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Abstract Many vision experiments, e.g., tests of masking
and visual crowding, involve the effect of adding a sec-
ond stimulus to an initial one. The effects of such additions
are generally considered in terms of physiological mecha-
nisms and the possibility of interference in the stimuli is
generally not considered. In the present study, interference
between two stimuli was assessed by comparing the sum
of amplitudes in the combined stimulus to the sums of the
amplitudes in the two stimuli determined separately. With
this approach, evidence for interference was found. It was
also found that adding a second stimulus may alter the phase
angles. These observations mean that the same stimulus pre-
sented together with other stimuli may have less stimulus
power than when presented by itself. Thus, it is necessary
to take account of the possibility of interference when inter-
preting results from experiments in which the effect of one
stimulus element upon another is explored.

Keywords Fourier transform · Spatial phase · Vision ·
Amplitude · Stimulus · Masking · Crowding

Introduction

There can be little doubt that the “stimulus power” of one
stimulus element in a visual stimulus display can be reduced
by the introduction of other elements. To take an obvious
example, consider the simple case of a stimulus consisting
of a bright dot presented on a dark background. Were one
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to add a surrounding field matching the dot in brightness
one would have created a uniform field which would have
reduced (if not altogether abolished) the stimulus power of
the initial dot. In this case when a subject is no longer able to
see the dot one would explain this by a change in the stimu-
lus and not in terms of physiological mechanisms. Another
example involving the same bright dot would be to sim-
ply add uniform luminance to the whole stimulus display.
In which case one would have reduced the contrast of the
bright dot.1 Also in this case, an explanation of any change
in response resulting from the change in the stimulus would
(presumably) primarily be in terms of the stimulus and only
secondarily, if at all, in terms of physiological mechanisms.
These examples describe, of course, very simple cases, and
it seems unlikely that anyone would dispute that the stimu-
lus power of the initial stimulus is reduced by the additions
in these instances. Yet, in the case of more subtle, or smaller
additions, such as, e.g., the addition of a masking stimulus
to a target stimulus, the possibility that the additional stim-
ulus reduces the power of the target stimulus is rarely, if
ever, considered. Rather, the results of such experiments are
almost invariably discussed exclusively in terms of mech-
anisms in the visual system. The present report seeks to
analyze the effect upon the stimulus power of a given stim-
ulus element of introducing an additional element into the
stimulus display. The report also seeks to provide a mathe-
matical framework for understanding and quantifying such
effects. These analyses, it should be emphasized, deal with
visual stimuli and do not involve the visual system or visual

1Adding luminance uniformly reduces the amplitudes since (Lmax −
Lmin)/(Lmax +Lmin) > ((Lmax +Ladd)− (Lmin +Ladd))/((Lmax +
Ladd) + (Lmin + Ladd)) = (Lmax − Lmin)/(Lmax + Lmin + 2 Ladd)

when Lmax > 0, Ladd > 0, and Lmin ≥ 0, where Lmax and Lmin rep-
resent the maximum and minimum luminance values andLadd denotes
the added luminance.
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perception (i.e., they do not deal with responses to the
stimuli).

The present report seeks to explore interactions between
visual stimuli or between visual stimulus elements within
the framework of interference. “Interference” refers to an
interaction between two or more signals. It can be easily
explained in terms of two sinusoidal signals of equal fre-
quency and amplitude. This is illustrated in Fig. 1. If two
such signals are added in the way so that the peaks and
troughs in one signal coincide, respectively, with the peaks
and troughs in the other, i.e., if the two signals are in-phase,
the amplitude of the resulting signal will correspond to the
sum of the two amplitudes. This is termed “constructive
interference” and is illustrated in Fig. 1a. On the other hand,
if the peaks in one signal coincide with the troughs in the
other, i.e., if the two signals are out of phase, they will anni-
hilate each other. In this case, if the two signals have equal
amplitudes, the resulting signal will have zero amplitude.
This is known as “destructive interference” and is shown in
Fig. 1b. The sum of two signals may fall anywhere between
these extremes. What is important in the present context
is that the amplitude of the combined signal may not be
larger than the sum of the two amplitudes, and, most impor-
tantly, the amplitude of the combined signal will be smaller
than the sum of the individual amplitudes whenever the two
signals have different phases.

Combinations of stimulus elements can be found in stim-
uli designed to investigate visual masking (e.g., Breitmeyer
& Ogmen, 2000), lateral masking (e.g., Kurylo, Yeturo,
Lanza, & Bukhari, 2017) and visual crowding (e.g., Levi,
2008; Whitney & Levi, 2011). However, in these investiga-
tions it is generally assumed (typically tacitly) that adding a
second stimulus element to an initial one does not reduce the
stimulus power of the initial element and, consequently, that
any perceptual effects must be attributed to factors in the
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Fig. 1 Interference between two sinusoidal signals. a The two signals
are in phase, causing the amplitude of their sum to equal the sum of
their individual amplitudes. Since the amplitudes of the two signals in
this case were equal, the amplitude of the sum becomes twice that of
each of the initial signals. b The two signals are out of phase, causing
them to cancel. Since the two signals have equal amplitudes, their sum
becomes zero in this case

visual system (e.g., Clarke, Herzog, & Francis, 2014; Her-
mens, Luksys, Gerstner, Herzog, & Ernst, 2008; Manassi,
Lonchampt, Clarke, & Herzog, 2016; Shin, Chung, & Tjan,
2017).2 The present investigation examines this assumption.

In a discrete Fourier transform of a spatial signal, each
component is calculated as

∑
f [x]eiωx , where x denotes

position, f [x] the signal as a function of position (square
brackets indicate that the signal is sampled at discrete inter-
vals), ω gives the spatial frequency of the component, and
i = √−1 . Thus, each element in the Fourier spectrum
is a sine function with a given amplitude and phase and is
expressed by a complex number, i.e., has the form d + ie

where d and e are real numbers. A complex number can be
represented by a vector in the complex plane. (The com-
plex plane is the plane which has a real and an imaginary
axis. The real axis has 1 as its unit and the imaginary axis
has i = √−1 as its unit.) In this representation, the length
of the vector gives the amplitude of the component whereas
the angle of the vector denotes the phase, i.e., phase angle.
In Fig. 2a are shown two vectors of equal length (i.e., equal
amplitude) but with different phase angles: θa and θb. In
Fig. 2b is shown the addition of these two vectors. As should
be apparent, the length of the sum of the two vectors is
shorter than the sum of the lengths of the two vectors deter-
mined separately. If we denote the vectors by a and b, we
get that a + b, is shorter than the sum of the lengths of
the individual vectors a and b. (This is an example of what
is known as the “triangle inequality”.) Mathematically, this
can be expressed as |a + b| < |a| + |b| when a and b have
different phase angles. (This notation is based on the fact
that for a complex number z = x + iy, with x and y being
real numbers and i = √−1, the absolute, i.e., the amplitude,
is |z| = √

x2 + y2.)
In Fig. 1 interference was illustrated in terms of summa-

tion of sine functions. As already mentioned, the Fourier
transform represents a signal as a series of such functions.
Such a series is known as a Fourier series in which each
component is represented by a sine function of a particular
frequency having a particular amplitude and phase. Since it
is easy to understand interference in terms of sine functions,

2A notable exception is represented by the work of Hess, Dakin, and
Kapoor (2000) in which was examined the amplitude spectra of stim-
uli under conditions generating visual crowding. They found that “the
most relevant physical spatial frequency band” of the target stimuli is
displaced to higher spatial frequencies under conditions when crowd-
ing is observed. (See Levi, Klein, & Hariharan, 2002, for comments.)
The effect discussed by Hess et al. is clearly different from interfer-
ence, which is the topic of the present report. However, neither Hess
et al. (2000) nor Levi et al. (2002) describe interactions in terms of
interference. The term “interference” has sometimes been used in con-
nection with masking, e.g., Enns (2004) and crowding, e.g., Clarke
et al. (2014). However, in those instances, the term has been used in
a general, non-specific sense to simply mean a destructive interaction
and not in the precise mathematical sense as in the present report.
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Fig. 2 Vector representations in the complex plane of the adding of
Fourier components. a Two components of equal amplitudes but dif-
ferent phase angles, i.e., the vectors have equal lengths but different
directions as indicated by θa and θb. b Addition of the two vectors
in (a). As can be seen, the length of the sum (a + b) is shorter than
the length of a plus the length of b. Panels c and d give the vector
representations of the adding of the signals depicted in Fig. 1a and b,
respectively. In (c) the two vectors have the same direction (θa = θb)
making |a+ b| = |a| + |b| whereas in (c) the vectors point in opposite
directions (θa = θb + π ) making their sum equal 0 (i.e., |a + b| = 0).
“Re” and “Im” denote the real and imaginary axes, respectively

Fourier series provide a convenient framework for exploring
interference effects.

That sine functions are relevant for vision is indicated
by both psychophysical and neurophysiological evidence.
In the case of psychophysical data, it has been found that
complex waveforms are detected when the fundamental
component reaches threshold (Campbell & Robson, 1968).
This implies that stimuli are analyzed into separate Fourier
components and that detection depends on the amplitudes
of these components.

In relation to visual neurons, there are data to indicate
that neurons in the visual cortex respond selectively to
particular spatio-temporal Fourier components in the stim-
uli (De Valois, Albrecht, & Thorell, 1982). De Valois, De
Valois, and Yund (1979) recorded responses from single
neurons in cortical Area V1 to drifting checkerboard pat-
terns and found that the responses are determined by the
Fourier components and not the edges in the patterns. Skot-
tun, Zhang, and Grosof (1994) found that the bifurcation of
the directional response of cortical cells to rapidly drifting
patterns of random dots, something which is very difficult
to understand in terms of time and space, can be understood
in terms of the spatio-temporal frequency content of the
stimuli. Also, Jones and Palmer (1987) have suggested that

cortical simple cells may be modeled as 2-D Gabor func-
tions. This would make these cells responsive to sine grating
over limited ranges of spatial frequencies. Together, these
findings suggest that Fourier transforms provide a reason-
able framework for understanding visual stimuli (De Valois
& De Valois, 1990).

As should be clear from the above, one effect of inter-
ference is to reduce the amplitudes in stimuli. That this
is relevant is indicated by the fact that the responses of
visual neurons depend fundamentally upon stimulus ampli-
tude (see, e.g., Sclar, Maunsell, & Lennie, 1990) (stimulus
amplitude in visual stimuli is usually referred to as “con-
trast”). Typically, the responses of these neurons increase
with increasing amplitude. Thus, it would seem reason-
able to assume that anything that reduces the effective
amplitudes in visual stimuli would be relevant for neuronal
responses as well as for visual perception.

Methods

Interference was explored numerically by 2D-Fourier trans-
forms of stimuli on a computer using Mathematica (Wol-
fram Research, Inc.). Stimuli were generated as 64 × 255
element arrays with bright elements (value 1.0) on a dark
background (value 0.0). The target stimuli were uppercase
letters 22–26 elements wide and 31 elements high. With the
exception of the stimulus shown in Fig. 4a the interfering
stimuli were rectangles five elements wide and 33 elements
tall. An example of a target stimulus along with a interfer-
ing stimulus on each side is shown in Fig. 3a. The value
given for the separation between the target and the interfer-
ing stimuli was between the outer edge of the target and the
inner edge of the interfering stimulus (measured along the
horizontal dimension). The various steps in the procedures
are described in connection with the corresponding results.

Results

As was pointed out above, the Fourier transform analyses
signals into series of sinusoidal components each defined by
a complex number. As illustrated in Fig. 2b, when adding
two Fourier components, the sum of the amplitudes deter-
mined together will be smaller than the sum of the two am-
plitudes determined separately unless the phases of the two
components are identical. This reduction is interference.

We will denote one stimulus as the target stimulus and
another as the interfering stimulus (or stimuli). Further, we
will denote each component in the 2D-Fourier spectrum
of the target stimulus by t(ωx, ωy) and the correspond-
ing components in the interfering stimulus by i(ωx, ωy),
where ωx and ωy denote the spatial frequency of the given
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Fig. 3 a A target stimulus, letter “X”, along with two interfering
stimuli consisting of vertical bars. The separation between the tar-
get and the interfering stimuli is two picture elements in this image.
(The separation is along the horizontal dimension.) b Same as in A
with the exception that the stimuli have been multiplied with a 2-
D Gaussian window with standard deviation of 20 picture elements
along both dimensions. c Relative amplitude sum as a function of

separation between the target and each of the interfering stimuli for
the case where there was no Gaussian window (i.e., for the case shown
in (a)). d Same as in c with the exception that the Gaussian win-
dow was applied (i.e., the stimuli were of the form shown in (b)). In
(c) and (d), a relative amplitude sum of 1.0 indicates no interference
(dashed horizontal line) and values less than this indicate the presence
of interference

component along the x- and y-dimensions, respectively.
(The component i must not be confused with the imaginary
unit i = √−1.) The amplitudes of the two components
then become |t(ωx, ωy)| and |i(ωx, ωy)|, respectively, and
that of their sum becomes |t(ωx, ωy) + i(ωx, ωy)|. Since
each component can be represented as a vector (as was
explained above and illustrated in Fig. 2b), we get that
|t(ωx, ωy)+i(ωx, ωy)| < |t(ωx, ωy)|+|i(ωx, ωy)|when the
phases of the two components differ (i.e., the transformation
of a signal into its Fourier spectrum is linear but the trans-
formation into the amplitude spectrum is not). That is, when
the phases differ, the amplitude of the target and interfer-
ing stimuli assessed together will be smaller than the sum of
the amplitudes of the two stimuli assessed separately. Con-
sequently, when the phases differ, the full amplitudes (for a
given ωx and ωy) of both stimuli cannot be contained in the
amplitude of the combined stimulus.

In order to obtain a single measure of interference, the
sum of amplitudes in the combined stimulus was divided
by the sum of amplitudes in the target plus the sum
of amplitudes in the interfering stimulus:

∑ |t(ωx, ωy) +
i(ωx, ωy)|/(∑ |t(ωx, ωy)| + ∑ |i(ωx, ωy)|). This ratio is
denoted the Relative Amplitude Sum.

In Fig. 3c is shown the relative amplitude sum of a target
stimulus consisting of the letter “X” flanked on either side
by an interfering stimulus made up of a vertical rectangle
(as shown in Fig. 3a). The results are given as a function of
separation between the target stimulus and each of the inter-
fering stimuli. The horizontal dashed line marking a relative
amplitude sum of 1.0 indicates no interference and the

vertical distance from this line indicates the magnitude of
the interference. As can be seen, the addition of the interfer-
ing stimuli reduces the relative amplitude sum to about 0.8
(i.e., an approximately 20% reduction). Thus, in this case,
we shall have to conclude that there is interference between
the target and the interfering stimuli.

In order for there to be interference between two spatially
separate elements, it is required that they both fall inside
the area from which stimulation is integrated. It has been
suggested that Fourier transforms in the visual system are
localized (De Valois & De Valois, 1990). If so, it may be that
interference effects only occur for stimuli close together in
space. In order to simulate interference effects under such
conditions, the stimuli were windowed by a 2D-Gaussian
(σ = 20 elements along both dimensions). The stimuli in
Fig. 3a after they have been windowed in this manner are
shown in Fig. 3b. In Fig. 3d is shown the relative ampli-
tude sum as a function of separation between target and
interfering stimuli under these conditions. As can be seen,
windowing the stimuli reduces the amount of interference
and limits the spatial extent of the interference but does not
abolish it. It should in this connection be emphasized that
even though the extent of the Fourier transform has been
reduced in order to simulate a limited extent of spatial sum-
mation in the visual system, the interference still takes place
in the stimuli.

The average relative amplitude sum in Fig. 3a (for data
with no window) is 0.80 (SD = 0.004; average of 48
separations). This may create the impression that the reduc-
tion in stimulus power caused by interference is relatively
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modest. However, other stimulus configurations have the
ability to cause larger interference effects. In Fig. 4 is
shown the case where the central stimulus element was an X
flanked by an identical X on either side. The relative ampli-
tude sum as a function of separation is shown in Fig. 4b.
The lower trace gives the results for no window whereas the
upper trace gives results for when a Gaussian window with
σ = 40 elements was imposed. In the “un-windowed” case,
the average relative amplitude sum was 0.63 (SD = 0.006),
which means that interference caused a 37% reduction in
the amplitudes.

The relative amplitude sum gives a measure of how much
the amplitudes in the combined stimulus differ from the
amplitudes in the target and mask. However, it does not
tell us specifically how much the amplitudes in the target
are affected. If we assumed that the target and masking
stimuli are equally influenced the residual amplitude sum
would provide an appropriate measure of the amplitudes
of the target stimulus in the combined stimulus relative to
when presented alone. In an attempt to illustrate the poten-
tial interference effect exerted by interfering stimuli upon
a target stimulus, a target stimulus (exemplified by the let-
ter “H”) was re-generated from the amplitude spectrum of t
and the phase spectrum of t+ i. That is to say, each compo-
nent in the Fourier series was set to |t|(cosθt+i + isinθt+i),
where θt+i denotes the phase angle of the combined stimulus
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Fig. 4 a A target stimulus consisting of an “X” flanked by an “X”
on either side, i.e., the target stimulus and the interfering stimuli were
identical. b Relative amplitude sum for the stimuli in a as a function
of separation between the target stimuli and each of the flanking stim-
uli. The upper trace shows results obtained with a Gaussian window
and the lower trace shows data when no window was applied. For the
Gaussian window, σ was 40 elements

t + i and |t| gives the target amplitude for the given com-
ponent. The result is shown in Fig. 5c. (For comparison, in
Fig. 5a is shown the original target and in Fig. 5b is shown
the target along with the flanking interfering stimuli.) As
can be seen, the target stimulus is somewhat degraded rel-
ative to the original stimulus (i.e., relative to Fig. 5a). In
order to illustrate the interference effect more clearly, the
difference (simple subtraction) between the original stimu-
lus (Fig. 5a) and the re-generated one (Fig. 5c) is shown in
Fig. 5d. Together, Fig. 5c and d illustrate that interference
from flanking stimulus elements has the potential to degrade
a target stimulus.

A word of clarification may be needed at this point.
The image of the target in Fig. 5b (i.e., the letter “H”) is

a

b

c

d

Fig. 5 a A target stimulus in the form of letter “H”. b The target
stimulus in a flanked by a bar stimulus on either side. The separa-
tion between the target and each of the bars was two elements. c The
target stimulus generated (using the inverse Fourier transform) from
the amplitudes of the target stimulus and the phases of the combined
stimulus, i.e., from the amplitudes of (a) and the phases of (b). d The
difference between (a) and (c)
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physically identical to the image of the target in Fig. 5a.
Obviously, the adding of two nearby rectangles does not
change the target. What is changed is its stimulus power.

Up until this point, only the effect of interference upon
the amplitudes has been considered. However, from Fig. 2
it ought to be clear that also the phases may be affected by
interference. This is further underscored by Fig. 5c in which
the image of the target is reconstructed from the phases of
the combined target and interfering stimuli, i.e., from the
stimuli shown in Fig. 5b, and the amplitudes of the tar-
get alone, shown in Fig. 5a. Since the difference between
Fig. 5a and c is only in the phase spectra and since Fig. 5a
and c are clearly different, this indicates that interfering
stimuli have the ability to not only alter the amplitudes in
visual stimuli but also their phases. In order to explore the
effect of interference upon phase spectra, the average differ-
ence between the phase spectrum of the target by itself (t)
and that of the combined stimulus (t + i) was calculated.

Phase angle is a cyclical variable with a period of 2π .
This means that in the case of an absolute phase angle differ-
ence that is larger than π , the actual difference is 2π minus
the angle. Thus, if we calculate the difference by simple sub-
traction, i.e., as θt−(t+i) = θt −θt+i , we need to “adjust” the
result as:

θ =
{
2π − |θt−(t+i)|, if |θt−(t+i)| > π;
|θt−(t+i)|, otherwise.

Note that this gives θ as the absolute of the difference
between θt and θt+i so that when computing the average dif-
ference we get the average of the absolute difference (i.e.,
1/n

∑ |θ |, where n is the number of components in the
image).

The average absolute phase difference between the tar-
get stimulus and the target stimulus combined with the
interfering stimulus is shown in Fig. 6 as a function of
the separation between the target stimulus and the flank-
ing interfering stimuli. The upper trace shows the effects
when there is no spatial restriction on the extent of the
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Fig. 6 The change in phase spectra as a result of adding interfer-
ing stimuli. The results show the average absolute phase difference
between t + i and t as a function of separation. The lower trace is for
a windowed transform using a 2-D Gaussian with σ = 20. The stimuli
were the ones shown in Fig. 3a and b

interference. The lower trace shows the case where a Gaus-
sian window (σ = 20 elements) has been imposed. As
should be apparent from these plots (as well as from Fig. 5c
and d), adding interfering stimuli can alter the phase spectra.

Discussion

The present analyses have demonstrated that the amplitudes
in a target and masking stimulus combined may be smaller
than the sum of the amplitudes in the two stimuli determined
separately. They have also shown that adding a masking
stimulus to a target can alter its phase angles. It should
be emphasized that these effects are in the stimuli. That is
to say, the interference effects described here exist inde-
pendently of whether or not the stimuli are actually being
perceived or stimulate any visual system.

The effects of introducing additional stimulus elements
upon perception or neuronal responses have largely been
interpreted in terms of interactions in the visual system. The
present demonstrations show that it may also be necessary
to take account of interactions in the stimuli and that one
cannot assume that a stimulus element has the same stimu-
lus power when presented together with other elements as
when presented by itself. The present analyses have sought
to provide a mathematical framework for estimating such
differences.

In this connection, it should be emphasized that the
example stimuli shown here are just that, examples. This
means that the values given here cannot be applied directly
to other stimuli and other conditions. Rather, interference
effects need to be estimated with regard to the particu-
lar stimuli made use of in a given case. Also, the method
presented here is only one method for demonstrating inter-
ference between elements in visual stimuli. It represents an
example of how interference can be demonstrated in a quan-
titative manner. The present method was chosen because
of its relative simplicity. However, different methods may
give different magnitudes of the interference effects. Thus,
one ought to exercise caution when making interpretations
based on the specific quantitative estimates of interference
presented here.

It was pointed out above that the stimuli examined here
are of the kinds employed in experiments on masking and
crowding. The terms “masking” and “crowding” refer to
certain kinds of responses to stimuli (stimuli similar to
the ones shown here). Because they involve only stimuli,
and not responses, the present analyses, although they may
have relevance for masking and crowding, should not be
understood as attempts to explain these phenomena. Also,
since the analyses only deal with stimuli the results from
psychophysical experiments, which deal with responses to
visual stimuli, are not in a position to invalidate the present
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observations. In other words, the present observations hold
irrespective of psychophysical results.

The present analyses have focused on spatial interactions.
This may make it seem the interactions are limited to those
between simultaneously presented stimuli. However, given
the temporal integration of the visual system (full tempo-
ral integration–Bloch’s law–extends up to about 100 ms,
Hart, 1992, and partial temporal summation may extend
to as much as 1000 ms, Legge, 1978) it is possible that
interference effects may occur between stimuli presented at
somewhat different times.

In conclusion, the amplitudes that can be attributed to a
given stimulus element may be smaller when this element is
presented together with other stimuli than when presented
in isolation. Also, the phases linked to the stimulus may be
different in the two cases. Consequently, even though a tar-
get stimulus is physically identical when it is presented by
itself and when presented together with other stimuli, it can-
not be counted on to have the same stimulus power in the
two instances.
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