expected values of the gP-BFmu, ERmu and
SRmu can be determined if are sampled
from the prior distribution under , that is:

where if π i is in agreement with
and 0 otherwise.

– P-population 3. For the third P-population, a
mixture of P-population 1 and 2 is considered.
Using this population, the expected values of
the gP-BF, ER and SR can be determined if Hi

m

holds for a proportion θ of individuals in the P-
populations, and holds for a proportion 1−
θ of individuals. The individual parameters π i

are sampled from Eq. 28 if ui , sampled from
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U(0, 1) is smaller than or equal to the specified
proportion θ , and sampled from Eq. 29 if ui is
larger than θ :

The proportion θ is set to .5, thus half of all individuals
adheres to Hi

1 and the other half adheres to .

Next, the sample sizes P and number of replications
R that the researchers want to consider should be chosen.
Based on the choices made by Zedelius et al. (2011), the fol-
lowing values for P and R are considered for the sensitivity
analysis:

• Number of replications. Zedelius et al. 2011 used seven
replications in their experiment. Additionally, it would
be interesting whether more replications would result
in better performance, therefore R = 7, 14, 21 are
considered.

• Number of individuals. Zedelius et al. 2011 used 26
participants in their experiment. In order to mimic
an a priori sensitivity analysis, the sample sizesP =
5, 7, 10, 15, 20, 25, 30, 40, 50 are considered.

Results

Figure 2 shows the results of the sensitivity analysis for
the determination of sample size P and number of repli-
cations R. The results are presented for each of the three
simulated P-populations described in the previous section.
The first column of the figure shows the performance of the
gP-BFmu, ERmu and SRmu if Hi

1 is true for all individu-
als (P-population 1). As can be seen in the top left figure,
already for small sample sizes the gP-BFmu expresses strong
support for H1: the lower 2.5 percentile of the gP-BFmu

is larger then 10 for R > 7 and P > 5. The lower
2.5th percentile of the ERmu only stabilizes above .9 for
R = 7 and P > 30 and for R = 14, 21, this is already
achieved for P > 10. Stated otherwise, if Hi

1 holds for all
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individuals, for samples larger than 30 it is likely that less
then 10 per cent of individual Bayes factors express support
for . Finally, the bottom panel shows that the SRmu sta-
bilizes around .55, reflecting that it is reasonable to expect
slightly more than half of the individual Bayes factors to
express stronger support than gP-BFmu. This implies that
the gP-BFmu is, on average, slightly more influenced by the
‘weaker’ and contradicting individual Bayes factors. The
2.5 and 97.5 percentiles are within a margin of .1 from the
median gP-BF for P > 25. Furthermore, we see that from
around P = 25 the median and 2.5 and 97.5 percentiles sta-
bilize. Thus, if Hi

1 is true for all individuals, with sample
size P around 25 − 30 and R = 7, the gP-BFmu and ERmu

perform as desired: the gP-BFmu shows strong evidence
for the true hypothesis, the ERmu is high and the SRmu is
around .5.

In the middle column of figures in Fig. 2 is true for
all individuals. For P > 10 and R > 7, the gP-BF is
smaller than .01, indicating at least ten times more support
for than for Hi

1. As R increases, so does the median sup-
port found in the data. The lower 2.5 percentile of the ER
is above .9 for P > 30 and R = 14, 21 and close to .9 for
R = 7. The median SR is almost exactly .5 for all R for
P > 20, and the 2.5 and 97.5 percentiles are within .1 of the
median for P > 30. Thus, for sample sizes of 30 and larger,
the gP-BFmu, ERmu and SRmu behave as desired for R = 7
and even better for R = 14, 21.

Finally, Population 3, depicted in the right column in
Fig. 2 was chosen to be a mixture of the first two popu-
lations. Here it can be seen that if Hi

1 holds for 50% of
the individuals in the population, generally, is preferred
over Hi

1, although with less strength than when Population
2 was the true population. Note that this happens because
it is more likely that a person coming from h(π i |Hi

1) pro-
vides evidence in agreement with than vice versa. For
example, if H1 is true but if the ordering in the data is off
by one order constraint, we are likely to prefer . How-
ever, if one of the orderings that comprises is true, a
‘mistake’ in one or more of the order constraints in the data
does not necessarily lead to a preference for H1, but might
point to one of the other orderings under . The complex-
ity of H1 is 2.48 × 10−5 and the complexity of H

Ãğancel1

is 1 − 2.48 × 10−5 ≈ 1. Thus, even though θ = .5, is
preferred because it has a higher complexity. The is
of use here, indicating that there are multiple populations
and stabilizing around .5 for P > 30. Although the median
support found in the might indicate a preference
for over Hi

1, the indicates inconsistency among
individual Bayes factors. Finally, the median for this
population is slightly below .5, and the 2.5 and 97.5 per-
centiles are further than .1 from this median until P is
around 40, for R = 14, 21 or 50 for R = 7. Thus, if neither
of the two hypotheses hold for everyone, this is reflected in

the for every P and R that seemed reasonable if Hi
1

or were true for everyone.
Zedelius et al. (2011) eventually used 26 participants in

their study and seven replications. This is slightly lower than
the suggested 30 based on the sensitivity analysis. Consult-
ing the figures, it seems that, if Hi

1 is true and P = 26 and
R = 7, is expected to be between 30 and 100, the

is expected to be above .9 and the between .43
and .67. On the other hand, if is true for all individu-
als, the can be expected between 1000 and 10,000
in support of , with the similarly above .9 and the

between .35 and .6. Consulting the results in Table 4,
we find that , ERmu = .500 and SRmu=
.436. These results do not seem in line with either Popula-
tion 1 or 2, but consulting the right column figures in Fig. 2,
they do seem in line with the mixture population. Of course,
this is no evidence that indeed this mixture population with
θ = .5 is the most likely true P-population. However, it
does indicate that even though the shows some sup-
port for relative to Hi

1, it is not likely that holds for
everyone in the P-population.

Discussion

After formulating within-person (WP) hypotheses, individ-
ual Bayes factors can be computed with which the support
for a particular hypothesis can be derived for each person,
or the best from a set of informative hypotheses can be
selected. A method has been proposed to combine the indi-
vidual Bayes factors of some, in order to draw conclusions
for all - by answering the question whether an individual
hypothesis holds for all persons in the population - and for
one by determining the average support for Hi

m relative to
Hi

m′ which describes what could be expected for a next indi-
vidual. The geometric average of P individual Bayes factors
(gP-BF) describes the average support for one hypothesis
relative to another. It describes what individual Bayes factor
could be expected for a next person. Together with the evi-
dence rate and stability rate, the gP-BF can be used to assess
whether one hypothesis is more supported than another for
all individuals in a population. By means of a sensitivity
analysis for a set of hypotheses, it can be determined for
what sample size P and number of replications R in an
experiment these measures behave desirable.

An R Shiny application has been developed with which a
sensitivity analysis can be executed prior to data collection.
By specifying hypotheses of interest, the behavior of gP-BF,
ER and SR can be evaluated for various combinations of
R and P . This allows researchers to collect the appropriate
data for their question of interest. Besides an own sensitivity
analysis, the data of the simulations used as examples in this
paper can be accessed and viewed within the application.
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Furthermore, in the application data can be analyzed and the
gP-BF, ER, and SR are computed. The application and man-
ual can be accessed on https://github.com/fayetteklaassen/
OneForAll.
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Appendix: Computation of fit and complexity
through decomposition

In order to compute the Bayes factor that expresses the
support in favor of Hm:

Hm : Rmπ > 0 (31)

against the unconstrained hypothesis Hu, the complexity
and fit of Hm should be computed.2

Complexity and fit can be determined by taking sam-
ples from the unconstrained prior and posterior distribution
respectively. A common approach is to take Q samples, and
determine what proportion of the samples is in agreement
with Hm, such that

fm =
∫

π∈Hm

g(π |x, Hu)δπ

≈ 1

Q

Q∑

q=1

Iπq∈Hm (32)

where πq is the qth sample from the unconstrained poste-
rior and Iπq∈Hm = 1 if πq is in agreement with Hm, and
0 otherwise. The complexity can be computed analogously,
with the difference that samples are taken from the prior
distribution.

If Hm concerns the ordering of 8 parameters, the com-
plexity can be derived analytically and is 1/8! = 1/40, 320.
Using Q = 100, 000 samples from the unconstrained prior
only 2 or 3 samples of π are expected to adhere to the con-
straints under Hm. This implies that the estimate of fm is
very unstable. To obtain stable estimates impossibly huge
samples are needed. Similarly, the fit of a hypothesis with

2Note that for notational simplification the superscript i is dropped
from the hypotheses, Bayes factors, and parameters in this Appendix.

eight parameters might be too small to accurately approxi-
mate using 100,000 samples. One solution is to increase the
number of samples which increases the computational time.
Mulder, Hoijtink, and de Leeuw (2012) present another
solution that makes use of a decomposition of the complex-
ity and fit. This procedure determines decomposed fit and
complexity for each constraint in a hypothesis. Equation 33
shows how the probability that all constraints hold, given Hu

and the data x, can be rewritten as a product of decomposed
probabilities:

P(Rmπ > 0|Hu, x) =
K∏

k=1

P(R(k)
m π > 0|Hu, x,R(1:k−1)

m )

=
K∏

k=1

f (k)
m

≈
K∏

k=1

1

Q

Q∑

q=1

IR(k)
m πq>0

, (33)

where K is the number of constraints in hypothesis m, R(k)
m

is the kth row of Rm, R(1:k−1)
m are the first k − 1 rows of Rm,

f
(k)
m is the decomposed fit for the kth constraint, the indica-

tor function IR(k)
m πq>0

= 1 if R(k)
m πq > 0 and 0 otherwise

and πq is sampled from g(π |Hu, x,R
(1:k−1)
m ).

Since each f
(k)
m is only defined by one constraint, it is

never a small value and can be estimated with relatively few
samples. The R Shiny application OneForAll belonging to
this paper uses Q = 10, 000. By multiplying the decom-
posed fit components similar to Eq. 33 the total fit can be
obtained accurately.

The complexity can be derived analogously:

P(Rmπ > 0|Hu) =
K∏

k=1

P(R(k)
m π > 0|Hu,R(1:k−1)

m )

=
K∏

k=1

c(k)
m

≈
K∏

k=1

1

Q

Q∑

q=1

IR(k)
m πq>0

, (34)

where c
(k)
m is the decomposed complexity conditional for the

kth constraint and πq is sampled from h(π |Hu,R
(1:k−1)
m ).
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