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Abstract Many empirical studies measure psychometric
functions (curves describing how observers’ performance
varies with stimulus magnitude) because these functions cap-
ture the effects of experimental conditions. To assess these
effects, parametric curves are often fitted to the data and com-
parisons are carried out by testing for equality of mean param-
eter estimates across conditions. This approach is parametric
and, thus, vulnerable to violations of the implied assumptions.
Furthermore, testing for equality of means of parameters may
be misleading: Psychometric functions may vary meaningful-
ly across conditions on an observer-by-observer basis with no
effect on the mean values of the estimated parameters.
Alternative approaches to assess equality of psychometric
functions per se are thus needed. This paper compares three
nonparametric tests that are applicable in all situations of in-
terest: The existing generalized Mantel-Haenszel test, a gen-
eralization of the Berry—Mielke test that was developed here,
and a split variant of the generalized Mantel-Haenszel test
also developed here. Their statistical properties (accuracy
and power) are studied via simulation and the results show
that all tests are indistinguishable as to accuracy but they differ
non-uniformly as to power. Empirical use of the tests is
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illustrated via analyses of published data sets and practical
recommendations are given. The computer code in MATLAB
and R to conduct these tests is available as Electronic
Supplemental Material.

Keywords Psychometric function - Nonparametric methods -
Equality tests - Homogeneity of distributions

A large number of empirical studies in diverse areas of re-
search require measuring observers’ performance on some
task as a function of stimulus magnitude. Most often, perfor-
mance is expressed as proportion correct across a set of trials at
each stimulus level and such data describe what is known as a
psychometric function: A curve indicating how proportion
correct varies with stimulus level. In other cases, observers’
responses on each trial are judgments in three or more catego-
ries which are not (or cannot be) classified as correct or incor-
rect. Nevertheless, a set of psychometric functions still de-
scribes performance by indicating how the proportion of re-
sponses in each category varies with stimulus level. Most stud-
ies aim at assessing how performance varies across experimen-
tal conditions (using within-subjects or between-subjects de-
signs) or across groups defined according to subject variables
(in ex post facto designs). To serve these goals, psychometric
functions need to be compared across groups or experimental
conditions and several options are available for this purpose.
One option consists of fitting model curves to summarize
each observer’s performance via model parameters (usually
location and slope of the psychometric function). Once this
is done, parameter estimates (or transformations thereof) are
subjected to comparison across groups or experimental condi-
tions via ¢ tests or ANOVAs (see, e.g., Donohue, Woldorff, &
Mitroft, 2010; Gil, Rousset, & Droit-Volet, 2009; Lee &
Noppeney, 2014; Tipples, 2010; Vroomen & Stekelenburg,
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2011). The validity of this parametric approach rests on the
adequacy of the selected model curves and on the good fit to
each observer’s data; if these conditions do not hold, compar-
isons are compromised. A further problem with this approach
is that it does not test equality of psychometric functions per
se: It only tests for equality of the mean of the estimated
parameters, which may hold true even when the psychometric
functions differ systematically across conditions on an
observer-by-observer basis.

A still parametric but less stringent option consists of
defining the K stimulus magnitudes at which data were
collected as the levels of a repeated-measures factor for
an ANOVA. When each trial only allows a binary response
(e.g., correct or incorrect) the dependent variable is the
proportion of, say, correct responses. These ANOVAs usu-
ally involve other repeated-measures or grouping factors,
as needed by the design of the study (see, e.g., Capa,
Duval, Blaison, & Giersch, 2014; Droit-Volet, Bigand,
Ramos, & Oliveira Bueno, 2010; Gable & Poole, 2012;
Wilbiks & Dyson, 2013; references listed in the preceding
paragraph also reported ANOVAs of this type). This strat-
egy allows testing for equality of psychometric functions
directly across those other factors and their interaction, as
it is clear beforehand that proportion correct will vary
across stimulus levels. However, the use of this strategy
is limited to cases in which only two response categories
are allowed. On the other hand, the parametric assumptions
of ANOVA do not hold when data are proportions, besides
the almost sure violation of the assumptions of homosce-
dasticity and sphericity in such conditions.

There are situations in which these parametric approaches
are either inapplicable or unadvisable. For instance, in within-
subjects designs, psychometric functions are measured for
each observer under several experimental conditions. Given
that performance generally varies greatly across observers,
aggregating data across them for a comparison of conditions
adds unnecessary error variance and, thus, tests of equality of
psychometric functions across conditions are needed on an
observer-by-observer basis. The same holds when data for
each condition need to be collected across several sessions
with each observer, which calls for an analogous observer-
by-observer test of equality of psychometric functions across
sessions before data from them all are aggregated. Parametric
approaches are inapplicable in all these cases and an ANOVA
for categorical variables (referred to as CATANOVA,;
Anderson & Landis, 1980; Onukogu, 1985a, b) might seem
appropriate, but we will show that CATANOVA does not
measure up to its expected performance.

The work described in this paper set out to develop three
fully nonparametric tests of equality of psychometric func-
tions and to assess their statistical properties (accuracy and
power). The tests were designed to be applicable for data
collected at K > 2 stimulus levels in each of /> 2 conditions

with a task that allows for J > 2 response categories in each
trial. These tests are more general than that proposed by
Logvinenko, Tyurin, and Sawey (2012), the applicability of
which is limited to situations in which / =J = 2, and which is
insensitive to certain differences between psychometric func-
tions. The three tests are presented in the next section, which is
followed by a description of the simulation study that assessed
the accuracy and power of each test. Results are presented and
discussed immediately afterwards, followed by a brief section
documenting the unsuitability of CATANOVA. Examples of
the application of these tests are next given using published
data from several studies, including comparative examples of
the outcomes of our nonparametric tests and a conventional
parametric approach. Practical recommendations are present-
ed before our final discussion. A computer code to conduct
these tests in MATLAB and R is made available as Electronic
Supplementary Material.

Three nonparametric tests of equality
of psychometric functions

To accompany our presentation with a suitable referent, con-
sider the sample case in Fig. 1, involving two populations (/ =
2) and psychometric functions reflecting the distribution of
responses in a task with J = 3 response categories (so that
there are three psychometric functions per population) at each
of K = 6 stimulus levels. (“Population” is used here with its
statistical meaning to refer to the conditions under which the
data were collected; these might be, for instance, the two ses-
sions over which data had been collected from an observer.)
The left and center panels at the top of Fig. 1 plot the data and
the bottom part tabulates them as indicated in the sketch at the
top right, where f;; is the observed frequency of responses by
population 7 in category j at stimulus level &, f;, = Zle S 1s
the i-th row marginal, /', = Zf: 1/ i 18 the j-th column mar-

i

ginal, and Ny = f , =2, J:lfijk is the total number of

j
observations at stimulus level £. The row marginal frequencies

fi.r represent the number of trials placed at stimulus level k& in
population i. These numbers may have been fixed beforehand
(e.g., for data collected with the method of constant stimuli) so
that non-zero row marginal frequencies are guaranteed for all 7
at each k. But data may also be collected with adaptive
methods so that row marginal frequencies will generally vary
across i and k, potentially producing zero row marginal fre-
quencies for some 7 at some k. All f.; in the example of Fig. 1
are equal but the tests are applicable with arbitrarily different
fi-r as well as with arbitrary numbers of populations (/ > 2),
response categories (J > 2), and stimulus levels (K > 2), with-
out constraints as to the aspects on which psychometric func-
tions might differ across populations. The tests are thus more
general than that developed by Logvinenko et al. (2012),
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Fig. 1 Sample data for application of the tests of equality of
psychometric functions. The left and center panels at the top show
empirical psychometric functions for two populations (/ = 2) probed at
K = 6 stimulus levels with a task that allows J = 3 response categories.
Symbols indicate the proportion of responses in each category (red: first
category; black: second category; blue: third category) at each stimulus

which was designed to test only for lateral displacement (with
no other differences) when /=2 and J = 2. Later we will come
back to these sample data to discuss how a parametric ap-
proach would address the assessment of equality of psycho-
metric functions.

Equality of psychometric functions implies homogeneity
of the distributions of responses across the J categories in all
I populations, although these distributions naturally vary
across the K stimulus levels. Under the null hypothesis of
homogeneity, expected cell frequencies at stimulus level &
are given by Fy=f;. 1 f;x/Ni and Pearson’s statistic

(1)

measures deviation from homogeneity at each k. The tests
described next differ as to how some variant of Eq. 1 combines
deviations across K tables to render an omnibus test statistic.

The generalized Mantel-Haenszel test of homogeneity

The generalized Mantel-Haenszel statistic Qg for I x J x K
tables (Birch, 1965; Landis, Heyman, & Koch, 1978; Mantel
& Haenszel, 1959; Somes, 1986; see also Agresti, 2002,
section 7.5.3) is defined by taking at each k the subtable of
pivotal cells that results from eliminating the last row and the
last column, rendering K subtables of size (/ — 1) x (J — 1).
(Incidentally, which row and column are eliminated is incon-
sequential.) Then, for each such subtable, place the pivotal
observed frequencies fj (for | <i</-land 1 <j<J-1)
columnwise in a row vector Oy of size 1 x (/— 1)(J— 1) so that
Jii maps onto the m-th element of Oy, withm =i+ (j — 1)(/ -
1) and similarly arrange the corresponding expected
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level in each population. The table sketch at the top right indicates the
notation used to refer to the counts of responses in each category
(columns) by each population (rows) at stimulus level k. The K = 6
tables at the bottom depict the data at each stimulus level, with cell
counts printed in the color used for the psychometric functions at the top

frequencies Fjj into a row vector E; of the same size. Now
define the variance—covariance matrix V of size /— 1)(J— 1)
X (I—1)(J — 1) so that v, relates to the pivotal cells i/, and
inja, Withm=1i1+ (j; — 1) — 1)andn =i, + (j, — 1)({—1). This
matrix is readily computed as

(Ndiag(Cx)—CiC;) ® (N diag(Ry)-RyR} )
NiNx(Ns—1) ’

(2)

where Cy, = [fu] is a (J/ — 1) x 1 vector with the marginal
frequencies of the pivotal columns, R, = [fi]Jisa(— 1) x 1
vector with the marginal frequencies of the pivotal rows,
diag(X) is a diagonal matrix with elements X, ® indicates
Kronecker product, and the apostrophe indicates transposi-
tion. Unpacking Eq. 2, the general element of V is

fil»k(Nk_fil-k)f:hk(Nk—f'flk) if 5 = A =
NeNe (VD) 1 =nA) =]
ik Ne—fia)f S
fnksv /;vf]lvk>f11|kf.lzk if i = bAji#),
- N (N1) .
_fil-kfiz-kf-jlk(Nk_f’j]k) Bt —
. ka}Vk(}Vk—l) if G#iAj = )
ivk) iy kS ok e
L0k Bk Kk f
NN (1) it iy £ A JiF Ja
Then,
—1 /
QGMH =DV D, (4)

where D=YX_ 0;—E;, V=Y%_ V;,and V"' is the inverse of
V. The QOgwmy statistic has asymptotically a x> distribution
with (I — 1)(J — 1) degrees of freedom. For the sample data
in Fig. 1, Ogmpu = 0.146 and the associated p value from a X
distribution with 2 degrees of freedom is .930, so that equality
of psychometric functions is not rejected at & = .05.
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Because all K tables are aggregated into D and V before
Ocwmu 1s computed via Eq. 4, the statistic is well defined even
when one or more of the individual tables has some empty
columns or rows. Nevertheless, rows or columns that are emp-
ty in all K tables should be discarded because they do not
contribute data and degrees of freedom. It should also be noted
that tables with J — 1 empty columns (or / — 1 empty rows)
make no contribution to Ognmy because, for any such table, Oy
— E; =0 and V, =0, where 0 is a null matrix of appropriate
size. This eventuality does not have any major consequence,
except that the total sample size for the test reduces from the
nominal N = Y'X_ Ny to the sum of N, across the remaining
tables. If all but one of the K tables has to be discarded for this
reason, Ogyy degenerates to Pearson’s statistic multiplied by
N/ (N, — 1) (Birch, 1965).

It should also be noted that tables for which NV, = 1 must
also be discarded because then V;, is undefined: Note in Eq. 3
that computation of vy, requires division by N, — 1. This will
never occur for data collected with the method of constant
stimuli but it may occur at some k for data collected with
adaptive methods. Removing such tables is clearly justifiable:
N, =1 means that a single trial was placed at stimulus level &
in only one of the populations and, hence, there are actually no
distributions to compare at this stimulus level. Data collected
with the class of adaptive methods that place each trial at a
unique stimulus level are likely to result in large K with N =1
for most &, which again precludes application of this test for
lack of distributions to compare. However, this class of adap-
tive methods is unadvisable (and, actually, rarely used) to
measure psychometric functions; dependable adaptive
methods for measuring psychometric functions (see Garcia-
Pérez & Alcala-Quintana, 2005; Garcia-Pérez, 2014a) always
place trials on a lattice so that N, = 1 is a rare event.

It is important to stress that the appeal of Ogmy lies in
the aggregation of deviations Oy — E; into D across tables.
When psychometric functions are identical in all popula-
tions, the sign of these deviations will only vary randomly
at each j across the K tables and their aggregation will
result in D = 0. On the other hand, when (monotonic)
psychometric functions differ only in lateral position
across populations (see Fig. 2a for an example with 7 = 2,
J =2, and K = 13), deviations will consistently have the
same sign at each j across the K tables and aggregation will
strengthen D by capitalizing on this systematic pattern of
deviations. However, this strength turns into a serious
weakness when monotonic psychometric functions differ
only in slope across populations (see Fig. 2b) or when non-
monotonic psychometric functions differ in lateral position
across populations (see Fig. 2c). In both cases, systematic
deviations of one sign will occur at stimulus levels below
the crossing point of the psychometric functions, whereas
systematic deviations of the opposite sign will occur above
the crossing point. Then, aggregation across the K tables

annihilates these systematic patterns and renders D = 0 as if
psychometric functions did not differ across populations, a
form of Simpson’s paradox (Blyth, 1972; Simpson, 1951).
The Qgmy statistic will be affected by these problems in a
somewhat more complex manner when J > 2 (as in the
example of Fig. 1) because such cases include a mixture
of monotonic and non-monotonic psychometric functions
in each population.

Simulation results presented below document the failure of
the Qgmm statistic to detect differences such as those illustrat-
ed in Fig. 2b and c. A satisfactory solution to this problem is
not immediately obvious but the two tests described next cir-
cumvent it in different ways.

The generalized Berry—Mielke test of homogeneity

Deviations from homogeneity in each of the K tables can be
separately assessed via Pearson’s statistic in Eq. 1. The signif-
icance of each of these individual deviations could be assessed
with respect to the asymptotic x* distribution with (/ — 1)(J —
1) degrees of freedom, arguably with a Bonferroni correction
for multiple testing. Alternatively, an omnibus test of homo-
geneity across the K tables can be defined via

X =yr X3, (5)

which has an asymptotic x* distribution with K( — 1)(J — 1)
degrees of freedom. However, Berry and Mielke (1988; see
also Lewis, Saunders, & Westcott, 1984) showed that the
small-sample significance of Pearson’s statistic is more accu-
rately assessed via a non-asymptotic Pearson Type III distri-
bution (for an in-depth analysis of this superiority, see Garcia-
Pérez & Nuifiez-Anton, 2009). Unfortunately, the parameters
of the Pearson Type III distribution depend on the marginal
distributions in each of the K tables and an omnibus test sta-
tistic different from that in Eq. 5 is needed. Such a generalized
Berry—Mielke statistic is derived next.

Berry and Mielke (1988) showed that the adjusted
Pearson’s statistic

N1

T
k Ny

X (6)

has a conditional permutation distribution with exact mean pz, ,
exact variance crsz, and exact skewness Yr, (for the
computation of these moments, see Berry & Mielke, 1988;
Mielke & Berry, 1985; see also Supplementary Appendix A).
Then, the standardized statistic

_ Ti—ur,
or

Zy

(7)

k

has approximately the Pearson Type III distribution
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Fig. 2 Hypothetical psychometric functions in two populations (/ = 2;
solid and dashed curves in each panel) probed at K = 13 stimulus levels
(thin vertical lines in each panel) with a task that only allows two response
categories (J = 2) so that each panel shows only the psychometric
function for one of the categories in each population. (a) Monotonic

s .
f = % (+2/m) " exp[-(22/7 + 4/v)] (8)

with y = yr,, where z > —2/y (Mielke & Berry, 1985) and I
denotes the gamma function. This is indeed the generalized

gamma distribution
z—a\4
w5

with location parameter a = —2/y, scale parameter b = y/2, and
shape parameters ¢ = 4/1/2 and d = 1, where z > a (Forbes,
Evans, Hastings, & Peacock, 2011, p. 113).

To arrive at an omnibus test, first define the standardized
statistic

d(z—a)“"

bT(c) ®)

f(z) =

 Zyak
==

G , (10)
where a; = —2/yr, and b; =y, /2. Because Z; has a gen-
eralized gamma distribution (i.e., Z; ~ G(ay, by, ¢, 1), with ¢
= 4/Y2Tk ), Gy is distributed G(0, 1, ¢, 1), which is the stan-
dard gamma distribution with scale parameter b = 1 and shape
parameter ¢ = ¢; (Forbes et al., 2011, p. 113). Then, the om-
nibus statistic

G =Y_,Gk (1)

has a standard gamma distribution with scale parameter b = 1
and shape parameter ¢ = fo:lck (Forbes et al., 2011, p. 111).
The null hypothesis of homogeneity is thus rejected when the
p value associated with the sample value of G is lower than «.
Table 1 lists the necessary magnitudes computed at each £ for
the data in Fig. 1, which yield G = 7.237 and ¢ = 10.448. The
associated p value is .844 and the null is not rejected either by
this test at o« = .05. But computation of the omnibus G statistic
also requires a number of precautions.

It should first be stressed that all the necessary computa-
tions must use the actual 7 and J at each k, which may differ
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functions that differ only in location across populations. (b) Monotonic
functions that differ only in slope across populations. (¢) Non-monotonic
functions that differ only in location across populations. SOA stimulus-
onset asynchrony

from their nominal values. For instance, in the example of
Fig. 1, the last column in the tables for stimulus levels 1
and 2 is filled with sampling zeros and, hence, these must
be treated as 2 x 2 tables instead of 2 x 3 tables. Values
reported in Table 1 were computed accordingly (e.g., note
that urp, =1 for ke {1, 2}, whereas uy, =2 forke {3, 4,5,
6}). It should also be noted that sampling zeros may render
a table with a single row or a single column at some k. This
was not a problem for computation of the Ognmyy statistic
but, in such cases, Gy is undefined and the table must be
discarded. (Note that a table for which N, =1 is also in the
class of tables with a single row and a single column.)

There is another case in which the table at stimulus level &
must be discarded, namely, when O'ZTk = 0 so that G, is also
undefined. This can only occur in / x 2 tables in which all row
marginal frequencies are equal and either £, =1 or f,,, = 1 or,
analogously, in 2 x J tables in which all column marginal
frequencies are equal and either f;., = 1 or f5., = 1. In either
case, the permutation set consists of tables that differ only in
how rows (or columns) are arranged, which does not alter the
value of 7. This situation may additionally occur when J > 2
if J — 2 columns are discarded due to sampling zeros (or,
analogously, when / > 2 if / — 2 rows are discarded due to
sampling zeros).

A final and less obvious precaution is that tables for which
Y7, <0.5 should also be discarded. The reason is an anomaly
in the permutation distribution, whose description and analy-
sis are somewhat technical, and is deferred to Supplementary
Appendix B. Suffice it to say here that such small values of
Y7, arise only in 2 x J (or / x 2) tables with equal and small
row (or column) marginal frequencies and uneven column (or
row) marginal frequencies.

The distinctly different principles under which the
omnibus G statistic is derived demand a comparison with the
Ogwmn statistic in terms of their expected performance. In prin-
ciple, there is no reason to think that one or the other will be
more accurate in terms of Type-I error rates. However, there are
good reasons to think that they will perform differently in
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Table 1  Magnitudes required at each & for the computation of the omnibus G statistic for data in Fig. 1. Values at the bottom of the two rightmost

columns are sums across K

Level, £ Ty ur, or, Yr, Zy Gy Cr

1 0.000 1.000 1.354 2.445 —0.739 0.065 0.669

2 0.000 1.000 1.396 2.719 -0.716 0.014 0.541

3 1.047 2.000 1.896 1.688 —0.503 0.808 1.404

4 0.529 2.000 1.713 1.330 —0.859 0.970 2.262

5 1.036 2.000 1.828 1.544 —0.527 0.996 1.679

6 2411 2.000 1.654 1.014 0.248 4.384 3.893
7.237 10.448

power studies. Because the omnibus G statistic assesses devia-
tion independently in each of the K tables, it should be free of
the problems that aggregation creates for the Qg statistic in
cases such as those illustrated in Fig. 2b and c and, thus, it
should have more power. At the same time, and because of that
aggregation, the Ogwmp statistic should have more power in
cases such as those illustrated in Fig. 2a. Nevertheless, the true
reality that generated the data is always unknown and, hence, it
is practically impossible to decide in advance (i.e., before see-
ing the data) whether one or the other statistic will be more
appropriate. We will come back to this issue in the section on
“Practical recommendations” at the end of the paper.

The split Mantel-Haenszel test of homogeneity

Cases such as those in Fig. 2b and ¢ cause problems to the
Ocmn statistic because the sign of the differences between
psychometric functions varies across stimulus levels, and
these signed differences cancel each other out upon aggre-
gation into D across K. In the scenarios of Fig. 2b and c, it
is obvious that the Ognmy statistic computed for data from
only the lower half of stimulus levels will detect the differ-
ences (which always have the same sign) and that an anal-
ogous computation using only the upper half of stimulus
levels will also detect the differences (which also have the
same sign, although opposite to that in the lower half). This

split computation renders two Qgmp Statistics (say, Q&\LH
and QE}I{&H, where superscripts denote the Lower and Upper
sets of stimulus levels) each of which has an asymptotic x>

distribution with (/ — 1)(J — 1) degrees of freedom. Then,
the split statistic

S-Ocmn = lex)/m + QE}UI\BIH (12)

has an asymptotic x° distribution with 2(/ — 1)(J — 1)
degrees of freedom. Application of this statistic to the data
in Fig. 1 with an even split (i.e., stimulus levels 1-3 contribute

to Qg‘l\),m and stimulus levels 4-6 contribute to Qgﬁﬂ ) renders

o) =0.4981 and O\, = 1.4163 so that S-Og = 1.9145.
The p value is .752 and the null is not rejected at & = .05.

In principle, the S-Ogmy statistic should be as accurate as
the overall Qgumy statistic and it should only be slightly less
powerful than the overall Ogny statistic when the latter per-
forms well (e.g., in cases such as that illustrated in Fig. 2a).
However, in the scenarios of Fig. 2b and ¢, S-Ogmy should be
meaningfully more powerful than Qg

It should also be noted that the scenarios in Fig. 2b and ¢
represent ideal cases in which the S-Og vy statistic will clearly
outperform the Qg statistic. The reason is that the stimulus
levels at which the psychometric functions are probed (thin
vertical lines in the panels) are placed symmetrically about the
crossing point of the psychometric functions. In experimental
practice, data are collected at stimulus levels placed without
knowledge of the slope and location of the psychometric
functions. Psychometric functions may also differ across
populations in all respects (i.¢., location, slope, and symmetry,
not just the single-aspect difference illustrated in Fig. 2). In
general, the optimal split is not in two equal halves; the
optimal split is instead that which separates regions where
differences between psychometric functions have opposite
signs (i.e., at the point where the data suggest that the
psychometric functions cross). The power of the S-Ogmu
statistic will be obviously reduced for suboptimal splits but
an adequate split can always be judged by eye in empirical
applications.

Splitting the computation into these two components may
have a consequence that is worth commenting on. Because

le\)/m uses data at the lower stimulus levels and QS{\BIH uses
data at the higher stimulus levels, columns filled with
sampling zeros are more likely to occur in only one of
these two components (something that would have
happened for data in Fig. 1 if the last column of the
table for stimulus level 3 had also been filled with
zeros). This eventuality depends on the number of stimu-
lus levels in each component, their location relative to the
psychometric functions, the number / of populations, and
the number J of response categories. Its only implication
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is that removal of the incumbent columns in one or the
other component will alter the degrees of freedom of

Qg‘l\),m or Q(G[f\zm, something that should be kept in mind.
These considerations also hold when it is instead (or ad-
ditionally) the rows that are filled with sampling zeros
(e.g., when data are collected with adaptive methods that
place stimulus levels within different regions of a lattice
for different populations).

Simulation method

The accuracy and power of the three tests were assessed
in a series of simulations involving several numbers of
populations (I € {2, 3, 4}), response categories (J € {2,
3, 4}), stimulus levels (K € {7, 13}), and row marginal
frequencies f.;, (from 5 to 50 in steps of 5). These com-
binations cover the situations in the vast majority of em-
pirical studies. Each simulation condition generated
30,000 replicates (i.e., sets of / x J x K tables such as
those in Fig. 1) for which all statistics (Ogmu, S-Ocmns
and G) were computed and their p values determined. The
S-Ogwmn statistic was computed with an almost-even split
(i.e., lower 3 vs. upper 4 stimulus levels when K = 7 and
lower 6 vs. upper 7 when K = 13) that is optimal or near-
optimal under the simulated conditions. In conditions with
identical psychometric functions in the / populations, ac-
curacy at € {.01, .05} was assessed via the proportion
of times that the (true) null was rejected; in conditions
with different psychometric functions across populations,
power was assessed via the proportion of times that the
(false) null was rejected.

Without loss of generality, data were generated with psy-
chometric functions from a model of performance in timing
tasks that allow from J = 2 to J = 4 response categories
(Garcia-Pérez & Alcala-Quintana, 2012a, 2012b, 2015a,
2015b, 2015c, 2017a). A brief description of these tasks and
the model is useful for later references. In timing tasks, two
stimuli (A and B) are presented with some stimulus-onset
asynchrony (SOA) that varies across trials within a set of K
levels. In the binary temporal-order judgment (TOJ) task, ob-
servers must report whether A or B was subjectively presented
first and, hence, J = 2; in the fernary synchrony judgment
(SJ3) task, observers are additionally allowed to report that
both stimuli seemed to be presented simultaneously and,
hence, J = 3; in the 4-ary synchrony judgment (SJ4) task,
observers are additionally allowed to report that they cannot
tell temporal order even though presentations appeared to be
non-simultaneous and, hence, J = 4. Under the model, the
psychometric functions describing how the probabilities of
“A first” (AF) and “B first” (BF) responses vary with SOA
(Ap) in the TOJ task are
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POV (Af) = 1-(1-8) F (843 AD)—EF (81; At) (13)
DIV (Af) = (1-8) F (84; At) + EF (813 Al)
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M opPa(d-Ar)]  if d<Ar 4T
F(d;Ar) = { M +§§
1_7\A n )\Bexp[*AB(d*At*T)} if d>At+1
(14)

and Ap, Ag, T, 81, 04, and & are model parameters described
below. In the SJ3 task, the probabilities of AF, BF, and
“simultaneous” (S) responses vary with SOA as

TS(A) =1 — F(84; A1)
W(SSB)(AZL) — F'(647 At)_F(617 At)
47](3553)(&) = F(5; A1)

(15)

and note that & is not a parameter in the model for this task.
Finally, in the SJ4 task, the probabilities of AF, BF, S, and
“unknown order” (U) responses vary with SOA as

)
TS (A) = F(55;A1) — F(85; A1)
v (A = F(8,; A1)
WS (A1) = F (545 M)~ F (83; At) + F(85; At)—F(5y; At)

(16)

where 0, and &3 are additional model parameters for this
task.

The parameters just mentioned describe a process model
and they affect the shape, location, and symmetry of the
resultant psychometric functions in ways that will be described
when we assess power as a function of differences in parameter
values. The model posits that an observer’s judgment and
the subsequent response is based on the difference between
the arrival times of sensory signals from stimuli A and B at
a central mechanism. Arrival times are assumed to have
shifted exponential distributions with rates A, and Ag and
delays T4 and Tp, respectively, for stimuli A and B. The
difference in arrival times is the decision variable and has a
bilateral exponential distribution whose cumulative distri-
bution function is given by Eq. 14, where T = tg — T4. The
decision rule partitions the domain of the decision variable
into five regions with boundaries at &;, 0,, 83, and J4,
Then, BF judgments are associated with the range (—o,
01), AF judgments are associated with the range (84, ©),
S judgments are associated with the range (85, 83), and U
judgments are associated with the ranges (8, 8,) and (83,
04). In the absence of response errors (which are not con-
sidered here), these judgments are directly expressed as the
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corresponding responses in the SJ4 task, rendering the psy-
chometric functions in Eq. 16 (for empirical evidence to
this effect, see Garcia-Pérez & Alcala-Quintana, 2017a). In
SJ3 tasks where U responses are not allowed, Eq. 15 por-
trays that U judgments are reported as S responses, with no
implicit claim that this yet untested assumption is empiri-
cally tenable. Finally, in TOJ tasks where only AF or BF
responses are allowed, Eq. 13 implies that U and S judg-
ments yield random guesses whereby AF responses occur
with probability & and BF responses occur with probability
1 — & (for empirical evidence to this effect, see Garcia-
Pérez & Alcala-Quintana, 2012a, 2015a, b). Parameter
values used in our simulations are realistic and within the
broad range observed in the empirical studies that tested
the model.

Artificial data displayed in the illustration of Fig. 1
were generated for a condition with J = 3 (i.e., the SJ3
task), K = 6 (i.e., six SOASs), f., = 20 for all i and £ (i.e., 20
trials per SOA), and equal psychometric functions in / = 2
populations (i.e., true null) with parameters (A, Ag, T, 01,
d4) = (1/45, 1/45, 0, =50, 50). Along with & = 0.5 (needed
when J = 2 in the TOIJ task) and (65, 03) = (—40, 40) (needed
when J = 4 in the SJ4 task), these are the parameter values
used without loss of generality in simulations when the
null is true. The top row in Fig. 3 below shows the resultant
psychometric functions for J € {2, 3, 4}. In simulations
when the null is false, parameter values differed across
populations as described later.

The K stimulus levels were always placed so as to cover
either a broad or a narrow region that sampled the underlying
psychometric functions centrally (see the thin vertical lines
within each panel in the top row of Figs. 3, 4, and 5 below).
Stimulus levels that are too extreme were avoided because
data collected at them are uninformative: Even when
psychometric functions differ, they have the same upper-
and lower-asymptotic regimes and they come together at
extreme stimulus levels. Tables at such levels are thus likely to
contain J — 1 empty columns and, as discussed earlier, they
make no contribution to the Ogmpy or S-Ogmu statistics and
they have to be discarded for computation of the G statistic.
Extreme stimulus levels are also avoided in empirical studies
that measure psychometric functions to assess differences,
although they may be used for other purposes (e.g., to estimate
lapse rates).

Results

Simulation results are presented next for each of the three
tests. Complete results for the generalized Mantel-Haenszel
test are presented first. This set of results is used as a reference
for comparison with those for the two other tests, which are
presented more succinctly.

Empirical Type-I error rate and power of the generalized
Mantel-Haenszel test

The top row of Fig. 3 shows the psychometric functions used
to generate data for J € {2, 3, 4} and the thin vertical lines
indicate the K = 13 stimulus levels at which data were gener-
ated in one of the conditions for analyses of accuracy, where
psychometric functions are identical in all 7 populations. The
rows underneath display, for / € {2, 3, 4}, the empirical Type-I
error rates at nominal oc € {.01, .05} as a function of number of
trials per level (i.e., the size of the row marginal frequencies
[k 1dentical for all 7 and k). By Bradley’s (1978) stringent
criterion of accuracy (namely, that empirical Type-I error rates
be within 10% of the nominal rates), the test is remarkably
accurate in all cases. Accuracy is analogous for data collected
at the K = 7 central stimulus levels (see Fig. 4) or when the
K = 13 stimulus levels are packed in the central region of
the psychometric functions (see Fig. 5).

Two additional simulations were run in which the row
marginal frequencies f;., varied across populations or
across stimulus levels. In both cases, fi.; always spanned
the range of values used in the preceding simulations (i.c.,
from 5 to 50 in steps of 5). In one of these additional
simulations, row marginal frequencies for i > | increased
as fir = 2 fi.; for all k; in the other simulation, row marginal
frequencies remained identical across populations but
increased across stimulus levels (i.e., for k > 1) as fi.; = fi.1
+ 10(k — 1) for all i. A graphic presentation of these results is
omitted but differences in the size of row marginal frequencies
across populations or stimulus levels did not alter the accuracy
documented in Figs. 3, 4, and 5.

In sum, the generalized Mantel-Haenszel test of equality of
psychometric functions is very accurate even when the num-
ber of trials per stimulus level is small (e.g., when f., = 5 for
all 7 and k). A second aspect that is also relevant empirically is
the capability of the test to reject a false null (i.e., its power),
something that is unlikely to occur when f;.; is small.

The power of a statistical test is usually expressed as a
function of effect size, a suitable measure of the relevant
difference between (two) populations. Effect size is well
defined for parameters such as means, variances, propor-
tions, or correlations (see, e.g., Cohen, 1992; Faul,
Erdfelder, Lang, & Buchner, 2007; Faul, Erdfelder,
Buchner, & Lang, 2009; Fritz, Morris, & Richler, 2012;
Lakens, 2013). However, differences between distribu-
tions may occur in a variety of forms that do not lend
themselves to quantification along a one-dimensional met-
ric. This is surely the reason why the power of tests of
homogeneity (and, more generally, tests of the chi-square
type) is often computed against arbitrarily defined alterna-
tives, sometimes characterized by the largest point differ-
ence (see, e.g., Agresti, 1983; Cressie & Read, 1984;
Eubank, 1997; Nisen & Schwertman, 2008; Pardo, 1998;
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Fig. 3 Accuracy of the generalized Mantel-Haenszel test of equality of
psychometric functions at nominal « € {.05, .01} as a function of trials
per level (i.e., the size of row marginal frequencies f..;, identical for all i
and k). The Qgmy statistic was computed from K = 13 tables sampling the
psychometric functions at locations indicated by the thin vertical lines in

Read, 1984). This approach is unsatisfactory in the present
context because the largest point difference is not a rea-
sonable measure of differences between psychometric
functions. Then, power is documented in two ways:
Firstly, as a function of number of trials (defined as the
size of f;.;) for fixed differences in selected parameters of
the psychometric functions; secondly, as a function of the
magnitude of the differences in selected parameters for a
fixed number of trials. In all analyses, K € {7, 13} with
stimulus levels placed as in Figs. 3, 4, and 5.

The center and bottom rows of Fig. 6 show power func-
tions for each set of K levels (black, green, and magenta
curves) as a function of number of trials when two (/ = 2) or
three (/ = 3) psychometric functions differ only by translation
as shown in the top row. In terms of the model parameters (see
Egs. 13—16 above), the only difference was that T = 0 in
population 1 (solid curves in the top row of Fig. 6), T = 20
in population 2 (dashed curves), and T = —20 in population 3
(dotted curves). Naturally, power varies with the number and
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the top row, which shows also the shape of the psychometric functions
used to generate the data for the combinations of 7 and J indicated at the
top of each column and at the right of each row. SOA stimulus-onset
asynchrony

location of the K stimulus levels. Comparatively, power func-
tions are lowest when K = 7 stimulus levels are placed in the
central region (see the green sampling points above the top
panels), they increase when additional stimulus levels (up to K
= 13) are placed further out on each side (black sampling
points above the top panels), and increase further when the
K = 13 stimulus levels are packed in the central region where
psychometric functions differ most (magenta sampling points
above the top panels).

Also naturally, power increases as a sigmoidal function
of sample size for all 7, J, and K, although there are clear
differences across conditions. Power is lowest when /=J=2,
understandably because psychometric functions are not very
different from one another in this simulation condition; yet,
when J > 2, power increases because additional response
categories allow for stronger empirical manifestation of the
differences. This is also the reason why power is higher
when 7 = 3 (bottom row in Fig. 6) than it is under analogous
conditions when 7 = 2 (center row), given that the third
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Fig. 4 Accuracy of the generalized Mantel-Haenszel test of equality of
psychometric functions at nominal « € {.05, .01} as a function of trials
per level (i.e., the size of row marginal frequencies f..;, identical for all i
and k). The Oy statistic was computed from K = 7 tables sampling the
psychometric functions at locations indicated by the thin vertical lines in

population in these simulations expands the range of
differences across populations.

Perhaps surprisingly, power is higher when J = 3 (center
column in Fig. 6) than it is under analogous conditions
when J = 4 (right column), despite the fact that an addi-
tional response category should provide further manifesta-
tion of the differences across populations. This counterin-
tuitive result relates to the problem discussed earlier re-
garding systematic differences that change sign across
stimulus levels. The case J = 3 implies three psychometric
functions only two of which are monotonic (red and blue
curves in the top-center panel of Fig. 6). For these two
monotonic functions, changes in location across popula-
tions produce consistent differences in sign across stimulus
levels (as illustrated in Fig. 2a above), which contribute to
increasing the significance of the QOgyy statistic. In the
remaining non-monotonic psychometric function (black
curves in the top-center panel of Fig. 6) location changes
result in a reversal of the sign of the differences (as

Trials per level

Trials per level

the top row, which shows also the shape of the psychometric functions
used to generate the data for the combinations of / and J indicated at the
top of each column and at the right of each row. In comparison to Fig. 3,
the only difference is that data were not generated for any of the three
outer stimulus levels on each side. SOA stimulus-onset asynchrony

illustrated in Fig. 2¢ above), which enter the Qgny statistic
as misleading “evidence” of lack of differences. When J =
4, the fourth psychometric function is also non-monotonic
(green curves in the top-right panel of Fig. 6) and the as-
sociated sign reversals contribute further “evidence” that
reduces power. Our next analysis makes this problem more
clearly apparent.

Figure 7 shows analogous results when psychometric
functions differ in slope. For these analyses, psychometric
functions differed in that A, = Ag = 1/45 in population 1
(solid curves in the top row of Fig. 7), Ay = Ag = 1/22.5 in
population 2 (dashed curves), and A, = Ag = 1/90 in
population 3 (dotted curves). Compared to results in Fig. 6,
power to detect changes in slope is remarkably smaller, with
an absolute lack of power when J = 2 (left column of Fig. 7):
Rejection rates stay at the Type-I error rate as if psychometric
functions did not differ across populations. It is true that the
psychometric functions differ only slightly when J = 2 (and
only at the outer stimulus levels in the conditions of Fig. 7),
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Fig. 5 Accuracy of the generalized Mantel-Haenszel test of equality of
psychometric functions at nominal « € {.05, .01} as a function of trials
per level (i.e., the size of row marginal frequencies f..;, identical for all i
and k). The Qgmy statistic was computed from K = 13 tables sampling the
psychometric functions at locations indicated by the thin vertical lines in
the top row, which shows also the shape of the psychometric functions

but additional simulations rendered analogous results when
psychometric functions differed more (see, e.g., Fig. 10
below). The lack of power is actually caused by the fact
that aggregation into D across K averages out the opposite
sign of the differences on either side of the crossing point
of the psychometric functions. This is also responsible for
the shallow power functions when J > 2 (center and right
columns of Fig. 7) and the strong dependence of power on
the choice of stimulus levels. Specifically, K = 13 stimulus
levels at the locations indicated by the black circles above
the top panels span the region where sign changes occur
across populations, resulting in very low power particular-
ly when /=2 (black power functions). In contrast, use of K
= 7 stimulus levels within the central region where sign
changes do not occur (green circles above the top panels)
substantially increases power (green power functions), and
probing psychometric functions within the same region but
more densely with K = 13 stimulus levels (magenta circles
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used to generate the data for the combinations of 7 and J indicated at the
top of each column and at the right of each row. In comparison to Fig. 4,
the only difference is that data were generated at additional stimulus
levels in between each pair of consecutive levels used in Fig. 4. SOA
stimulus-onset asynchrony

above the top panels) increases power further (magenta
power functions). Although these results are easily under-
standable on these grounds, they raise the practical issue of
how can appropriate sampling points be planned in ad-
vance without knowledge of the differences that psycho-
metric functions may actually have across populations.
One way around this unsolvable problem is to use one of
the alternative tests examined later, provided they prove
invulnerable to this or other threats.

Figure 8 shows results when psychometric functions differ
in symmetry. Specifically, Ay, = Ag = 1/45 in population 1
(solid curves in the top row of Fig. 8), Ay = 1/67.5 and Ag =
1/30 in population 2 (dashed curves), and A, = 1/30 and Ag =
1/67.5 in population 3 (dotted curves). Note, however, that
changes in symmetry also produce changes in location, as is
apparent in the left panel in the top row of Fig. 8. For this
reason, results are analogous to those reported in Fig. 6 above,
with power being lowest when / =J = 2 and higher when /=3
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Fig. 6 Power of the generalized Mantel-Haenszel test of equality of
psychometric functions as a function of number of trials per level (i.e.,
the size of the row marginal frequencies f..;, identical for all 7 and k) when
psychometric functions differ only by lateral translation across
populations (see the top row) and data are collected with tasks that
allow for J € {2, 3, 4} response categories (columns). In each case, data
were gathered at the same sets of K stimulus levels used to assess
accuracy in Figs. 3—5. These sampling points are indicated by the
strings of colored circles immediately above the top panels. The

than it is when / = 2. Power also varies according to how
different the psychometric functions are at the K locations
where data are collected, and power is also higher for J = 3
than it is for J = 4.

Results presented thus far describe how power increases
with number of trials per stimulus level for arbitrary
differences across populations. Results presented next describe
how power increases with effect size (loosely defined as para-
metric differences between psychometric functions) at the
fixed sample size f.; = 20 for all i and £.

Given the mathematical form and parameters of our
psychometric functions (Egs. 13—16), parameter T deter-
mines their location so that psychometric functions that
only differ in this parameter have the exact same shapes
and differ only by lateral translation. A measure of effect
size that captures such variation is the difference At
between T parameter values, quantified by the largest
paired difference among the / populations involved. In the
present simulations as well as in the coming simulations that
assess power, effect size will be kept constant across varia-
tions in the number / of populations by making populations 1
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parameters of the psychometric functions were identical in all
populations except that T = 0 in population 1 (solid curves in the top
row), T = 20 in population 2 (dashed curves in the top row), and T =
—20 in population 3 (dotted curves in the top row). Results for / = 2
(center row) involve populations 1 and 2, whereas results for / = 3
(bottom row) involve the three populations. Power functions are plotted
at & = .05 (thick curves) and o« = .01 (thin curves), using the color that
corresponds to the sampling points used to obtain it. SOA stimulus-onset
asynchrony

and 2 differ the most in the value of the parameter under study.
(In contrast, effect size by this measure varied with 7 in the
preceding simulations because the applicable parameter of
population 3 increased the largest difference.) The top row
of Fig. 9 shows psychometric functions that differ in location
forJ e {2, 3, 4}. Solid curves have the same parameter values
used earlier and depict psychometric functions for population
1 in this analysis. Dashed curves differ only in that T has a
value such that At = 60, the largest effect size for which
power is reported in the center and bottom rows of Fig. 9;
intermediate effect sizes produce proportionally smaller lateral
translations. These (families of) dashed curves are the psycho-
metric functions used for population 2 in this analysis; when /
=3, parameter T for population 3 had a value midway between
those for populations 1 and 2.

The center and bottom rows of Fig. 9 show power as a
function of At for each combination of / and J when K €
{7, 13} at the sampling points used earlier. Clearly, power
increases as a sigmoidal function of At. It is also apparent
that power is slightly higher when 7 = 2 (center row) than it is
when /= 3 (bottom row) under otherwise identical conditions.
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Fig. 7 Power of the generalized Mantel-Haenszel test of equality of
psychometric functions as a function of number of trials per level (i.e.,
the size of the row marginal frequencies f..;, identical for all 7 and k) when
psychometric functions differ only in slope across populations (see the
top row). Layout and graphic conventions as in Fig. 6. The parameters of
the psychometric functions were identical in all populations except that

This is understandable on consideration that At only indicates
the largest parametric difference among populations so that
the case / = 2 involves larger overall differences than the case
I =3 (where a third set of psychometric functions is placed
midway between the two other sets). On the other hand, power
also varies with the number and location of the K stimulus
levels at which data are collected, again understandably be-
cause differences in the ordinates of the psychometric func-
tions vary across stimulus levels.

Note that these results relate to those displayed in Fig. 6,
where power was reported as a function of sample size
when AT = 20 (for 7/ = 2) and At = 40 (for I = 3). The
ordinates of the power functions in Fig. 9 at these effect
sizes match those in the corresponding panels of Fig. 6 at
fier = 20, with only minor differences due to the different
relative locations of the K sampling points with respect to
the psychometric functions.

It is also interesting to compare the power functions in
Fig. 9 for I = J = 2 with power functions reported by
Logvinenko et al. (2012) for their test in analogous conditions
(see their Figs. 6 and 7). Power functions for the generalized
Mantel-Haenszel test asymptote to unity as effect size in-
creases (left panel in the center row of Fig. 9), whereas
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Aa = Ag = 1/45 in population 1 (solid curves in the top row), Ay = Ag =
1/22.5 in population 2 (dashed curves in the top row), and Ap = Ag = 1/90
in population 3 (dotted curves in the top row). Results for / = 2 (center
row) involve populations 1 and 2, whereas results for / = 3 (bottom row)
involve the three populations. SOA stimulus-onset asynchrony

comparable power functions in Figs. 6 and 7 of Logvinenko
et al. asymptote instead below unity.

Figure 10 shows analogous results for psychometric
functions that differ in slope as shown in the top row for
the largest difference used in our analyses. These differ-
ences are determined by parameters A, and Ag, which were
kept equal in value to preserve symmetry. Effect size is
now defined via Ap, the difference between 1/A, (or
1/Ag) in populations 1 and 2, rendering the differences
shown in the top row of Fig. 10 when Ap = 90; the third
population used when / = 3 had a slope midway between
the other two. In line with results presented in Fig. 7, power is
null when J = 2 (left column in Fig. 10) due to the changing
sign of the differences between psychometric functions on
either side of the point at which they cross. This feature of
the psychometric functions also have consequences when J >
2 (center and right columns in Fig. 10), although the diverse
power functions in those cases reflect an interaction with the
location of the K stimulus levels at which the psychometric
functions are probed. Reasonably large power is obtained with
the magenta sampling points, which probe only the central
region where sign differences do not occur. As seen in the
top-center panel of Fig. 10 (for J = 3), within that range of
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Fig. 8 Power of the generalized Mantel-Haenszel test of equality of
psychometric functions as a function of number of trials per level (i.e.,
the size of the row marginal frequencies f..;, identical for all 7 and k) when
psychometric functions differ only in symmetry across populations (see
the top row). Layout and graphic conventions as in Fig. 6. The parameters
of'the psychometric functions were identical in all populations except that

stimulus levels the solid red curve is (almost) always below
the dashed red curve, the solid black curve is always above the
dashed black curve, and the solid blue curve is (almost) al-
ways below the dashed blue curve. Power is lower when the
same region is probed with fewer stimulus levels (green sam-
pling points and green power functions), and power is sub-
stantially reduced when stimulus levels extend into the region
where differences between psychometric functions change
sign (black sampling points and black power functions). It is
also clear that power is higher when /= 2 than it is when /=3
under identical conditions, again because the psychometric
function for the third population in these simulations was mid-
way between the other two.

Results in Fig. 10 also relate to those displayed in Fig. 7,
where power was reported as a function of sample size when
Ap =225 (for I =2) and Ap =45 (for I = 3), although slope
in the present analyses varies only in one direction (increas-
ingly shallower), whereas it varied in both directions
(shallower and steeper) in Fig. 7. Thus, the ordinates of the
power functions in Fig. 10 at comparable effect sizes are only
close to those in the corresponding panels of Fig. 7 at f., = 20,
also due to differences in the relative location of the K
sampling points.

Trials per level

Trials per level

Aa = A = 1/45 in population 1 (solid curves in the top row), Ay = 1/67.5
and Ag = 1/30 in population 2 (dashed curves in the top row), and A =
1/30 and Ag = 1/67.5 in population 3 (dotted curves in the top row).
Results for / = 2 (center row) involve populations 1 and 2, whereas
results for / = 3 (bottom row) involve the three populations. SOA
stimulus-onset asynchrony

To summarize, the generalized Mantel-Haenszel test for
equality of psychometric functions is accurate but powerless
to detect differences that result in psychometric functions that
cross and change the sign of their differences across the
selected stimulus levels.

Empirical Type-I error rate and power of the generalized
Berry-Mielke test

Accuracy analyses of the generalized Berry—Mielke test
revealed the exact same patterns reported in Figs. 3, 4,
and 5 for the generalized Mantel-Haenszel test and graphic
presentation of these results is omitted. Neither of these
tests is thus superior in terms of accuracy, but they differed
non-uniformly as to power, as discussed next.

Figure 11 shows power functions for the generalized
Berry—Mielke test in the conditions of Fig. 9, namely, as a
function differences in location of the psychometric functions
when fi., = 20 for all i and k. As surmised, the generalized
Berry—Mielke test does not parallel the generalized Mantel—
Haenszel test in these cases, but the drop in power is relatively
small. A comparison of power functions in the left panel in the
center row of Fig. 11 (for 7 = J = 2) with power functions in
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Fig. 9 Power of the generalized Mantel-Haenszel test of equality of
psychometric functions as a function of effect size, defined with respect
to the lateral displacement caused by parameter T. The number of trials
per level was fi., = 20, identical for all i/ and k. Layout and graphic
conventions as in Fig. 6. The parameters of the psychometric functions
were identical in all populations except that T = 0 in population 1 (solid

Figs. 6 and 7 of Logvinenko et al. (2012) reveals that the
generalized Berry—Mielke test also outperforms the test devel-
oped by Logvinenko et al.

When psychometric functions differ across populations in
slope, the generalized Berry-Mielke test substantially outper-
forms the generalized Mantel-Haenszel test, particularly
when stimulus levels span a region where the sign of the
differences between psychometric functions reverses (see
Fig. 12, compared to Fig. 10). The low power that can still
be noted in the left column of Fig. 12 (for / = 2) is due to the
fact that psychometric functions did not differ much between
populations, as can be seen in the top-left panel of Fig. 12 for
the largest difference involved in theses simulations. In such
conditions, the psychometric functions only differ meaning-
fully at the outer extremes, which are only probed with the
sampling points indicated by the black circles above the top
panels.

In sum, the accuracy of the generalized Berry—Mielke test
is identical to that of the generalized Mantel-Haenszel test and
its power is only slightly lower when psychometric functions
do not cross. However, when psychometric functions cross,
the generalized Berry—Mielke test can detect differences that
go undetected by the generalized Mantel-Haenszel test.

@ Springer
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curves in the top row), T = AT in population 2 (with values given by the
abscissa in the panels in the center and bottom rows; dashed curves at the
top have A1 = 60), and T= AT/2 in population 3. Results for / =2 (center
row) involve populations 1 and 2, whereas results for / = 3 (bottom row)
involve the three populations. SOA stimulus-onset asynchrony

Empirical Type-I error rate and power of the split
Mantel-Haenszel test

Compared to the preceding tests, the accuracy of the split
Mantel-Haenszel was negligibly inferior only when row
marginal frequencies were small (f;., < 10) with more than
two response categories (J > 2) and only two populations (/ =
2). Otherwise, accuracy was identical to that of the two other
tests. Graphical presentation of these results is omitted.
Figure 13 shows power functions in the same conditions in
which power functions were reported for the two other tests in
Figs. 9 and 11, namely, when psychometric functions differ
only in location. Remarkably, the power of the split Mantel-
Haenszel test in this case is only minimally lower than that of
the generalized Mantel-Haenszel test. Splitting is unnecessary
with the non-crossing psychometric functions for J = 2 (top
panel in the left column of Fig. 13) and these results show that
splitting does not meaningfully affect power in this case.
When J = 3 or J = 4 (center and right columns of Fig. 13),
the monotonic psychometric functions for the first and third
categories (red and blue curves in the top panels) do not
demand splitting; however, the psychometric functions for
the second category (black curves) and for the fourth
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Fig. 10 Power of the generalized Mantel-Haenszel test of equality of
psychometric functions as a function of effect size, defined with respect to
the slope determined by parameters A5 and Ag, which were kept equal to
preserve symmetry. The number of trials per level was f.; = 20, identical
for all i and k. Layout and graphic conventions as in Fig. 6. The
parameters of the psychometric functions were identical in all
populations except that 1/A5 = 1/Ag = p = 45 in population 1 (solid

category (green curves, when J = 4) are non-monotonic
and their differences are better assessed with a split at the
stimulus level where these functions cross. Given the way
in which differences were produced for these simulations,
the optimal split is not at the central stimulus level but
rather at an off-center location that varies for the actual
data in each replicate. We decided against tailoring the split
to the data in each replicate so that the results in Fig. 13 can
show that slightly suboptimal splits do not compromise
power. And, again, a comparison of power functions in
the left panel in the center row of Fig. 13 (for [ = J = 2)
with power functions in Figs. 6 and 7 of Logvinenko et al.
(2012) reveals that the split Mantel-Haenszel test outper-
forms the test devised by Logvinenko et al.

Figure 14 shows power functions for the split Mantel—
Haenszel test in the same conditions in which power functions
were reported for the two other tests in Figs. 10 and 12, name-
ly, when psychometric functions differ in slope. When J = 2,
splitting improves power relative to the generalized Mantel—
Haenszel test (compare the left columns in Figs. 10 and 14)
and to the same extent achieved with the generalized Berry—
Mielke test (compare the left columns in Figs. 12 and 14).

Effect size (Ap)

Effect size (Ap)

curves in the top row), 1/A, = 1/Ag = 1 + Ap in population 2 (with
values given by the abscissa in the panels in the center and bottom
rows; dashed curves at the top have Ay = 90), and 1/A, = [/Ag = p +
A/2 in population 3. Results for /=2 (center row) involve populations 1
and 2, whereas results for / = 3 (bottom row) involve the three
populations. SOA stimulus-onset asynchrony

Recall that the apparently poor power observed in Figs. 12
and 14 when J = 2 is due to psychometric functions that do
not differ much across populations, especially when they are
probed at the green or magenta sampling points. When J = 3
orJ =4, split computation also increases power relative to the
generalized Mantel-Haenszel test when the set of stimulus
levels spans a region where psychometric functions cross
(black sampling points and black power functions). With stim-
ulus levels confined to a region where the psychometric func-
tions do not cross (green or magenta sampling points and
power functions), power functions for the split Mantel—
Haenszel test are virtually identical to those of the generalized
Mantel-Haenszel test.

Comparison with CATANOVA

Variants of ANOVA have been proposed to deal with
categorical data, which might thus circumvent the problems
that ANOVAs bring when the data are counts or proportions.
For instance, Light and Margolin (1971; see also Margolin &
Light, 1974; Gitlow, 1976) proposed a one-way analysis of
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Fig. 11 Power of the generalized Berry—Mielke test when psychometric
functions differ in lateral displacement across populations. Graphic layout
and simulation conditions are identical to those for which the power of the

variance for categorical data (which they referred to as
CATANOVA) for / x J contingency tables that implies K =
1 and is unsuitable for our applications. Two-way extensions
for use with 7 x J x K tables were developed by Anderson and
Landis (1980), Onukogu (1985a, b), and Singh (1996), al-
though Gabriel (1963) had developed an analogous method
much earlier. Here we will assess the performance of
CATANOVA using Singh’s method, which ensures an orthog-
onal decomposition of the sums of squares (the reader is re-
ferred to Singh’s paper for details about computation of the
test statistics).

Two-way CATANOVA tests for effects of factor A (in our
case, population), effects of factor B (in our case, stimulus
level), and effects of interaction. Remarkably, no study seems
to have documented the accuracy and power of two-way
CATANOVA, which makes our comparison most needed.
We first checked (and confirmed) that Type-I error rates for
all effects are adequate when the true distribution of responses
across categories varies neither across populations (i.e.,
factor A) nor across stimulus levels (i.e., factor B), which
implies the unrealistic case of flat psychometric functions.
However, CATANOVA performed rather poorly under the
conditions of interest in our context, namely, when effects
of factor B exist (i.e., when the distribution of responses
across the J categories varies across stimulus levels).
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generalized Mantel-Haenszel test were reported in Fig. 9. SOA stimulus-
onset asynchrony

We ran simulations to investigate the statistical properties
of two-way CATANOVA for J € {2, 3, 4} and [ € {2, 3,
4} at o € {.05, .01}. For reasons that will become clear
immediately, results are reported only for a subset of the
conditions used earlier and only for the broad set of K = 13
sampling points. Because real psychometric functions are not
flat, strong effects of stimulus level (factor B) exist that make
the corresponding test highly significant, but effects of popu-
lation (factor A) or interaction effects do not exist under the
conditions in which data are generated for accuracy studies.
Then, rejection rates for the corresponding hypotheses should
stay at the nominal level. Figure 15 shows the accuracy of
two-way CATANOVA in the format of Fig. 3. Lines of differ-
ent color indicate the rejection rate for the test of main effects
of factor A (population), interaction effects, and either of them
under a Bonferroni correction. Quite clearly, empirical rejec-
tion rates are far below their nominal levels. When a test is as
inaccurate as this, its eventual power is irrelevant and mean-
ingless but we checked that it is nominally inferior to that of
our three other tests (results not shown). Hence, two-way
CATANOVA is not a viable option to test equality of psycho-
metric functions. The reason for its unruly performance is
perhaps that the CATANOVA test statistics were derived un-
der the assumption that null interaction also implies the
absence of main effects (see Eq. 2.4 in Onukogu, 1985a),
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Fig. 12 Power of the generalized Berry—Mielke test when psychometric functions differ in slope across populations. Graphic layout and simulation
conditions are identical to those for which the power of the generalized Mantel-Haenszel test were reported in Fig. 10. SOA stimulus-onset asynchrony

an assumption that does not hold for real psychometric
functions with which the distribution of responses across
the J categories differs across the K stimulus levels.
Derivation of a variant of CATANOVA where main and
interaction effects are independent of one another is beyond
the scope of this paper and unnecessary for our purposes.

Hlustrative applications

This section discusses potential applications of these tests and
illustrates them using empirical data from published studies. A
comparison with a parametric approach is also given at the
end of this section using the artificial data presented in Fig. 1
and using also some of the empirical data presented next.

An obvious application for tests of equality of psychometric
functions is in the assessment of whether empirical data
collected across several sessions involving the same con-
dition can reasonably be aggregated before further analy-
ses are conducted. This was the motivation for the test
developed by Logvinenko et al. (2012) and it is a frequent
concern in empirical studies that require the collection of
large amounts of data across several sessions, where the
observers’ sensory state can vary across sessions (for em-
pirical evidence to this effect see, e.g., Garcia-Pérez,
2010; Leek, Hanna, & Marshall, 1991; von Dincklage,

Olbrich, Baars, & Rehberg, 2013). A formal test is surely
more dependable than judging by eye whether the shape
described by data from different sessions look alike (e.g.,
Hutsell & Jacobs, 2013; Oliveira & Machado, 2008;
Yang, Meijer, Buitenweg, & van Gils, 2016). In this type
of application, each observer’s data on each experimental
condition are analyzed separately with / standing for the
number of sessions at which data had been collected.

A second application in which each observer’s data are also
analyzed separately is in the assessment of the effects of
experimental manipulations in within-subjects designs where
the same observers provide data under all conditions. In these
cases, [ stands for the number of conditions under study. An
interesting form of this analysis arises in the assessment of
order or position effects, by which psychometric functions
vary with the order or position in which two stimuli are
displayed in dual-presentation tasks (Alcala-Quintana &
Garcia-Pérez, 2011; Bausenhart, Dyjas, & Ulrich, 2015;
Dyjas & Ulrich, 2014; Garcia-Pérez, 2014b; Garcia-Pérez &
Alcala-Quintana, 2011a, 2011b; Garcia-Pérez & Peli, 2011,
2014, 2015; Self, Mookhoek, Tjalma, & Roelfsema, 2015;
Ulrich & Vorberg, 2009; von Castell, Hecht, & Oberfeld,
2017). In this case, / stands for the two orders or positions of
presentation of stimuli. However, even in studies that use
dual-presentation tasks for other substantive purposes,
order or position effects contaminate parameter estimates
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Fig. 13 Power of the split Mantel-Haenszel test when psychometric
functions differ in lateral displacement across populations. Graphic
layout and simulation conditions are identical to those for which

considerably (see Ulrich & Vorberg, 2009). An assessment of
their presence is good practice, as is the use of methods to
eliminate this contamination.

An also conceivable application is in the context of
between-subjects studies, where differences between groups
are under scrutiny (e.g., patients vs. normal controls, or musi-
cians vs. non-musicians), but also when different experimental
conditions are for some reason administered to different (but
presumably equivalent) groups. In these cases, I stands for the
number of groups to be compared, but it is obvious that these
analyses must be carried out with data aggregated across all
observers in each group because it is certainly irrelevant
whether some observer’s psychometric function differs from
that of someone else in other group. Such analyses may be
preceded by separate analyses of homogeneity within each
group, in which 7/ would stand for the number of observers
in the corresponding group.

The applications just described are illustrated next using
data from a study by Lee and Noppeney (2014), in which
judgments of audiovisual synchrony were collected at K =
13 SOAs ranging from —360 ms to 360 ms in steps of 60
ms. A binary synchrony judgment (SJ2) task was used in
which observers simply report whether audio and video sig-
nals seemed subjectively simultaneous or asynchronous, ren-
dering psychometric functions of the type shown in Fig. 2¢
above. The study involved a mixed 2 x 3 x 2 factorial design
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the power of the generalized Mantel-Haenszel test were reported in
Fig. 9 and the power of the generalized Berry—Mielke test were
reported in Fig. 11. SOA stimulus-onset asynchrony

with group membership (musicians and non-musicians) as a
between-subjects factor and with type of stimulus (speech,
sinewave speech, and music) and stimulus duration (short
and long) as within-subjects factors. Overall, 32 trials were
administered at each SOA to each of 21 musicians and 20
non-musicians under each within-subjects condition. Type of
stimulus and SOA were randomly interwoven in each block of
312 trials (3 types of stimuli x 13 SOAs X 8 repetitions) and
different blocks involved short or long stimuli. Two blocks for
each stimulus duration were administered on each of two
days. Occasional observers missed a block or performed an
additional block, which slightly altered the total number of
trials per SOA per condition across observers.

The study used a parametric approach by fitting psycho-
metric functions separately to each observer’s data in each
condition and subsequently conducting ANOVAs to assess
mean differences in the outcome measure, which was the
width of the temporal integration window (TIW) defined as
the normalized area under the fitted psychometric function
within the interval [-360, 360]. Our examples will focus in-
stead on nonparametric comparisons of psychometric func-
tions within and across selected conditions. These examples
only aim at illustrating the various applications of the tests and
they should not be misconstrued as a suggestion that such
analyses address the main goals of Lee and Noppeney
(2014), that this is how they should have analyzed their data
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Fig. 14 Power of the split Mantel-Haenszel test when psychometric
functions differ in slope across populations. Graphic layout and
simulation conditions are identical to those for which the power of the

to serve those goals, or that all these nonparametric tests
should be conducted in all empirical studies.

Data from other studies involving dual-presentation tasks
will subsequently illustrate the use of tests of equality of
psychometric functions to assess order or position effects.
The characteristics of those studies are described later.

Stability of performance across days

Our first inquiry regards the stability of each observer’s
performance across the two days in which data were collected.
One would expect that the data collected on each day come
from the same underlying psychometric function, which calls
for tests of equality of psychometric functions across the two
days for each participant in each condition. We will restrict our
analysis to observers who did not miss any block of trials,
resulting in a grand total of 231 tests (instead of the 41 % 3 x
2 = 246 tests that complete data would have allowed). In each
of these tests, / = 2 (the two days), J = 2 (the two response
categories in the SJ2 task), K = 13 (the 13 SOAs), and f., = 16
for all i and k. Even if the true psychometric function for each
participant in each condition were the same on both days, at o« =
.05 one still has to expect 5 % rejections (i.e., about 12 out of
231). The numbers of rejections were instead 88 (38.1 %), 65
(28.1 %), and 93 (40.3 %) by the generalized Mantel-Haenszel
test, the generalized Berry—Mielke test, and the split Mantel—

Effect size (Ap)

Effect size (Ap)

generalized Mantel-Haenszel test were reported in Fig. 10 and the power
of the generalized Berry—Mielke test were reported in Fig. 12. SOA
stimulus-onset asynchrony

Haenszel test (with a 67 split), respectively. These different
numbers of rejections across tests are well in line with the
differences in power documented earlier in this paper.

One cannot obviously conclude that each rejection reveals
non-equality of psychometric functions (because 100%
rejections are expected in case of equality) and that each
non-rejection reveals equality (because power is not unity
and, then, a certain percentage of non-rejections will always
occur in case of non-equality). The moderately large percentage
of rejections just mentioned nonetheless indicates that stability
of performance across days is untenable (Garcia-Pérez, 2012,
2017), which leaves the question open as to whether or not
aggregating data from both days for all observers is still sensi-
ble for further analyses. This is not a question that statistical
tests can provide an answer for. Figure 16 shows sample cases
of rejection (top row) and non-rejection (bottom row) by the
Ocmy statistic. Even when equality is rejected, the paths of the
data on each day may justify aggregation for subsequent
analyses.

Homogeneity of groups
Our second inquiry regards the homogeneity of each group in
each within-subjects condition, using data aggregated across

the two days for each observer regardless of missing or extra
sessions. This analysis requires 12 tests: six within-subjects
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Fig. 15 Accuracy of CATANOVA under the exact same conditions
illustrated in Fig. 3 for the generalized Mantel-Haenszel test. The
curves in the three bottom rows reflect the empirical Type-I error rate of
the test for main effects of the row dimension (population; green curves),
the effects of interaction (magenta curves), and a combined test for either
type of effect with a Bonferroni correction (black curves). Note that the

conditions in each of two groups. In each of the six tests for
the group of musicians, 7 = 21 (the observers), J = 2 (the two
response categories in the SJ2 task), K = 13 (the 13 SOAs),
and fi., = 32 for all i and k in most cases (i.c., the number of
trials per SOA aggregated across the two days), although this
number was instead 24 for observers who missed a block for
some stimulus duration and 40 for observers who completed
an extra block with some stimulus duration; in the group of
non-musicians the only difference is that / = 20 instead. There
is obviously no reason to expect all musicians (or non-
musicians, for that matter) to display analogous performance,
but large and disparate individual differences among the mem-
bers of each group surely taint subsequent group comparisons
(Estes, 1956; Estes & Maddox, 2005). At & = .05, all 12 tests
resulted in rejections by the generalized Mantel-Haenszel test,
the generalized Berry—Mielke test, and the split Mantel—
Haenszel test (also with a 67 split). Figure 17 shows the
empirical psychometric functions of the 21 musicians in each

@ Springer
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visible thick curves that meander near or below an ordinate of .01 are
actually those pertaining to « = .05; the curves pertaining to o« = .01 are
sitting virtually at an ordinate of 0. With these non-flat psychometric
functions, main effects of the column dimension (stimulus level) exist
which were invariably significant and are not reported in the plots. SOA
stimulus-onset asynchrony

of the six within-subjects conditions, revealing large individ-
ual differences that naturally substantiate the significant tests.

Differences between speech and sinewave speech

The third illustration involves a comparison of performance
for speech and sinewave speech stimuli of the same duration,
which is again carried out individually for each observer. This
implies 41 tests (one per observer), each with 7 = 2 (the two
types of speech at, e.g., short duration), /=2, K=13, and f.., =
24, 32, or 40 for all i and k according to the amount of data
collected from each observer. Although, in principle, one
might surmise that the two types of speech stimuli should
produce similar performance by each observer, at & = .05 the
numbers of rejections were 31 (75.6 %), 28 (68.3 %), and 33
(80.5 %) by the generalized Mantel-Haenszel test, the gener-
alized Berry—Mielke test, and the split Mantel-Haenszel test
(also with a 6-7 split), respectively. An analogous set of 41
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Fig. 16 Sample psychometric functions for eight observers (panels) in
the study of Lee and Noppeney (2014), with data from day 1 (blue curves)
and day 2 (red curves). Equality of psychometric functions was rejected

tests for long speech and long sinewave speech stimuli ren-
dered 30 (73.2 %), 25 (61.0 %), and 29 (70.7 %) rejections,
respectively by the generalized Mantel-Haenszel, generalized
Berry—Mielke, and split Mantel-Haenszel tests. A graphic il-
lustration of these results is omitted.

A percentage of rejections well beyond the 5 % rate
expected by chance thus document meaningful within-
subject differences in perception of audiovisual synchrony
for speech and sinewave speech at both stimulus durations.
This comparison was not relevant to Lee and Noppeney’s
(2014) goals and, thus, they did not report tests of equality
of means conducted on their outcome measure. However,

short, speech

short, sinewave speech

by the Ogmp test for cases in the top row and was not rejected for cases in
the bottom row. All data come from the group of musicians with sinewave
speech stimuli of long duration. SOA stimulus-onset asynchrony

from their Fig. 2, it seems unlikely that the mean TIW will
differ significantly between speech and sinewave speech at
any of the two durations. This judgment is admittedly specu-
lative, but a discrepancy between the outcomes of parametric
and nonparametric tests will be demonstrated in full later.

Differences between groups
Finally, checking for differences between groups in each
within-subjects condition requires six tests (one per condition)

with 7 = 2 (the two groups, using data aggregated across all
observers in each group), J = 2, K = 13, and very large f.;

short, music
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Fig. 17 Empirical psychometric functions of the 21 musicians (undifferentiated curves in each panel) who served in each and all of the experimental
conditions (panels) in the study of Lee and Noppeney (2014). SOA stimulus-onset asynchrony

@ Springer



2248

Behav Res (2018) 50:2226-2255

(coming from the overall number of trials administered across
all the members of each group) that also differ across i due to
the different sizes of each group. All the tests turned out
significant by all three statistics at & = .05, as might be
expected given the systematic differences displayed
graphically in Fig. 18.

This type of group comparison, which requires aggregation
of data from all the observers in each group, could arguably be
performed via conventional ANOVA with group membership
as a between-subjects factor, stimulus level as a repeated-
measures factor, experimental condition as another within-
subjects factor (in case an ANOVA is not conducted separate-
ly for each condition), and with the proportion of “synchro-
nous” responses given by each observer as the dependent
variable. However, the applicability of such an approach is
limited to conditions in which J = 2.

Order or position effects in dual-presentation tasks

Our first illustration of this type assesses position effects in
data from the fourth experiment reported by Self et al. (2015),
a visual contrast discrimination study that involved two
within-subjects conditions (referred to as “figure” and
“ground”; for details, see Self et al.). Test and standard stimuli
were presented simultaneously on each trial, one above and
one below a fixation point, with presentation locations ran-
domly interwoven across trials (so that / = 2; upper or lower
location of the test stimulus). A ternary task was used (i.e., J=
3) in which observers had to indicate on each trial whether the

short, speech

short, sinewave speech

upper stimulus had higher contrast, the lower stimulus had
higher contrast, or both seemed to have the same contrast.
Data were collected at K = 11 levels of the test stimulus, with
[ =40 at each i and £ in each within-subjects condition for
each of seven observers. This implies 14 tests of equality.

Figure 19 shows the empirical psychometric functions for
each observer in each condition. Each panel shows the two
sets of psychometric functions to be compared. At oc = .05, the
numbers of rejections were 13 (92.9 %), 11 (78.6 %), and 12
(85.7 %) by the generalized Mantel-Haenszel test, the gener-
alized Berry—Mielke test, and the split Mantel-Haenszel test
(with a 5-6 split), respectively, and note that the 5-6 split
seems optimal by eye in all cases. Again, massive rejections
reveal the presence of meaningful position effects and, thus,
advice against aggregating data across presentation position
and demand fitting instead psychometric functions separately
for each presentation position, as Self et al. (2015) actually
did. The only case in which equality across presentation posi-
tions was not rejected by any of the three statistics is that of
observer #6 in the “ground” condition (see the corresponding
panel in Fig. 19). Contentious cases where equality was only
rejected by one or two statistics are those of observers #3 and
#4 in the “figure condition.” In all other cases, empirical dif-
ferences across presentation orders appear sufficiently system-
atic to substantiate rejection of equality by all three tests. Note,
however, that the direction of the differences (direction of
lateral displacement of one set of psychometric functions rel-
ative to the other) varies across observers, an issue to which
we will come back later.

short, music
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Fig. 18 Empirical psychometric functions for aggregated data from all
non-musicians (blue curves) and all musicians (red curves) in each
experimental condition (panels) in the study of Lee and Noppeney
(2014). Discrepancies between the paths described by these data and
the paths of analogous curves plotted in Fig. 1 of Lee and Noppeney
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occur because each proportion plotted here is computed after
aggregating raw data, whereas each proportion plotted there is the

average of the individual proportions computed for each observer. SOA
stimulus-onset asynchrony
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Fig. 19 Empirical psychometric functions for visual contrast
discrimination for each of seven observers (panels) in two conditions
(figure and ground; left and right parts), from experiment 4 of Self et al.
(2015). Responses in each of the three categories (test higher, standard

Our second illustration assesses order effects and uses data
collected with an adaptive method, which implies that row
marginal frequencies f.; vary across i and k with the potential
for f.., = 0 at one or more i in one or more k. Data come also
from a study on visual contrast discrimination that used a
sequential presentation of test and standard stimuli in each
trial (Alcala-Quintana & Garcia-Pérez, 2011; their
Experiment 2), thus resulting in a potential for order effects.
Five observers served in three within-subjects conditions, thus
requiring 15 tests of equality of psychometric functions across
presentation orders (so that, again, / = 2). Data were collected
with a ternary task (i.e., J = 3) identical to that of Self et al.
(2015). In each of the three conditions (sensory desensitiza-
tion during the first interval of each dual-presentation trial,
sensory desensitization during the second interval, and no
desensitization), 768 trials under each presentation order were
randomly interwoven within and across consecutive blocks.
The stimulus level on each trial was selected adaptively and
separately for each presentation order, which implies that the
overall number of stimulus levels as well as their values were
not required in advance to be the same for both presentation
orders. The adaptive method selected stimulus levels from a

-e- test higher
test presented below: -e-test higher

-e- undecided
-e- undecided

-e- standard higher

Ground condition

Proportion

Proportion

Proportion

-15-10 -5 0 5 10 15

Proportion

—9
10 15

Percent relative test contrast, x
higher, and undecided) were separated according to the position (above or
below) at which the test stimulus was presented in each trial (see the

legend at the top). The vertical dashed line in each panel indicates the
contrast of the standard stimulus

fixed lattice and, then, the eventual occurrence of tables with
N, =1 still left a sufficiently large number of tables with large
Nj. Some stimulus levels were indeed used with only one of
the presentation orders (i.e., fi.; = 0 for some i at some k) and,
for stimulus levels that were used with both presentation or-
ders, the number of trials varied across presentation orders
(i.e., fix varies across i at all k).

Figure 20 shows the empirical psychometric functions for
each observer in each condition. Each panel shows again the
two sets of psychometric functions to be compared. Data at
stimulus levels that were used in only one of the / populations
are uninformative for lack of data from the other population to
compare with. Hence, for data collected with adaptive
methods, the test of equality of psychometric functions would
use responses from only the set of K stimulus levels used in
both populations (or, more generally, in more than one popu-
lation when 7 > 2). Thus, for the case in the top-left panel of
Fig. 20, only stimulus levels from x =—1.25 to x =—0.8 would
be used, yielding K = 9. This is effectively what the compu-
tations involved in the tests end up doing when provided in-
stead with data from the 18 (common and unique) stimulus
levels (from x = —1.4 to x = —0.55 in our sample case), with f;;
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Fig. 20 Empirical psychometric functions for visual contrast
discrimination for each of five observers (rows) in three adaptation
conditions (columns), from Experiment 2 of Alcala-Quintana and
Garcia-Pérez (2011). Responses in each of the three categories (test

= 0 at all j for the stimulus levels k& at which no data had
actually been collected in population i. Equality of psycho-
metric functions across presentation orders was rejected at oc =
.05 in all 15 cases by the generalized Berry—Mielke test; the
generalized Mantel-Haenszel test and the split Mantel—
Haenszel test (with an even split) rejected equality in all cases
except for observer #4 in the “not adapted” condition, and
note again that an even split also seems adequate by eye with
these data.
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higher, standard higher, and undecided) were separated according to the
order of presentation of test and standard stimuli in each trial (test first or
test second; see the legend at the top). The vertical dashed line in each
panel indicates the contrast of the standard stimulus

Comparison with a parametric approach

We will first revert to the data in Fig. 1 for a comparison of the
outcomes of nonparametric and parametric approaches. The
artificial situation remains unspecified besides the fact that
data were generated for a purported SJ3 task with the model
of perception of temporal order discussed earlier and using the
same parameter values (A4, A, T, 01, 84) = (1/45, 1/45, 0,50,
50) for both populations. Populations 1 and 2 in this example
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might well reflect the two sessions in which data for some
condition were collected, representing the empirically realistic
case in which the need to interweave several conditions in a
session limits the amount of data that can be collected per
condition (as in Lee and Noppeney, 2014, among many
other studies). In a situation like this, a researcher will have
as many two-population cases of this type as there are ob-
servers and conditions in the study and, hence, multiple situ-
ations for tests of equality of psychometric functions.

The outcomes of our nonparametric tests for the singled-
out artificial data in Fig. 1 were reported earlier: None of the
three tests rejected equality of psychometric functions. This
outcome happens to match the reality that generated the data
although this type of assessment is impossible in empirical
studies. The main point, however, is that nonparametric ap-
proaches allow for formal tests to assess equality of psycho-
metric functions in each individual case. As seen next, this is
simply impossible with parametric approaches.

Parametric approaches fit suitable psychometric functions
to the data and compare either their estimated parameters or
performance measures derived from them. We used the soft-
ware in Alcala-Quintana and Garcia-Pérez (2013) to obtain
parameter estimates and performance measures for the model
psychometric functions in Eq. 15 in each of the two popula-
tions, with the results shown in Fig. 21. The fit was good in
both cases by the log-likelihood ratio statistic (p = .402 and p
= .592 in populations 1 and 2, respectively). Beyond this
point, assessing equality of psychometric functions involves
subjective judgments of similarity of the fitted functions or
subjective judgments of differences between parameter esti-
mates (Aa, A, T, 01, and 8,4) or performance measures (PSS or
SR, defined in the caption to Fig. 21) across populations. The
reason that only informal judgments are possible is that each
psychometric function has been reduced to a single set of
distinct quantities (Aa, Ag, T, 81, 84, PSS, and SR), which
precludes statistical tests of equality. Comparing the numerical
values by eye is hampered by the fact that they are rather
inaccurate estimates of the corresponding true values because

Population 1

of the scarce data used to obtain them, an unavoidable incon-
venience in the empirical context of this discussion. Standard
errors of estimation are not available either but they are known
to be relatively large with magnitudes that vary across param-
eters as a function of number of trials and the location of the K
sampling points relative to the unknown shape and location of
the true psychometric functions (see, e.g., Fig. 15 in Alcala-
Quintana & Garcia-Pérez, 2013; see also Garcia-Pérez,
2014a). Then, even an informal assessment of equality based
on standard errors of estimation is unfeasible, besides the fact
that such type of comparison may be inconclusive due to
different outcomes for different parameters.

Because formal tests of equality of psychometric functions
are unfeasible, the conventional approach takes a detour by
testing for equality of means (of parameter values or perfor-
mance measures) at a group level. In the situation under dis-
cussion, this may involve paired-samples ¢ tests or repeated-
measures ANOVAs to assess mean differences in the esti-
mates of, say, the SR across sessions, with the means comput-
ed over observers. In other words, conventional parametric
approaches assess group-level differences in the mean of iso-
lated quantitative aspects of psychometric functions.
Interesting as these analyses may be in a second stage, they
differ from testing equality of psychometric functions per se.
Differences between means may not be significant when psy-
chometric functions actually differ on an observer-by-
observer basis: Equality of means is a necessary consequence
of equality of psychometric functions but it is not a sufficient
condition for it. An illustration in the context of order or po-
sition effects using empirical data will reveal why this para-
metric strategy is inadequate.

We mentioned that order or position effects vary in
direction across observers. Figure 19 revealed that data
points for one of the presentation positions systematically
lie above data points for the other in some observers (e.g.,
observer #2 in both conditions), whereas it is the other
way around for other observers (e.g., observer #7 also in
both conditions). The same holds for order effects in Fig. 20.

True and estimated parameters

-
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Fig. 21 Psychometric functions in Eq. 15 fitted to the data in Fig. 1. The
table on the right lists the true parameters with which data were generated
(identical for both populations) and the estimated parameters for each
population. Parameters &; and &, were estimated under the constraint d;
= —84, which holds for their true counterparts. PSS and SR at the bottom

050 80 40 0 40 80 120°350 80 40 O 40 80 120
Stimulus level, x

of the lists are performance measures extracted from the fitted functions.
The PSS (point of subjective simultaneity) is the stimulus level at which
the psychometric function for S responses (black curve) peaks; the SR
(width of the synchrony range) is the range of stimulus levels at which S
responses are more prevalent than AF or BF responses
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These effects make data look as if psychometric functions
were laterally shifted in opposite directions across presen-
tation orders or positions. Evidence of individual differ-
ences in the direction and magnitude of this shift is over-
whelming (e.g., Bausenhart, Dyjas, & Ulrich, 2015; Dyjas
& Ulrich, 2014; see also the many other studies discussed
in Garcia-Pérez & Alcala-Quintana, 2011a, 2017b). A
parametric approach first measures the signed magnitude
of the shift for each observer via estimated parameters and
then tests the average shift against zero. With a mixture of
observers showing meaningful shifts in each direction, the
average shift may not be significantly different from zero
and will be mistaken for a “proof” that position or order
effects are not present in the data.

To substantiate this claim numerically, we used the soft-
ware in Garcia-Pérez and Alcala-Quintana (2017b) to fit suit-
able psychometric functions to data from each observer and
condition in Fig. 19. The fit was good as measured by the log-
likelihood ratio statistic, which did not reject the fitted model
in any case at o« = .05. The lateral shift across presentation
positions was then measured for each observer and condition
using the estimated parameters, which rendered values rang-
ing from —3.52 to 3.37 (in the units of the horizontal axis) with
an average of 0.138 and a standard deviation of 2.264. The
effect size is negligible (Cohen’s d, = 0.06) and a one-sample ¢
test did not reject a zero mean (¢35 = 0.219, p = .829).
Obviously, this result only says that the average magnitude
of position effects is reasonably null, which is not to say that
position effects are not present in the data and should not be
taken care of. Only nonparametric tests can assess within-
subject position effects adequately and we showed earlier that
their use revealed significant effects in almost all cases:
Equality of psychometric functions was rejected massively
on an observer-by-observer basis.

Practical recommendations

The software included as Electronic Supplementary Material
conducts the three nonparametric tests presented here (with
the user-selected split for the S-Ogwmy statistic) taking care of
all their subtleties (e.g., removal of tables for which v, <0.5
in case of the G statistic, proper consideration of the degrees of
freedom of the S-Ogmp statistic, etc.) and returning informa-
tion about these aspects (see examples in the user’s manual
that accompanies the software). Then, the only practical con-
cern for a user is the criterion by which a test should be se-
lected and, eventually, the choice of a split for the S-Ogmu
statistic. These issues are discussed next.

Test accuracy is not a consideration in the choice of a test
because all of them maintain the nominal Type-I error rate.
However, power differs non-uniformly across tests depending
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on the number J of response categories and, when J = 2,
depending also on whether empirical data display evidence
that the psychometric functions for the / populations cross.

In principle, with binary tasks (i.e., /= 2) that render mono-
tonic psychometric functions, the generalized Mantel—
Haenszel test is the optimal choice with non-crossing data
(as in Fig. 2a); with crossing data (as in Fig. 2b), the optimal
choices are instead the generalized Berry—Mielke test and the
split Mantel-Haenszel test with a split at the crossing point.
The same criterion applies to binary tasks that render instead
non-monotonic psychometric functions, where the most com-
mon case is that the functions cross as illustrated in Fig. 2¢
and, then, the optimal choices are again the generalized
Berry—Mielke test and the split Mantel-Haenszel test with a
split at the crossing point. However, it may so happen that
such non-monotonic psychometric functions do not cross
(see Figs. 16 and 18). In such cases, the optimal choice is
again the generalized Mantel-Haenszel test.

With non-binary tasks (where J > 2) crossings will almost
always be observed in empirical data whenever psychometric
functions actually differ across populations (see some
empirical examples in Figs. 19 and 20). The generalized
Mantel-Haenszel test should thus be avoided and the optimal
choices are again the generalized Berry—Mielke test and the
split Mantel-Haenszel test. Because of the multiple psycho-
metric functions and crossings when J > 2, the optimal split
for the latter test is at the stimulus level where the ensemble of
psychometric functions has a vertical axis of approximate bi-
lateral symmetry. It can easily be seen in the panels of Figs. 19
and 20 that the vertical dashed line used for an even split in
those examples is optimal or near-optimal by this criterion.
However, the choice of split is not a serious concern because
our results reveal that slightly suboptimal splits do not reduce
power meaningfully.

‘We have also shown that power varies with the number and
location of the stimulus levels at which data are collected. This
factor does not have any bearing on the choice of a test for the
data on hand, but it raises the question as to whether criteria
exist to pre-select stimulus levels that maximize power. Ideal
criteria obviously exist: Select levels at which psychometric
functions differ the most. However, without knowledge of
whether and where such differences occur, this ideal is impos-
sible to realize but some action can nevertheless be taken.
Consider Fig. 16 and remember that data were collected for
all observers at a fixed set of pre-selected stimulus levels. In
retrospect, these levels were inadequate for the observer in the
bottom-right panel: The left-most increasing range of the psy-
chometric functions is entirely missing, the central range
where they do not differ is over-represented, and only some
evidence of differences shows at the right-most decreasing
range. Use of adaptive methods would have rendered more
informative data and a more powerful test because these
methods choose stimulus levels wherever necessary to cover
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the entire range of the psychometric function (for an illustra-
tion addressing the exact same problem, see Fig. 10 in Garcia-
Pérez, 2014a).

Finally, the number of trials placed at each stimulus level
also affects the power of the tests, although this has again no
bearing on the choice of a test for the data on hand. More data
always implies more power but it also places more burden on
the observers and lengthens the duration of experimental ses-
sions, which are the only practical limitations to collecting the
large amounts of data that would ensure large power.

Conclusion

This paper has defined and compared several nonparametric
tests for equality of psychometric functions. Three of them
(the generalized Mantel-Haenszel test, the generalized
Berry—Mielke test, and the split Mantel-Haenszel test) have
adequate (and indistinguishable) accuracy but they differ
slightly as to power. In contrast, the CATANOVA test also
assessed in this paper is highly inaccurate. Of the three advis-
able tests, the generalized Mantel-Haenszel test is the most
powerful when the psychometric functions to be compared do
not cross but it is unable to detect differences materializing in
psychometric functions that cross. In contrast, the generalized
Berry—Mielke test and the split Mantel-Haenszel test over-
come the problems that cause the failure of the generalized
Mantel-Haenszel test.

These three tests of equality of psychometric functions also
outperform the test proposed by Logvinenko et al. (2012) in
the limited scenario where the latter is applicable, namely, / =
J = 2 and monotonic psychometric functions that differ only
by lateral translation. The three tests presented here are more
general, as they can be used in other scenarios (i.e., />2,J>2,
and monotonic or non-monotonic psychometric functions that
differ in any respect). The tests can be used when row mar-
ginal frequencies f..; are identical for all i and & (i.e., with data
collected with the method of constant stimuli) or when data
are collected instead with adaptive methods that render row
marginal frequencies f;.; that vary across i and £, including the
potential for ., = 0 at one or more i in one or more k. Adaptive
collection of data is generally advisable because of its ability
to probe psychometric functions where needed and, hence, to
increase the power of these tests.

Although the tests were presented in the context of
assessing the equality of psychometric functions, they
are applicable whenever homogeneity of distributions
across strata needs to be assessed. For instance, the detection
of differential item functioning (DIF; Finch, 2016) in educa-
tional or psychological measurement requires a comparison of
item responses (in J categories) among / groups of individuals,
with respondents in each group classified into K strata accord-
ing to their total score. The generalized Mantel-Haenszel test

is one of the most common approaches to detect DIF but this
approach is known to be insensitive to nonuniform crossing
DIF, a pattern of differences whose sign varies among groups
across the K strata in a form thoroughly analogous to that
illustrated in Fig. 2b (Narayanan & Swaminathan, 1996;
Rogers & Swaminathan, 1993; Uttaro & Millsap, 1994).
Our results show that the generalized Berry—Mielke test and
the split Mantel-Haenszel test are suitable nonparametric tests
to detect nonuniform crossing DIF.

To facilitate applications, fully documented software in
MATLAB and R is available as Supplementary Material to test
equality of psychometric functions (or DIF detection or, more
generally, homogeneity of distributions in any context) with
the statistic of choice (Ogmu, G, or S-Ogmn) and with the
user’s choice of split for the S-Ogmy statistic.
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