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Abstract Respiratory sinus arrhythmia (RSA) is a quantita-
tive metric that reflects autonomic nervous system regulation
and provides a physiological marker of attentional engage-
ment that supports cognitive and affective regulatory process-
es. RSA can be added to executive function (EF) assessments
with minimal participant burden because of the commercial
availability of lightweight, wearable electrocardiogram (ECG)
sensors. However, the inclusion of RSA data in large data
collection efforts has been hindered by the time-intensive pro-
cessing of RSA. In this study we evaluated the performance of
an automated RSA-scoring method in the context of an EF
study in preschool-aged children. The absolute differences in
RSA across both scoring methods were small (mean RSA
differences = –0.02–0.10), with little to no evidence of bias
for the automated relative to the hand-scoring approach.
Moreover, the relative rank-ordering of RSA across both scor-
ing methods was strong (rs = .96–.99). Reliable changes in
RSA from baseline to the EF task were highly similar across
both scoring methods (96%–100% absolute agreement;
Kappa = .83–1.0). On the basis of these findings, the automat-
ed RSA algorithm appears to be a suitable substitute for hand-
scoring in the context of EF assessment.
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Respiratory sinus arrhythmia (RSA) reflects autonomic ner-
vous system regulation and provides significant physiological
and behavioral information across a range of disciplines
(Porges, 2001). In cognitive assessments, RSA provides a
physiological marker of attentional engagement that supports
cognitive and affective regulatory processes. However, the
inclusion of RSA data in large data collection efforts has been
hindered by the time-intensive processing of RSA. RSA data
are sensitive to errors in heartbeat interval streams, and it has
been reported that a single artifact over a 2-min segment can
alter the RSA estimate more than a typical effect size seen in
psychophysiological studies (Berntson & Stowell, 1998).
Therefore, artifacts are normally removed through hand cor-
rection by a trained researcher. Eliminating the requirement
for manual processing of the data would reduce the resource
requirements for RSAmeasurement to enable its inclusion in a
larger number of studies and facilitate timelier reporting of
results.

In this study, we focused on the inclusion of RSA data in an
assessment of executive functions in children. Executive func-
tions (EFs) are a set of cognitive abilities—inhibitory control,
working memory, attention shifting—that support self-
regulation and undergo rapid change across early childhood
(Diamond, 2013). Autonomic flexibility in response to chang-
ing environmental demands supports performance on EFs
(Porges, 2007). Individual differences in EFs during the pre-
school period contribute to social and academic aspects of
children’s school readiness because EFs facilitate children’s
ability to learn how to learn (Ursache, Blair, & Raver, 2012).
EFs represent one mechanism through which poverty
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negatively impacts children’s performance in school
(Buckner, Mezzacappa, & Beardslee, 2009; Crook & Evans,
2014; Nesbitt, Baker-Ward, & Willoughby, 2013). Moreover,
deficits in EFs are implicated in multiple developmental dis-
abilities (Sinzig, Vinzelberg, Evers, & Lehmkuhl, 2014;
Willcutt, Doyle, Nigg, Faraone, & Pennington, 2005), as well
as in numerous pediatric diseases and physical health condi-
tions (Mendley et al., 2015; Morales et al., 2013; Winter et al.,
2014). As a result, there is widespread interest among educa-
tors, clinicians, and policymakers in developing and
deploying individualized and classroom-based programs that
enhance EF abilities, and improved measurement of EF is
essential for these program evaluation activities.

RSA is a quantitative metric that can be added to EF as-
sessments with minimal participant burden because of the
commercial availability of lightweight, wearable electrocar-
diogram (ECG) sensors. Changes in RSA that occur when
individuals transition from a (resting) baseline state to engag-
ing in cognitively or emotionally challenging tasks represent a
parasympathetic response to external challenge. Individual
differences in both resting baseline level and the degree of
change in RSA (from baseline to task engagement) correlate
with EF task performance, including in preschool-aged chil-
dren (Blair & Peters, 2003; Hinnant, El-Sheikh, Keiley, &
Buckhalt, 2013; Hovland et al., 2012; Marcovitch et al.,
2010). The current requirement of manual editing of individ-
ual files for artifacts is a barrier to the more widespread inclu-
sion of RSA in EF assessments, particularly in large-scale
studies (where manual editing of individual files is too bur-
densome to be feasibly executed). The goal of this work was
to evaluate the performance of an automated RSA-scoring
method in the context of an EF study in preschool-aged chil-
dren. Raw ECG data collected in the study were processed
using an automated RSA algorithm and compared to the RSA
values obtained by traditional hand scoring.

Method

Participants

The participants included in the current analyses were selected
from the Learning, Emotion and Play in School (LEAPS)
study (N = 102), which was designed to examine the interplay
between child self-regulation, parenting, and preschool class-
room quality in the prediction of kindergarten readiness. Child
physiological and behavioral responses were measured during
a battery of computerized EF tasks administered outside of the
classroom. Continuously throughout all tasks, participants
wore cardiac monitors that recorded ECG signals for the cal-
culation of RSA.

The participants were recruited from 12 preschools and day
care centers in central North Carolina. The subsample of

children included in the current analyses (N = 40) had cardiac
data available for four EF tasks. Of this subsample, 11 partic-
ipants were designated as the Btraining group,^ whose data
were used to develop and refine the new automated RSA-
scoring algorithm. The first four participants in this group
were chosen on the basis of experimenter ratings of their be-
havior during the EF assessment (Preschool Self-Regulation
Assessment: Assessor Report; Smith-Donald, Raver, Hayes,
& Richardson, 2007). Two high-scoring (i.e., sat quietly,
followed directions) and two low-scoring (i.e., trouble sitting
still or listening, difficulty completing tasks) participants were
chosen to evaluate the new automated algorithm across differ-
ent physiological and behavioral profiles. The different behav-
ior ratings were not associated with significant differences in
algorithm performance; thus, the next seven participants were
chosen at random. This Btraining group^ had a mean age of
4.87 years, and 72% were female. As reported by their
mothers, this group was 81% Caucasian and 19% Hispanic,
with family incomes ranging from $93,000 to $166,000 (M =
$128,000). The data from an additional 29 participants were
used to test the new automated algorithm. This group had a
mean age of 4.95 years and was 49% female. Almost half of
this group were Caucasian (48%), with 21% of the remainder
identifying as African American, 17% as Hispanic, and 14%
as other, with family incomes ranging from $59,000 to
$210,000 (M = $132,084).

Executive function assessment

EF Touch is a computerized battery of EF tasks that were
initially created, administered, and extensively studied in
paper-and-pencil format and that now run in a Windows OS
environment (see Willoughby & Blair, 2016, for an
overview). The battery is modular in nature (i.e., any number
of tasks can be administered in any desired order). Two
Bwarm-up^ tasks (1–2 min each) are typically administered
first, in order to acclimate children to using the touchscreen.
Four tasks from the EF Touch were used in this study. Only
abbreviated task descriptions are presented below, since the
primary focus of this study was a comparison of methods of
measuring RSA acquired during EF task administration.

Silly sounds Stroop (SSS) This 17-item, Stroop-like task
measured inhibitory control. Each item displayed pictures of
a dog and cat (the left–right placement on the screen varied
across trials) and presented the sound of either a dog barking
or a cat meowing. Children were instructed to touch the pic-
ture of the animal that did not make the sound (e.g., touch the
cat when hearing a dog bark). Each item was presented for
3,000 ms, and the accuracy and reaction times of responses
were recorded. The mean accuracy across all items was used
to index performance.
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Animal go/no-go (AGNG) This 40-item go/no-go task mea-
sured inhibitory control. Individual pictures of animals were
presented, and children were instructed to touch a centrally
located Bbutton^ on their screen every time they saw an ani-
mal (the Bgo^ response), except when that animal was a pig
(the Bno-go^ response). Each item was presented for 3,000
ms, and the accuracy and reaction times of responses were
recorded. The mean accuracy across all no-go responses was
used to index task performance.

Working memory span (WMS) This 18-item span task mea-
sured working memory. Each item depicted a picture of one or
more houses, each of which contained a picture of an animal, a
colored dot, or a colored animal. Children verbally labeled the
contents of each house. After a brief delay, the house(s) were
displayed again without their contents. Children were asked to
recall either the animal or color (of the animal) that was in
each house (i.e., the nonrecalled contents served as a distrac-
tion). Items were organized into arrays of two-, three-, four-,
and six-house trails. The mean accuracy of responses was
used to index task performance.

Something’s the same (STS) This 30-item task is intended to
measure attention shifting and flexible thinking. In the first 20
items, children are presented with two pictures (animals,
flowers, etc.) that are described as being similar with respect
to their color, shape, or size. A third picture is then presented
alongside the original two pictured, and the child is asked to
select which of the original pictures is similar to the new
picture along some other dimension (e.g., color, shape, or
size). In last ten items, the child is presented with three pic-
tures and asked to identify two of the pictures that are similar,
and then a second pair of the same three pictures that are
similar in some other way. The mean accuracy of responses
was used to index task performance.

Respiratory sinus arrhythmia (RSA) assessment

Cardiac data were collected during a baseline period and all
EF tasks. The Actiwave Cardio monitor (Camntech,
Cambridge, UK) was used to collect ECG signals via two
disposable electrodes (Conmed Huggables) that were attached
to the left side of the child’s chest. The ECG signals were
sampled continuously at 1024 Hz with 10-bit resolution.
RSA was extracted from these ECG signals using both an
established method with manual correction and an automated
method. Both methods require the identification of R-wave
peaks in the ECG signal in order to obtain an accurate R–R
interval. (The R–R interval is the difference between succes-
sive R peaks and is the reciprocal of the heart rate.) RSA
values are calculated from this R–R interval stream.

Manual method In the established method, the raw ECG data
were converted for input into software for manual editing
using an accepted method and software package
(CardioEdit, 2007). The detection and correction of artifacts
was done by persons who had completed a CardioEdit train-
ing course. The corrected R–R intervals were analyzed for
variations using the Porges–Bohrer method of calculating
RSA (Lewis, Furman, McCool, & Porges, 2012; Porges &
Bohrer, 1990). A moving polynomial filter (with band-pass
filter set to 0.24–1.04 Hz, the frequency of spontaneous res-
piration in children) removed frequencies lying outside the
normal physiological range, and RSA was computed as the
natural log of the variance on 30-s, nonoverlapping windows
of filtered data.

Automated method In the fully automated method, raw ECG
data were processed with a custom algorithm developed in
MATLAB (The MathWorks) using the data from 11 partici-
pants from the larger study. Details about the algorithm are
provided in a supplemental section. In the first step of the
algorithm, the R–R intervals were extracted from the ECG
signal using a novel method for R-wave peak identification
in a continuously streamed ECG signal that maintains high
accuracy in moving participants. The method was based on
the well-known Pan–Tompkins approach for detecting R
peaks in an ECG signal (Hamilton & Tompkins, 1986; Pan
& Tompkins, 1985), but it was modified to relymore on signal
timing and less on signal amplitude for determining the R-
peak validity.

An R–R interval correction routine was implemented to
remove erroneous intervals that met the acceptance criteria
of the R-peak detection algorithm, as well as to adjust actual
long or short intervals that did not preserve the overall pattern
of the R–R interval stream. This was accomplished by com-
paring the current R–R interval to a running estimate based on
the previous six correct R–R intervals. For this study, intervals
were flagged for correction that fell outside of 80%–140% of
the running estimate. The need for correction results from
either a missed R peak (interval too long) or something other
than an R peak being detected (interval too short) (Berntson,
Quigley, Jang, & Boysen, 1990). Arrhythmias can also pro-
duce true skipped or extra beats, which—despite representing
contractions of the heart—are independent of the pattern of
neural regulation that is the target of RSA estimates.
Regardless of the source of the error, a correction was
attempted using the splitting, summing, or averaging of inter-
vals. For the correction to be accepted, it was required to fall
within 85%–130% of the running estimate. Otherwise, the
original interval was preserved.

After corrections were applied, the R–R interval stream
was processed as it is in CardioEdit, by resampling at 5 Hz
using cubic spine interpolation and computing RSA using the
Porges–Bohrer method (Lewis et al., 2012). The corrected,
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resampled R–R interval stream was high-pass filtered using a
21-point, third-order polynomial filter to remove low frequen-
cies. The signal was further filtered to the RSA band for chil-
dren (0.24–1.04Hz) using a 26-point FIR filter designed using
a Kaiser window. RSA was computed as the log of the vari-
ance on 30-s, nonoverlapping windows of the filtered data.

A final step in the automated algorithm was to flag any of
the 30-s windows with a high likelihood of reporting an erro-
neous RSA value. Beat detection errors that make it through
the correction procedure can result in a large increase in signal
amplitude of the R–R interval stream filtered to the RSA band.
For each 30-s window, a point-by-point z score of the RSA
band signal amplitude was computed using the average and
standard deviation from the entire testing session. If there were
two or more values in the window with an absolute z score
greater than 4, the segment was flagged.

Method comparison The overarching objective of this study
was to formally contrast RSA values that were obtained from
the automated RSA algorithm to the manually derived scores.
Consistent with convention in the literature (see, e.g., Propper
&Holochwost, 2013), comparisons focused on the meanRSA
across all segments of each EF task. Three strategies were
used to inform a comparison of the RSA methods. First,
Pearson correlations were used to test whether the rank-
ordering of individual RSA values was preserved across the
automated and manual methods for each task, as well as
whether the intertask correlations of the RSA values were
comparable across the automated and manual methods.
Second, Bland–Altman plots were constructed to visualize
agreement (Bland & Altman, 1986, 1995). The Bland–
Altman procedure for comparing agreement between two
measurement approaches involves (1) obtaining the difference
in values across measurement approaches for each individual,
(2) computing the mean and standard deviation of these dif-
ferences, and (3) plotting the mean value against the difference
with a superimposed 95% limit-of-agreement interval (95%
LoA; i.e., the mean difference ± 1.96 standard deviations of
the difference). The 95% LoA demarcates the range of values
in which 95% of future measurements of similar individuals
are intended to lie. Third, we considered changes in RSA from
baseline to EF task performance. Specifically, we computed
the simple difference scores that represented the degree of
change in RSA from baseline to each EF task performance.
These difference scores (one per task, per child) represent
RSA-related task engagement. Pearson correlations were used
to determine the extent to which RSA change was preserved
across the algorithmic and manually edited methods. In addi-
tion, we computed reliable-change indices separately for each
task and method (Maassen, 2004, 2010). Reliable-change in-
dices were computed to determine whether each child exhib-
ited a significant increase (augmentation of RSA), decrease
(RSAwithdrawal), or no change in RSA from baseline to task

engagement. Following convention, the threshold for change
was defined as changes that exceeded two standard errors of
measurement from the mean RSA at baseline. Cross tabula-
tions of change status (augmentation, no change, withdrawal)
across methods were evaluated using percentage agreement
and Kappa coefficients.

Results

The automated RSA algorithm was implemented in MATLAB
and was able to convert the raw ECG data to RSA scores at a
rate of approximately 34 s for 1 h of ECG data. A batch-
processing utility enables processing of the ECG data from all
participants with a single process initiation. The automated
RSA algorithm was applied to up to four EF tasks, as well as
to the baseline task, for 29 participants. Windows that were
flagged as having potentially erroneous RSA values were ex-
cluded from the analysis. The mean and median percentage of
windows flagged per subject were 7.4% and 5.5%, respectively,
with a range of 0%–16.4%. The flagged windows were well
distributed across tasks (7.6% for SSS, 9.9% for AGNG, 7.0%
for WMS, and 7.6% for STS), but only 1.5% of windows from
the baseline periods were flagged.

After the flagged windows were removed, each task was
further required to have a minimum of three 30-s windows in
order to be included in comparisons between the algorithm
and hand-scored approaches for computing RSA. The mean
RSA scores across all available windows for each task were
computed separately for the algorithmic and hand-derived
RSA values, which yielded a single score for each participant
for each task. In total, 22–28 participants had RSA data from
both scoring methods (algorithm and hand-scoring) for each
task (see Table 1).

Table 1 Descriptive statistics for respiratory sinus arrhythmia values,
by executive function task and scoring method

Task Method N M SD Difference (SE) t (df) Prob

Baseline Manual 28 5.1 1.4

Automated 28 5.2 1.3 0.10 (0.04) 2.7 (27) .01

SSS Manual 22 5.8 1.0

Automated 22 5.9 0.9 0.08 (0.06) 1.4 (21) .19

AGNG Manual 25 5.8 1.0

Automated 25 5.8 1.0 0.06 (0.03) 2.1 (24) .04

WMS Manual 23 5.3 1.0

Automated 23 5.3 1.0 –0.02 (0.04) –0.5 (22) .62

STS Manual 26 5.6 1.1

Automated 26 5.6 1.0 0.06 (0.04) 1.4 (25) .17

SSS = Silly sounds Stroop; AGNG = Animal go/no-go; WMS = working
memory span; STS = Something the same; M = mean; SD = standard
deviation; SE = standard error; df = degrees of freedom; prob =
probability
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Bivariate associations

Children’s RSAvalues across EF tasks were strongly correlat-
ed with each other for both scoring methods (rs = .81–.95; see
the off-diagonal elements of Table 2). In general, childrenwith
relatively higher RSA levels on one task also exhibited higher
RSA on all of the remaining tasks. The patterns of intertask
correlations for RSA values across tasks were highly similar
across scoring methods. Indeed, the absolute differences in
any task-by-task correlation across scoring methods were
small (|r| = .00–.03; cf. the corresponding elements above
and below the diagonal of Table 2). Moreover, the mean
RSA scores for each EF task were strongly associated across
scoring methods (rs = .96–.99, ps < .001; see the diagonal of
Table 2). In terms of the relative rank-ordering of participants,
both the algorithmic and hand-scored values showed a very
high degree of correspondence.

Bland–Altman plots

Separate Bland–Altman plots were created for each of the four
EF tasks, as well as for the baseline condition (see Fig. 1). The
solid black line in each panel of Fig. 1 represents the mean
difference between methods and is a measure of bias. There
was evidence for a slightly positive bias in algorithm relative
to baseline scores, though only two of the five comparisons
were statistically significant and the degree of bias was small
(point estimates for the degree of bias and the associated
statistical significance are presented in the rightmost column
of Table 1). Across all tasks in Fig. 1, the magnitude of differ-
ences across methods is small and symmetric around the esti-
mate of bias (i.e., values hover around 0 for most cases and
most tasks). Moreover, the magnitude of differences between
scoring methods was not systematically related to the overall
mean RSA (i.e., differences were of comparable magnitudes
along the full spectrum of RSA values in the data set).

RSA reactivity

In light of the high degree of similarity across methods with
respect to the estimated task-specific RSA for the baseline and
EF tasks (see Table 1), we anticipated that the differences in
RSA from baseline to EF task engagement would also be
highly similar across methods, and this was indeed the case
(rSSS = .94, rAGNG = .98, rWMS = .97, rSTS = .94; all ps <
.0001). In terms of reliable change, only 4%–14% of children
demonstrated significant change in RSA from baseline to EF
task engagement, and in each case RSA exclusively increased
(augmentation). The manual and algorithm scoring ap-
proaches were in high agreement with respect to the presence
and direction of change. As is summarized in Table 3, for three
of the four EF tasks the two methods demonstrated perfect
agreement (Kappas = 1.0), and the fourth EF task exhibited
nearly perfect agreement (96%; Kappa = .83).

Discussion

RSA analysis is a powerful tool for quantitatively assessing
attentional engagement that supports cognitive and affective
regulatory processes. Although RSA analysis can be incorpo-
rated into EF assessments with minimal participant burden,
the large overhead for staff training and editing time associat-
ed with the requirement for hand-correction of the heartbeat
interval streams has hindered the inclusion of RSA data in
large collection efforts. Moreover, the additional time needed
to hand-edit files after collection often delays analyses and
dissemination by months or longer. In this study we explored
the accuracy of an automated approach for calculating RSA
from raw ECG data that included multiple stages of error
identification and correction. The average RSA for each EF
task was compared between the automated and traditional
hand-correcting and scoring approaches.

The automated algorithm compared each heartbeat interval
to several preceding intervals in order to determine whether it
was outside of the expected range of interbeat variability. This
technique is similar to that applied by a trained RSA editor,
except that the algorithm used a fixed set of rules, whereas
editors can choose to correct intervals differently. For exam-
ple, Rand and colleagues (2007) found significant differences
in the correction types applied by two editors, especially as the
complexity of the correction grew. In addition to introducing
inconsistency, manual editing requires a significant time in-
vestment for both training and actual editing. In this study, the
editors were required to participate in a full day of training and
complete numerous practice and validation cases before
editing any study data.

The automated method does not require any manual in-
spection of the ECG data. In this particular study, all of the
data were previously analyzed with the established method

Table 2 Correlations for hand and algorithm scored RSAvalues across
executive function tasks

Base–
Manual

SSS–
Manual

AGNG–
Manual

WMS–
Manual

STS–
Manual

Base–Auto .99 .82 .84 .85 .89

SSS–Auto .85 .96 .93 .85 .92

AGNG–Auto .81 .91 .99 .92 .92

WMS–Auto .82 .84 .93 .99 .91

STS–Auto .88 .92 .95 .93 .98

Values above and below the diagonal are manual-scored and automated-
scored RSAvalues, respectively. Bold values along the diagonal represent
agreement in RSA values across scoring methods
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and therefore known to contain valid ECG data. For applica-
tion of the algorithm to signals of unknown quality, we have
developed an automated ECG prescreening routine that can be
used to determine whether the data are suitable for automated
processing.

A key feature of the automated algorithm is accurate R-
peak detection, because correction does not preserve the

original RR interval pattern. We developed a custom R-peak
detection method with high accuracy in moving participants
so that the required number of corrections would be mini-
mized. After application of a fixed set of correction rules,
the automated algorithm enabled RSA computation with high
agreement to the manual method. The most common sources
of differences between the two methods follow: (1) The

Table 3 Comparison of reliable change across methods

Task Method Reliable Change Agreement

Withdraw (N) None (N) Augment (N) % Agree Kappa

SSS Manual 0 18 3 100 1.00

Automated 0 18 3

AGNG Manual 0 19 5 100 1.00

Automated 0 19 5

WMS Manual 0 22 1 100 1.00

Automated 0 22 1

STS Manual 0 22 3 96 .83

Automated 0 21 4

SSS = Silly sounds Stroop; AGNG = Animal go/no-go; WMS = Working memory span; STS = Something the same
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represent the mean differences between the manual and automated methods, and the dashed red lines represent the 95% limits of agreement



automated R-peak detection correctly identified a peak missed
by the manual method, so correction was not required in the
automated case. (2) A subjective correction of a true interval
to preserve the RR interval pattern was made inconsistently
between the two methods. (3) The automated method failed to
correct an erroneous peak because the resulting intervals did
not fall outside of the acceptable range.

RSA assessment during EF tasks provides a particular chal-
lenge for automated scoring because short task durations
mean that a single erroneous RSA value can significantly im-
pact the task mean. Therefore, the algorithm flagged windows
of data with a high likelihood of artifacts that would potential-
ly introduce error into the RSA calculation. The flagging was
not based on poor agreement to hand-scored values, because
this information would not be available in a fully automated
study, but rather was based on abrupt changes in the filtered
RR interval signal amplitude characteristic of uncorrected er-
rors. In this data set, only 7% of the windows were flagged,
indicating that the majority of errors were corrected in the
initial stage. Many of the flagged windows corresponded with
sections of poor ECG signal quality where heartbeats were not
readily identifiable. A high percentage of flagged intervals
may suggest that a segment of ECG data is not of sufficient
quality for automated processing, but we note that poor ECG
quality also presents challenges for manual editing. The over-
all percentage of flagged windows was higher during the EF
tasks than during the baseline period, perhaps due to the in-
creased motion in completing tasks, in comparison to
baseline.

The results of the automated approach were highly corre-
lated with the traditional approach across all EF tasks. Bland–
Altman analysis revealed that the differences in RSA means
were small and symmetric around the estimate of bias (there
was evidence for a slightly positive bias in algorithm relative
to baseline scores). Additionally, the magnitude of the differ-
ence was not dependent on the mean RSA value. Both
methods agreed on the presence and direction of change be-
tween an individual’s baseline and EF task RSA scores. In
terms of the relative rank-ordering of participants, both ap-
proaches showed a very high degree of correspondence.
Consistent with the standard use of RSA in the context of
EF testing, this study focused on aggregate agreement be-
tween the hand-scoring and automated methods. In other ap-
plications that involve longer periods of RSA monitoring, it
will be important to test the equivalence of methods at finer-
grained units of time (i.e., epoch-by-epoch agreement across
each task). Additional studies will be needed to cross-validate
these results in larger and more diverse samples.

This study validates the use of an automated RSA-scoring
method in the context of EF testing in children. The approach
is amenable to use in adults, with appropriate modification to
account for the different range of normal heart intervals, but
this would require additional validation studies. Many other

applications could benefit from an automated RSA-scoring
approach. Examples include studies of stress or behavior that
require monitoring large numbers of participants and/or mon-
itoring them over extended periods of time. Additionally, the
ability to provide results in near real time enables applications
in which RSA responses can be used to trigger timely inter-
vention. The addition of RSA scoring to psychological and
educational assessments and monitoring of chronic conditions
will enrich knowledge concerning the underlying causes of
differences between individuals, with minimal burden to the
user.

Author note The project described was supported by the National
Center for Advancing Translational Sciences (NCATS), National
Institutes of Health, through Grant Award Number UL1TR001111. The
R-detection algorithm was developed under National Institute of
Biomedical Imaging and Bioengineering of the National Institutes of
Health Award Number R01EB014742. The content is solely the respon-
sibility of the authors and does not necessarily represent the official views
of the NIH.
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