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Abstract Cognitive process models are fit to observed
data to infer how experimental manipulations modify the
assumed underlying cognitive process. They are alterna-
tives to descriptive models, which only capture differences
on the observed data level, and do not make assumptions
about the underlying cognitive process. Process models may
require more observations than descriptive models how-
ever, and as a consequence, usually fewer conditions can
be simultaneously modeled with them. Unfortunately, it is
known that the predictive validity of a model may be com-
promised when fewer experimental conditions are jointly
accounted for (e.g., overestimation of predictor effects, or
their incorrect assignment). We develop a hierarchical and
covaried multiple regression approach to address this prob-
lem. Specifically, we show how to map the recurrences of
all conditions, participants, items, and/or traits across exper-
imental design cells to the process model parameters. This
systematic pooling of information can facilitate parameter
estimation. The proposed approach is particularly relevant
for multi-factor experimental designs, and for mixture mod-
els that parameterize per cell to assess predictor effects.
This hierarchical framework provides the capacity to model
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more conditions jointly to improve parameter recovery at
low observation numbers (e.g., using only 1/6 of trials,
recovering as well as standard hierarchical Bayesian meth-
ods), and to directly model predictor and covariate effects on
the process parameters, without the need for post hoc anal-
yses (e.g., ANOVA). An example application to real data is
also provided.

Keywords Hierarchical cognitive modeling · Multiple
regression · Psychometrics · Data analysis · Parameter
recovery · Bayesian inference

Introduction

Descriptive models for data analysis (e.g., stochastic dis-
tributions, regression, principal components analysis) are
efficient for measurement purposes. They have relatively
few parameters, and can model predictor effects using low
numbers of observations (Baayen, Davidson, & Bates, 2008;
Lazarsfeld, 1959; Cohen, 1968; Howell, 2012; Jolliffe,
2002; Wilcox, 2012). For example, traditional regression
models account for predictor effects with single parameters
(e.g., the β coefficients) that are based on the information
pooled across an experiment’s data cells. This approach is
efficient for investigating many predictors in a joint context
(simultaneously). Jointly modeling the effects of predictors
is preferred because it usually improves the predictive valid-
ity of a model, as compared to approaches with independent
effects (see Baayen, 2004; Baayen et al., 2008; Barr, Levy,
Scheepers, & Tily, 2013). Through modeling several pre-
dictors simultaneously, descriptive models can be used to
determine which predictors are informative. Predictors can
be considered informative to the extent that they account
for variance in the response data (e.g., smaller/larger magni-
tudes of choice proportions, accuracy rates, response times).
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However, thesemodeling approaches also have their limitations.
Particularly, they serve as descriptive analytical tools rather
than as explanatory process models. That is, they do not
provide any model of how the predictors may affect the
underlying cognitive process(es) involved in the generation
of the observed behaviors (Busemeyer & Diederich, 2010).

In contrast, process models (e.g., Anderson, 1996;
Busemeyer & Townsend, 1993; Pike, 1973; Van der Linden
& Hambleton, 1997) aim to model cognitive dynamics by
focusing on one or more cognitive mechanisms that can
account for the observed performance differences in an
experiment. Particularly, data-driven process models have
parameters that map onto cognitive processes. These param-
eters can be estimated from the observed data and derived
for each experimental condition of interest. This allows us
to talk about predictors in terms of how they affect an under-
lying cognitive process. Fitting complex process models
requires more data than fitting their descriptive counterparts
however. Moreover, these models tend to pool information
less efficiently, meaning that they are usually fit by exper-
imental cell (e.g., several parameters are added for each
cell). As a consequence, such cognitive models can include
fewer predictors jointly, which can reduce the validity of
their predictions. As noted previously, separate analyses
of predictors (e.g., conditions, participants, or items), can
cause misattribution errors such as overestimation of effects,
type I errors, etc. For example, when certain predictors that
significantly account for performance differences are not
simultaneously modeled, a model may mistakenly attribute
these performance differences to other predictors (Baayen,
2004; Baayen et al., 2008; Barr et al., 2013).

We offer a solution to this problem based on maximiz-
ing the information pooled to the process model. With this
framework, parameter recovery is improved for the pro-
cess model at lower numbers of observations; consequently,
more predictors can be simultaneously modeled. This is
achieved through a hierarchical and covaried multiple
regression approach in which information is mapped across
experimental cells from the recurrences of all conditions,
participants, and items (i.e., cases of repeated measures) to
all of the process model’s cognitive parameters. In addition,
the covariation between the cognitive parameters them-
selves is modeled. The framework is particularly relevant
for multi-factor experiments and for mixture models that
parameterize per cell to model predictor effects. It can be an
effective approach for advancing empirical modeling meth-
ods used for measurement and cognitive-behavioral infer-
ences, known in some domains as cognitive psychometric
models (see Batchelder, 1998; Batchelder & Riefer, 1999;
Riefer, Knapp, Batchelder, Bamber, & Manifold, 2002).

The proposed approach builds upon previous developments
in a growing movement known as hierarchical cognitive
modeling, which has been shown to improve the analytical

potential of such process models. Hierarchical cognitive
modeling (Lee, 2011; Kruschke, 2011; Rouder, Morey, &
Pratte, 2013; Scheibehenne & Pachur, 2015) typically con-
sists of embedding (or nesting) a statistical model at a layer
above the process or cognitive model. Major hierarchical
approaches have included the following implementations:
stochastic population distributions over observed partici-
pants/items to constrain estimation error (Rouder & Lu,
2005; Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder
et al., 2007; a regression model on a parameter to analyze
cofactors or trial-by-trial covariates of its value (Cavanagh
et al., 2011; Frank et al., 2015; Oravecz, Anders, &
Batchelder, 2015; Vandekerckhove et al., 2011); and latent
predictor modeling as a method for clustering (e.g., of par-
ticipants/latent signals Anders & Batchelder, 2012, or rele-
vant cognitive abilities across tasks Vandekerckhove, 2014).

The current framework builds most closely upon the
previously cited works that emphasize hierarchy through
embedded regression models. Specifically, these works
demonstrate the advantages of nesting a simple regression
on one or two cognitive parameters in order to jointly
model a predictor or a trial-by-trial neural activity that
covaries with that parameter. The present paper elaborates
this framework to a full-fledged regression structure which
maps the entire experimental design (conditions and each of
their levels, participants, and items). To our knowledge, it
is the first work to demonstrate that such a framework can
markedly improve parameter recovery at low observation
numbers, and hence permit a cognitive model to simultane-
ously fit more experimental conditions than usual. Hence,
the present work focuses on optimal hierarchical methods
for experimental designs, and it is complementary research
to the previous works. That is, economizing observation
numbers for modeling the core experimental design may help
to model additional cofactors or trial-by-trial covariates jointly.

The proposed framework involves a hierarchical model-
ing comprised of (1) a process model, (2) a multiple and
covaried regression structure, and (3) by-group (e.g., by
predictor, participant, and item intercepts) population dis-
tributions. In the following sections, we will demonstrate
how this three-tiered approach can markedly improve the
information pooled to a process model. Due to the more
complex expression of likelihood however, a more advanced
estimation approach is typically needed to implement this
modeling framework. We therefore utilize the Bayesian esti-
mation approach (Gelman, Carlin, Stern, & Rubin, 2004).
A number of advantages have been identified with the
Bayesian approach (Lee, 2011; Kruschke, 2011; Rouder
et al., 2013; Scheibehenne & Pachur, 2015), including the
simultaneous, rather than sequential estimation of model
parameters, and the ability to constrain error in estimation,
which can improve parameter recovery performance or a
model’s capacity to make predictions from data.
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The paper is organized as follows. The first section, “Process
parameters as a function of a hierarchical multiple regression
structure” develops the framework. Next, “Data-driven process
models for performance data: Sequential sampling” intro-
duces a popular genre of cognitive models that is fre-
quently used for performance data (e.g., response times and
accuracy), known as sequential sampling (Busemeyer &
Townsend, 1992; Townsend & Ashby, 1983). Consequently,
we will demonstrate the framework using a standard
sequential sampling model, which can be generalized to a
number of experiments involving response time analyses.
Then using hierarchical Bayesian methods, we develop an
estimation approach in “Bayesian estimation”. We will also
remark as to how the framework can be easily adapted to
a variety of other process models. Next, “Fitting approach”
discusses important fitting topics for the proposed approach,
and “Bayesian sampler settings” includes the recommended
specifications. “Application to simulated data” demonstrates
the aforementioned advantages of the approach through sev-
eral large simulation studies. “Application to experimental
data” provides an empirical application, and finally
“Discussion” includes the general discussion.

Process parameters as a function of a hierarchical
multiple regression structure

Consider an experiment that is designed with F factors,
each having Lf levels (for example a 2 × 2 design or a 3 ×
3×2 design), which will be tested with multiple participants,
P , and/or items, I , of interest. This kind of experimental
design gives rise to a number of unique experimental design
cells, C, each having a unique combination of factor levels
per participant and/or item. The experimenter(s) will collect
N observations in each cell, as yjc , in which observation
j ∈ 1 . . . , N and design cell c ∈ 1, . . . , C. This set of
N observations along C experimental cells is defined as the
response data.

To learn more about the underlying cognitive process(es),
and how the predictors may affect them, a researcher selects
a data-driven process model that possesses an expression of
likelihood, or a probability density function f (·), that can
be used to fit the data (yjc ) as a function of a set of cog-
nitive parameters, �. A maximally data-driven model will
estimate these parameters per every design cell c, as �c, and
is known as a finite mixture-model implementation (Everitt,
1981).1 The model parameters for a given cell are typically
used to model the distribution of observed data in that cell

1A less data-driven model may economize observation numbers by
estimating select parameters from data pooled across cells (fewer
parameters estimated), rather than having the opportunity to observe if
the data instead suggest the parameters vary across individual cells.

(e.g., central trends and variance across trials). Then a gen-
eral stochastic expression of the data per design cell, yjc , as
related to the mixture application of the cognitive process
model, can be expressed as

yjc ∼ f (�c = {ω1c, ω2c, . . . , ωKc}) , (1)

where �c contains the K cognitive parameters ωk that
model design cell c. From this modeling, predictors (or how
experimental conditions, participants, and items modify the
cognitive parameters) can then be retrieved by a posterior
analysis of the parameters across cells, for example by an
analysis of variance (ANOVA, Iversen, & Norpoth, 1987;
Cohen & Cohen, 1988).

However, in this by-cell modeling approach, extra param-
eters are specified per cell, and there is much information
shared between cells that is lost. As a result, more data are
required per cell, and less predictors can be modeled. Hier-
archical modeling has made developments on this issue,
particularly by addressing the recurrence of the same partic-
ipants or items in different cells, which are cases of repeated
measures. A current standard in the field is to nest a popula-
tion distribution at a layer above the participants or items in
the process model. This approach can utilize the between-
subject variance to improve the within-subject estimates,
and according to recurring subjects across conditions, can
improve the within-subject parameter estimates. Further-
more, one can also use the subjects’ group parameters to
make generalizations about the population itself (Rouder &
Lu, 2005; Rouder, Lu, Speckman, et al., 2005; Rouder, Lu,
Sun, et al., 2007). As opposed to a simple distribution nest-
ing, this approach can also be implemented through nesting
a regression structure at a layer above the model (e.g., pop-
ulation intercept and error term, see Vandekerckhove et al.,
2011). Nesting a regression structure also has the advantage
to allow for jointly modeling a covariate or between-trial
effects (Cavanagh et al., 2011; Frank et al., 2015). How-
ever for a given process model, it is good practice to first
verify through simulation analyses that there are enough
observations to appropriately fit the data at such granularity.

While the benefits from sharing information across cells
of repeated participants and/or items has been largely recog-
nized, it has not yet been quantified to what extent one bene-
fits from sharing information across cells of repeated condi-
tion levels (in tandem with the participants and items). Fur-
thermore, it has not been studied how this information can
be effectively mapped to all of the process model param-
eters. In this work, we pursue such a study and develop
an approach to implement the methodology. This is accom-
plished through a multiple and covaried regression structure
that is embedded hierarchically, which informs all of the
cognitive parameters and also models their correlation. An
illustration of how such an approach can improve the infor-
mation pooled into the process model is provided in the
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following paragraph. Then through several implementations
and large recovery analyses, the Section “Application to
simulated data” demonstrates the advantages of the approach.

In experimental designs, frequently many of the same
condition levels, Lf , along a number of factors, F , partici-
pants, P , and items, I , are found in other cells. Information
about their effects across unique cells (e.g., in the con-
text of other predictor/participant/item combinations) can be
pooled by a hierarchical multiple regression structure. Note
that regression maps information through indicator values,
x, that pool information from all recurrences of a condi-
tion, regardless of its cell membership. Consider a cognitive
model in which there are K = 3 process model parameters
(ω1, ω2, ω3), for which at least N = 60 observations in a
cell c are needed to appropriately fit the parameters. Sec-
ondly, suppose that the experimental data is derived from a
2 × 2 design, which provides for L = 2 levels, for each
of F = 2 factors, and involves P = 10 participants and
I = 6 items. Let lowercase script be the index for each con-
dition (factor, participant, item), then the parameters in �c

are quadruply indexed as {ω1pi lf1 lf2
, ω2pi lf1 lf2

, ω3pi lf1 lf2
},

which expands the total number of experimental cells to 240
(e.g., Lf1 × Lf2 × P × I = 2× 2× 10× 6 = 240). Hence,
each participant would need to complete 24 × 60 = 1440
trials to reliably estimate these predictors in a joint context.
While these numbers are realistic for this simple experi-
mental design, they are still largely inconvenient to obtain.
However, as we will later show in Table 1, by implementing
the proposed hierarchical multiple regression approach, one
could have performed the same process modeling with only
1/6 of the observations (240 per subject instead of 1440).
Therefore, such an approach allows for smaller experiments
to be modeled, more conditions to be jointly modeled (e.g.,
covariates, between-trial effects, or experiments with addi-
tional predictors), and improved parameter recovery at low
observation numbers. These developments can benefit a
researcher’s capacity to make inferences from data with
cognitive process models.

The hierarchical multiple regression approach is formally
specified as follows: suppose each cognitive parameter in
the set �c = {ω1c, ω2c, . . . , ωKc} contains a full regression
structure of coefficients, bw, with w ∈ 1, . . . , W for the
levels among F specified predictors, as well as participant
bp and item bi intercepts. Then the model is specified by:

ω1c = b1ω1
xc1 + . . . + bWω1

xcW
+ bpω1

+ biω1
+ ε1

ω2c = b1ω2
xc1 + . . . + bWω2

xcW
+ bpω2

+ biω2
+ ε2

...
...

... (2)

ωKc = b1ωK
xc1 + . . . + bWωK

xcW
+ bpωK

+ biωK
+ εK

ε1:K ∼ Multivariate Normal(0,���K×K) ,

and the error εk of parameter ωkc from the regression, as
influenced by deviation from the model and the covariance

of the other ωkc parameters, is modeled by the multivariate
normal with mean 0 and the K × K covariance matrix ���.
The xc are the indicators that link the W regressed condi-
tions (and covariate effects if desired) to the corresponding
experimental design cell c, which also has intercepts, I ,
according to participant p and item i.

Then the notation in Eq. 2 can be more simply compacted
into a single multiplicative term as in Eq. 3, by introducing
additional xc terms, which by values of 0 or 1, appropriately
index these intercepts. Consequently, the notation for each
parameter is simplified as a single vector of weights (which
includes intercepts), βωk

, and a vector of indicator values for
the cell Xc, resulting in a generalized case notation where

ω1c = βω1Xc + ε1

ω2c = βω2Xc + ε2

...
...

... (3)

ωKc = βωK
Xc + εK

ε1:K ∼ Multivariate Normal(0,���K×K) .

Furthermore, letting k ∈ 1, . . . , K be the index of the
appropriate parameter in �c, the notation is further summa-
rized as

ωkc = βωk
Xc + εk

ε1:K ∼ Multivariate Normal(0,���K×K) . (4)

These formulas summarize the nested multiple regression
approach. In the following section, we acquaint the reader
with a popular class of cognitive process models used
for handling performance differences, known as sequential
sampling models. We will utilize a canonical example of this
class to demonstrate an implementation of the approach.

Data-driven process models for performance data:
Sequential sampling

Among cognitive process models for handling performance
data (such as reaction times, responses), sequential sam-
pling models are currently very popular in several domains
(Busemeyer & Townsend, 1992; Townsend &Ashby, 1983).
Sequential sampling can be conceived of as a time-based
extension of the predominant framework for modeling
response data, known as signal detection theory (SDT,
Green & Swets 1966; Pike, 1973). Sequential sampling
posits that performance differences, in the context of time,
may be modeled by a noisy accumulation of information
toward a threshold, whose crossing triggers the response.
Furthermore, these models involve a parameter that dis-
tinguishes the time elapsed in this decision process from
time elapsed in external processes, such as during the motor
movement that ensues after the threshold is triggered. This
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framework has been effective in accounting for performance
differences through such a mechanism, and these mod-
els can closely fit response time (RT) distributions. The
approach has experienced continued support since its begin-
nings in the 1960s (Stone, 1960; Laming, 1968; Gerstein &
Mandelbrot, 1964; Ratcliff, 1978) in both theoretical (e.g.,
simulation exploration) and real data applications of experi-
mental psychology (Ratcliff, Van Zandt, & McKoon, 1999;
Ratcliff, Gomez, & McKoon, 2004; Ratcliff, Thompson, &
McKoon, 2015; Ratcliff & McKoon, 2008; Anders, Riès,
van Maanen, Alario, 2015) and neuroscience (Dehaene,
2008; Kelly & O’Connell, 2013; O’Connell, Dockree, &
Kelly, 2012).

Next, we will specify the key model parameters involved.
The three principal components that describe a sequential
sampling process are at minimum: an accumulation rate γ

of quantity X (the behavioral activation level that accumu-
lates), an absorbing threshold of value α, and an external
time θ . Using these three parameters (γ , α, θ ), a standard
sequential sampling process is illustrated in the left plot of
Fig. 1. This process models a single trial. The fluctuating
black line is a representation of the activity (X) for the mod-
eled behavior, and this activity accumulates positively over
time (with noise). Specifically, the noisy accumulation of X

occurs by the model at every time step, t = 1 milliseconds
(ms), by sequential independent samples from a Gaussian
distribution with mean γ and standard deviation 1 (hence
the term, sequential sampling model). Note that in this sim-
ulation, X begins at a neutral value of 0, and increases
(with noise) over time with an average rate of 0.08 units/ms
(γ ), until it hits the necessary threshold value at 40 units
(α). Upon reaching the threshold, the response is initiated.
Parameter θ includes motor time for response execution
(here abbreviated as TEA, Time External to the Accumu-
lation process), and may also include time for low-level
perceptual processing or encoding.

In the right plot of Fig. 1, many trials (e.g., a subject
within an experimental design cell) are modeled with the
same three parameters that simulated the single trial in the
left plot. Note that these finishing times, from when the evi-
dence accumulates to the necessary threshold, plus the TEA
(θ ),2 model the RTs. These model-predicted RTs form a
positive, right-skewed distribution.

In this canonical sequential sampling model, the resul-
tant RT distribution is directly tractable by the probability
density function (pdf) of the shifted Wald (SW) distribution,

2For illustrative simplicity, here θ (TEA) is placed before the evi-
dence accumulation begins (at θ = 200 ms). However, whether
θ is placed before, after, or split around the actual accumulation
process (e.g., accounting for both concept/visual recognition and
response execution time), all of these options are quantified equally
(mathematically).

also known as the three-parameter inverse Gaussian distri-
bution. The three sequential sampling parameters {γ, α, θ}
respectively quantify RT distribution tail thickness, vari-
ance around the mode, and location (onset). Luce (1986)
discusses the importance of these RT distribution aspects
for psychometric studies. Furthermore, this particular model
likelihood has a closed-form solution in Eq. 5. We will
henceforth refer to this SW model as a canonical sequential
sampling model (SSM), and it will be used to test a baseline
implementation of the proposed framework.3

Adapting the multiple regression approach
to a cognitive model

The generalized formula for the hierarchical multiple
regression approach, provided in “Process parameters as
a function of a hierarchical multiple regression structure”,
are easily adapted to various data-driven process models.
This is mainly achieved by specifying the likelihood f (·) in
Eq. 1, and the number of parameters K in Eq. 4, to align
with the proposed process model for the data. One may
also consider simpler models than sequential sampling, such
as signal detection models, binomial rate models, and item
response theory models (see Lee & Wagenmakers, 2014,
for such models, and other potentials). These kinds of mod-
els are relevant to our approach when a researcher seeks to
account for response differences along several experimen-
tal conditions, participants, and items. However, complex
models that are generally used for other purposes than mea-
surement, such as neural networks, are likely too complex
to adapt to the hierarchical multiple regression approach.

When implementing the proposed approach for the
canonical SSM (used here as our running example), the
multiple-covaried model consists of K = 3 parameters that
are estimated per cell: γ , α, and θ . We apply this model to
analyze performance data consisting of response times from
correct responses. The likelihood function for the RT data,
f (·), is simply the shifted Wald probability density func-
tion. Formally stated, the RT data likelihood function f (·) in
Eq. 1 is the SW pdf, in which the yjc are the RTs, as RTjc ,
and �c = {γc, αc, θc}, as

f (RTjc | �c ={γc, αc, θc}) = αc√
2π(RTjc −θc)3

· exp
{
−[αc−γc(RTjc −θc)]2

2(RTjc −θc)

}
, (5)

3The choice is also made for the sake of quantifying estimation advan-
tages of the approach in a non-biased fashion. For example, some
other popular sequential sampling variants (two-boundary) do not have
a closed-form solution, and may use approximations to estimate the
model (Navarro & Fuss, 2009). The results of interest could thus
depend on the specific approximation used.
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Fig. 1 Depiction of a canonical sequential sampling process as a
cognitive-behavioral model, describing the RT data in the context of
a latent quantity (e.g., signal) accumulating to threshold, α, at rate, γ ,
where θ accounts for the time lapsed outside of (around) this process.

Left, a single trial is modeled with the parameters. Right, many trials
(e.g., an experimental design cell) are modeled with the same param-
eter values, and these ultimately form a SW distribution shaped with
the same signal accumulation parameters

with expected value αc/γc + θc, and variance αc/γ
3
c , for

RTjc ∈ (θc, ∞) and γc, αc, θc > 0.

Bayesian estimation

In this section, a Bayesian estimation approach is devel-
oped for the multiple and covaried regression framework.
We will apply it to the canonical SSM, and we refer to the
augmented model as the Multi-RegSSM. The Multi-RegSSM
is summarized as a hierarchical cognitive model, in which
the model’s process parameters are hierarchically derived by
a multiple and covaried regression structure. Furthermore,
population distributions are applied at a layer above the
hierarchical regressions by group (predictors, participants,
items). The advantages of hierarchical population distribu-
tions have been discussed previously (see Rouder & Lu,
2005; Rouder, Lu, Speckman, et al., 2005; Rouder, Lu, Sun,
et al., 2007). Readers more interested in the implementa-
tion results, rather than the technical Bayesian details, may
proceed to “Application to simulated data”.

First level: Multiple (and Covaried) regression
that derives all cognitive parameters

When considering the potential approaches for estimating
the Multi-RegSSM in the Bayesian framework, it is impor-
tant to consider two essential mathematical properties of the
model: (i) the sequential sampling parameters exist on the
positive half-line, {γc, αc, θc} ∈ (0, ∞), and (ii) the regres-
sions that hierarchically derive these parameters, share an
error covariate structure (e.g., ��� as in Eq. 4) which mod-
els the correlations between process parameters. To satisfy
(i), one can either implement an estimation algorithm that
confines the regression sums in Eq. 4 to be always above

0, or alternatively, calculate these regression sums on the
logarithmic scale which is constraint-free. To satisfy the
covariate error-modeling of (ii), the three parameters can
be modeled by a three-dimensional multivariate distribution
in which the regression sums are the hierarchical means of
the parameters, as Mkc, and ��� a 3 × 3 covariance matrix,
handles the errors. From our simulation analyses, we found
the method with the logarithmic scale to be practical and
even advantageous for parameter comparisons (explained
later in more detail), though subsequent work can be done to
also develop optimal techniques for employing the alterna-
tive approach, i.e., the Mkc > 0 regression-sum-constraint
approach.

Proceeding with the logarithmic approach, let Mkc ∈
Mc = [M1c, M2c, M3c] be the regression sums that hierar-
chically derive the three process model parameters {γ, α, θ}
for a given experimental cell. These regression sums will
serve as the population means (e.g., process parameter
values before error) as

M1c = βγ Xc

M2c = βαXc

M3c = βθXc . (6)

By introducing the appropriate categorical coding of Xc,
each βkXc also includes potential person or item intercepts.
Then let ��� be the 3 × 3 error covariate matrix that defines
the noise around these sums on the logarithmic scale (e.g.,
for ε1:3 in [3]). Then (i) and (ii) may be modeled by the
following Bayesian priors,

log{γc, αc, θc} ∼ Multivariate Normal(Mc,���3×3) , (7)

where the logarithm of the set {γc, αc, θc} is modeled by
the multivariate normal, and these parameter values on their
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natural scale can be easily obtained by taking the exponen-
tial. A notable advantage of this logarithmic scale approach
concerns how the logarithmic locations, and modifications
thereof of {γc, αc, θc}, will correspond proportionally to
their naturally scaled values, despite respectively existing
in different magnitudes (e.g., tenths, tens, and hundreds on
the natural scale). This feature will facilitate interpretation
and comparison of these β weights in Eq. 6. For instance,
although these regression weights {βγ , βα, βθ } are modeled
to exist in comparable ranges (in respect to the multivari-
ate normal) they will result in appropriately-scaled effect
sizes of {γc, αc, θc} on their natural scale (see examples after
Eq. 9).

Next, for these β values in Eq. 6, a natural prior distri-
bution choice is the normal distribution. Though, keeping in
mind that these β values include both a set of factor weights
β(f ) and potential person or item intercepts β(i), it is useful
to distinguish for each set, appropriate prior mean μ and s.d.
σ settings as follows:

Factor Weights Intercepts
βγw(f )

∼Normal(μf γ , σf γ ) βγw(i)
∼Normal(μiγ , σiγ )

βαw(f )
∼Normal(μf α, σf α) βαw(i)

∼Normal(μiα, σiα)

βθw(f )
∼Normal(μf θ , σf θ ) βθw(i)

∼Normal(μiθ , σiθ ) ,

(8)

where w ∈ {1, . . . , W }, W being the number of regressed
factors (weights + intercepts).

Second level: Stochastic population distributions

A second level is formulated on the top of the model by-
group (e.g., factor weights, intercepts) to pool information
and constrain error in the regression weights themselves.
This is done by using the population distribution approach
previously mentioned. Specifically, for each parameter k ∈
{γ, α, θ}, the βkw(f )

factor weights are modeled by a hier-
archical normal distribution with mean μf k and standard
deviation σf k . Since as in our categorical regression coding,
the first factor serves as baseline (that is, 0), this hierarchical
modeling allows the factor effects to be predominantly posi-
tive or negative from baseline. Otherwise, if one usedμf k =
0, then the various βkw(f )

factors would be pushed by the
prior to add to 0. A similar hierarchical modeling approach
is also used for the βkw(i)

values that serve as the participant
or item intercepts. Though in contrast, as intercepts which
tend to locate the regression, greater prior mass is allo-
cated to logarithmic ranges that correspond to the natural
magnitudes of {γ, α, θ} on the positive reals, as in Eq. 9.

These hierarchical distributions of the intercepts model
the population level information, in which μik and σik

quantify the population mean and standard deviation per-
taining to the group of participants or items involved in the
experiment. Based on our simulation analyses, reasonable

priors for these hierarchical parameters μ and σ are the
following:

Population weights Population intercepts
μf γ ∼ Normal(0, 0.25) μiγ ∼ Normal(−2.0, 0.5)
μf α ∼ Normal(0, 0.25) μiα ∼ Normal(3.0, 0.5)
μf θ ∼ Normal(0, 0.25) μiθ ∼ Normal(5.5, 0.5)
σf k ∼ Gamma(4, 20) σik ∼ Gamma(4, 40) .

(9)

These priors provide a good compromise between code that
is generalizable to a variety of data sets (e.g., data on dif-
ferent magnitudes of milliseconds) and model estimation
stability. As shown in Eq. 9, for the weight population
parameters (left), one can use the same mean and s.d. priors
for each of the three parameters {γ, α, θ}, since adjustments
from a location on the log scale are similarly proportional
for various magnitudes on the positive real scale. Then for
the intercepts (right), which generally serve to locate the
regression (e.g., such as a regression mean), it is useful to
utilize priors which provide probability mass for reasonable
hierarchical mean values for {γ, α, θ} in the positive reals.

For example, to get a grasp of the various magnitudes
in the second level settings in Eq. 9, suppose the intercepts
for γ , α, and θ are respectively −2.0, 3.0, and 5.5, which
on the natural scale are values 0.135, 20, and 244. Then an
observed β weight of 0.1 (for an x = 1) results in a shift
to 0.149, 22, and 270, and an observed β weight of 0.05
results in 0.142, 21, and 257. As for the intercept popula-
tion mean priors, note that greater prior probability is placed
around population mean intercepts on the natural scale for
γ = 0.135, α = 20 and θ = 244. A movement of 1 standard
deviation (here 0.5) above, provides that these population
mean increase to γ = 0.223, α = 33 and θ = 403 on the
natural scale. Thus, the prior provides enough flexibility to
accommodate various data ranges.

On modifying the priors The suggested priors will allow
the Multi-RegSSM to handle a variety of RT data from differ-
ent experiments. The settings described above have shown
to provide appropriate model stability and Bayesian mixing
performance in our simulations and empirical applications
(e.g., with respect to Eq. 9, using categorical experimen-
tal factors as weights–left column, and persons and/or
items as intercepts–right column). However, in cases when
researchers are attempting to fit non RT-data with this model
(e.g., accumulation over months, years, for examples see
Chhikara, 1988; Folks & Chhikara, 1978), much longer RTs,
or use notably different regression forms than discussed
herein, the researcher is encouraged to calibrate these prior
settings in order to achieve optimal Bayesian mixing. Par-
ticularly since the proposed Multi-RegSSM is quite complex
to fit, informative prior settings are recommended.
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Covariance structure

So far, we have specified the Bayesian priors for all of the
parameters except for the covariance matrix���. A good prior
to optimize the estimation for ��� is formulated by decom-
posing the covariance matrix into R, the Cholesky factor of
the correlation matrix underlying ���, and a diagonal matrix,
S, containing the scalars in which C = R × S provides
the Cholesky factor of the covariance matrix of ���. As C
being the Cholesky factor of ���, then ��� = C × CT. Such a
practice is recommended by the developers of the Bayesian
inference software Stan (Stan Development Team, 2015b),
in which the suggested priors (see p. 72) are the following
distributions:

R ∼ LKJ Cholesky(8.0)

skk ∼ Cauchy(0, 0.025) , (10)

in which skk are the diagonal values of S, and LKJ Cholesky
is a prior distribution for the Cholesky factors of correlation
matrices, as developed by (Lewandowski et al., 2009). Since
the values which occupy skk are bounded to be greater than
zero, the prior in Eq. 10 for skk serves as a half-Cauchy prior.
Note that this approach of estimating the reduced elements
of ��� is a development from previous approaches which
estimated the full covariance matrix using the Wishart dis-
tribution (see Gelman & Hill 2007). Finally, also note that
we lower the scale of the Cauchy prior to 0.025 (from e.g.,
2.50), since a number of real data analysis fits with the
Multi-RegSSM have shown that the hierarchical regression
weights (or rather the respective regression residuals) that
derive {γc, αc, θc}, tend to occupy a markedly smaller range
than for example, regressed RT values and their residuals.

The process model and data likelihood

The model notation is concluded with the RTj values being
modeled on their natural scale by the SSM likelihood func-
tion in Eq. 5. Thus the Multi-RegSSM parameters on their
natural scale may simply be accessed by

{γc, αc, θc} = explog{γc,αc,θc} (11)

and then

RTjc ∼ f (γc, αc, θc) , (12)

as in Eq. 5.

Advantages with a Bayesian implementation

There are notable advantages of implementing the method-
ology in the Bayesian framework. Firstly, the model
parameters (e.g., the regression coefficients) are estimated

simultaneously, which can improve fit performance. This is
contrasted with some maximum likelihood or deviance min-
imization techniques where estimations of one or multiple
parameters are serially-used to derive the other parame-
ters (e.g., from method of moment equations). Secondly, a
distribution of estimations is provided for each parameter
that readily provides a measure of posterior uncertainty in
the results, which is an aspect not readily available in fre-
quentist approaches that provide point estimates. Thirdly,
error in estimation can be constrained by the appropri-
ate use of priors. Furthermore, the cognitive parameters
are simultaneously modeled in the context of a covari-
ance structure (a multivariate Gaussian distribution with
���K×K ), which handles parameter intercorrelation. Finally,
the estimation technique combines various advantages of
hierarchical modeling (Lee, 2011) by nested population dis-
tributions (Rouder & Lu, 2005; Rouder, Lu, Speckman,
et al., 2005; Rouder, Lu, Sun, et al., 2007) and a regression
structure (Vandekerckhove et al., 2011).

Fitting approach

The fitting approach we have developed can be summa-
rized as follows. Firstly, as a maximally data-driven mixture
model application, the approach will estimate a drift rate,
γc, threshold, αc, and non-accumulation time, θc, simulta-
neously for every unique design cell c of an experiment.
Furthermore, the corresponding population means for each
of these design cells are estimated, and so is the covaria-
tion between cognitive parameters. These parameters, and
particularly the population means, are hierarchically derived
by the respective regression models in Eq. 6, which are cal-
culated independently of one another, except for the shared
error covariate structure in Eq. 7 that models the process
parameter correlation.

These regression coefficients directly quantify the exper-
imental predictor main effects (also covariates and interac-
tions, if specified, although not considered in the current
development) β(f ), as well as participant, item, or trait
effects β(i). Notably, this modeling of experimental main
effects and parameter correlations, that pools information
across the experimental cells, economizes observation num-
bers (as in Table 1) and these quantities are retrieved in one
step rather than through post-hoc analyses (e.g., ANOVA).
Furthermore, the Bayesian fitting approach estimates these
predictors simultaneously (improving reliability), provides
informative measures of uncertainty (e.g., parameter pos-
terior distributions), and integrates the parameters over the
uncertainty of all other parameters: e.g., individual level
estimates are propagated to the group level estimates and
vice-versa.
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Defining an indicator matrix based on the regressed
coefficients

Suppose an experiment contains N unique design cells and
W factors (including potential person or item intercepts).
Then, to identify the model, the standard coding of the
factor matrix XN×W in a typical linear regression design
is recommended. In this paper, we will demonstrate and
apply categorical coding. For example, when one codes
four experimental categorical conditions, then X for partici-
pant 1 may resemble the following: setting the first level as
baseline (left) or last level (right),
⎡
⎢⎢⎢⎣

lvl1 lvl2 lvl3 lvl4 p1
0 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎤
⎥⎥⎥⎦ or

⎡
⎢⎢⎢⎣

lvl1 lvl2 lvl3 lvl4 p1
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 0 1

⎤
⎥⎥⎥⎦ .

(13)

In this way, one experimental condition level is removed to
serve as baseline, and “p1” is the intercept for participant 1,
which will serve as the baseline performance of the partici-
pant (e.g., on experimental condition 1, or 4, respectively).
Each participant will hence possess an intercept. Therefore
each participant provides an additional column in X, popu-
lated by 1’s for each unique experimental design cell, and
0’s for where there are other participants (thus adding also
e.g., four rows in X of Eq. 13). Furthermore, although not
shown in the current example, item intercepts may also be
introduced into the regression. Then as for categorical vari-
ables (e.g., experimental conditions), these will be coded to
possess L− 1 levels, so as to not form additional intercepts.

With the categorical coding approach, an experiment
which possesses one factor with three levels, one factor with
two levels, ten participants, and no item intercepts, should
have N = 3 × 2 × 10 = 60 unique experimental cells and
K = 2 + 1 + 10 = 13 regression coefficients. Hence, X is
60× 13 and is populated by 1’s and 0’s; each β in Eq. 4 has
length 13; and 60 sets of {γc, αc, θc} values are estimated
jointly. Finally, note that other kinds of covariates (continu-
ous, ordered) may be included, such as participant age and
so forth. Alternatively for X, one may also consider using
effects coding rather than categorical coding.

Bayesian sampler settings

Through regular testing of the model in the hierarchical
Bayesian estimation (HBE) framework, we have found that
typically six chains, 1000 samples each, 500 of which is
warm-up (burnin/adaptation phase in Stan), and a thinning4

4Note that thinning is only recommended to avoid memory issues, and
is not necessary.

of 5, resulting in 100 × 6 = 600 final samples for analysis,
are reasonable settings for appropriate mixing of the model
(for a review of sampling terms, see Gelman et al., 2004).
They also produce a good compromise between model fit
performance and exceedingly long model run times. With
these settings, our fits to real data have taken generally
between 6 to 48 h with Stan and RStan (Stan Develop-
ment Team 2015a, b) software, depending on data size. Note
that due to the high complexity of this three-tiered model-
ing, we have found that it is very important to observe the
parameter traceplots (chain mixing plots) from the fit, since
occasionally a few chains may have difficulty in appropri-
ately converging. Another solution to reduce the probability
of this occurrence is to further optimize the prior settings,
such as in Eq. 8, according to the data and model cho-
sen. Typically when estimating six chains, when one or a
few chains have difficulty appropriate converging, this will
also be reflected in many of the chain convergence diagnos-
tic values, R̂’s, being greater than 1.10. Alternatively, one
may address convergence issues by increasing the number
of samples and burn-in iterations.

Application to simulated data

In this section, we demonstrate the advantages of the
approach using the Multi-RegSSM as an example. These
tests involve parameter recovery across different experimen-
tal designs using simulated data analyses. The subsequent
section follows with an example application to experimental
data.

The results we present are from several large simulated
data analyses that consist of varying the complexity of the
experiment, and the number of available observations per
unique experimental design cell (observation sizes: 250,
125, 60, 30, 20, 10, 5). The simulation involves the anal-
ysis of 30 data sets per observation size. Each of these 30
simulated data sets had hierarchical data-generating param-
eters that were randomly drawn from distributions similar
to those as in Eq. 9. That is, random sets of βkw values were
generated (e.g., for each of the experimental factors and lev-
els, participants, etc.) that hierarchically derive each of the
parameters in �c = {γc, αc, θc}, as well as the random
parameter covariance matrix���K×K .

In these simulated analyses, the Multi-RegSSM is fit,
which estimates these regression weights, {βγw, βαw, βθw},
the three SSM parameters {γc, αc, θc} for each experi-
mental design cell c, and their covariation, �K×K . Then,
the recovery of the parameters and the fit of the observed
data’s quantiles are calculated, both of which have been
previously used to assess appropriate model fit. This large
analysis is performed twice in two different contexts: firstly,
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for a three-factor (3 × 3 × 2 levels) experimental design
that has ten participants, in which one can expect notable
benefits in pooling cross-cell information by the Multi-
RegSSM framework, and, secondly, for a single factor (two
levels) experimental design with ten participants, in which
one can expect similar performance to a regular hierarchi-
cal Bayesian implementation, since only participants can be
pooled in this case.

Furthermore, to examine the advantages of the approach
in the context of other fitting methods, we will compare per-
formance in parameter recovery to two other principal meth-
ods: standard hierarchical Bayesian estimation (HBE), and
maximum likelihood estimation (MLE). In summary, the
Multi-RegSSM method is (i) a ‘Cross-cell HBE Multi-Reg’
approach, in which the recurrence of all experimental effects
(participants, items, conditions) across cells is utilized in
estimation, thus economizing the number of observations
needed. It also models parameter covariation. We compare
the results to (ii) a ‘By-cell HBE Non-Reg’ approach, which
is a standard HBE implementation defined in Appendix B,
in which only the recurrence of participants across cells
is utilized, offering only partial observation economiza-
tion. We also compare the results to (iii) a ‘By-cell MLE’
approach recently developed by Anders et al. (2016), which
uses MLE / quantile-minimization (QM) to fit a non-
hierarchical version that models no recurrence across cells
(hence does not economize observation numbers), but has
shown to fit data adequately (at also low numbers of obser-
vations, e.g., N = 20), and in a much more rapid amount of
time than the other two methods (within a few minutes).

Table 1, from N = 250 to N = 5 observations, provides
the average parameter recovery trend for the three methods
(i), (ii), and (iii), of {γ , α, θ}, across 30 data set simulations
using a three-factor (3 × 3 × 2) experimental design that
has 10 participants. By Table 1, it is evident that the Multi-
RegSSM’s ‘Cross-cell HBE Multi-Reg’ approach provides
an advantage over the partial/full ‘by-cell’ approaches in
terms of markedly improved parameter recovery, even with

as few as N = 5 observations per unique experimental
design cell. At all observation size levels, the Multi-RegSSM
performed better, and only at N = 125 observations do the
‘By-cell’ approaches begin to provide similar results. The
remarkable result is the Multi-RegSSM approach provides
comparable performance using only 1/6 of the observa-
tion numbers (N = 5) than the traditional hierarchical
Bayesian implementation (N = 30), and furthermore 1/12
of the observations than a maximum likelihood implemen-
tation (N = 60). That is, the same experiment that uses
3 × 3 × 2 × 30 = 540 observations per participant, could
have been performed with only 3 × 3 × 2 × 5 = 90 obser-
vations per participant. Aside from improved parameter
recovery, this suggests how more predictors, conditions, or
covariates could be included in cognitive model analyses
when using this approach, or how more data-demanding
versions of SSMs may be enabled to fit the data.

Figure 2 contains a visual plot of the parameter recovery
results for the N = 20, N = 10, and N = 5 cases of Table 1
for the Multi-RegSSM. These plots can reflect if there are
systematic trends that may not be captured by the simple
Pearson r correlation statistic. One can see that the model
recovers the generating parameter values consistently well,
with almost no strong outliers or biases. Finally, the right
column of Fig. 2 provides a residual distribution diagnostic
check. In cases of appropriate model fit, Anders et al. (2016)
found that the distribution of standardized residuals (divided
by σ = √

αc/γ 3
c from Eq. 5) of predicted versus observed

RT deciles, tends to follow an ordered trend in magnitude.
One can see that these decile residual distribution modes
and variances have an ordered tendency, and occupy values
generally between 0.05 to 0.25.

Next, it is reasonable to infer that the advantage
the ‘Cross-cell’ approach provides over the ‘By-cell’
approaches diminishes as experimental designs become
more simple. This kind of result is demonstrated in Table 2
for (i), (ii), and (iii), in which we simulate a simpler
experimental design: a single factor (two levels) with ten

Table 1 Process model parameter recovery, average Pearson correlations

Three-factor design (3 × 3 × 2 levels), with ten participants

Cross-cell HBE Multi-Reg By-cell HBE Non-Reg By-cell MLE

Base-level SSM Parameters Base-level SSM Parameters Base-level SSM Parameters
Observations γ α θ γ α θ γ α θ

N = 250 0.99 0.99 1.00 0.98 0.98 0.99 0.93 0.88 0.99
N = 125 0.99 0.98 1.00 0.97 0.94 0.99 0.88 0.77 0.99
N = 60 0.97 0.94 1.00 0.90 0.80 0.99 0.79 0.63 0.98
N = 30 0.95 0.90 0.99 0.85 0.72 0.96 0.70 0.52 0.96
N = 20 0.94 0.86 0.99 0.81 0.56 0.92 0.61 0.42 0.94
N = 10 0.91 0.79 0.98 0.71 0.31 0.86 0.50 0.32 0.92
N = 5 0.86 0.67 0.98 0.66 0.19 0.78 0.40 0.15 0.88
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Fig. 2 Application of the proposed method on three sizes of data:
each row in the plot corresponds to 30 sets of data, that respectively
have N = 20, 10, and 5 observations per data set. The recovery

corresponds to the results in Table 1, and consist of the posterior means
of the parameters plotted against the generating value

participants. The recovery overall shows to be satisfactory
in Table 2. However, comparing it to that of a more overlap-
ping experimental design (three factors) as in Table 1, there
is a notable reduction in the recovery strength, particularly
for the cases of low numbers of observations per cell, e.g.,
N = 5 to N = 30. Then, comparing the recovery results of
the Multi-RegSSM with the other two methods, the advantage

of the ‘Cross-cell’ approach of the Multi-RegSSM is notably
diminished. In this case, the improvement in recovery of
the most difficult parameter to recover, α, is improved
only by near 0.10 in the Pearson correlations, by using
the ‘Cross-cell’ HBE approach versus the ‘By-cell’ HBE
approach. Since the specifications are generally equal (only
being able to pool participant information across cells), we

Table 2 Process Model parameter recovery, average Pearson correlations

One-factor design (two levels), with ten participants

Cross-cell HBE Multi-Reg By-cell HBE Non-Reg By-cell MLE

Base-level SSM Parameters Base-level SSM Parameters Base-level SSM Parameters

Observations γ α θ γ α θ γ α θ

N = 250 0.99 0.97 1.00 0.98 0.98 0.99 0.93 0.88 0.99

N = 125 0.91 0.79 0.99 0.87 0.74 0.98 0.88 0.77 0.99

N = 60 0.86 0.72 0.98 0.78 0.64 0.96 0.79 0.60 0.97

N = 30 0.81 0.64 0.97 0.74 0.55 0.93 0.66 0.48 0.96

N = 20 0.75 0.56 0.95 0.67 0.46 0.92 0.62 0.40 0.95

N = 10 0.63 0.52 0.95 0.59 0.42 0.91 0.48 0.28 0.92

N = 5 0.51 0.32 0.92 0.47 0.24 0.87 0.35 0.18 0.86
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speculate that the small advantages of the Multi-RegSSM
over the standard HBE approach might be due to a modeling
of the parameter covariation.

So far, we have only observed the recovery of the
base-level SSM parameters at various experimental design
complexities. However, we have not yet observed recovery
of the regression weights, {βγ , βα , βθ }, which hierarchi-
cally derive these cognitive parameters. Furthermore, it is
worthwhile to note that these regression weights offer mea-
surements of experimental effects, notably from a modeling
that is aimed to disentangle experimental effect magnitudes
from between-parameter correlations/covariation, e.g., as by
���3×3 from Eq. 7.

Table 3 provides the recovery results for {βγ , βα , βθ }, in
which the βf subscript denotes regression weights for fac-
tors, and the βi subscript denotes the participant intercepts.
The recovery performance for the three-factor design related
to Table 1 is provided on the left, and the one-factor design
related to Table 2 on the right. The results indicate a strong
recovery of the weights in the three factor design, and also
an appropriate recovery for the single factor design, that
each markedly improve with increasing observation sizes.
Then, Fig. 3 provides visual plots of the regression weight
(upper row) and intercept (bottom row) parameter recovery
for the two lowest observation sizes, N = 10 and N = 5,
for the three-factor experimental design case. Recovery is
most tightly packed for weights related to the θ parame-
ter, and secondly for the γ parameter (see also Fig. 2). The
recovery of weights for the α parameter shows satisfactory
trends, even at low numbers of observations in this three-factor
design.

Finally, we have not yet observed recovery performance
of the parameter inter-correlations that the modeling of
���3×3 from Eq. 7 may capture. There are a number of
ways in which recovery of such inter-correlations may be
measured. In Table 4, we provide the average absolute dif-
ferences between Pearson r inter-parameter correlations,

e.g., |rγest αest − rγsimαsim
| = �rγα for each observation

number size. An analysis of the results of Table 4 show
a satisfactory recovery of the parameter inter-correlations
that improves as observation numbers increase, and partic-
ularly for multi-factor experimental designs (left columns).
At low observation numbers, the correlations consisting of
the individual parameters that are most difficult (e.g., α, see
Table 1) or easiest (e.g., θ ) to recover, correspond to the
magnitudes in the correlation recoveries.

For example, �rγθ is the most easily recovered, followed
by �rαθ , and then �rγα . Then in respect to the single factor
design, with ten participants, parameter inter-correlations
are much more difficult to recover precisely at lower obser-
vation numbers N = 5 to N = 20, but notably becomes
more appropriately on par near N = 30 observations and
above. Augmentations also in the amount of participants
may improve correlation recovery performance in these
single factor designs.

Application to experimental data

In this section, the approach is demonstrated on a large data
set involving a manual-gesture response task, in which 27
baboons (Papio papio) performed a visual search with con-
textual cues Goujon and Fagot (2013). The task consisted
of searching for a visual target (the letter “T”) that was
embedded within configurations of distractors (letters “L”).
The letters were either arranged predictively to locate the
target (hence a contextual cue), or non-predictively (shuffled,
without a cue). The baboons responded by touching the tar-
get on the display screen. The experimenters explored an
animal model of statistical learning mechanisms in humans,
specifically the ability to implicitly extract and utilize statistical
redundancieswithin the environment for goal-directed behavior.

This data set was previously analyzed with the MLE/QM
approach by Anders et al. (2016, e.g., the method compared

Table 3 Hierarchical parameter recovery (regression coefficients), average Pearson correlations

Three-factor design One-factor design

Factor weights Intercepts Factor weights Intercepts

Observations βf γ βf α βf θ βiγ βiα βiθ βf γ βf α βf θ βiγ βiα βiθ

N = 250 0.99 0.99 1.00 0.99 0.99 1.00 0.94 0.91 0.99 0.95 0.91 0.98

N = 125 0.99 0.95 1.00 0.99 0.99 1.00 0.91 0.87 0.98 0.91 0.81 0.99

N = 60 0.97 0.87 0.99 0.98 0.95 0.99 0.91 0.81 0.98 0.86 0.72 0.98

N = 30 0.91 0.84 0.99 0.97 0.93 0.99 0.88 0.72 0.96 0.84 0.63 0.97

N = 20 0.82 0.85 0.99 0.96 0.84 0.99 0.85 0.69 0.95 0.75 0.57 0.95

N = 10 0.92 0.79 0.99 0.92 0.78 0.98 0.59 0.55 0.94 0.68 0.58 0.96

N = 5 0.79 0.59 0.98 0.87 0.69 0.97 0.41 0.44 0.94 0.57 0.30 0.92
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Fig. 3 Application of the proposed method on simulated data sizes
of N = 10 (top two rows) and N = 5 (bottom two rows). Within
each case, the upper row corresponds to the regression weights, while

the bottom row corresponds to the participant intercepts. The recovery
corresponds to the results in Table 3

Table 4 Process model parameter correlation recovery, �rγα =
|rγest αest − rγsimαsim

|

Three-factor design One-factor design

Observations �rγα �rγ θ �rαθ �rγα �rγ θ �rαθ

N = 250 0.06 0.04 0.05 0.18 0.13 0.21

N = 125 0.07 0.04 0.05 0.27 0.09 0.20

N = 60 0.09 0.06 0.08 0.32 0.15 0.19

N = 30 0.10 0.08 0.09 0.40 0.19 0.29

N = 20 0.18 0.07 0.14 0.58 0.19 0.37

N = 10 0.29 0.08 0.18 0.50 0.22 0.41

N = 5 0.30 0.12 0.20 0.66 0.24 0.68

in the right column of Tables 1 and 2) for the SSM, and
the results can be compared here with the Multi-RegSSM
approach. As organized in the original publication, there are
three meaningful partitions for this data set: the C = 2 non-
predictive (control) vs. predictive contextual cue conditions;
the E = 40 time-points (epochs) to observe training effects,
in which every unit step in E consists of five blocks (each
block contains 12 trials, and thus each E contains 60 trials);
and the P = 27 individual baboons. The experiment hence
consists of two factors (2× 40) and 27 participants, leading
toN = 2×40×27 = 2160 experimental design cells. How-
ever, only 2158 total cells were accessible since one baboon
was absent from the experiment during the 36th epoch. The
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average RT distribution length (number of observations) per
design cell is L̄ = 30, with standard deviation, SD(L) =
1.10.

Model fit checks

In our Multi-RegSSM fit, we include these two learning con-
ditions and 40 time points as regression factors, and use the
last level of each factor as baseline (e.g., the right matrix in
Eq. 13). Figure 4 provides the fit results. Beginning with the
model goodness-of-fit checks, the right column of plots pro-
vides standard diagnostics (see Anders et al., 2016, for more
detail). The top plot contains the deciles of all N = 2158
distributions fit with the Multi-RegSSM. As can be seen,
there is no systematic curvature in the plot and the SSM
performs systematically well on the data set. The plot also
captures the range of the data, and that there are about 4-6
of the 2158 cells fit in which their 9th decile (upper right of
the plot) are notably underestimated by the Multi-RegSSM.
Then the middle plot provides the distribution of standard-
ized residuals for each of the nine deciles (model-predicted
RTs versus observed RTs) across the 2158 cells fit. Here it is
shown that the fit optimally satisfies an ordering of distribu-
tion modes and variances. Finally, the bottom plot provides

the sum standardized decile residuals, �, by cell, and its
mean value, � = 1.35. Using the plot, one can also observe
which cells are more poorly fit. Overall, ρ�σ is small at
-0.07, which supports� being a standardized residual statis-
tic, as generally unbiased across varying observed RT cell
distribution variances.

Main Results

The left column of Fig. 4 provides the parameter main-
effect results of the analysis. These include the posterior
mean regression coefficients β and their 95% Bayesian
credible intervals, for the two experimental factors: the
contextual cue learning condition (left) and training time
points (epochs, right). Each row respectively corresponds
to {βγ , βα , and βθ }, which hierarchically derive the SSM
parameters, and provide direct inferences about the experi-
mental factor main effects on the cognitive process, without
a need for post-hoc analyses (e.g., ANOVA). The dotted
line indicates the baseline (the last level of each factor),
which should be used to interpret these regression parameter
values.

Beginning with the effect of the contextual cue condi-
tion on visual search latency in the left column of Fig. 4,
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the RT latencies are shown to be considerably faster due
to a significant difference in the signal accumulation rate
parameter, βγ , when the cues are arranged in predictive
patterns (baseline). Secondly, there is a small suggestive
effect in reduced threshold (that could be interpreted as
reduced response caution) in the control (no predictive cue)
condition, as the narrow Bayesian interval overlaps the base-
line. Finally, no effect was observed in the time external to
accumulation, θ .

Next, regarding training effects on the visual search
latencies, all parameters were affected in ways that sup-
port faster RTs with more training, yet in different patterns.
Over the training interval, the signal accumulation rate (βγ )
increases rapidly between epochs 1-6 and then gradually
settles between epochs 24 to 30. The response-triggering
threshold (βα) provides a steady decrease across training
levels. The trend suggests that it may continue to improve
with training beyond 40 epochs. Finally, non-accumulation
time (βθ ) appears to show a slight increase between epochs
1 − 6 before it begins a steady decreasing trend up to
epoch 40.

Predicting missing data

On the topic of these main effects through the βkw regres-
sors, it is worthwhile to note that they may be used to predict
the missing data cells in experiments. For example in this
experiment, data is missing for one baboon in the 36th epoch
(for both experimental conditions). We remark that since we
have estimated the baboon’s participant intercept for each
of the parameters, the βkw for the 36th epoch, and the βkw

for the control condition, these may be combined to accu-
rately predict what its response times would have been for
the missing epoch in each of the conditions.

Examining the cognitive parameters

Now we turn to examining how the hierarchical regression
weights derive the base Multi-RegSSM parameters, and how
these Multi-RegSSM parameters relate to the prior analysis
results of the SSM with the MLE/QM method previously
discussed. These two topics are respectively illustrated in
Figs. 5 and 6. In each figure, the grey bars in the plots
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Fig. 6 The SSM fit to the manual response task by MLE/QMmethods: (left) main-effect mean parameter values with pairwise-difference (within
subject) standard error bars; (right) model goodness-of-fit checks. This figure is reproduced from the data fit in Anders et al. (2016)

are the main-effect mean process parameter values, and are
calculated by the mean of within-subject posterior means
for a given experimental level (as in also Anders, Riès,
et al., 2015; Anders, Alario, et al., 2016). The interval bars
for the Multi-RegSSM represent the 95% Bayesian credi-
ble intervals for the pairwise-differences between adjacent
experimental levels. The interval bars for the MLE/QM
SSM represent the standard error of the mean, corrected by
within-subject differences.

Firstly, in comparing the hierarchical predictors of the
Multi-RegSSM’s {βγ , βα , and βθ } in Fig. 4 to the base-
level parameters {γ , α, θ} in Fig. 5, there is a generally
strong correspondence between the results.5 Note that in our
simulation analyses, the base-level parameters (cognitive
parameters) exhibited slightly better recovery performance
than the hierarchical parameters (i.e. β coefficients), which
can be a characteristic of many hierarchical models. Here,
the only notable, but small difference between the results is
in respect to the threshold α for the contextual cue condition.

5Note that the dotted line of Fig. 4 is baseline, and thus respectively
represents the second level of the contextual cue condition, or the last
level of epoch.

While the credible interval of βα narrowly overlaps 0, the
pairwise credible interval of α does not completely overlap
the two condition levels. In both cases however, a potential
effect on α is suggestive, though with low statistical power.

Interpretation Based on analysis of the cognitive param-
eters in Fig. 5 (γ , α, θ ), it is clear that the presence of
contextual cues allows for a much faster accumulation of
information γ from the stimulus as to where the target is.
The potential increase in α when there are contextual cues,
suggests that the baboons may be more cautious to accu-
mulate information from the predictive patterns (the cues)
to locate the target, as compared to the control condition in
which there is no information in the cues to locate the tar-
get. However, this slight delay in caution is overpowered by
the much faster accumulation γ , so the RTs are still con-
sistently faster during the contextual cue condition. Next,
while the presence of contextual cues does not allow for a
decrease in motor response time (modeled by θ ), training
over epochs clearly resulted in improvements. Training also
improved the other parameters, which could be interpreted
as over time, the baboons improve on processing the sta-
tistical redundancies in the environment, and this leads to
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faster accumulation of information γ from the stimulus, and
less total information needed α from the stimulus in order
to infer the location of the target.

Comparing the results to the MLE fitting method

Secondly, it may be interesting to compare these results
with the previous method developed, the MLE/QM fitting
method for the SSM by Anders et al. (2016, e.g., the method
in the right column of Tables 1 and 2). The fit results using
this method are contained in Fig. 6. The main differences
observed are as follows. For the contextual cue condition,
in contrast there is no suggested difference in threshold
value between levels. Secondly for epoch (training effects),
the Multi-RegSSM suggested a logistic increasing trend of
γ over time, and curved decreasing trends in α and θ that
begin later (near epoch 6). In contrast, the ‘by cell’ MLE
SSM approach suggests a linear improvement in γ over
epochs, and curved decreasing trends in α and θ that begin
immediately (near epoch 1).

The model fit diagnostics between the methods (the right
columns of Figs. 4 and 6) provide interesting results as well.
All three plots provide support that the MLE/QMmethod of
fitting the SSM (which minimizes observed versus predicted
quantiles), results in notably smaller quantile residuals than
the Multi-RegSSM which seeks to optimize the likelihood
function. However, the Multi-RegSSM achieves a markedly
better log likelihood value. Thus, each method respectively
won according to the criterion that it aimed to optimize. For
example in respect to the quantile residuals between the two
methods, MLE/QMSSM versus the Multi-RegSSM: the mean
standardized residuals are � = 0.87 versus 1.35, and plot
two displays the smaller standardized residual decile distri-
bution modes achieved by the former (at 0.05 or below).
Then in contrast, the MLE/QMSSM has a notably smaller
log likelihood −430, 724 versus −420, 536.

This inspires future work for the best kinds of model
diagnostic criteria to assess appropriate model fit, as quan-
tile matching might not always represent the best parameter
recovery. For example, see Tables 1 and 2 where the Multi-
RegSSM and standard by-cell Bayesian SSM recovered
parameters better than the by-cell MLE/QMSSM. However,
it is also worth considering that quantiles as data points
are more resilient to contaminant RT effects (Brown &
Heathcote, 2003), which may adjust results in real data
applications. However, we have performed simulation anal-
yses like those in “Application to simulated data” using the
quantiles as data points for the Bayesian models, and still
the regular RTs used as data points achieved markedly better
recovery performance.

Considering an interaction between factors

Lastly, one might be interested to fit this data with a Multi-
RegSSM that allows an interaction between the contextual
cue condition, and the learning time points (epochs). We
indeed fit such a model as well, but found minimal differ-
ences in the regression weights from Fig. 4, and the inter-
action β regression terms did not provide notably strong
trends. Furthermore, the model fit checks were not very dif-
ferent from the right column in Fig. 4, and the log likelihood
was only minimally improved at −420, 529 (interaction)
versus −420, 536 (no interaction). Therefore, we retained
the simpler model for the demonstration.

Discussion

We have demonstrated the advantages gained from nesting a
multiple regression structure in a data-driven process model.
These approaches are useful for analyzing experiments with
multiple conditions, participants, and/or items of interest; and
they are relevant for themodels that would fit parameters along
these experimental cells. Specifically, we developed a frame-
work for how a full experimental design may be mapped into
a multiple and covaried regression model that will maximally
pool information from all recurrences of conditions between
cells (factors and their levels, participants, and items). This
information is used to hierarchically derive the process model
parameters. The methodology allows for improved model
parameter recovery at low numbers of observations, and
consequently, allows for more experimental predictors to be
simultaneously modeled. Simultaneous (joint) modeling of
predictors may improve the predictive validity of a model,
in contrast to separate analyses of predictors (e.g., condi-
tions, participants, or items) which can cause misattribution
errors (e.g., overestimation of effects, type I errors). For
example, when certain predictors that significantly account
for performance differences are not simultaneously mod-
eled, a model may mistakenly attribute these performance
differences to other predictors (Baayen, 2004; Baayen et al.,
2008; Barr et al., 2013). Therefore, the proposed methodo-
logy may improve the cognitive-behavioral inferences made
from experiments with data-driven process models.

The large simulation analyses included in “Application
to simulated data” demonstrate that this methodology can
provide a new standard over current practices in hierarchical
modeling. The approach builds upon simpler nested regres-
sion structures previously proposed (Vandekerckhove et al.,
2011), and also incorporates hierarchical population distri-
butions (as discussed by Rouder & Lu, 2005; Rouder, Lu,
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Speckman, et al., 2005; Rouder, Lu, Sun, Speckman, et al.,
2007). Specifically, our analyses demonstrated that for
experiments having more than one factor (e.g., 2 levels),
the methodology can achieve comparable performance to
traditional hierarchical Bayesian modeling by using only a
fraction of the observations. For example, comparable per-
formance to standard hierarchical Bayesian modeling was
achieved with only 1/6 of the observations, and with respect
to standard maximum likelihood methods, only 1/12 of the
observations. This is made possible when information can
be pooled from the recurrences of conditions across the
experimental cells (i.e. repeated measures). For example,
these major advantages occurred in the simulation study for
three-factor (e.g., 3×3×2 levels) experimental designs, but
performance was otherwise similar to standard hierarchical
methods for single factor experimental designs (2 level). We
note that the designs were compared with equal numbers of
observations per experimental cell.

In summary, the proposed multiple (and covaried) regres-
sion framework, used hierarchically for data-driven process
models, can offer the following qualities: (i) an advan-
tage in mixture modeling experimental data, by utilizing all
recurring information across cells, (ii) markedly improved
parameter recovery during low numbers of observations,
allowing more predictors to be jointly modeled, (iii) pool-
ing of information within groups (conditions, participants,
and items) through modeling them with population distri-
butions, which has been shown to improve performance,
and (iv) pooling of information between experimental cells
through the multiple regression design. Note that these
nested regressions can also be used to incorporate covari-
ate modeling (see Cavanagh et al., 2011; Frank et al., 2015).
In addition, the framework offers (v) a direct modeling of
experimental predictors for effects on cognitive parame-
ters without a need for post-hoc analyses (e.g., ANOVA),
(vi) the ability to easily predict missing data, based on
having direct access to the predictors for each condition,
participant, and item, and finally (vii) the potential to fit
more complicated cognitive process models that require
more data, since the approach economizes observations
numbers.

As measurement and inference tools for experimental
data, data-driven process models have been termed in some
domains, as cognitive psychometricmodels (see Batchelder,
1998; Batchelder & Riefer, 1999; Riefer et al., 2002).
We demonstrated the advantages of our approach using
a canonical sequential sampling model (SSM), which is
a family of models popularly used to account for perfor-
mance differences in the time domain (e.g., reaction times).

These models are not as thorough as multi-system or neural
network models, but may be important empirical research
tools.

Using simpler process models for empirical research is
supportive of previous literature, with the notion that “less
is more” when it comes to selecting a psychometric model
for accurately estimating predictor and participant effects
from experimental data. For example, van Ravenzwaaij,
Donkin, and Vandekerckhove (2016) show that simpler
SSMs with fewer parameters (e.g., the EZ-diffusion model,
Wagenmakers, Van Der Maas, & Grasman, 2007) recov-
ered the significant predictor effects in experiments better
than their more complex counterparts, the Diffusion Deci-
sion Model (DDM, Ratcliff, 1978; Ratcliff & Smith, 2004;
Ratcliff & McKoon, 2008). Such findings also highlight
the growing differences between simple SSMs as apt mea-
surement (quantitative, data-driven, psychometric) models,
and others which are more suited for theoretical explo-
ration (simulation testing, data-producing) of specific neural
dynamics. More discussion on this topic is provided in
Appendix C.

As discussed in “Process parameters as a function of a
hierarchical multiple regression structure”, our proposed
framework can be easily applied to other SSMs, or
other classes of models. With regard to other SSMs, the
EZ-diffusion, DDM, LBA (Linear Ballistic Accumulator,
Brown&Heathcote, 2008), and Q-/D-diffusion models (van
der Maas, Molenaar, Maris, Kievit, & Borsboom, 2011)
should be worthwhile candidates to further explore this
framework. Moreover, it is worthwhile to note that a soft-
ware package (in Python, Wiecki, Sofer, & Frank, 2013)
currently exists for fitting predictors or covariates for the
DDM. Several works using the package, and its tutorial,
have generally emphasized simple regressions on one or two
cognitive parameters in order to jointly model a cofactor
or a trial-by-trial neural activity that could covary with that
parameter. The research in the present paper develops upon
this, and confirms with several large analyses, how a multi-
ple and covaried regression structure on all cognitive para-
meters (mapping all experimental conditions) can improve
information pooling, significantly improve parameter reco-
very at low numbers of observations, and allow more condi-
tions to be jointly modeled. This is complementary to such
covariate analyses, which may require additional observa-
tions. These performance advantages, and the capacity to
model trial-by-trial covariates, may lead to nested regres-
sion structures becoming a new standard in hierarchical
modeling. Though it is not clear if methods in current pack-
ages are appropriately calibrated to achieve model conver-
gence with such advanced regression designs. Furthermore,
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parameter trade-off with the DDM should be an examined
issue. Hence, current packages could test the Bayesian mix-
ing performance (and parameter recovery) for full-fledged
regression structures in these more complicated models, as
well as implement the canonical SSM, which has various
important empirical applications such as to visual search
tasks, go/no-go tasks (driving simulations, cognitive load),
lexical selection (picture naming/interference), saccades,
general signal detection, and others. The code to imple-
ment the framework with the canonical SSM is provided in
Appendix A.

While the proposed framework has already shown to
be promising for data-driven process modeling techniques,
there are several potential improvements left for future
research. For example, although modeling potential for
shorter and/or more complex experiments is heightened
with the three-tiered hierarchical approach, model fitting
time is likewise considerably lengthened. Currently model
application times run near 24 h, even for a simple process
model. This provides a challenge for sufficiently exploring
the space of possible regression structure specifications, that
for example Barr et al. (2013) may suggest examining. For
instance, many different combinations of predictors, covari-
ates, interactions, or even non-linear, quadratic regression
equations could be explored for the best model fit.

While regression models pool information from all the
recurrences of condition levels across experimental cells,
it is made with the assumption that there are few inter-
actions between conditions. Thus ideally, several versions
of the hierarchical regression structure should be tested to
select the hierarchical model that achieves the best quality
of fit. Aside from this important note, future work could
seek to (i) further refine estimation techniques (e.g., estima-
tion algorithms, the Bayesian priors, such as for Eq. 9) of
the framework, (ii) examine how the approach may func-
tion with extensions such as two- or three-way interactions,
and non-linear regressions, (iii) implement and test exten-
sions to other classes of cognitive models with the approach,
or (iv) develop the multiple regression estimation to be cal-
culated on parameter scales other than the logarithm (see
“Bayesian estimation”), such as the natural scale (e.g., using
other multivariate distributions than the Gaussian).
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grant ANR-11-IDEX-0001-02, LABEX grant ANR-11-LABX-0036),
and the Institute of Language, Communication and the Brain (CONV
grant ANR-16-CONV-0002). We thank the “Féderation de Recherche
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Appendix A: Stan model code for the multi-regSSM
(Cross-cell HBE multi-reg)

functions {
// log of the shifted Wald probability density function

(RT value, vector of gamma, alpha, theta)
real sw_log(real RT, vector gat) {
return log(gat[2]/sqrt(2*pi()*((RT-gat[3])ˆ3))) -

( ( (gat[2]-(gat[1]*(RT-gat[3])))ˆ2)/(2*(RT-gat[3])) ) ;
}

}

data{
int nobs; // number of RT observations (N related to Eq. 1)
int ncells; // number of unique experimental design cells
int ncoeff; // number of total coefficient weights

(B, factor weights + intercepts)
int npers; // number of participants (intercepts)
int nfcoeff; // number of factor coefficient weights

(factor weights: ncoeff-npers)
vector[nobs] RT; // the RT data, 1 RT per row in (Eq. 1)
int cellind[nobs]; // the cell ID for each RT observation

(indexes for Eq. 12)
matrix[ncells, ncoeff] X; // factor level matrix in (Eq. 13)
}

parameters{
// these will be monitored and saved
matrix[ncoeff,3] B; // matrix of beta values

(each column: gamma, alpha, theta)
vector[3] gat_log[ncells];//vector of gamma, alpha, theta by

experimental cell in (Eq. 7)
cholesky_factor_corr[3] R; // 3x3 Cholesky factor of the correlation

matrix in (Eq. 7)
vector<lower=0>[3] s; // scalar diagonal values for R to obtain C,

or s_{kk} in (Eq. 10)
vector[3] mu_fac; // population factor means (left column, Eq. 9)
vector<lower=0>[3] sig_fac; // population factor sigmas

(left column, Eq. 9)
vector[3] mu_int; // population intercept means (right column, Eq. 9)
vector<lower=0>[3] sig_int; // population intercept sigmas

(right column, Eq. 9)
}

model{
vector[3] mu_log[ncells];// the hierarchical means in (Eq. 6)
matrix[3,3] C; // 3x3 Cholesky factor of the covariance matrix

related to (Eq. 10)

// Second hierarchical level values in (Eq. 9)
mu_fac ˜ normal(0, 0.25); // factor weights (left column)
sig_fac ˜ gamma(4, 40);
mu_int[1] ˜ normal(-2, 0.5); // intercepts (right column)
mu_int[2] ˜ normal(3, 0.5);
mu_int[3] ˜ normal(5.5, 0.5);
sig_int ˜ gamma(4, 20);

// Priors for factor weights in (Eq. 8)
head(col(B,1), nfcoeff) ˜ normal(mu_fac[1], sig_fac[1]);
head(col(B,2), nfcoeff) ˜ normal(mu_fac[2], sig_fac[2]);
head(col(B,3), nfcoeff) ˜ normal(mu_fac[3], sig_fac[3]);
// Priors for Person intercepts in (Eq. 8)
tail(col(B,1), npers) ˜ normal(mu_int[1], sig_int[1]);
tail(col(B,2), npers) ˜ normal(mu_int[2], sig_int[2]);
tail(col(B,3), npers) ˜ normal(mu_int[3], sig_int[3]);
// Populations means in (Eq. 6, used in Eq.7)
for(i in 1:ncells){mu_log[i] = (X[i] * B)’;}
// Prior values in (Eq. 12)
s ˜ cauchy(0,0.025);
R ˜ lkj_corr_cholesky(8);
// 3x3 Cholesky factor of the covariance matrix related to (Eq. 10)
C = diag_pre_multiply(s, R);
// MVN prior for gat on log scale in (Eq. 7)
gat_log ˜ multi_normal_cholesky(mu_log, C);

// Likelihood in (Eq. 5)
for (j in 1:nobs) {RT[j] ˜ sw(exp(gat_log[cellind[j]]));}
}

generated quantities {
// Simplified output of the desired quantities
vector[ncoeff] Bg; // regression weights for gamma (drift)
vector[ncoeff] Ba; // regression weights for alpha (threshold)
vector[ncoeff] Bt; // regression weights for theta (non-acc time)
vector[ncells] g; // gamma in positive reals (for each cell)
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vector[ncells] a; // alpha in positive reals (for each cell)
vector[ncells] t; // theta in positive reals (for each cell)
matrix[3,3] covmat;// Cholesky factor of the covariance matrix
matrix[3,3] cormat; // correlation matrix
matrix[3,3] sigma; // covariance matrix
Bg = col(B,1);
Ba = col(B,2);
Bt = col(B,3);
for(i in 1:ncells){
g[i] = exp(gat_log[i,1]);
a[i] = exp(gat_log[i,2]);
t[i] = exp(gat_log[i,3]);
}
// See text near (Eq. 10)
cormat = R * R’;
C = diag_pre_multiply(s, R);
sigma = C * C’;
}

Appendix B: Hierarchical SSM model (By-cell
HBE non-reg)

In this section, we develop a standard hierarchical Bayesian
approach for the shifted Wald model (SWM), in which no
multiple regression is involved, only hierarchical popula-
tion distributions. This model is referred to as the ‘By-cell
HBE Non-Reg’ model in Tables 1 and 2. When we apply the
model in the simulated data analyses, we set the hierarchical
parameters at the participant level.

Firstly, noting that all of the SWM parameters are located
on the positive real line, a simple specification of their pop-
ulation distributions can be achieved with the gamma(α, β)

distribution (where β = 1/scale):

γc ∼Gamma(μ2
γ /σ 2

γ , μγ /σ 2
γ ) Participant Drift Rate

αc ∼Gamma(μ2
α/σ 2

α , μα/σ 2
α ) Participant Threshold

θc ∼Gamma(μ2
θ /σ

2
θ , μθ /σ

2
θ ) Participant Non-Accumulation Time ,

(14)

in which each experimental cell c ∈ 1, . . . , C has param-
eters [γc, αc, θc], drawn from a shared population distribu-
tion. In this way with α = μ2/σ 2 and β = μ/σ 2, the pop-
ulation parameters μ and σ 2 will respectively relate to the
location and variance of the gamma-distributed individual
parameters; and the distribution will resemble a normal dis-
tribution with support on the positive half-line (see Anders
& Batchelder, 2013; Kruschke, 2011, for other examples).

Then, since the hierarchical parameters μ and σ are
also distributed on the positive half-line, one may similarly
consider the gamma distribution as a suitable prior.

μγ ∼Gamma(0.202/0.102, 0.20/0.102) σγ ∼Gamma(12.5, 250)
μα ∼Gamma(202/102, 20/102) σα ∼Gamma(9, 1.50)
μθ ∼Gamma(6002/3002, 600/3002) σθ ∼Gamma(9, 0.03)

(15)

These settings are reasonable for RT data in which most of
the probability mass is within the range of 300 to 4000 ms.
For example, much of our previous work using the model
(Anders et al., 2016; Anders et al., 2015) for such RT ranges,
has found drift rates to generally reside between .04 to .30,
thresholds between 10 and 40 and non-accumulation times
between 300 and 600 ms. Therefore, if one were to analyze
much longer RTs, such as between 10,000 and 30,000 ms,
one should augment these ranges.

Given these priors and hierarchical settings, the Bayesian
framework is completed by the multiplication of these pri-
ors and the model likelihood. The SWM possesses the
following closed-form likelihood:

f (γc, αc, θc | RTjc ) = αc√
2π(RTjc − θc)3

· exp
{

−[αc − γc(RTjc − θc)]2
2(RTjc − θc)

}
, (16)

with expected value αc/γc + θc, and variance αc/γ
3
c , for

RTjc > θc.

Appendix C: Supplementary information
regarding sequential sampling models
and their selection

Varieties of extended sequential sampling models The
main varieties of sequential sampling models may be classi-
fied by (i) the single accumulator versus multiple accumu-
lator distinction and, within these classes, by (ii) modified
individual parameter conditions or trends (e.g., of {γ, α, θ},
or Xt ) within or between trials (e.g., see Busemeyer &
Townsend, 1992). For example within trials, a few of these
modifications may consist of the decay of Xt , a diminishing
threshold α over time (Hawkins, Forstmann, Wagenmakers,
Ratcliff, & Brown, 2015), substages with different γ values
(Diederich & Busemeyer, in review; Holmes, Trueblood, &
Heathcote, 2016), or Xt reversing directions (Busemeyer
and Townsend, 1993; Diederich &Busemeyer, 2006), which
is a form of an Ornstein–Uhlenbeck process (Busemeyer &
Townsend, 1992).

The difference in (i) using single versus multiple accu-
mulators, may primarily concern how one prefers to model
Xt for the observed response in the context of n-alternatives.
The currently most popular single accumulator model is
the Drift Diffusion Model (DDM, Ratcliff, 1978; Ratcliff
& McKoon, 2008), which is appropriate for n = 2 alter-
native forced choice (2AFC) tasks, and is modeled by Xt

moving to an upper or lower boundary. In this single accu-
mulator framework, n > 2 choices would be modeled by
the movement ofXt in an n-dimensional object to one of the
thresholds (being the object’s sides, Stroock & Varadhan,
2016, see also Smith 1979). Typically in this case, the aug-
mented evidence for one choice provides reduced evidence
against the other choices. In contrast, the multiple accu-
mulator approach models the activation of each alternative
with a separate, single boundary accumulator (as in Fig. 1);
these accumulators race, and the first accumulator to meet
its threshold is modeled as the performed behavior. In this
case, it is not a forced property of the model that evi-
dence in favor of one alternative is reduced for the others
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(LaBerge, 1962; Usher, Olami, &McClelland, 2002; Brown
& Heathcote, 2008), but it may be an added parameter
(Usher & McClelland, 2001).

Why not directly use a model that quantifies the acti-
vation of all alternatives, or of inhibition? Except for
carefully designed experiments where only two or three
alternative behaviors are possible, trying to model ≥ 4 alter-
natives, or even inhibition/decay along several conditions
of an experiment, currently leads to models that are too
complex to effectively serve as measurement tools. Hence,
although these are interesting models, they correspond less
to the objectives of the analysis developed herein. Such
models are currently stronger as data-producing models
for theoretical exploration. For example, to our knowledge
there have been no publications yet that estimate from the
data the activation of four or more alternatives along sev-
eral experimental conditions. Furthermore, in respect to
recovering inhibition parameters, a recent publication shows
that even with advanced fitting methods, unrealistic exper-
imental observation numbers are needed: that is 10,000 or
more trials from a single subject, in a three alternative case
(Miletić, Turner, Forstmann, & van Maanen, 2017, for the
Leaky Competing Accumulator Model).

The canonical SSM is a solid psychometric model that
can measure many predictors from the data. It is easily
generalizable to many kinds of experiments. It can use pre-
dictors in regression modeling to potentially infer additional
accumulation dynamics (e.g., decay over trials, interference
from conditions). It does not have significant parameter
trade-off. It has a closed-form solution as in Eq. 5. For
all these reasons, it can serve as a useful data-driven pro-
cess model for RT data. However, while this canonical SSM
is indeed practical and generalizable to a wide range of
experimental designs, we note that it is not the ideal model
when more specialized sequential sampling models, which
more closely describe the experimental task, are capable
of being fit to the data. For example, for two-alternative
forced choice tasks (2AFC), using our multiple regression
approach on a two-boundary (DDM), or two-accumulator
model (Brown & Heathcote, 2008, Race / Linear Ballistic
Accumulator), would be preferred.
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