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Abstract In this article, we examine the performance of dif-
ferent eye blink detection algorithms under various con-
straints. The goal of the present study was to evaluate the
performance of an electrooculogram- and camera-based blink
detection process in both manually and conditionally automat-
ed driving phases. A further comparison between alert and
drowsy drivers was performed in order to evaluate the impact
of drowsiness on the performance of blink detection algo-
rithms in both driving modes. Data snippets from 14 monot-
onous manually driven sessions (mean 2 h 46 min) and 16
monotonous conditionally automated driven sessions (mean
2 h 45 min) were used. In addition to comparing two data-
sampling frequencies for the electrooculogram measures (50
vs. 25 Hz) and four different signal-processing algorithms for
the camera videos, we compared the blink detection perfor-
mance of 24 reference groups. The analysis of the videos was
based on very detailed definitions of eyelid closure events.
The correct detection rates for the alert and manual driving
phases (maximum 94%) decreased significantly in the drowsy
(minus 2% or more) and conditionally automated (minus 9%
or more) phases. Blinking behavior is therefore significantly
impacted by drowsiness as well as by automated driving,
resulting in less accurate blink detection.
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Drowsiness affects humans’ driving ability. This is why
drowsy driving accounts for approximately 19%—24% of all
fatal crashes in manual driving (Hell et al., 2012). To amelio-
rate the risk of drowsy driving, car manufacturers and scien-
tists have been working on reliable systems to detect, warn of,
and ultimately prevent this critical state before it begins. To
determine the state of the driver online while driving, several
physiological measurement techniques, such as electroen-
cephalogram (EEG), electrocardiography (ECG), electroocu-
lography (EOG), and performance-based measures (e.g.,
steering behavior), have been evaluated in the past (Dawson,
Searle, & Paterson, 2014; Dong, Hu, Uchimura, &
Murayama, 2011). The term drowsiness will be used in this
work as it was by Sahayadhas, Sundaraj, and Murugappan
(2012), as synonymous with sleepiness. An acceptable detec-
tion system for drowsiness has to fulfill several requirements
that the aforementioned methods do not completely satisfy.
Preferably, to be accepted by all drivers, the system should
not be attached to the body. Current serial systems using either
steering behavior or drivers’ ability to stay in the lane to detect
drowsy driver detection criteria meet this requirement
(Daimler, 2008; Ford, 2010). However, with the development
of automated driving functions, steering behavior is no longer
a feasible detection method. Conditionally automated driving
(CAD; based on the definition in SAE Standard J3016
[2014]), which is currently in development (Wei et al.,
2013), gives drivers the freedom to let go of the steering
wheel, relax their observations, and allow the algorithm to
control the vehicle. Self-driving vehicles will become reality
within the next 5 years (BMW Group, 2016). Among the
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technologies that will be needed to successfully deal with all
constraints of future automated travel, the use of a camera to
observe a driver’s behavior is the most promising technology
for detecting drowsiness (Jafar Ali, Sarkar, Kumar, &
Cabibihan, 2012). Particularly, the analysis of eyelid
movements and blinking as a drowsiness indicator has been
the focus of many studies as reported in reviews by Stern,
Boyer, and Schroeder (1994) and Dawson et al. (2014).
Onset drowsiness influences the normal blinking behavior
and can therefore be used to estimate the drowsiness state of
the driver (Morris & Miller, 1996; Picot, Charbonnier, &
Caplier, 2012). Unlike manual driving, CAD is an automated
system offering the driver the possibility to change their gaze
and eye closing behavior without negatively affecting driving
safety. It is crucial to have an algorithm for detecting blinks or
the eye aperture in both the manual and CAD phases to be able
to distinguish alert and drowsy driver behavior with high ac-
curacy, as drivers will be able to freely switch between the
driving modes.

The goal of this study was to compare the performance of a
blink detection algorithm in manual driving against its perfor-
mance in conditionally automated driving, in phases during
which the drivers were alert and phases during which they
were drowsy. This should answer the open question
concerning the degree of influence that CAD has on the de-
tection rates of a blink detection algorithm and what influence
a possible behavior change in blinking has on the blink detec-
tion in the future self-driving transportation. A second goal
was to compare the performance of an EOG-based blink de-
tection system, with the performance of a simultaneously re-
cording camera-based detection system. By these means, it
should be possible to determine which technology is best suit-
ed for assessing driver behavior in future studies with CAD.

Human blinking behavior

Blinks are usually associated with the urge to clean the eyes
from particles and to spread tear film. Therefore, blinks are
affected by humidity, temperature, chemical factors and air
particles (Stern et al., 1994; Wolkoff, Ngjgaard, Troiano, &
Piccoli, 2005). The time between blinks increases when an
observer watches a visual display unit (Patel, Henderson,
Bradley, Galloway, & Hunter, 1991) or is distracted by a de-
manding task (Wolkoff et al., 2005). On the other hand, time
between blinks is reported to decrease with an auditory task
during driving as compared to driving without an additional
task (Tsai, Viirre, Strychacz, Chase, & Jung, 2007). This sug-
gests a relationship between the type of the task and its effect
on the driver’s blinking frequency.

Studies that involve a long time-on-task, which evokes
drowsiness, have reported changes in eyelid closure and gaze
behavior. The palpebral aperture generally becomes smaller

“associated with a downward shift in gaze angle” (Lobb &
Stern, 1986, p. 17). In addition, Stern et al. (1994) reported
compelling evidence of an increasing blink rate with time-on-
task in their literature review.

Blinks are categorized by their origin as voluntary, reflex,
or spontaneous and are often accompanied by saccades and
eye movements (Collewijn, van der Steen, & Steinman, 1985;
Stern, Walrath, & Goldstein, 1984). Stern et al. (1984) further
distinguished longer eye closures, such as “microsleeps,” as a
separate category representing nonblink closures. However, in
this research, with the focus on driver drowsiness and the
detection of blinks, microsleeps will be considered blinks.

Blink detection methods

EOG and video recordings are the main techniques used in
driving/transportation studies to record the blinking behavior
of a driver (Morris & Miller, 1996; Picot et al., 2012).
Although EOG is considered to be the most reliable method
due to its high frame rate, video-based assessment has gath-
ered popularity for its practicability in the automotive industry
due to its ability to measure contact free.'

To obtain a signal for the eye blink detection with EOG,
several surface electrodes are positioned around the eyes.
Since the cornea has a positive electric potential in reference
to the fundus of the eye, a natural occurring eyelid movement
during a blink affects the electric potential between the two
electrodes positioned above and below the eye. A blink can
thus be measured as change in the potential distribution of the
eye (e.g., Jammes, Sharabty, & Esteve, 2008; Skotte,
Nojgaard, Jergensen, Christensen, & Sjogaard, 2007).

Using video recordings, eyelid movement is visible in the
images and can be assessed using image processing methods.
Different algorithms for that purpose are based on either the
motion detection derived from differencing two consecutive
images (e.g., Bhaskar, Keat, Ranganath, & Venkatesh, 2003;
Chau & Betke, 2005; Fogelton & Benesova, 2016; Jiang,
Tien, Huang, Zheng, & Atkins, 2013), a second-order deriva-
tive method of image differentiations (Gorodnichy, 2003), a
state classification (e.g., Choi, Han, & Kim, 2011; Missimer &
Betke, 2010; Pan, Sun, & Wu, 2008; Pan, Sun, Wu, & Lao,
2007), an evaluation of the color contrast or amount of visible
color of specific eye regions (Cohn, Xiao, Moriyama,
Ambadar, & Kanade, 2003; Danisman, Bilasco, Djeraba, &
Ihaddadene, 2010; Lee, Lee, & Park, 2010), the distance be-
tween landmarks or arcs representing the upper and lower
eyelid (Fuhl et al., 2016; Ito, Mita, Kozuka, Nakano, &

! Other traditional methods, such as electromyography or the use of magnetic
coils or systems with mechanic connections to the lid, are rarely used in current
driving studies, because they are not practicable. Therefore, they will not be
considered in this study.
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Yamamoto, 2002; Miyakawa, Takano, & Nakamura, 2004;
Moriyama et al., 2002; Sukno, Pavani, Butakoff, & Frangi,
2009), the missing regions of the open eye like the iris or pupil
due to their occlusion by the upper and lower eyelid (Hansen
& Pece, 2005; Pedrotti, Lei, Dzaack, & Rétting, 2011), or a
combination of the described methods (Sirohey, Rosenfeld, &
Duric, 2002). Instead of measuring the real distance between
the upper and lower eyelid, most of these algorithms use an
indirect measure (motion detection, classification, color con-
trast, missing eye regions) to conclude whether the eye is
closed. This is similar to the EOG technique, which also infers
an eye closure indirectly from a potential difference between
two electrodes.

The collected eye or eyelid movement signal of the EOG or
the image processing is usually processed further in a second
step. General approaches to detect blinks in the signal include
the evaluation with thresholds (e.g., Divjak & Bischof, 2009;
Grauman, Betke, Gips, & Bradski, 2001), filtering (e.g.,
Grauman et al., 2001; Jammes et al., 2008), derivation of the
signals (e.g., Ebrahim, 2016; Torricelli, Goffredo, Conforto, &
Schmid, 2009), transformation (e.g., Benoit & Caplier, 2010;
Malik & Smolka, 2014), and valley/peak detection (e.g.,
Malik & Smolka, 2014; Radlak & Smolka, 2012).
Depending on the signal quality and data processing method,
more or less detailed information (start time, speed of the eye
closure, or duration of the eye closure; see Picot et al., 2012) of
the blinks can be parameterized.

Drowsiness detection and influence
by the performance of the blink detection

By identifying changes in eye blink parameters, several stud-
ies have been successful using EOG or video recordings to
estimate the drowsiness of a driver (EOG: Hu & Zheng, 2009;
Picot et al., 2012; Video recordings: Bergasa, Nuevo, Sotelo,
Barea, & Lopez, 2006; Friedrichs & Yang, 2010; Garcia,
Bronte, Bergasa, Almazan, & Yebes, 2012). Unfortunately,
they often fail to report the performance of the pre-
processing algorithms used to detect blinks or the degree of
eye closure, which implies a high reliability of the sensor
system and error-free parameterization of the collected data.
According to a study by Pedrotti et al. (2011), a commercially
available eyetracker does not guarantee a correct blink detec-
tion rate of 100%. Consequently, only performance tests of the
blink parameterization algorithms can reveal the influence of
errors in the preprocessing of the detection of blinks. These
evaluation tests for blink detection algorithms need to be car-
ried out under the same constraints as those used in the appli-
cation. Hence, the testing procedure of an eye blink algorithm
for drowsy drivers needs to be evaluated in alert and drowsy
driving phases. Because blinking as well as measuring sys-
tems are influenced in many ways (EOG: electromagnetic
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compatibility, contact with the skin; Video recordings: posi-
tion of the camera, frame rate of the video, glasses, eye phys-
iognomy), the detection rate of blinks and the accurate mea-
surement of the eyelid distance can differ completely in vari-
ous experiments.

In a comparison of the detection rate of blinks between
EOG and a remote eyetracker, Picot, Caplier, and
Charbonnier (2009) used the blinks detected with a 250 Hz
EOG system as a reference value for blinks detected with a
remote eyetracker with different frequencies. In the study with
data from 14 awake participants, they noticed a decreasing
false detection rate with faster frame rates of the video (false
detection rate with 30 Hz is greater than 100 Hz, >150 Hz,
>200 Hz). Yet, the authors could not evaluate the difference
between the various frame rates on the same video recordings.
It is also unclear how many errors their EOG blink detection
contained.

With respect to the detection of blinks in drowsy manual
driving, several studies report a drop in the correct detection
rate relative to the detection rate of the alert driving phases
(Ebrahim, 2016; Jammes et al., 2008; Skotte et al., 2007).
Following the higher rate of long eye closures observed for
drowsy drivers during CAD by Schmidt, Braunagel,
Stolzmann, and Karrer-Gauf3 (2016), a similar drop in the
correct detection rate between the manual mode and the
CAD mode can be expected and will be investigated in the
following sections.

Method

Two experimental studies were conducted in a between-
subjects design, using a manual and conditionally automated
driving condition. None of the participants of the conditional-
ly automated study were involved in the manual-driving
study. In both studies, we intentionally used simulated eve-
ning conditions with a dark, heavily overcast sky and a mo-
notonous roadside to induce drowsiness. The radio was
switched off, and the use of any secondary devices was
prohibited. The time for the whole process (introduction,
pre-questionnaire, driving, and post-questionnaire) for each
individual driver was limited in both studies to 4 h. The aver-
age driving time in the manual-driving study was 2 h 46 min
for a distance of 335 km. In the CAD study, the participants
drove on average for 2 h 45 min over 263 km. In both studies,
half of the participants started the drive at 6:00 pm, and the rest
at 10:00 pm. All of them had had a normal workday before the
experiment. Participants had to rate their drowsiness level on
the Karolinska Sleepiness Scale (KSS; Akerstedt & Gillberg,
1990, Table 1) every 15 min (with a few exceptional exten-
sions of up to 17 min in the CAD study). None of the partic-
ipants in either study reported any known sleep disorder.
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Table 1 Karolinska Sleepiness Scale (KSS)

KSS Description

1 Extremely alert

2 Very alert

3 Alert

4 Rather alert

5 Neither alert nor sleepy

6 Some signs of sleepiness

7 Sleepy, but no effort to keep alert
8 Sleepy, some effort to keep alert
9 Very sleepy, great effort to keep alert

Manual-driving study

A total of 18 people participated in the manual-driving exper-
iment (12 males and six females) and they ranged in age
between 27 and 56 (mean [MN] = 34 years, standard deviation
[SD] = 8 years). On average, the participants had possessed a
driver’s license for 16 years (max = 38 years, min = 8 years,
SD = 9 years). The study took place in a Mercedes-Benz
moving-base simulator with a dome on a hexapod platform
and a 12-m axis for linear motion. A detailed Mercedes Benz
S-class cabin was placed inside the dome and a 360° projec-
tion of the scenery was used throughout the drive to provide a
realistic surrounding (Fig. 1). A supervisor was present in a
separate observation room and had the ability to interact with
the participant via intercom.

After a short pre-questionnaire and briefing, the partici-
pants started to drive on a circular two-lane highway 200 km
long. Apart from two construction sites, located at Kilometer
62 and Kilometer 88, there were no particularly interesting
landmarks on or alongside the road. Participants were
instructed to drive at a speed of 130 km/h. On average, slower
vehicles with a speed of 100 km/h had to be passed approxi-
mately every 2 min and the participants were passed by vehi-
cles with a speed of 160 km/h approximately every 5 min.
Furthermore, participants were requested by a recorded voice
command to rate their subjective drowsiness level on the KSS.

The scale was attached to the inside of the car with several
descriptions of the different drowsiness levels (Table 1).
Previous evaluations based on recordings of manual driving
conditions can be found in chapters 5-8 of the dissertation by
Ebrahim (2016), the results of which are not part of this study.

CAD study

The test drives in the CAD experiment took place in a fixed-
base driving simulator. All 46 participants completed the
study (32 males and 14 females). Their ages ranged from 28
to 57 years (MN = 44 years, SD = 7.0 years). They had had a
driver’s license on average for 26 years (max = 42 years, min
=11 years, SD = 7.6 years). To simulate the driving environ-
ment, three flat screens (each 65 in. in diameter) were posi-
tioned 2.54 m in front the steering wheel of a car mockup, with
the two outer screens tilted 144° relative to the one in the
middle (Fig. 2).

An attendant supervisor was separated by a pin board from
each participant and did not interact with them. Realistic
sounds of headwind, tires, and engine were produced by
speakers in response to the speed and acceleration of the sim-
ulated drive on a circular two lane highway with a length of
108 km. After arriving at the simulator site, the participants
had to fill out a pre-questionnaire and were informed about the
CAD function for the drive. The participants started the drive
with a short manual introduction phase in which they got
comfortable with the simulator and its dynamics by driving
manually and performing several overtaking maneuvers.
Since the implemented CAD system was new to all partici-
pants, a short practical introduction phase for the CAD func-
tion followed. During this time, the participants became famil-
iar with all the prerequisites and limitations of the system and
were guided by the examiner. The total duration of the manual
and CAD introduction phase was 10 min.

To activate the CAD mode, the driver had to be driving in
one of the two driving lanes and pull a lever on the side of the
steering wheel. Additionally, this part of the route had to be
“officially” approved for CAD (which was always the case,

Fig. 1 Mercedes-Benz moving-base simulator
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Fig. 2 Mercedes-Benz fixed-base simulator

aside from small time periods explained later). Furthermore,
the braking and acceleration pedal had to be released at the
moment of CAD system activation and the driving speed had
to be slower or equal to 110 km/h. To ensure the different
modes were recognized correctly by the driver, different im-
ages in the middle of the speedometer display showed the
current state of the CAD system (CAD not available, avail-
able, or active). Once switched on, the CAD function man-
aged all lateral and longitudinal movements with a speed of
100 km/h. During an active CAD mode, the driver always had
the possibility to take back control by pressing the brake or
acceleration pedal, pushing the lever used for the activation of
the system, or by changing lanes by steering. In each of these
cases, the automated mode switched off immediately and the
driver was back in charge of driving. Since CAD is limited to
specific prerequisites that cannot always be guaranteed, it still
relies on the driver reacting and taking back control if the
system reaches these limits. For this reason, a basic reaction
ability of the driver is always required. To ensure this, the
driver had to confirm alertness requests within a given time
of 5 s, similar to the alertness requests in trains, at intervals of
either 30 s (23 participants) or 180 s (23 participants). If the
driver failed to confirm the alertness request or the system
reached its limit, a takeover request prompted the driver to
take back the control of driving from the system. The CAD
mode remained active during this time for up to 5 s (hand-over
time) until the driver took over, and it switched off after 5 s if
the driver did not take back control. During the drive, the
participants faced several predefined situations, in which an
ending of the availability of the CAD function on the highway
was simulated. Directly after the maximum 5 s of hand-over
time, different simulated road scenarios required adequate ac-
tion by the driver. These situations, subsequently referred to as
takeover situations, were relatively easy to handle and ap-
peared after 30, 52, 70, and 92 min. An additional final situ-
ation was triggered dynamically. This situation was used to
test the drivers’ reaction ability by challenging them in their
potentially severest state of drowsiness. To ensure that all
participants entered the first four situations at the same time,
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a leading vehicle drove in front of them, which the participants
were asked not to overtake. Due to a blind spot on the side of
the mockup that made it impossible to see overtaking vehicles,
no faster cars overtook the driver during the experiment. Apart
from the vehicles at the beginning, the leading vehicle, and the
vehicles in the different situations, no vehicles were standing
or driving in the same direction as the driver. The 15-min
interval of the request to rate the KSS was occasionally
prolonged by up to 2 min if it would have occurred during
one of the predefined takeover situations. During the KSS
query, the scale was presented to the drivers on the center
screen and was switched off by the examiner immediately
after the verbal KSS estimation of the driver. Unlike in the
manual study, the scale only had annotations for the steps KSS
=1,3,5,7,and 9, but not for the steps in-between, shown in
Table 1. A detailed explanation of the situations and the reac-
tions of the drivers can be found in a previously published
article (Schmidt, Stolzmann, & Karrer-Gauf3, 2016), as well
as the evaluation of the process of drowsiness.

Signal measuring and use of existing signal processing
methods

To record the driver behavior, the participants were equipped
in both studies with an EOG measuring system called actiCAP
(Brain Products GmbH, 2009) and the head-mounted
eyetracker Dikablis (Ergoneers GmbH, 2016). Two electrodes
were placed above and below the right eye to get the vertical
EOG signal, two on the left and right side of the head for the
horizontal EOG signal, and two more on the right and left
mastoid bone to gather a reference signal and exclude noise.
The camera of the head-mounted eyetracker was directed to-
ward the left eye. Both eyes were used for the evaluation
process (EOG on the right eye; head-mounted eyetracker on
the left eye), under the assumption that both eyes would blink
simultaneously (Collewijn et al., 1985). The two measuring
devices had no visible effect on the driving, which was ana-
lyzed in Ebrahim (2016) and Schmidt, Stolzmann, and Karrer-
GauB3 (2016). The head-mounted eyetracker used infrared
light to record the movements of one eye very precisely in
the dark conditions of the experiments. Its resolution was
384 x 288 pixels. The width of the eye in the video image
was approximately 75% and the height 50%. The camera was
adjusted individually for each participant to a fixed position.
This reduced the influence by head and body movements in
the results of the blink detection. Furthermore, the use of a
head-mounted eyetracker excluded effects by the necessary
algorithmic detection of the eye region for remote eyetrackers.
The EOG signals were recorded with 250 Hz and the
eyetracker data with 25 Hz. For this study, the frequency of
the EOG signal was sampled down to 50 Hz (f;) and 25 Hz
(f5). Since the timestamp normally used for the synchroniza-
tion was corrupted by lags caused by the signal



Behav Res (2018) 50:1088-1101

1093

communication between the measuring devices, distinctive
eye movements in the video were manually synchronized with
peaks in the EOG signal together with the eyetracking data.
The synchronized outcome was evaluated on several addition-
al time frames from the entire drive that were distinct from the
ones used for synchronization.

To detect eye blinks within the EOG signals, a signal pro-
cessing procedure developed by Ebrahim (2016) was used. It
was chosen due to its reported high recall and precision rate
for blink events in the alert and drowsy driving phases. For a
more detailed explanation, refer to pages 55 to 60 in the dis-
sertation by Ebrahim (2016). Furthermore, the use of the al-
gorithm for the EOG system and f; will be referred to as
detection process a; and the use of the algorithm and f; as
detection process a,.

For the eye blink detection with the head-mounted
eyetracker, an image processing algorithm developed by
Fuhl et al. (2016) was used in combination with an algorithm
for the pupil detection (Fuhl, Kiibler, Sippel, Rosenstiel, &
Kasneci, 2015). The algorithm of Fuhl et al. (2016) was cho-
sen because the generated signal represents a direct measure-
ment of the eyelid distance instead of an indirect measure
based on motion detection, classification, color contrast or
missing eye regions. Further, in contrast to the indirect mea-
sures by EOG, this algorithm can be later used in drowsiness
detection algorithms to estimate the drowsiness level based on
the direct distance of the eyelids. Since the algorithm devel-
oped by Fuhl et al. (2016) used data recorded with the same
head-mounted eyetracker as in the presented manual and
CAD studies, good signal estimations for the eyelid distances
in the experiments were expected. Refer to the studies by Fuhl
and colleagues (Fuhl et al., 2016; Fuhl et al., 2015) for more
details of the image-processing algorithms. The output of the
algorithm Fuhl et al. (2016) described the palpebral aperture in
pixels according to the recorded video. An open eye was es-
timated with a value of approximately 144 pixels. The second
algorithm by Fuhl et al. (2015) generated a binary signal for a
detected or an undetected pupil.

Developed blink detection algorithm

Simple methods such as fixed thresholds for the classification
of eye blinks without signal preprocessing did not detect
blinks accurately for different participants in this study. The
reasons for that are based on noise, misclassifications, and
high inter- and intra-individual differences of the participants.

Therefore, a new blink detection algorithm was developed
that included a preprocessing and several participant-
dependent thresholds. The different steps of the process are
outlined below. In the following, x; describes the measured
eyelid distance at time ¢ in the unit pixel, MN the mean value,
and SD the standard deviation.

1. Outlier removal A The raw signal of the eyelid distance
included several extrema that were not plausible, possibly
derived from noise or wrong interpretations of the image pro-
cessing method. Outliers were individually defined for each
participant as eyelid distance values outside the range between
the st (eyelid distance: th,,y) and 99th (eyelid distance:
thyum) percentile of all eyelid distance values during the whole
experiment.

All eyelid distance values X; ¢ [thyug thous] Were replaced
by x; = MN(X; + Xy); Xj, Xk € [thoun thoyn], and the associated
times £ <#, i >t had minimal values of # —¢ and # — £,
respectively.

2. Outlier removal B Outliers with lower amplitudes were
identified after the first step and replaced using neighboring
data points similar to a moving average filter with a constraint.
All eyelid distances x; that were larger than MN(x;_, + X -
1+ X141 +X142)+ 3 SD(X1—2, X1—1, X1 4 1, X1 4 2) Were replaced
by x; = MN(x;_ | + X; 4 1). Similar to the first step, this replaced
single values outside the 99th percentile of their four neigh-
boring values, since an eyelid closure was longer than one
sample.

3. Filtering (optional) The resulting signal was filtered using
a third-order Savitzky—Golay filter and frame window size
seven (Savitzky & Golay, 1964).

4. Identification of a participant-dependent eyelid distance
Each participant had different values for the eyelid distances
during driving. Therefore, a general eyelid distance for open
eyes (th,) was calculated for each driver using all eyelid dis-
tance values between Minutes 15 and 30 of driving. This
excluded effects of the driver’s customization to the environ-
ment and driving task. To account for the eyelid closure be-
havior in both manual and conditionally automated driving,
the selection of th, included consideration of the changing
behavior of the drivers in CAD. Drivers might close their eyes
for longer intervals or look downward. Thus, only the eyelid
distance values above the average of all eyelid distance values
were used to calculate th,. Out of those values, th, was defined
as the mode to consider the most common eyelid distance
position as the individual threshold for open eyes.

5. Eyelid movement minimum detection All eyelid closures
contained an eyelid closing and opening phase. On this basis,
all local minima in the signal lower or equal to th,were iden-
tified during the entire drive and described by. M = {x,, | X, iS
a local minimum A x,,<th,}; The corresponding times are
summarized by T = {t, | x,, € M}. If a minimum contained
more than one data point, the point with the lowest index was
chosen.

@ Springer



1094

Behav Res (2018) 50:1088-1101

6. Clustering of eyelid movements All detected eyelid clo-
sure values from the fifth step were clustered using a k-means
clustering method with & = 3 (Arthur & Vassilvitskii, 2007).
The two values separating the clusters are further described
with th, and thy with th, > thy. A third value th,, was calcu-
lated with th,, = MN(thy + th,). The smallest threshold thy was
interpreted as a distinctive threshold for a complete eye clo-
sure with the upper eyelid being very close to the lower eyelid:
Md = {m, e M | m,<thgy}. To distinguish blinks without a
fully closed gap between the upper and lower eyelid, but with
a small eyelid distance, Mm contained all local minima eyelid
distances below or equal to th,,: Mm = {m, e M | thy <m, <
thy, }. Minima larger than th,,, and lower than the upper thresh-
old th, had a larger gap between the eyelids Mu = {m, €
M | th,, < m, <th,}. All values larger than th, were very close
to th, and could be interpreted as smaller eyelid movements
rather than blinks.

7. Determining the start and end values of the detected
eyelid movements For all eyelid movements Md, Mm, and
Mu, the eyelid distances at their start (Sd, Sm, and Su) and end
(Ed, Em, and Eu) were determined. The start and end points
are the local maxima of the eyelid distance signal before (Sd,
Sm, and Su) and after (Ed, Em, and Eu) the eyelid distance
signal intersected with the thresholds thy, thy,, and th,. If
several minima of the same subgroup (e.g., md; and md, with
md;, md,€ Md) had the same eyelid distance value (here: md,
=md,) and start and end point (here: sd; = sd, A ed; = ed, with
sd;, sd, € Sd and ed;, ed, € Ed), the ones with higher indices
were discarded from the sets (here md,, sd,, and ed,). If they
had the same start and end point but different eyelid distance
values (e.g., md; < md,), the ones with the higher eyelid
distances were discarded (here: md,). Note that several eyelid
movements of the set Md can lie in the boundaries of one
single eyelid movement of the set Mm; similarly, several eye-
lid movements of the set Mm can lie in between one single
eyelid movement of the set Mu.

8. Separate eyelid movements In case of overlapping sec-
tions between the ending of one eyelid movement and the start
of the subsequent one caused by several equal values in the
signal, the plateau was split into two equal parts with its center
defining the end and the start point, respectively, of the two
consecutive eyelid movements.

9. Approval of an eye closure The availability of the pupil
signal from Fuhl et al. (2015) was used to check the visibility
of the pupil in the samples in between the start and end point
of the eyelid movements Md, Mm, and Mu, excluding the
start and end samples. An eyelid movement was discarded if
the pupil was visible in all investigated samples of the poten-
tial eye blink.
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10. Amplitude clustering In this step the amplitude of the
eyelid movements of the set Mu was calculated with the equa-
tion Amp, = min(suy — mug, euy —mug); ((suqg € Su) A (muy €

Mu) A (euq € Eu)). The resulting values were sorted with a 3-
means cluster algorithm (Arthur & Vassilvitskii, 2007). All
eyelid movements in the group with the smallest amplitudes
were excluded as potential blinks.

11. Data threshold If the eyelid distances in the minima (Md,
Mm, and Mu) were greater than 100 pixels, they were exclud-
ed. 100 pixels corresponds approximately to an openness of
the eye of 70%.

12. Merge eyelid movements A In the case that the number
of smaller eyelid movement events between the start and end
points of an event with a bigger eyelid distance was greater
than or equal to one event, a check was performed to deter-
mine whether each eyelid movement event originated from
noise. As the criterion, the biggest distance between the
thresholds th,,, or thg and the eyelid distance in the minimum
or minima of the set Mm or Md, respectively, was calculated.
If the distance of one of the eyelid movements was smaller
than or equal to d = 7 pixels (approximately a distance of 4%
of eyelid closure in relation to the threshold), the associated
minimum/minima of the set Mm, or, respectively Md was/
were discarded and the start and end point of the eyelid event
with the bigger eyelid distance (of the set Mu, respectively
Mm) was retained. If the distance/s was/were larger than d,
the associated eyelid distances in the sets Su, Eu and Mu,
(respectively Sm, Em, and Mm) were eliminated and the event
with smaller eyelid distances was retained.

13. Merge eyelid movements B All eyelid closure events in
the three categories Md, Mm, and Mu were merged into one
single set of blinks with the set of start point Sa, minima Ma,
and end point Ea.

14. Combine eyelid movement events Due to occasional
erroneous peaks in the eyelid distance signal, the described
procedure could split one eyelid movement of one blink into
several parts. To distinguish one single event from multiple
ones, the pupil detection signal was checked during the time
between the start and end samples extended on each side by
one sample of two consecutive eyelid closure events. If the
pupil was not detected between the two potential blinks, the
two events were combined.

15. Adjust detected phases (optional) The signal contained
noise that impaired the exact detection of the start and end
points of a blink. To improve the detection, the raw signal
was filtered using a Savitzky—Golay filter with polynomial
order three and a frame window size seven (Savitzky &
Golay, 1964). Similar to Step 7, a check was made afterward
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to determe if each eyelid distance of the sets Sa and Ea
resulting from Step 14 was still located on a local maximum
of the filtered signal. If a start point was on a monotonically
decreasing or an end point on a monotonically increasing
slope, they were extended toward the start or end of the ex-
periment until reaching a local maximum.

Due to the trade-off between good detection of blinks
through several minima in the eyelid distance signal and
the smoothing of the signal, the filtering of the raw signal
after the removal of outliers in a late step (without using
Step 3 — with Step 15; subsequently referred to as the
filtered method; detection process: a;) was additionally
evaluated in a comparison with an algorithm in which we
applied filtering of the data at an early step (with Step 3 —
without using Step 15; subsequently referred to as the raw
method; detection process: a4). To evaluate the proposed
detection processes a; and a, in combination with the cho-
sen image-processing algorithm, the two proposed signal-
processing algorithms by Bergasa et al. (2006) (detection
process as) and Sukno et al. (2009) (detection process ag)
were implemented and tested on the same sequences as the
other algorithms.

Definition of eyelid movements categorized as blinks

There have been different research approaches to measuring
video-recorded eye blinks. Fogelton and Benesova (2016)
compared different research groups, evaluating the different
developed algorithms on the same data set recorded by Pan
et al. (2007). The numbers of labeled ground truth blinks
varied by nearly 7%. Differences in the lowest position of
the upper eyelid during blinks were also identified by Jiang
etal. (2013). To guarantee the precision and consistency of the
labeling process and the characterization of each detected eye-
lid movement event of the algorithms implemented in this
work, the lowest point of the upper eyelid was analyzed be-
tween the detected start and end samples of the detected eyelid
movement events. To characterize the events, the middle and
border of the pupil were used as the references for separating
the eye into four regions where the border of the eyelid could
reach its lowest point during an eyelid movement event
(Fig. 3).

For this study, an eyelid movement categorized as a blink
in the video data had to fulfill the following requirements:

1. The palpebral aperture had to gradually decrease at the
beginning, reach its minimum, and then increase at the
end of the eyelid movement, all between the determined
start and end samples.

2. The eyelid had to cover enough of the pupil in the closed
phase to block the vision temporarily—that is, the lowest
point of the upper eyelid had to reach either region R; or
R,, defined in Fig. 3.

Fig. 3 Defined eye regions

3. The pupil had to be at least partially visible at both the
start and end of the eyelid movement.

Depending on the maximum descent of the upper eyelid
during the eyelid movement, the eyelid movements were fur-
ther categorized as A, (reached region R;) and A, (reached
region R,). Note that due to the complexity of the definition of
the start and end of an eyelid movement, a detected eyelid
movement was classified as a blink if Requirements 1-3 were
fulfilled within the range of the detected start and end. To give
a detailed overview of the specific types of other detections,
they were defined in several subclasses:

A. All eyelid closure events that fulfilled Requirements 1
and 3 but in which the lid only reached region R3 during
the detected boundaries were put in this class, counted as
A, events.

A4 Detected eye closures with the upper eyelid in region R4
or R,, but whose determined start and/or end sample
failed one or both of Requirements 1 and 3, were put in
this class. The eye closures had to fulfill the additional
requirement: the real start and/or end fulfilling the re-
quirements 1 and 3 had to be in a 200 millisecond time
window towards the beginning and end of the detected
start and end point.

A. All detected blink-related events with the upper eyelid in
regions R; or R, but that did not fulfill the additional re-
quirement of eye closures for Ay were assigned to this class.

A¢  All other events in which the eyelid only moved within
or remained inside region Ry (e.g., gaze movements)
were put in this category, describing non-blink-related
(Ay) events.

In case of multiple blinks inside one detected event, only
one of the blinks (the one with the lowest eyelid distance) was
assigned to one of the categories described above. All other
blinks of a multiple-blink event were added to the undetected
blinks and affected the detection rate.

Results

To obtain a detailed evaluation of the performance of algo-
rithms based on various recording devices and signal-
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processing approaches (EOG vs. head-mounted eyetracker
unfiltered vs. head-mounted eyetracker filtered) in different
driving modes (CAD vs. manual), signal frequencies (f; vs.
/2), and participant conditions (awake vs. drowsy), compara-
ble driving sequences had to be analyzed for each case. In the
experiments, an alert phase was defined as a section in which
the participants reported a KSS < 6, and a drowsy phase as one
with KSS > 6. This was based on the instructions given the
participants to rate themselves with a KSS of 8 or 9 if they
were no longer able to drive. With respect to a future drows-
iness detection algorithm based on blink detections, the driv-
ing phases with the state KSS = 7 were analyzed together with
the phases in which the drivers had clearly rated themselves as
no longer able to drive. In this way, the influence of rising
drowsiness on blink detection in the transition phase from
alert to drowsy was evaluated together with severe drowsiness
in phases with a KSS of 8 or 9.

Due to missing data and errors in the data recordings,
four participants in the manual-driving and five partici-
pants in the CAD study had to be excluded. One par-
ticipant in the manual-driving experiment did not be-
come drowsy; thus, 13 participants experienced the
drowsy and 14 participants the alert phase in the
manual-driving experiment. To examine a comparable
number of participants in the CAD experiment, 16 par-
ticipants were randomly chosen from the four groups
(Group 1: Start at 6 p.m. + 30-s alertness requests;
Group 2: Start at 6 p.m. + 180-s alertness requests;
Group 3: Start at 10 p.m. + 30-s alertness requests;
Group 4: Start at 10 p.m. + 180-s alertness requests).
A further constraint on the selection of the participants
of the CAD study was that they experienced an alert
and a drowsy phase. For the analysis of all participants,
2 min from the alert and 2 min from the drowsy phase
were chosen using a random algorithm (Wong &
Easton, 1980). It was assured that the chosen parts from
the manual-driving study did not occur during a KSS
query or in a 2-min time window following the KSS
task. For the CAD experiment, the 2-min sections in
the alert and drowsy phase were chosen as continuous
windows during a switch to CAD mode not occuring
during a takeover situation, KSS query, or 2 min after
them. Due to the short and frequently experienced alert-
ness requests, no additional exclusion criterion was ap-
plied. This resulted in 118 min of data as input for the
evaluation. Overall, 2,941 eyelid movements in catego-
ries A, and A, were assessed in the video of the head-
mounted eyetracker. These are further described as
ground truth eye closures in the two categories GT,
(upper eyelid reached region R;) and GT, (upper eyelid
reached region R,) (see Table 2).

Three detection rates were calculated to evaluate the algo-
rithm: the true positive rate (TPR), the blink-related false
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Table 2 Overview of the ground truth data

Manual Driving CAD

Awake Drowsy Awake Drowsy
Number of 2-min sequences 14 13 16 16
Real eye closure events 655 875 737 674

(GT, and GTy)

detection rate (FDRgR), and the not-blink-related false detec-
tion rate (FDRypRr), based on the classification provided
above. These were defined as follows:

Ad| + |As]
TPR= ————
|GT |+ |GT,|
A+ |A A,
FDRy Al + |Ad] + |A.]
|Adl + [As] + |Ac] + |Ad| + |Ac] + |Af]
B |As]
FDRygr =

Aal + 1As] + |Ac| + [Ad] + |Ac| + |Af]

|A,| and |GT,| define the numbers of all detected eyelid
movements by the algorithms of the categories
A, and GT,(z = a, b, ¢, d, e, or f), which were labeled and
categorized as stated above.

The distinction between the blink-related events and not-
blink-related events was made because the blink-related
events showed a strong similarity with blinks and contained
a part of a true positive (part of a real blink). Furthermore, it
could not be assured that blinks in the category A, would be
reassigned to the category A, if a video recording with a
higher sampling rate than the video recording of the head-
mounted eyetracker recording with 25 Hz had been used for
the labeling process.

The labeling process was started by labeling all detect-
ed eyelid movement events detected with EOG and sam-
pling frequency fi;. To limit extensive labeling, the detect-
ed eyelid movements using the EOG algorithm with a
lower frequency f, and the presented algorithm using the
eyetracker data were checked for matching areas with a
true positive from the start and end points generated by
the first detection process a;. If the complete intersection
between the labelled eyelid movement (starting point s,
end point e;) with the corresponding boundaries
from a,(starting point s,,, end point e,,),
aj(starting point s,3, end point e,3), or
ay(starting point sy4, end point ey4) exceeded P; = 80%
for eyelid movements of less than 500 ms, the event was
categorized with the same label as the previously labeled
event. If the time between s; and ¢ exceeded 500 ms, the
time interval Atz of the intersection between the boundaries
derived from a; and a,, (w = 2, 3, or 4) had to exceed
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P, = 100% (1 — % ) in order to adopt the same label.
This was based on the natural time of an eye closure or
opening, which Stern et al. (1984) described for longer
eye closures. Eye movements with an intersection of less
than P; or P, were labeled manually.

Since each of the research groups of the detection algo-
rithms a5 and ag defined blinks differently from the definition
proposed in this article, each detected eyelid movement event
of'the algorithms a5 and ag was labelled separately. The events
were labelled as true positives dependent the individual defi-
nition of the authors. All other detected events that fulfilled the
definition of a blink relateevent as described above were cat-
egorized as blink-related events if they differed from the indi-
vidual definition of a blink.

As a summary for evaluation of the main research goals,
the split as a function of measurement technique (EOG 25 Hz
vs. eyetracker 25 Hz), driver state (awake vs. drowsy), level of
automation (manual vs. CAD), and signal frequency (50-Hz
EOG vs. 25-Hz EOQG) are given in Table 3, showing MN + SD
of the detection rates of the eye closures. Since the detection
rates with a3 were best for the video recording, those results
were selected for the subsequent evaluation. Two detailed ta-
bles showing the performance of all algorithms are included in
the Appendix.

To evaluate the labeling process, all events of the basis
detection with EOG and the sampling frequency f; were la-
beled three additional times by an independent labeler. The
event-based matching was 98.5% for the manual drives and
95.6% for CAD.

Discussion

The results in Table 3 show that the detection rates TPR,
FDRgg, and FDRypr of eyelid movements vary between
the different subgroups analyzed. A Friedman test showed
significant differences between the TPR [x*(2) = 22.052, p <
.001] and FDRygg [X*(2) = 28.056, p < .001]. In the direct
comparison between the EOG system (f;) with the best result
for the head-mounted eyetracker operated at the same frequen-
cy (a3), the rates are very similar with few exceptions. The
results show a significant higher FDRypgr for the video re-
cordings (Z =-3.2, p =.001, = .42). The Bonferroni correc-
tion was used for the signifince level of this and all subsequent
post hoc tests. A larger difference between a, and a; is also
visible in the detection rates between the awake CAD phases,
favoring the video recordings. The difference was not signif-
icant anymore after correcting the significance level. This in-
dicates that for a higher level of automation and for the pur-
pose of simulator or real road driving studies, a camera might
be better suited for blink detections than an EOG system under
the same constraints. One reason could be the use of an

indirect measuring technique rather than the two direct
methods used with the video recordings (visibility of the pupil
and eyelid distance). For manual driving, the EOG technique
provides an advantage. During the labeling process, several
problems related to each of the technologies were noted. EOG
had problems with long eye closures, small amplitudes with
vertical saccades resulting in signal courses similar to eyelid
closures, and eye movements during eye closures. On the
other hand, the image processing step of the eyetracker video
for the eyelid detection had problems with disturbances by
eyelashes, the blockage of the lower eyelid during the drop
of the upper eyelid, and wrinkles in the skin or edges around
the eye that were misinterpreted as eyelids. Shorter eyelid
distances and longer eye closures are especially likely to occur
during drowsy phases, contributing to the different problems
of both measuring devices. This can be seen in the significant
drop (Z =—-4.172, p < .001, » = .45) of the correct detection
rates from the alert to the drowsy phases (drop between 2%
and 16%) independent of the measuring frequency (f; vs. f5),
measuring technology (EOG vs. video), and automation level
(manual vs. CAD). Despite the different constraints in the
experiments (speed, alertness, and takeover requests), the
drivers were always aware of the relatively high travelling
speed and their responsibilities in the CAD experiment.
Particularly the short manual-driving portions during the take-
over situations enhanced the preparation awareness for a take-
over. The general and significant decrease in the correct de-
tection rate from manual to automated driving (drop in the
detection rate of the EOG and video based algorithm with 9
to 29%; U = 1,832.500, p < .001, r = .49) and significant
increase in the FDRggr (U = 2,940.500, p = .004, r = .22)
cannot be explained by the experiments’ constraints.
Therefore, they imply a change in the behavior of the eyelid
movements of the drivers, confirming the results of Schmidt,
Braunagel, et al. (2016). This further shows that detection
rates obtained during manual driving should not be applied
universally to CAD mode. Comparing the two measurement

Table3  Performance of the blink detection algorithms (in %) with their

MN =+ SD
a ar as
Aw Dr Aw Dr Aw Dr
Manual TPR 94+5  92+13 9147  89+13 91+6 85420
FDRgr  6£11 242 548 242 548 5+7
FDRnpr 242 1+l 444 242 949 8«13
CAD TPR 81£20 69422 71420 60+£24 82420 66+27
FDRgr  8+11 11£14 1113 14+£21 6+6 19+32

FDRypr 446 46 548 244 6+6 446

Aw = Awake, Dr = Drowsy, TPR = True positive rate, FDRgr = False
detection rate blink-related, FDRypr = False detection rate not blink-
related
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frequencies (f;) and (f5), significantly better detections (rising
from 3% and 10%; Z=—-4.736, p < .001, r = .62) can be seen
in the outcome of the blink detection with the higher frequen-
cy. This effect is greater for CAD and indicates a higher po-
tential for detecting blinks using higher frequencies for the
measuring system in CAD. On the basis of these results, along
with the findings from Picot et al. (2009), this effect is also
expected when using different measurement frequencies for
video recordings. The four signal processing algorithms tested
(a3, a4, as, and as) show significant differences in the accuracy
of eye closure event detection (see the detailed results in the
Appendix). A possible reason for that could lie in the adaption
of the two re-implemented algorithms from Bergasa et al.
(2006) and Sukno et al. (2009) to their own image-
processing signals and study constraints, differences that do
not apply to our present study.

The introduced subcategories of A, and A, give a valuable
indication of the differences in the eyelid behavior during
manual driving. Since the decrease in the rates of A, and A,
from an awake to a drowsy driver is larger than the overall
missed events and decrease in the correct detection rate, it can
be concluded that alert drivers usually do not close their eyes
during a blink as far as drowsy drivers. This might be due to
the urge to look at the street and the attempt to reduce the
vision lost during a blink to a minimum.

The other subcategories of the FDRgr show the potential
of improvement of the TPR in the blink detection process. The
high rates for the CAD phases imply that the adapted blink
behavior of the drivers during passive driving, with features
such as longer shut times and eye closure and opening phases,
causes more difficulties for the detection process.

Conclusion and future work

The goal of this article was to study different influences on the
blink detection. The results indicate that the detection of
blinks is primarily influenced by the level of automation, driv-
er state, the measurement frequency, and the algorithms used.
In this respect, the results quantify the influence on blink de-
tection and show, how known research methods can be used to
investigate the various influences. Furthermore, the intro-
duced detection methods offer a new approach for detecting
blinks and can be implemented in other studies using our
detailed description of the signal processing steps. A detailed
classification of eyelid movements reveals additional states in
eyelid movement and behaviors of drivers in the tested cir-
cumstances. This could also be used as the common basis for
comparing different approaches of blink detection in future
studies. The video of a head-mounted eyetracker enabled a
highly accurate labeling process, which is more difficult to
obtain with a remote eyetracker. Using the head-mounted
eyetracker, it was possible to show the results of the blink
detection process without any influence of head movements
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and to gain greater insight into the influences of the automa-
tion mode and the drowsiness state of the driver. These were
the main reasons why a head-mounted eyetracker was selected
as the exemplary video source for this study. The use of other
signal-processing methods and their lower performance
shows the dependency of single blink detection methods on
specific image processing methods and the states of the
drivers during the recordings of the studies. Therefore,
adapting methods to different conditions and drivers is neces-
sary for accurate blink detection. In contrast to the EOG meth-
od, the detection based on video images allows to extract more
information from the video than just a single signal describing
the eyelid distance. The variety of different video-based blink
detection methods could be used to improve the correct detec-
tion rate by combining several of them in a single algorithm. A
higher video-recording measuring rate could increase the ac-
curacy of the detection as well. Aside from an improvement in
the correct detection rate, future analyses should focus on the
examination of driver behavior during CAD, especially during
drowsy driving. To build on the detected blink sequences,
further information about the driver behavior, such as the
blink frequency, duration of the eyelid closure, amplitude, or
velocity of the eyelid closing and opening, should be evaluat-
ed. In this way, drivers could be accurately classified as too
drowsy to continue driving in the conditionally automated
mode. Overall, we showed that video recordings can be used
to detect driver behavior in the future modes of travelling as a
replacement for the estimation by steering behavior. Further
studies should examine the influence on the detection rates of
a remote system.
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Matthias Roétting for his valuable and constructive comments on our
research. Furthermore, we thank Mathis Berroth, Sabrina Pohl, and
Bridget Hicks for their assistance with the study and outline.

Appendix

The performance of all algorithms is presented in Tables 4 and
5, together with the rates of each subgroup. Note that the
subcategories of the TPR (TPR4, = part of the true positive
rate with events labeled as A, and TPR,;, = part of the true
positive rate with events labeled as Ap) and FDRgr (FDR . =
part of the true positive rate with events labeled as A., FDR 54
= part of the true positive rate with events labeled as A4, and
FDR 4. = part of the true positive rate with events labeled as
A.) are rounded parts that add up to the TPR and FDRgg, to
show the specific shares of each defined classification of eye-
lid movement events. Note further that the labeling process for
as and a4 did not distinguish whether the events belonged to
any of the subgroups (e.g., A,, A¢, A.) since those are depen-
dent on the definition proposed by the respective authors. All
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other events remained in category Ay A comparison of the
four camera algorithms show significant differences for the
TPR [x*(3) = 85.401, p < .001], FDRgg [x*(3) = 23.090, p
< .001], and FDRygr [X*(3) = 92.257, p < .001]. Post-hoc

Table 4 Detailed performance of blink detection algorithms a; to a4 (in %), MN + SD

tests revealed a significantly better detection rate for a3 (a3 vs.
ay Z=-3344,p < .001, r = 44; a3 vs. as: Z=-6424, p <
.001, r = .84; a3 vs. ag: Z=-5.596, p < .001, r = .73), which
was therefore selected for evaluation of the EOG algorithm.

a; ay ag ay
Aw Dr Aw Dr Aw Dr Aw Dr
Manual TPR 92+13 91+7 89+13 91+6 85+20 87+7 82+23
TPRA, 69+21 84+16 68+21 82+15 65+22 76+19 63+23 73+21
TPR 25+19 8+10 24+19 749 26+19 9+11 24+18 9+11
FDRggr 242 548 242 548 5+7 416 549
FDR . 0+1 548 0+1 547 1+2 346 0+1
FDRyq 0+1 142 0+1 1+2 1+2 4+7 0+0 549
FDR . 0+0 0+1 0+0 0+1 0+0 0+0 0+0 0+0
FDRygr 242 1+1 414 242 949 8+13 6+5 745
CAD TPR 81+20 69+22 7120 60+24 82420 6627 81+17 63+£26
TPRA, 71£18 6424 62+17 5724 71£17 58+25 71£15 55424
TPRAp 10+12 549 8140 3+6 11£12 9+16 1110 8+13
FDRgr 8+11 11+14 11£13 1421 646 19432 748 19+£29
FDR 4. 0+1 14+2 0+1 243 1£1 243 1£2
FDR g4 6+11 346 5+10 345 3+6 245 345 245
FDR 4, 713 410 11+18 143 16+31 245 16+29
FDRygr 416 4+6 548 244 646 4+6 445 244

Aw = Awake, Dr = Drowsy, TPR = True positive rate, TPR,,, = True positive rate in the eye region R, TPR4; = True positive rate in the eye region R,,
FDRpp = False detection rate blink-related, FDR 4. = False detection rate blink-related in the eye region Rz, DR 4, = False detection rate blink-related in

the category A;, FDR, . = False detection rate blink-related in the category A., FDRypr = False detection rate not blink-related

Table 5 Detailed performance of the blink detection algorithms as and

a6 (in %), MN £ SD

as a6
Aw Dr Aw Dr
Manual TPR 53+19 50422 62+38 54445
FDRgr 8+5 12+9 18+22 20+32
FDRngr 51£28 37425 19427 134£20
CAD TPR 52426 33424 47+46 22438
FDRgr 18420 28427 18431 26438
FDRygr 36+19 34427 12420 9+£26

Aw = Awake, Dr = Drowsy, TPR = True positive rate, FDRgr = False
detection rate blink-related, FDRypr = False detection rate not blink-

related
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