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Abstract Most past research on sequential sampling mod-
els of decision-making have assumed a time homogeneous
process (i.e., parameters such as drift rates and boundaries
are constant and do not change during the deliberation pro-
cess). This has largely been due to the theoretical difficulty
in testing and fitting more complex models. In recent years,
the development of simulation-based modeling approaches
matched with Bayesian fitting methodologies has opened
the possibility of developing more complex models such
as those with time-varying properties. In the present work,
we discuss a piecewise variant of the well-studied diffu-
sion decision model (termed pDDM) that allows evidence
accumulation rates to change during the deliberation pro-
cess. Given the complex, time-varying nature of this model,
standard Bayesian parameter estimation methodologies can-
not be used to fit the model. To overcome this, we apply
a recently developed simulation-based, hierarchal Bayesian
methodology called the probability density approximation
(PDA) method. We provide an analysis of this methodology
and present results of parameter recovery experiments to
demonstrate the strengths and limitations of this approach.
With those established, we fit pDDM to data from a per-
ceptual experiment where information changes during the
course of trials. This extensible modeling platform opens
the possibility of applying sequential sampling models to a
range of complex non-stationary decision tasks.
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Introduction

Most past decision research has been devoted to under-
standing simple, two-choice decisions where a choice is
made on the basis of fixed, unchanging information, or on
information that changes randomly around a fixed central
tendency (Ratcliff, 1978; Busemeyer & Townsend, 1993;
Shadlen & Newsome, 1996; Gold & Shadlen, 2001; Smith
& Ratcliff, 2004). Sequential sampling models such as
the diffusion decision model (DDM) have been widely
used in both cognitive psychology and applied domains to
account for these types of simple decisions (Ratcliff, 1978;
Smith & Ratcliff, 2004, Ratcliff, Thapar, & McKoon,
2001; White, Ratcliff, Vasey, & McKoon, 2010). While
Ratcliff (1980) first discussed the importance of exam-
ining more complex decision tasks involving changing
information, modeling the impact of non-stationary inputs
on decision-making has traditionally received less atten-
tion, but recently there has been increasing interest from
a number of perspectives. These include dynamic envi-
ronments across trials (Bröder & Schiffer, 2006; Gureckis &
Love, 2009), non-stationary decision criteria (Verbruggen &
Logan 2008; Logan & Burkell, 1986), and changed infor-
mation due to internal factors (e.g., eye movements or atten-
tion switching) (Diederich, 1997; Diederich & Busemeyer,
1999; Krajbich, Armel, & Rangel, 2010; Krajbich &
Rangel 2011).

One of the emerging approaches to modeling non-
stationary decision tasks involves extending standard
sequential sampling models such as DDM and the lin-
ear ballistic accumulator (LBA) model to have piecewise

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-017-0901-y&domain=pdf
mailto:william.holmes@vanderbilt.edu


Behav Res (2018) 50:730–743 731

constant, time-varying properties (drift rates for example).
These “piecewise” models have been used to explain a
range of phenomena including the relationship between
eye movements and choice behavior (Krajbich et al., 2010;
Krajbich & Rangel, 2011), multi-attribute decision-making
(Diederich, 1997; Diederich & Oswald, 2016), the inter-
play between multiple thinking modes during decision-
making (Guo, Trueblood, & Diederich, 2015; Diederich &
Trueblood, submitted), and the impact of exogenous
changes of information during decision-making (Holmes,
Trueblood, & Heathcote, 2016) such as brief motion pulses
in random moving dot displays (Tsetsos, Gao, McClelland,
& Usher, 2012) and fluctuations of brightness in simple
perceptual displays (Tsetsos, Usher, & McClelland, 2011).
Despite the growing interest in modeling complex decision
tasks with non-stationary inputs, this approach has been
limited for mathematical and computational reasons.

There has been significant research on develop-
ing methods to implement DDM (Voss & Voss,2007;
Vandekerckhove & Tuerlinckx, 2007; 2008), including hier-
archical Bayesian methods (Vandekerckhove, Tuerlinckx,
& Lee, 2011; Wiecki, Sofer, & Frank, 2013; Wabersich &
Vandekerckhove, 2014). In particular, past work has lead to
the development of quick and efficient methods for imple-
menting diffusion models (Navarro & Fuss, 2009), which
have been used in applications such as the neural drift dif-
fusion model (Turner, Van Maanen, & Forstmann, 2015).
However, there has been much less research on methods for
implementing piecewise variants of this model (which we
call the piecewise diffusion decision model or pDDM). In
particular, most quantitative fitting of pDDM utilizes max-
imum likelihood methods to fit mean choice and response
time data (see for example, Krajbich et al. 2010). However,
simply fitting mean response time data is not ideal and can
lead to drastically different parameter estimates than fits to
the full distribution (Turner & Sederberg, 2014).

The goal of the present paper is to present hierarchical
Bayesian methods for implementing pDDM and to evaluate
the efficacy of those methods. The difficulty in imple-
menting pDDM in a hierarchical Bayesian method is that
doing so requires the ability to calculate model likelihoods
up to a billion times or more. While methods (involving
series solutions) for calculating these likelihoods have been
devised for single (Navarro & Fuss, 2009) and multi-stage
(Srivastava, Feng, Cohen, Leonard, & Shenhav, 2017) mod-
els, it is not clear if these methods are sufficiently efficient
for this application. Here, we describe how simulation along
with a recently developed approximate Bayesian method,
called the probability density approximation (PDA) method
(Turner & Sederberg, 2014; Holmes, 2015), can be used to
accomplish this. This method is an alternative to existing
Bayesian and approximate Bayesian computation (ABC)
parameter estimation methodologies that do not require

either an analytically tractable model likelihood function or
the use of sufficient statistics for the parameters of inter-
est (which is needed for ABC). This method has previously
been used to fit other sequential sampling models such
as the leaky competing accumulator model (Turner et al.,
2014) and the piecewise linear ballistic accumulator (pLBA)
model (Holmes, 2015; Holmes et al., 2016). However, it has
not yet been evaluated in the context of pDDM.

We begin by reviewing the basic idea underlying the
PDA method. In order to demonstrate this method in a sim-
pler context, we next apply this method to the standard
DDM (no changes of information). Next, parameter recov-
ery is performed for pDDM to check the effectiveness of
this method at estimating parameters of a time-heterogenous
process. To demonstrate the application of this modeling in
estimating the influence of changing information on deci-
sions, model inferences associated with a new experiment
where information changes during the course of a decision
are presented. The final section (prior to the discussion) pro-
vides additional technical details, including a discussion of
how estimation errors influence likelihood approximation
and timing data. Data for the flashing grid experiment dis-
cussed below along with parameter recovery codes for the
DDM and pDDMmodels are provided on the Open Science
Framework (osf.io/dkmbk/).

The PDA method

Here, we will discuss the relevant details for applying the
PDA method. Further information and details can be found
in Holmes (2015) and Turner and Sederberg (2014). For
the remainder of this paper, the term “data” will refer to
choice/response time (RT) data, which we denote as X,
though the method can be applied to any data set that conti-
nuously varies with respect to a single axis (time in this case).

The central task of Bayesian parameter estimation is to
compute the posterior density function for a model π(θ |X),
which provides a principled way to determine for which
parameter combinations the model best accounts for the
observed data. Markov chain Monte Carlo methods provide
a powerful framework for approximating this density func-
tion. However, they require the user to provide an analy-
tically tractable likelihood function L(θ |X). Unfortunately,
many models, particularly models involving temporal
changes of the decision process as considered here, do not
emit an analytically tractable likelihood function (Fig. 1).

The PDA method, which we use here, is a simulation-
based method that utilizes tools from non-parametric statis-
tics to overcome the lack of a tractable likelihood function.
This method uses a standard Metropolis Hastings (MH)
framework to generate MCMC proposals and accept or
reject them on the basis of quality of fit. The key step in
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Piecewise DDM (pDDM) Schematic
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Fig. 1 pDDM schematic representation. As with the standard DDM,
the pDDM represents accumulation of evidence over time with param-
eters representing rates of accumulation (μ), strength of stochasticity
(s), start point bias (z), response thresholds (at 0 and a), and non-
decision time (tND). To account for changes of information, pDDM
allows for evidence-accumulation rates to change at a discrete point
in time. To account for any lag between presentation and accumula-
tion of new information, a delay parameter tdelay is also included. In
addition to these parameters, variance parameters representing across
trial variability in start point (sz) and accumulation rate (sμ) are also
included

this process is the computation of the likelihood L(θ |X)

of a proposed parameter set, which is the measure of qual-
ity of fit used to accept or reject it. Assuming each trial is
independent (which we will assume from here on), the full
likelihood can be decomposed into the product of likelihood
of individual observations

L(θ |X) =
Nd∏

i=1

L(θ |xi). (1)

The key to the PDA is the construction of an approximation
of the likelihood of each individual observation L̂(θ |xi),
which can be directly substituted into the MH algorithm.
From here on, ˆwill denote an approximation; in this case it
denotes the approximation of L(θ |xi). The first step in this
construction is the simulation of a synthetic data set X̃ con-
sisting of Ns simulations from the model with the proposed
parameter set θ . In the case of stochastic process model such
as DDM, this requires the simulation of stochastic differen-
tial equations describing evidence accumulation to generate
synthetic choice response time data. The second step is to
use this data to construct a density function representing
this simulated response time data. The kernel density esti-
mate (KDE), commonly used in non-parametric statistics,
is a powerful tool for doing just this Silverman (1982) and
Silverman (1986).

The basic density estimation problem is to determine the
likelihood L̂(θ |x) at a point x from a collection of simu-
lated model observations X̃ = {x̃j }, where j = 1...Ns . This
density value can be approximated using the KDE as

L(θ |x) ≈ L̂(θ |x) := 1

Ns

Ns∑

j=1

Kh(x − x̃j ). (2)

Here Kh is a “smoothing kernel” defined by

Kh(z) = 1

h
K

( z

h

)
,

where K is a continuous function that is symmetric about
zero and integrates to 1. The parameter h is a “bandwidth”
(akin to the bin size in a histogram) and determines the
smoothing properties of the kernel: larger h yields more
smoothing of the distribution. Using this method, an esti-
mate for each L̂(θ |xi) can be computed and substituted
into Eq. (1) to compute a final likelihood, which is sub-
sequently used by the MH algorithm to choose whether to
accept or reject θ . Figure 2 demonstrates the construction
of the approximate likelihood function L̂(θ |x) for the DDM
model. As this figure demonstrates, this method can gen-
erate high-quality density function approximations using a
relatively simple and well-established technique.

Accounting for continuous response times and discrete
choices

In response-time models such as DDM, there are usually
two types of response data available, time and choice. Thus,
each response observation (utilizing the notation intro-
duced above) would take the form xi = (ti , ci) where
ti is the observed response time and ci the choice. The
PDA discussion above centered around how to approximate
the likelihood of a continuous variable. In the context of
this paper, that continuous variable is the response time.
Choice responses, which are discrete, however, should not

Time (seconds)
0 1 2

P
ro

ba
bi

lit
y

0

0.5

1

1.5
Correct
Incorrect

Fig. 2 Likelihood construction. To demonstrate the effectiveness of
PDA likelihood construction, a data set comprised of 1000 sample
choice/RTs is generated to mimic a participant data set. Model param-
eters used to generate this data set are a = 0.08, z = 0.04, sz =
0.05, μ = 0.05, sμ = 0.05, tnd = 0.15, and s = 0.05. A simulation
timestep of dt = 0.0001 was used to stochastically simulate this data
set. The circles show the choice/RT distribution for this data. Subse-
quently, a synthetic likelihood is constructed using the PDA method
with Ns = 10, 000, h = 0.02, and dt = 0.01 seconds. Black and gray
indicate the probability of correct and incorrect responses, respectively
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be neglected. The common way this data is handled (as
is done here) is to break the data set into a collection of
defective probability distributions, each associated with a
particular choice alternative. In the case of two- choice alter-
natives, this would yield two defective densities whose total
probability mass sum to 1. The PDA method is used to
construct each of these densities separately. For details of
the minor complexities associated with ensuring that the
PDA produces a defective distribution and that the result-
ing approximate distributions mass sum to 1, see Turner and
Sederberg (2014) and Holmes (2015).

DDM parameter recovery

In subsequent sections, we will use this method to fit a
piecewise variant of the canonical DDM model with piece-
wise constant, time-varying drift rates. In order to demon-
strate and assess this method in a more simplified context,
however, we will consider the canonical DDM model first.
Here, we perform a parameter recovery experiment for the
DDM model parameterized by a start point bias (z), trial-
to-trial variability in that bias (sz), evidence threshold (a),
drift rate (μ), trial-to-trial variability in drift rate (sμ), non-
decision time (tND), and moment-to-moment accumulation
stochasticity (s). To constrain the model and remove the
scaling degeneracy in this model, we fix s = 0.05 so that
it has a similar size as the parameters used for simulation
study (see Fig. 2 caption).

The DDM model will be fit to a synthetic, baseline
data set consisting of 2000 simulated observations (see the
Technical Methods section for further details). To perform
this parameter estimation, we use a differential evolution
MCMC (DEMCMC) (Ter Braak, 2006; Turner, Sederberg,
Brown, & Steyvers, 2013) procedure to fit parameters with
the following uninformative priors

a, z, tND, sz, sμ ∼ U(0, 10), μ ∼ U(−10, 10), (3)

where U denotes the uniform distribution on the speci-
fied interval. The methodological parameters (Ns, h, dt) are
those chosen from the analysis in the Technical Methods
section. As was performed in Holmes (2015), a likelihood
resampling procedure is implemented (resampling every
four chain iterations) to avoid stuck chains and improve
chain acceptance rates, see Holmes (2015) for further details
on resampling.

Figure 3a shows the posterior distribution for all param-
eters along with the exact parameter values (grey bars) used
to generate the data set. Results indicate that this method
performs well at recovering the parameters a, z, μ, tND ,
which are those primarily used to draw psychological infer-
ences. The posteriors for trial-to-trial variability parameters
are less constrained and in particular sμ does not appear to

fit well. Trial-to-trial variability parameters are, however,
rarely used (to our knowledge) for inferences and estimating
them is a challenge for any method.1 The prior distribu-
tions were chosen to be as uninformative as possible, being
two orders of magnitude larger than the parameters them-
selves. A tenfold reduction in the scale of these priors has
little effect on fits, however, and it appears the results are
not highly sensitive to the prior.

It is important to note that parameter recovery here is
not perfect, though the exact parameter values used to
generate the simulated data are well within the credible
interval for each parameter. This, however, is a feature
of the DDM model itself rather than the fitting method.
To illustrate this, Fig. 3b compares the RT distribution
of the data itself to the RT distribution computed from
the exact and best fit (mean of the posterior) parame-
ter values. Results show that the distributions generated
by best fit and exact parameters are nearly indistinguish-
able. This is a common phenomenon in modeling litera-
ture refereed to as parameter “sloppiness” (Apgar, Witmer,
White, & Tidor, 2010; Gutenkunst et al., 2007), which
describes models whose predictions are relatively insensi-
tive to the precise values of parameters (see General Dis-
cussion for further explanation). Brown, Ratcliff, and Smith
(2006) noted a similar phenomenon referred to as parame-
ter “inflation” where numerical approximation errors arising
from the simulation of stochastic differential equations led
to imperfect parameter recovery. They however also noted
that this inflation did not influence goodness of fit.

We note that this is but one example demonstrating the
ability of PDA to recover parameters. Similar studies have
shown that it is capable of recovering parameters of a
bimodal distribution (Holmes, 2015) as well as the parame-
ters of the linear ballistic accumulator (LBA) model (Turner
and Sederberg, 2014; Holmes, 2015). This method was
shown to adequately recover parameters of a piecewise vari-
ant of the LBAmodel (pLBA) (Holmes et al., 2016; Holmes,
2015), though there were some complexities associated with
the “sloppiness” of that model as well that were indepen-
dent of the PDA method. It was also shown to successfully
recover the parameters of a hierarchal model (Turner &
Sederberg, 2014). While we take this collection of studies
as evidence of the efficacy of this method, it should still
be used with caution. While in the limit (Ns → ∞, h →
0) this method is guaranteed to exactly reproduce model
likelihoods, in practice its approximate nature will always
introduce some errors that will influence the fitting process.
For further discussion, see Holmes (2015).

1There is currently a multi-lab collaboration underway led by Udo
Boehm, University of Groningen, to assess this issue (personal
communication).
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a) b)

Fig. 3 DDM parameter recovery. a Posterior distributions for all
parameters of the DDM model. A data set consisting of 2000 trials
was generated using the same parameters as in Fig. 2. The stochas-
tic parameter s = 0.05 is fixed and not estimated. Gray lines show
exact values for parameters while dark curves show the posterior

distributions. b Quality of model fit. The model fit to data is shown for
both the mean value of the posterior parameter distribution (solid line)
and the exact parameter set (dashed line), with the RT distribution of
the underlying data indicated with dots

pDDM parameter recovery

Next, we assess the effectiveness of this model at fitting the
pDDM model. This is an extension of the classical DDM
model to account for a change of information during the
course of a trial. In Holmes et al. (2016) for example, partic-
ipants performed a random dot motion (RDM) task where
the motion of dots changed once during each trial. Here
we consider a simple extension of the DDM where only
a single change of information, which is associated with a
change of drift rate, occurs (Fig. 1). This model is described
by a start point bias (z), trial-to-trial variability in that bias
(sz), evidence threshold (a), drift rate (μbef ore) before the
change of information, drift rate (μaf ter ) after the change of
information, trial-to-trial variability in these drift rates (sμ)

(assumed to be the same for μbef ore and μaf ter ), a delay
parameter (tdelay) accounting for a potential delay between
the presentation and integration of new information, non-
decision time (tND), and moment to moment accumulation
stochasticity (s). As before, (s) will always be fixed to con-
strain the model. For simplicity, we do not consider here
trial-to-trial variability in non-decision time, though it could
be included.

We begin by first generating a baseline data set consisting
of 1000 model simulations with no change of information
and an additional 1000 model simulations with a change of
information mid trial, for a total of 2000 observations. For
‘switch trials’ where there is a change of information during
the course of a trial (e.g., direction of dot motion in the RDM
task), this change was coded to occur at Ts = 0.5 s. We note
however that a simulated decision is allowed to occur prior

to Ts on these trials, as would be the case for a participant
responding quickly in an experiment. This structure mimics
the RDM task used in Holmes et al. (2016). To generate this
data set, we again used an Euler Maruyama (EM) scheme
to simulate the drift diffusion SDE with dt = 0.0001. The
values of the parameters used to generate this data set are
in the caption to Fig. 4. The same DEMCMC procedure
was used to fit this model with the following uninformative
priors (which again do not strongly influence results)

a, z, sz, sμ ∼ U(0, 2),

μbef ore, μaf ter ∼ U(−2, 2),

tND, tdelay ∼ U(0, 1). (4)

Results (Fig. 4) show that as with the DDM model,
the PDA is effective at estimating the values of
a, z, tdelay, μbef ore, μaf ter , though it performs poorly at
estimating the trial to trial variances sμ, sz. Finally, we note
that the posteriors for μaf ter and tdelay are not as well
localized as for a, z, tND, μbef ore. This was found for a
piecewise extension of the LBA model (pLBA) as well
(Holmes et al., 2016).

This widely spread posterior for a subset of parameters
could result from failures of the method or highly cor-
related model parameters. One common way to look for
parameter correlations is to calculate or plot all pairwise cor-
relations among parameters from the saved MCMC chain
data. Another, which we utilized here, is to perform a prin-
cipal component analysis (PCA) of the MCMC chain data.
This has both advantages and disadvantages over the corre-
lation plot approach. The disadvantage is that PCA is only
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Fig. 4 pDDM parameter recovery. a Posterior distributions for all
parameters of the pDDM model. A data set consisting of 1000 non-
switch and 1000 switch trials was generated using the following
parameters: a = 0.08, z = 0.04, sz = 0.01, μbef ore = 0.05, μaf ter =
−0.05, sμ = 0.05, tND = 0.15, tdelay = 0.25. For simulated switch

trials, the switch was coded to occur at Ts = 0.5 s. The stochastic
parameter s = 0.05 is fixed and non-estimated. Gray lines show exact
values for parameters while dark curves show the posterior distribu-
tions. b The same as (a) but with 5000 switch and non-switch simulated
observations each

effective at detecting linear correlations. The advantages
are that (1) it detects high dimensional rather than pairwise
correlations and provides information about which parame-
ters are involved and (2) it provides a measure of how much
of the variability of the posterior comes from each correla-
tion. Applying a PCA to theMCMC chain data here, we find
that a single principle component is responsible for ∼ 98% of
the chain variance. Inspection of the PCA eigenvectors shows
that the principle component nearly aligns with the tdelay

axis. Thus, a vast majority of the chain variability results
from imprecision in the estimate of the delay parame-
ter, and this is an artifact of the model more so than
the method. Despite this, the peak of the tdelay parame-
ter coincides with the known value. For further discussion
of this PCA approach with a more in-depth example, see
Holmes (2015).

Given that only switch trials where responses occur after
the Ts + Tdelay inform the Tdelay and μaf ter parameters,
we increased the size of the data set to 5,000 switch and
non-switch trials, respectively. Results show that posteri-

ors are slightly more localized, but only marginally. Thus,
simply adding more data of the same type does not yield a
discernible benefit from a theoretical perspective.

pDDM fitting of flashing grid data

Next, we apply the PDA to fit the pDDM model to an
experimental data set. Our focus here is not to draw psycho-
logical conclusions. Rather, it is to demonstrate the use of
modeling methodology. We first describe the experimental
protocol.

Materials and methods

Participants

In total, 18 Vanderbilt University students completed the
study for course credit. All participants gave informed con-
sent to participate. Three participants were excluded from
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the modeling because of low accuracy after the initial prac-
tice blocks. These participants were most likely not engaged
throughout the task.

Procedure

Stimuli were ‘flashing grids’, a square grid filled with two
different colored elements (see example in Fig. 5). The two
colors were blue and pink. The grid flickered so that every
three frames the elements were randomly rearranged. Each
element in the grid was a 10×10 pixel square. The grid had
20 elements in each row and 20 elements in each column for
a total of 400 colored elements. The grids were presented
on a black background and displayed on a 60-Hz monitor.
In some of the trials, the proportion of blue to pink elements
remained constant throughout the trial. In the remaining tri-
als, the proportion of blue to pink elements changed once
midway through the trial. On these ‘switch’ trials, the pro-
portion of elements was simply reversed (e.g., if 60% of the
elements were blue at the start of the trial, then it switched
to 60% pink).

At the beginning of the experiment, participants were
instructed that they would see a flashing grid filled with blue
and pink elements and their task was to decide if there are
more blue or pink elements in the grid. They were told “you
will enter your choices by pressing the ‘z’ key if you think
the grid has more pink elements and ‘m’ key if you think
the grid has more blue elements.” Participants were asked to
place the index finger of their left hand of the ‘z’ key and
the index finger of their right hand on the ‘m’ key through-
out the experiment. They were also told that they would

Fig. 5 Flashing grid stimulus. Each grid was filled with elements of
two colors (blue and pink). The location of the elements was randomly
rearranged every three frames. Participants were asked to decide if the
grid had more blue or pink elements. On some trials, the proportion of
colored elements changed midway through the trial

complete many blocks of trials, that some trials would be
harder than others, and that they would sometimes receive
feedback about their responses. Participants were asked to
respond to the best of their ability as quickly as possible, but
were not told that the proportion of colored elements could
possibly change during some trials.

At the beginning of each trial, they viewed a fixation
cross for 250 ms, then there was a blank screen for 100 ms,
followed by the stimulus. Participants had up to 2 s to view
the stimulus and give a response or the trial terminated by
itself and a non-response was recorded. Otherwise, the trial
terminated immediately after a response was made. The fix-
ation cross for the next trial appeared immediately after the
termination of the previous trial.

Participants completed 24 blocks of trials. Blocks 1–7
only contained ‘non-switch’ trials where the proportion of
elements remained constant throughout the trial. The first
block contained 20 practice trials where 75% of the ele-
ments in the grid were the same color (in ten trials 75%
of the elements were pink and in ten trials 75% of the ele-
ments were blue). Participants received feedback on their
responses in this block. This feedback was displayed for
500 ms, and consisted of “correct”, “wrong”, or “invalid
response” for invalid key presses. Feedback was followed by
a blank screen for 250 ms. In blocks 2–22, participants did
not receive feedback. The second block contained 72 addi-
tional practice trials where 54% of the elements in the grid
were the same color. In the third block, participants com-
pleted 72 trials, which were composed of 24 trials at three
different difficulty levels: 52, 54, or 56% of the elements
had the same color. At the conclusion of the third block, one
of the three difficulty levels was selected for the remainder
of the experiment using the following algorithm to account
for individual differences in ability so that performance was
away from floor and ceiling:

1) If the participant’s accuracy was exactly 75% for a spe-
cific difficulty level, then this level was selected. If
more than one difficulty level achieved 75% accuracy,
then the hardest level was selected.

2) If no difficulty level achieved accuracy of exactly 75%,
then the level with accuracy higher and closest to 75%
was selected. If there was a tie between difficulty levels,
then the hardest one was selected.

3) If none of the difficulty levels achieved 75% accuracy,
then the easiest level (i.e., 56%) was selected.

Blocks 4–7 each contained 72 trials with the difficulty
level selected at the end of block 3. These four blocks pro-
vided the participant with additional practice at the selected
difficulty level and helped control for learning effects before
the main part of the experiment. The response times in
block 7 were used to determine the ‘switch time’ for the
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remainder of the experiment. On switch trials, the change
in color proportion occurred at the switch time, which was
set to the median RT of block 7 minus 250 ms to account
for response-production time. Blocks 8–22 were the main
experiment and consisted of half non-switch trials and half
switch trials. The two trial types were randomly ordered.

Blocks 23 and 24 tested whether participants could
detect changes in color proportions. During these blocks,
they were instructed to only respond if the proportion of
colored elements changed. They were told to withhold
responses if the proportion remained constant. Block 23
contained 24 practice trials with feedback. At the end of
each trial, participants saw a message “correct”, “wrong”,
or “invalid response” displayed for 500 ms. Block 24 con-
tained 72 trials with no feedback. In both blocks, half

of the trials were switch trials and the other half were
non-switch trials, randomly ordered. The switch time and
difficulty level for these blocks was the same as in the main
task.

Modeling results

The model we fit to this data set is a hierarchal extension
of the pDDM model described previously. Given the sim-
ple structure of this experiment where all participants come
from a single population, we assume that the hierarchal
structure consists of a single group. Based on this, we make
the standard assumption that individuals are members of a
normally distributed population and assign a normal prior
for each individual level parameter

a ∼ T N(μa, σa, 0, 2), z ∼ T N(μz, σz, 0, 2), (5)

μbef ore ∼ T N(μ1, σ1, −2, 2), μaf ter ∼ T N(μ2, σ2, −2, 2), (6)

sz ∼ T N(μsz, σsz, 0, 2), sμ ∼ T N(μsμ, σsμ, 0, 2), (7)

tND ∼ T N(μND, σND, 0, 0.5), tdelay ∼ T N(μdelay, σdelay, 0, 1), (8)

where T N(μ, σ, a, b) refers to the normal distribution with
mean μ and standard deviation σ truncated to the interval

[a, b]. We further specify the following mildly informative
priors for the hyper mean

μa ∼ T N(0.5, 0.5, 0, 2), μz ∼ T N(0.25, 0.25, 0, 2), (9)

μ1 ∼ T N(0.5, 0.5, −2, 2), μ2 ∼ T N(−0.5, 0.5, −2, 2), (10)

μsz ∼ T N(0.25, 0.25, 0, 2), μsμ ∼ T N(0.5, 0.5, 0, 2), (11)

μND ∼ T N(0.15, 0.2, 0, 0.5), μdelay ∼ T N(0.5, 0.3, 0, 1), (12)

and hyper standard deviation parameters respectively

σa, σz, σsz, σsμ, σ1, σ2 ∼ �(1, 1),
σND, σdelay ∼ �(1, 0.5). (13)

Here, �(a, b) refers to the gamma distribution with shape
and rate parameters a and b, respectively.

To fit this hierarchal model, we utilize the same PDA
method embedded into the DEMCMC framework as dis-
cussed above with the same values for the method-
ological parameters (Ns, h, dt). Figure 6 shows the
posterior distributions for the hyper mean parameters
μa, μz, μ1, μ2, μND, μdelay . First, the rate of evidence
accumulation after the change of information (μ2) is the
opposite sign of that before, as expected. Second, the delay
parameter has a mean value of ∼ 440 ms, which is con-
sistent with the large delay found in Holmes et al. (2016)
using a non-stationary variant of the RDM task. Finally, we
again note that the posterior distributions for μ2 and μdelay

are not as well constrained as those for other parameters.
As with the parameter recovery experiments above, this is

a result of the relative sparsity of participant responses that
occur after the stimulus change. Additionally, posteriors for
μsz and μsμ (fit but not shown) were not well constrained.

To assess quality of fit, we plot the actual and pre-
dicted choice probability and mean RT for all participants
in Fig. 7 as well as the full RT distribution for an indicative
participant. Choice and mean RT plots show good agree-
ment and the participant RT distribution fit (Fig. 7c) shows
good agreement, particularly given the bimodality of the RT
distribution for choice 2.

Technical notes

Analysis of likelihood approximation errors for DDM

While the PDA is a powerful method of performing
Bayesian parameter estimation, it is important to keep in
mind that the likelihood approximation used is just that,
an approximation. As with any numerical method, it is
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Fig. 6 pDDM parameter estimation for the flashing grid task. Poste-
rior distributions for the population level hyper parameters. Additional
parameters for the variance of the bias sz and variance of the drift rate
(sμ) are fit as well but not presented for brevity

important to assess the size of estimation errors and how
they may influence results. Above, this method was used to
fit a piecewise variant of the canonical DDM model with
piecewise constant, time-varying drift rates. Here, we inves-
tigate how the methodological parameters (h, Ns) influence
the accuracy of likelihood estimation for the simpler DDM
model. Additionally, since this method requires the simu-
lation of stochastic differential equations (SDE), we also
assess the influence of the time discretization parameter dt

on accuracy.

Each of these factors has been investigated in pre-
vious works. Numerous automated selection criteria for
(h, Ns) for general KDE applications have been proposed
in the past. However, to our knowledge, there is no widely
accepted gold standard at this time. We thus perform an
analysis of their influence in order to make an informed
selection. Similarly, the method of simulating stochastic evi-
dence accumulation models (such as the DDM) and the
influence of time step size (dt) was investigated in Brown
et al. (2006). As we will see, however, these tuning parame-
ters are intertwined, and they must be chosen jointly rather
than independently.

To evaluate the influence of these methodological “tun-
ing” parameters, we use the standard DDMmodel discussed
above. We begin by first generating a baseline data set
of 1,000 observations from the DDM model with a fixed
set of parameters (see Fig. 2 caption for those parameters,
chosen in accord with values in Matzke and Wagenmakers
(2009) and Ratcliff and McKoon (2008)). To generate this
data set, we use a first-order Euler Maruyama (EM) scheme
(Higham, 2001) to simulate the drift diffusion equation

dy = μdt + sdw, (14)

where y denotes the level of evidence or activation value
associated with a decision and dw is a standard white noise
with mean 0 and variance of 1. Letting y(ti) denote the
value of y on a grid of time points {ti} (where ti+1 =
ti + dt), the EM scheme is simply the stochastic version
of the well-established Euler scheme for simulating ordi-
nary differential equations and involves iteratively updating
y according to

y(ti+1) = y(ti) + μdt + s
√

dt η, (15)

where η is drawn from the standard normal distribution.
To generate this data set, we use a very fine value of
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mean choice probabilities and mean response times against data. The
straight lines represent the y = x axis, which would correspond
to perfect agreement. To perform this comparison, 10,000 indepen-
dent stochastic simulations of the pDDM with and without a switch
were performed using the mean values of the posterior parameter dis-
tribution. The fraction of simulations corresponding to the different
choice alternatives and mean response time were recorded for each

switch and non-switch trials separately. In these figures, “Choice 1”
(C1) refers to the first stimulus presented while C2 refers to the sec-
ond stimulus presented. In (a), the choice probabilities are reported
for C1 while in (b), the mean RT is reported for both C1 and C2
responses on both switch and non-switch trials. c Comparison of RT
distribution for the data (dot) and the model based prediction (line)
derived from the mean of the posterior distribution for a representative
individual
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dt = 0.0001. The dots in Fig. 2 show the response time
distribution for correct and incorrect responses for this
simulated data set.

Next, we use this baseline data set to determine how
(Ns, h, dt) influence the accuracy of the likelihood approx-
imation. To do so, we fix the parameters that generated
this data set. For each value of (Ns, h, dt), we generate Ns

choice/RT pairs from the model by simulating Eq. (15) with
dt . Next, the KDE of this synthetic data set is computed
using a Gaussian kernel (K) (as in Holmes, 2015) with
the smoothing parameter h. To determine the influence of
methodological parameters on accuracy, one needs to com-
pare the approximate density function to the “exact” density
function. Unfortunately for DDM, no such “exact” function
exists. Solutions of the DDM first passage time problem
have been worked out, however they either involve approx-
imating infinite series (Navarro & Fuss, 2009), numerical
integrals (Tuerlinckx, 2004), or solutions to partial differ-
ential equations (Voss & Voss, 2008). In lieu of an exact
likelihood function to compare against, we generate a much
higher quality approximation with Ns = 500, 000, h =
0.0005, and dt = 0.0001. Figure 8 shows a comparison
of the integrated squared error (ISE, which is a common
measure of how close two functions are to each other)
and the log likelihood (with respect to the 2000 baseline
observations) evaluated with (Ns, h, dt) and the much more
intensive approximation respectively (which takes the place
of the exact solution).

These results demonstrate that for all combinations of
methodological parameters, log-likelihood estimation errors
are on the order of 1 − 5% with ISE < 3%. Increasing the
number of samples (Ns), decreasing the smoothing band-
width (h), and decreasing the SDE time step size (dt) all of
course lead to improved accuracy. However, in each case,
there is a point of diminishing returns. Increasing Ns or
decreasing dt both lead to a linear increase in computa-
tion time; doubling either doubles the computation time.
Additionally, decreasing h leads to increased variance in the
likelihood estimation, which can degrade the performance
of an MCMC algorithm (Holmes, 2015). Thus, one must
balance performance with accuracy.

These results also demonstrate the intertwined nature
of these methodological parameters. For example, a very
refined value of dt provides little benefit if the smoothing
parameter h is large. Intuitively, this is sensible. A more
refined stochastic simulation provides a better representa-
tion of the fine-grained features of the model. The KDE,
however, essentially smoothes the model likelihood func-
tion. Thus, the extra refinement gained through a reduction
in dt would be smoothed over in a sense if h is not commen-
surately small. Based on these results, it appears a choice of
dt = 0.5 · h is reasonable. From here on, we choose values

Ns = 10, 000, h = 0.02 sec, and dt = 0.01 sec. This yields
an estimation error of < 2%.

Timing

A central feature of this PDA methodology is that in order
to determine how well a particular parameter set accounts
for observed data, a large number (Ns) of model simulations
must be generated for comparison. Consider the case of the
DDM model discussed above. At each parameter set, Ns =
10, 000 model simulations is performed. In order to estimate
the posterior distribution, 18 MCMC chains (three times the
number of parameters as is standard for DEMCMC) are run
simultaneously for 2,500 MCMC iterations. The whole pro-
cedure thus requires 450 million simulations of the diffusion
process described by Eq. (14). Thus computation time must
be considered when using this method.

From a methodological perspective, there are a number
of choices that must be made to balance performance and
approximation accuracy. First, the level of temporal resolu-
tion in the SDE simulation (dt) linearly increases compu-
tational time. That is, halving the time step, which doubles
the number of time steps required, doubles the simulation
time. Similarly, computation time linearly increases with the
number of simulation samples (Ns) used to approximate the
density function; doubling Ns doubles computation time.
These factors must be considered to ensure that the models
being generated can be fit within a reasonable timeframe.

Some efficiencies can be leveraged to improve perfor-
mance of this method (which have been here and are
implemented in the codes used to generate these timings).
Built-in functions in common programming languages such
as Matlab and R can be called to perform the kernel density
estimation. However, as discussed in Holmes (2015), these
can be inefficient, and custom routines can greatly improve
their performance. Furthermore, while these approximate
likelihood values can be plugged directly into a standard
MH algorithm, doing so can lead to poorMCMC acceptance
rates. This can, however, be ameliorated by a simple adjust-
ment to the MH algorithm (likelihood resampling, detailed
in Holmes (2015)).

On a standard desktop computer (2015 iMac) utilizing
four compute cores in parallel, this fitting of the simple
DDM model takes ∼ 40 minutes. Fitting the pDDM model
necessitates an increase in the number of chains from 18
to 24 (since there are eight parameters to be fit versus six
for DDM). Since computation time grows linearly with the
number of chains, this yields a roughly 1/3 increase in com-
putation time. In the case of the pDDM model described
here, we have the added complexity of having both station-
ary (where the stimulus does not change) and non-stationary
trials (where it does change). Since these represent different
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Fig. 8 Error analysis of DDM using the PDA method. Errors in
the PDA estimation of the DDM choice/RT probability density as
a function of simulation sample number (Ns ), smoothing bandwidth
(h, denoted in s), and simulation time step (dt). Each panel repre-
sents a different combination of (Ns, h) while the horizontal axis
screens different values of dt = 0.001, 0.002, 0.004, 0.008, 0.016
s. For each set of (Ns, h, dt), ten replicant simulations were per-
formed and average errors are reported. Since we do not have access
to the true likelihood function, measures of error are computed by
comparing the approximation at each combination of methodologi-
cal parameters to a separate, more accurate approximation of the true
density function obtained with Ns = 500, 000 samples, a smoothing

bandwidth of h = 0.001 s, and a time step of dt = 0.0001 s. The gray
curves indicate the integrated squared error, obtained by comparing
the approximate and more accurate distributions at 100 evenly spaced
time points in the response time interval of 0.15–2 s. To determine
the accuracy of log-likelihood estimates (indicated in black), a 5000
sample choice/RT data set (mimicking the data set of an experimen-
tal participant) was generated, log-likelihood values were computed
using the presented combinations of (Ns, h, dt), and those values
were compared to a more accurate approximation. The horizontal
scale is logarithmic and the vertical scale is linear on all plots. Model
parameters are the same as in Fig. 2. All errors reported are percent
errors

trial types, Ns = 10, 000 samples must be simulated to
approximate a density function for each trial type, yield-
ing a doubling of the computation time. This demonstrates
that computation time will be determined by not only the
model but also the experimental setup since each unique
experimental condition requires a separate set of associated
simulation conditions. In Holmes et al. (2016), for example,
participants were shown 15 unique trial types throughout
the course of the experiment, necessitating the generation
of Ns model simulations for each of those 15 trial types
in order to fit the pLBA model using this method. Thus,
computational limitations must be considered when initially
designing experiments if this method is to be used.

The test case used to demonstrate this method involved
fitting data derived from 15 participants, each of which per-
formed a moderately large number of trials of two types:
(1) stationary where the stimuli did not change over time
and (2) non-stationary where the stimulus did change over
time. UsingNs = 10, 000 simulations per trial condition, 24
chains, and 2500MCMC iterations yields 18 billion individ-
ual SDE simulations needed to fit this data set. Fortunately,
the recent simplification of parallel computer architectures

provides easy avenues to speed this process. For this appli-
cation, we utilize Matlab and its built-in parallel computing
toolbox to distribute this computation to eight computing
cores at the Advanced Computing Center for Research and
Education (ACCRE, at Vanderbilt University) to acceler-
ate this fit. Using this facility, the hierarchal fit of all 15
participants took approximately 2 days.

While these computation times may seem daunting, we
note that the ever-improving performance of and access
to parallel computing facilities will make the use of this
methodology more feasible over time, provided the inter-
ested researcher takes care in designing models and experi-
ments with these constraints in mind. For example, migrat-
ing this application from eight cores to larger more powerful
machines (32-core desktops, which are readily available
and affordable these days) can reduce implementation times
by a factor of 3–4. Additionally, increasingly user-friendly
access to general-purpose GPU computing resources hold
the potential for yet more dramatic increases in perfor-
mance, which over time will allow researchers to utilize
this method and these models with fewer constraints on
model/experimental design as well as improved accuracy.
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General discussion

Here, we describe a model, the piecewise diffusion decision
model, in combination with a Bayesian fitting methodology
(the PDA) that can be used to model complex decision tasks
with non-stationary inputs. Given the time-heterogeneous
nature of this model, the lack of tractable analytic descrip-
tions of the likelihood function, and the approximate nature
of the PDA, we first set out to verify that the combina-
tion of the model and fitting methodology are sufficient
to recover parameters of simulated data. Results of fit-
ting the simpler DDM and pDDM models show this to
be the case, with some caveats, which will be described
momentarily.

With this methodology established, we fit the pDDM
model to new experimental data to examine how a sin-
gle change of information during the course of deliberation
influences choices. Results show that there is a substantial
delay, on the order of 400–500 ms, between the presenta-
tion of new information and an influence of that information
on evidence accumulation. This is consistent with results
from Holmes et al. (2016) where a similar 400–500 ms
integration delay was found, suggesting that this model
is an effective tool for measuring how changes of infor-
mation influence decision processes. To be clear, we are
not suggesting that a discrete and delayed neural change
in accumulation occurs when information changes. Rather,
there is likely a nonlinear process involving visual short-
term memory or inhibition that leads to a delayed influence
of new information.

While this current methodology is very promising, there
are a couple of important caveats. The first caveat is
that trial-to-trial variability (related to bias and drift rates)
parameters are not well estimated in this approach. While
trial-to-trial drift variability is known to be important for
accounting for long errors in RT distributions, these param-
eters are rarely the primary source of inferences and thus
are not the focus here. The second is that parameter recov-
ery is not perfect. The peak of posterior distributions do
not align perfectly with the parameter values generating the
simulation data (though the exact values are well within
the credible intervals). This is not a result specifically of
the PDA method though and the imprecision in part results
from the nature of Bayesian methods, noise in data, and
the approximate nature of MCMC in general. Further, some
parameters exhibit a larger spread in their posterior distri-
butions due to the structure of the data available, indicating
less confidence in their estimates. As discussed in Holmes
(2015), this results from the approximate nature of the mod-
eling process, the intrinsic “sloppiness” of models (Apgar
et al., 2010; Gutenkunst et al., 2007), and arises in other fit-
ting methodologies such as maximum likelihood estimation
(Brown et al., 2006).

As has been noted in numerous other fields such as math-
ematical biology, most models containing more than a few
parameters exhibit “sloppiness”, which describes models
where a wide range of parameter values can nearly equally
account for observed data. At its most basic level, sloppiness
is the result of having data that is insufficient to directly con-
strain the parameters of a model. This insufficiency often
comes from the inability to observe elements of a model
that one wants to constrain. In a biological context, this is
usually an issue when one tries to infer the properties of a
signaling network with only data about the input and output
of that network. With no observations of the complex net-
work of biological molecules or intermediaries that translate
an input into an output, it is nearly impossible to quantita-
tively constrain the properties of those intermediaries with
input/output data alone.

Making inferences about a decision process raises sim-
ilar issues. Where evidence accumulation models are con-
cerned, a data set usually consists of information about
the stimulus input (easy versus hard for example) and
the response output (choice/response time). From the per-
spective of the model, this is a very sparse measurement
since numerous aspects of the accumulation process are not
observed (bias, threshold, accumulation rate, non-decision
time) and are only indirectly constrained by the data. The
issue of sloppiness is somewhat exacerbated when approx-
imations to a model must be made (as is the case with
pDDM). Statistically speaking, sloppy models are those for
which a range of parameter values lead to a similar likeli-
hood. In this case, the small estimation errors introduced by
approximations, whether it be summary statistics in ABC
methods, truncation of series that are often involved in
calculation of DDM likelihoods, SDE simulation of more
complex models, or the KDE approximation used in the
PDA, can skew the posterior toward one part of the sloppy
region of parameter space.

We stress, however, that this is an issue of parameter
recovery, not of model fit, as noted in Brown et al. (2006)
and Holmes et al. (2016). Our results show that even when
model parameters are not perfectly recovered or tightly
constrained, the posterior mean parameters still provide
excellent fits in both parameter recovery experiments. Thus,
while one must take care when making direct, quantita-
tive comparison of parameters between conditions or across
experimental populations, this modeling platform allows the
user to determine how well the assumptions encoded in the
model account for experimental data.

While we used pDDM to understand how a single change
of information influences decisions, what is presented here
is a modeling platform rather than a single model. Since this
is a simulation-based approach, it provides the researcher
freedom to consider models containing elements not pre-
viously tractable due to the difficulty in deriving analytic
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approximations to likelihood functions. For example, this
approach could be used to investigate theories involving
collapsing bounds (Resulaj, Kiani, Wolpert, & Shadlen,
2009), urgency gating (Cisek, Puskas, & El-Murr, 2009;
Thura, Beauregard-Racine, Fradet, & Cisek, 2012), or neu-
ral inhibition (Usher and McClelland, 2001; Turner et al.,
2014). Multiple changes of information could be incorpo-
rated as might be of interest if multiple choice alternatives
are present that people sequentially attend to. Furthermore,
it opens up the possibility of closely linking temporal obser-
vations (such as eye tracking) to models to investigate how
the changing state of the decision-maker (what they are
looking at when for example) influences decisions. Given
the increasing power and ease of computational technolo-
gies, we hope this approach will expand the applications of
sequential sampling models to more complex decision tasks.
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