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Abstract The recent introduction of inexpensive eyetrackers
has opened up a wealth of opportunities for researchers to
study attention in interactive tasks. No software package has
previously been available to help researchers exploit those op-
portunities. We created Bthe pyeTribe,^ a software package
that offers, among others, the following features: first, a com-
munication platform between many eyetrackers to allow for
simultaneous recording of multiple participants; second, the
simultaneous calibration of multiple eyetrackers without the
experimenter’s supervision; third, data collection restricted to
periods of interest, thus reducing the volume of data and easing
analysis. We used a standard economic game (the public goods
game) to examine the data quality and demonstrate the poten-
tial of our software package.Moreover, we conducted amodel-
ing analysis, which illustrates how combining process and be-
havioral data can improve models of human decision-making
behavior in social situations. Our software is open source.
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Attention

Economic games are the experimental instrument primarily
used by economists and psychologists to study how individ-
uals make decisions while interacting with others. Careful

design of economic games allows researchers to infer people’s
motives and decision processes from observing their choices.
Recently, however, researchers have moved from studying
choices alone to a more process-focused perspective
(Camerer & Johnson, 2004; Fehr & Schmidt, 1999; Schulte-
Mecklenbeck, Kühberger, & Ranyard, 2011; Wang, Spezio, &
Camerer, 2010). For example, they have begun using various
tools to track attention. One example is the use ofMouseLab to
monitor people’s information acquisition when making deci-
sions (Willemsen & Johnson, 2011). Although MouseLab has
given researchers a window into the decision-making process,
some have argued that proceeding through information within
this framework, in which information is hidden behind boxes,
incurs costs that might influence decision processes and, ulti-
mately, choices (Glöckner &Herbold, 2011; Lohse& Johnson,
1996). Eyetrackers come without the problem of extensive
search costs, as information is available literally at a glance.

There is, however, a downside to eyetracking, one that is
particularly important when studying interactive games:
Given the hefty initial price tag of tens of thousands of US
dollars per unit, few research institutions have previously been
able to afford more than one eyetracker, if any at all. Relying
on a single eyetracker is particularly problematic in the con-
text of interactive economic games, in which researchers are
interested in an online account of how participants react to the
behavior of others. A single eyetracker allows researchers to
track the attention of one player, but the simultaneous dynam-
ics of attention during group interactions remains hidden.

The recent introduction of inexpensive eyetrackers is
changing this landscape considerably. One example is an
eyetracker marketed by The Eye Tribe (www.theeyetribe.
com) for $99, or a Tobii (www.tobii.com) for $200. Other
companies, including SMI (www.smivision.com), are also
beginning to offer trackers in a much lower prize range
(typically around $500, as of 2016). With this substantial
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reduction in prices, laboratories are now able to acquire
several units, enabling the simultaneous eyetracking of
multiple participants. To date, however, experiments
involving multiparticipant interaction and multiple
eyetrackers have not intersected. To our knowledge, no
available software package allows researchers to construct
an experiment to simultaneously collect behavioral and
eyetracking data from (many) interacting participants. We cre-
ated such a software package.

Synchronizing by matching time stamps

A simple, yet tedious approach to conducting simultaneous
eyetracking studies is to run a behavioral experiment using
existing software (e.g., zTree) while recording eyetracking
data individually on multiple computers at the same time
(see, e.g., Fiedler, Glöckner, Nicklisch, & Dickert, 2013).
Matching the time stamps from eyetracking and behavioral
data, without accessing the eyetracker controls, may provide
the researcher with the desired datasets for analysis. However,
we find this approach inadequate for three reasons.

1. Gaze-contingent experiments, in which the procedure is
conditioned on specific gaze patterns, are not possible
without access to the tracker data in real time. In a
multiparticipant setup, the experimenter may want to
make one participant’s display contingent on the partici-
pant’s own gaze location, on another participant’s gaze
location, or some combination of the two. For example,
the experimenter may want participants to proceed to
make decisions only when all interacting participants
have fixated on all relevant information. This cannot be
accomplished by matching time stamps, but only by pro-
cessing tracker data in real time.

2. Without direct access to the eyetracker controls, calibra-
tion and other tasks must be conducted independently of
the behavioral task and be supervised by the experimenter.
In experiments with many participants, this is costly, and
participant–experimenter interaction introduces noise.
With direct access to the tracker controls, the experiment-
er can decide a priori how to perform the calibration, and
can run it in a self-paced manner. For example, the exper-
imenter can decide under which conditions the calibration
will be considered successful, the number of calibration
trials, and the procedure to follow if calibration fails (e.g.,
to continue the experiment with or without tracking, to
quit the experiment, or to replace the participant by one
whose calibration was successful). In such a setup, the
eyetracker can be calibrated without the experimenter’s
supervision and simultaneously for several participants.

3. Matching time stamps generates an unnecessarily large
amount of data, because the recording of information

cannot be turned on and off at desired/synchronized
points of the experiment. Using a centralized software
package to bundle the communication of each participat-
ing client allows control of the eyetracker in terms of
onset and offset in recording periods of interest. Onset
and offset signals may also be contingent on specific be-
haviors in the experimental task, or on specific fixation
patterns. This allows the more selective and efficient col-
lection of data.

Features required in the software package

In developing software to coordinate experiments with multi-
ple participants in eyetracking studies, we first identified the
following features that would be necessary in the package:

1. User input: Record mouse clicks, keystrokes, or other
input that participants use to express preferences or
valuations.

2. Eyetracker data: Record time-series data generated by the
eyetracker, including x,y coordinates of gaze locations on
the screen and pupil dilation.

3. Network data: Coordinate user input, eyetracker data, and
other information transmitted by instances of the software
running on all participants’ computers.

4. Scalability: Scale easily to n participants (where n > 2).

Items 1–3 relate to data-handling issues. Some existing soft-
ware packages handle these three types of data independently.
For example, experimental software packages commonly used
in psychology or neuroscience (E-Prime, www.pstnet.
com/eprime.cfm; Open Sesame, www.osdoc.cogsci.nl) handle
mouse and keyboard inputs with the appropriate drivers;
several other applications are able to process eyetracker data
(E-Prime; Presentation, www.neurobs.com; Psychophysics
Toolbox in MATLAB, www.psychtoolbox.org) in various
setups, and even network data (zTree; Fischbacher, 2007) in
economic games. Although the above-mentioned software
packages can handle some of the listed features, currently no
software package is available that can process the flow of all
these data sources natively and in real time.

Item 4, scalability, becomes important when it is necessary
to adapt to changing experimental situations (e.g., different
numbers of participants per experimental session). One way
to achieve a scalable setup is to centralize certain processes on
a server and to let clients communicate with this central node
in a so-called star network (Roberts &Wessler, 1970). In a star
network with n connections, each client connects to one net-
work location, rather than to the addresses of every other cli-
ent. Hence, the software on the server has the flexibility to deal
with sessions with different numbers of participants. For
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example, if the laboratory has 20 computers prepared for the
experiment but only 18 participants show up, the experiment
can still be conducted, because the server will automatically
account for the incoming network connections.

An additional advantage to this design is that the software
running on the server can take a more active role than simply
relaying information. If an experiment requires a calculation
to be made using input from multiple users (e.g., the sum of
participants’ contributions to a common pool), the server can
perform such calculation and immediately send the result back
to all clients.

Application example: Iterated public goods game

One paradigmatic example of economic games is the public
goods game (PGG). Although various theories of social be-
havior accurately predict the aggregate data obtained in a
PGG, their psychological plausibility has been questioned.
Recent research attempted to uncover the mechanisms under-
lying decisions in social dilemmas—that is, the way informa-
tion is processed to make decisions in the social context
(Fiedler et al., 2013). In what follows, we briefly describe an
experiment in which we used the Eye Tribe eyetracker in
combination with our software package to run an iterated
PGG. We had two goals. First, we sought to evaluate the
quality and integrity of data stored by our software package.
Second, we examined the capability of our software package
to handle interactive decision-making experiments.

Method1

Apparatus

Eyemovements were recorded using an Eye Tribe tracker (see
Fig. 1), which records binocular gaze data with a sampling rate
of 60 Hz and an accuracy of 0.5°. The software provides
dispersion-based fixation data for further analysis.

The participants were seated in front of screens with a
resolution of 1,920 × 1,080 pixels on computers with
Windows 7. Nonoverlapping areas of interest (AOIs) around
the numeric information on screen were defined, with a size of
400 × 200 pixels (see Fig. 2).

Each participant was calibrated using the 9-point calibra-
tion procedure provided in the Eye Tribe development kit. To
this end, participants were asked to look at points appearing
sequentially in different locations on a dark computer screen.
If sufficient quality was reached (i.e., accuracy of <0.5°), the

experiment was started. If the visual angle was >0.5°, recali-
bration was triggered automatically.

Results

Data quality

Every participant in our experiment successfully completed
the calibration procedure in less than three calibration at-
tempts, our cutoff criterion for exclusion from the study. To
evaluate the quality of the data collected, we ran two simple
tests: (a) correspondence between the last number fixated by a
participant on the contribution screen and that participant’s
actual contribution; and (b) AOI versus non-AOI fixations
on the feedback screen.

Participants were asked to pick a number from 0 to 20 on
the contribution screen using their mouse. These numbers
were presented in matrix format across the whole screen (see
Fig. 2, sixth screen). Consistent with previous results showing
that mouse and eye movements are highly correlated (Chen,
Anderson, & Sohn, 2001), we found high correspondence2

between the last fixation on an AOI and the number that the
participant selected and clicked on (see Fig. 3) for the large
contributions (10–20). However, this pattern was weaker for
small contributions (0–9). The difference in the correspon-
dences between high and low contributions is partly explained
by the fact that contributions tended to be relatively high in
general: The median contribution in Round 1 was 12, with
only four cases (out of 120) below 10 (see the analysis below
of the contribution patterns for more details). For the quadrant
with the highest contributions in Fig. 3 (20, 20), we observed
that the last fixation in an AOI showed a correspondence with
the actual choice (i.e., click) on the same AOI for 24.7 % of all
clicks in Game 1.

1 You will find information about the participants, materials, and proce-
dure in Appendix A.

Fig. 1 Eye Tribe tracker with USB plug in front of a computer monitor

2 We operationalized Bcorrespondence^ as the percentage of matches
between the last fixation and the selection of a contribution. A low per-
centage means that after the last fixation of an AOI, the actually chosen
contribution was different in most cases; a high percentage means that in
many cases the last fixation on an AOI was followed by actual choice of
the corresponding contribution. The analysis presented here was only
done with the data from Game 1, but similar patterns emerged for all
three games.
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A second indication of the data quality is the relation of the
fixations within AOIs versus non-AOIs (but see Orquin,
Ashby, & Clarke, 2016, on flexibility in the definition of
AOIs and the consequences for data analysis). Our feedback
screen consisted of eight AOIs with numeric information and
six AOIs with written text (see Fig. 2, Screen 7). Across all
participants, 28 % of fixations were in numeric areas, and
69 % were in the written text. About 3 % of all fixations were
outside a defined AOI,3 most likely related to participants’
orientation on the stimulus screen or reflecting incorrect clas-
sifications of a fixation to a non-AOI area.

Process analysis

On average, participants fixated on 17 AOIs (SD = 9 AOIs),
which took them 92.9s (SD = 42.3 s). To evaluate the attention
to different aspects of the PGGs played, we calculated the
dwell time (sum of all fixation durations during a dwell—
i.e., one visit to an AOI from entry to exit, measured in milli-
seconds; Holmqvist et al., 2011, p. 190) separately for each
participant, each game (1–3), and each round (see Fig. 4).

The players’ attention was focused primarily on two AOIs:
their own points (the two AOIs in the upper row of Fig. 2,
indicated by BYou^) and the points of the other player (the two
AOIs in the second row of Fig. 2, indicated by BPerson B^).
Whereas the attention given to BYou^ (a player’s own points)
decreased across games, to 0 in Game 3, the attention

dedicated to BPerson B^ remained relatively constant across
games. In contrast, the information available on both the sum
score and the average attracted less attention from players; the
median dwell time converged to 0 early on, and remained
unchanged across Games 2 and 3. We qualified these descrip-
tive results with a mixed-effect model approach, using the
lmer function of the lme4 package (Bates, Maechler, Bolker,

3 Note that 56 % of the area of the screen was covered by AOIs.

Written instructions 

Comprehension test 

Graphical instructions 

First screen for the calibration of 
eye-tracker 

9 point calibration 

Contribution screen of the 1st round 

Payoff screen of the 1st round 

Contribution screen of the 2nd round 

Fig. 2 Sequence of experimental screens presented to the participants.
After a set of written/graphical instructions and a comprehension test, the
eyetracker is calibrated with a 9-point calibration. After successful
calibration, participants see the first-round contribution screen with all
possible contributions [0–20]. The following response screen shows the

participant’s and the other player’s (Person B) contribution, as well as
summary statistics (sum, average) for the current game. The maximum
possible, nonoverlapping square areas around the numbers (contribution
screen) and alphanumeric characters (response screen) were used as the
AOIs
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Fig. 3 Correspondence between the last fixation of an AOI and the
contribution chosen via mouse click in this round
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& Walker, 2014) in R. Significance tests were conducted
using the lmertest function of the lmerTest package.
Participants were modeled as random intercepts; AOIs and
rounds were added as random slopes to account for the repeat-
ed measures nature of the data (Barr, Levy, Scheepers, & Tily,
2013). We found significant main effects of the time spent on
an AOI, F(5, 12510) = 5.86, p = .001, with the following
average dwell times on AOIs: MPersonB = 192.6 ms
(SDPersonB = 120.9 ms), MYou = 196.7 ms (SDYou =
128.5 ms), MSum = 175.2 ms (SDSum = 114.4 ms), MAvg =
181.1 ms (SDAvg = 115.2 ms). Longer dwell times were found
for information about the other player (Person B) and the
player’s own information. Summary statistics (mean and
sum) received shorter dwell times. Furthermore, round, F(1,
6959) = 10.1, p = .001, and game, F(1, 4.5) = 9.9, p = .03, both
showed main effects [MGame1 = 199.2 ms (SDGame1 = 125.7),
MGame2 = 181.3 ms (SDGame2 = 118.1 ms)MGame3 = 179.4 ms
(SDGame3 = 115.2)], indicating faster dwell times at the end
than at the beginning of the experiment. None of the interac-
tions reached significance.

Models of contributions

We modeled individual contributions (see the analysis of the
contribution patterns in Appendix B) trial by trial using con-
ditional cooperation strategies (for details, see Fischbacher &
Gächter, 2010). Specifically, we used a perfect conditional
cooperator with naïve beliefs and a perfect conditional coop-
erator with actual beliefs—the other strategies proposed by
Fischbacher and Gächter do not apply in our experimental

design. We also proposed a simple matching model. Our
matching model assumes that the contribution C of an indi-
vidual i at trial t is a weighted average of the previous contri-
bution of i (Ci,t–1) and the previous contribution of the other
player j (Cj,t–1). Formally, the contribution in each trial is

Ci;t ¼ wi Ci;t−1
� �þ 1−wið Þ C j;t−1

� �
; ð1Þ

where wi is the weight given to the player’s own previous
contribution, and 1 – wi is the weight given to the other
player’s previous contribution. The parameter w can be
interpreted as capturing the relative attention devoted to a
player’s own versus the other player’s payoffs.

We first considered a matching model with w set at .5—that
is, a model that simply averaged the previous contributions of
the two players. We then compared the performance of the
matching model with that of the two conditional cooperation
strategies by calculating the mean squared deviation (MSD)
between each model and individual behavior. We found that
our matching model predicted individual behavior more accu-
rately than did the two conditional cooperation strategies, with
MSDs of 20.7, 17.3, and 15.8 for perfect conditional coopera-
tion with naïve beliefs, perfect conditional cooperation with
perfect beliefs, and the matching model, respectively. We then
estimated an individual w parameter for each participant,
attempting to minimize the MSD between the predictions of
the model and individual behavior. The result of the fitting
procedure was a wi corresponding to each individual. If w cap-
tures attention, we should expect to observe a correlation be-
tween the fittedws and the relative attention given by players to
each other’s information, as measured by eyetracking.
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We therefore calculated a measure of relative attention as a
ratio of the sums of fixations distributed between player i’s
own information and player j’s information, as displayed in
the payoff screens for each round. The relative attention ra
across the experiment for player i was

rai ¼
X

f ixi
X

f ixi þ
X

f ix j
ð2Þ

The correlation between w and ra across individuals was
.31, p = .055. As Fig. 5 shows, w and ra were positively
related.

The data collected with pyeTribe allowed us to examine
whether and how the attention between players in a PGG co-
evolves. The left panel of Fig. 6 shows the evolution of rela-
tive attention (ra, as defined in Eq. 1) for four selected pairs of
players. The patterns of relative attention are diverse. For the
top two pairs in the panel, attention seems to converge across
rounds. For the bottom two pairs, in contrast, attention seems
more erratic. Naturally, players do not observe each other’s
attention, but only their contributions. Therefore, a more rea-
soned examination of how attention evolves would require an
analysis of the contributions, which are the only information
transmitted between players. The right panel of Fig. 6 attempts
to shed some light on how relative attention responds to dif-
ferences in the contributions. As the right panel shows, the
larger the difference between a participant’s own contribution
and that of the other player, the more attention a player pays to
the other participant.

Discussion

New research tools are opening up a wealth of opportunities
for researchers to study new paradigms and ask new questions.
Eyetrackers are, of course, not new, but the critical reduction in
price is allowing for new experimental setups to study, among
other things, attention in interactive decision-making tasks. In
this article, we presented a software package designed to help
researchers exploit the advantages of multiple eyetrackers
while conducting interactive decision-making experiments.

Our software package has four central features. First, a
large number of participants can be recorded while they inter-
actively play economic games. Second, eyetracking calibra-
tion can be performed without the experimenter’s supervision,
allowing for simultaneous calibration, saving significant re-
sources. Third, gaze-contingent rules—for instance, proceed-
ing to the next screen only when all interacting participants
have fixated on a particular AOI—allow for complex experi-
mental scenarios to be designed. Fourth, there is a clear po-
tential to integrate our software package into more complex
experimental systems, like BoXS (Seithe, Morina, &
Glöckner, 2015) or zTree (Fischbacher, 2007).

We used a standard economic game (PGG) to demonstrate the
potential of our software package and to examine the quality of
the data obtained. The value-for-money ratio of the eyetracking
data collected was outstanding, as shown by the high correspon-
dence between fixations at themoment of clicking themouse and
the number selected, and the high proportion of fixations within
AOIs. A modeling analysis of the individual contribution pro-
cesses provided further evidence for the high quality of the data.
We proposed a simple model that weight-averages a player’s
own previous contribution with that of the other player.
Specifically, we estimated the weight that each participant
assigned to his or her own previous contributions and
examined whether those weights corresponded with the
attention patterns. The relative numbers of fixations between
self and other were moderately correlated with the parameters
estimated individually. This modeling analysis illustrates how
combining behavioral and process data may improve cognitive
models of behavior. Fiedler et al. (2013) demonstrated the value
of adding process data to the analysis of economic games. We
extended their work by facilitating the synchronous observation
of multiple players in a PGG (our approach can, of course, be
extended to other economic games or experimental conditions
involving interactions between multiple players). Importantly,
our approach makes it possible to record and examine informa-
tion search before a choice is made.

Our software package (as well as the data and analysis code)
is open source and can be pulled from the following git repos-
itory: https://github.com/michaelschulte/ThePyeTribe.
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Appendix A

Application example: Method

Participants Forty students (21 female, 19 male) participated
in our experiment in groups of two. The study was run at the
Max Planck Institute for Human Development, Berlin. The
mean age of participants was 25.1 years (SD = 3.7 years),
and they received a fixed hourly fee of €10 and a bonus de-
pending on their choices in a randomly selected round of the
game. Participants provided written consent according to the
institute’s ethics guidelines. The experiment took about
60 min. All participants had normal or corrected-to-normal
eyesight and were instructed to find a comfortable sitting po-
sition with a straight view to the monitor/Eye Tribe camera.

Material and procedure We used a standard iterated PGG
(Camerer, 2003). The participants were anonymously and ran-
domly assigned into pairs. The members of each pair were
seated in different rooms. Participants were provided with
the instructions for a two-person PGG (Reuben & Riedl,
2009), and their understanding of the game was tested by
comprehension questions. They were informed that all partic-
ipants had the same instructions.

Each participant was endowed with 20 points and had to
decide how many to contribute to a public good. Participants
decided anonymously and simultaneously. The sum of partici-
pants’ contributions was multiplied by a factor of 1.8 (i.e., an
interest rate of 80 %), and the resulting amount was shared
equally between the two players. Each participant’s payoff was
then determined—namely, the amount kept (not contributed to
the public good) plus the amount received from the public good:

Payoff ¼ 20−own contributionþ 1:8

� sum of contributions

2
:

After deciding on their contributions, participants saw a
feedback screen showing information on both their and the
other player’s contributions and earnings. Each participant
played three games with the same partner. Each game in-
volved ten rounds (i.e., ten contribution decisions). We used
different multiplication factors in the three games. In the first
game, the multiplication factor was set at 1.8; in the other two
games, the factors were 1.5 and 1.3, in random order.

The experimental sessions were coordinated by means of a
centralized Bhandler^ that paced the PGG and the eyetrackers.
This handler coordinated and checked the calibration of the
eyetrackers (on the basis of data provided by the Eye Tribe
application programming interface), and ran the PGG.

Data cleaning

The eyetracking data were cleaned in two steps: (1) at the
lower bound of the dataset, very short acquisitions (<50 ms)
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were removed, because they most likely represented spurious
eye movements with no information acquisition, and (2) at the
upper bound of the dataset, very long acquisitions (two SDs
above the average fixation length) were also removed.

Contribution analysis

Behavior in PGGs is usually tested against the Nash equilibri-
um. In games in which the multiplier is between 1 and the
number of interacting players, the Nash equilibrium equals
Bno contributions^ to the public good. However, such a pattern
of behavior is rarely observed in single-play PGGs (Zelmer,
2003). In iterated PGGs like the one used in our experiment,
participants approach equilibrium (Levitt & List, 2007). A num-

ber of factors have been found to increase contributions away
from equilibrium. For example, in Bopen^ PGGs, in which par-
ticipants receive feedback about the amount contributed by each
player (as in the present experiment), contributions are higher
than when personalized feedback is not provided. The magni-
tude of the multiplication factor also has a significant impact on
the levels of contributions, with higher factors producing higher
contributions (Zelmer, 2003).

We examined participants’ contributions across rounds in
each of the three games. The conditions we used in our exper-
iment (i.e., Bopen^ feedback and high multiplication factors)
were expected to produce high contributions. Figure 7 shows
the patterns of these contributions. As predicted, we found high
levels of contribution that increased across rounds and games.

Appendix B

The Eye Tribe application program interface (API)

In what follows, we describe how our software package is
connected to the Eye Tribe API. A more complete description
of the API can be found at http://dev.theeyetribe.com/api/.

The hardware requires a USB 3.0 connection to the host com-
puter, as well as installation of the Eye Tribe Server software. A

transmission control protocol socket is opened in order to send
and receive data from the tracker, making it possible to retrieve
eyetracking information and send commands during the experi-
ment itself. Eye Tribe Server requires any software package con-
nected in this way to send frequent keep-alives, called
Bheartbeats,^ every 250 ms. If a heartbeat is not received for
2 s, the Eye Tribe Server will terminate the connection.

The Eye Tribe API allows a variety of data to be sent and
received during runtime. For example, the sampling frequency
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can be set to 30 or 60 Hz through command-line parameters to
Eye Tribe Server or through a configuration file, but this set-
ting cannot be changed without terminating the Eye Tribe
Server process and restarting the software package.

The API specifies the use of JavaScript Object Notation
(JSON) strings to communicate with the tracker. Every mes-
sage the user sends receives a reply. The Eye Tribe Server can
send data without a request under two circumstances: (a) if
certain parameters change (e.g., the calibration state), an auto-
matic message will be sent; (b) the user can set the tracker to
Bpush^ mode, which means that it will automatically send new
eyetracking data as soon as they are available. These snapshots
are referred to as Bframes,^ and contain information including
pupil size and the location for each eye, the gaze location for
each eye, an average across both eyes, gaze locations smoothed
using the data from several frames across time, and timestamps.

The pyeTribe

The pyeTribe package provides a Python interface for the
hardware. It is not intended to replace working knowledge
of the Eye Tribe API, but rather to supplement it. PyeTribe
has the following features:

HeartThread A thread that continuously sends heart-
beats—that is, keep-alives—to the Eye Tribe Server.
ListenerThread A thread that continuously listens for
messages from the Eye Tribe Server. It splits the data
stream into individual messages and places these in a
queue to be processed.
ProcessorThread A thread that sorts the data received by
the ListenerThread and then takes appropriate actions. If
the message is an update notification, any piece of code
that is waiting for that update will be notified. If the mes-
sage is frame data, it will be written to a file, should one
be specified; otherwise, only the most recent frame will
be saved. If the message is an acknowledgement that a
heartbeat was received, it will simply be discarded. If the
message is a reply to a user-sent message (e.g., a get
request or a request to start a calibration), it will be placed
in a data structure called an EyeTribeQueue.
EyeTribeQueue This is a queue that inherits from the
LifoQueue from Python’s built-in Queue module. We
used this approach because we aimed to obtain a thread-
safe, searchable data structure, and LifoQueue comes
with the machinery for thread safety as well as for storing
data in a basic list that is easily searchable. We overrode
LifoQueue’s get method with one that will only produce
an error, and created a new get_item method that takes
certain parameters about the original request as argu-
ments and finds the correct reply to the given request.

The ProcessorThread needs to sort the incoming
messages, because Eye Tribe Server’s behavior is

not completely predictable from pyeTribe’s point of
view. The code is designed so that the connection is
accessed only one thread at a time; the Eye Tribe
Server may send a different type of data. For exam-
ple, if a request is sent to get the current frame rate,
and the tracker is unexpectedly unplugged at the same
time, the next message received might be an update
that the tracker state has changed. We used
EyeTribeQueues so that when a request is sent, the
pyeTribe waits for an appropriate reply to be received,
and then removes that reply from the queue and
returns it to the function that sent the request.
Main class4 When initialized, this class automatically
opens a connection to the Eye Tribe Server using the
default host and port; it starts the HeartThread,
ProcessorThread, and ListenerThread, and creates the
queues they will be using to share data.

The following code creates an instance of the main class
called Bet,^ whose methods can be called to control the
tracker’s behavior and obtain information.

from thepyetribe import EyeTribeServer
et = EyeTribeServer()

Python Bproperty^ decorators are a convenient way to in-
teract with the tracker’s variables. Properties are similar to
private data members with accessor methods. The user spec-
ifies what code is to be run when the property is accessed, and
what code is to be run when the property is assigned a value.
This means that instead of writing commands linked with
Band^—for example, et.push.set(True) and if
et.push.get()—the code can be simplified: et.push =
True or if et.push.

Every variable specified by the Eye Tribe API gets a prop-
erty in the main class. Those that are immutable will raise an
exception if the user attempts to assign different values to
them.

We provide methods for calibration, though the user must
manually choose how many calibration points to use and the
coordinates of each.

We also provide a method to estimate the time difference
between the internal clock of the computer and that of the
tracker. This method measures a combination of the actual
differences between the two clocks and tracker latency. The
latency should be less than 30 ms, but is usually less than
16 ms. If latencies need to be within one frame, this function
provides an important check.

F ina l ly, the main c l a s s has a method ca l l ed
record_data_to, which allows the user to change where
d a t a a r e r e c o r d e d a t a n y t i m e . C a l l i n g
record_data_to(None) will stop all recording, but the

4 A1 To avoid confusion with the software packaged with the Eye Tribe
tracker, we refer to this part of the code as the Bmain class.^
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most recent frame will still be saved in the software’s memory
and remain constantly updated and accessible.

Appendix C

Setting up your computer to run pyeTribe

1. Install the Eye Tribe Server.
You will need to create an account with The

Eye Tribe to download the Eye Tribe Server soft-
ware; follow their instructions for the installation.

https://theeyetribe.com/
2. Install Python 2.

Install any version higher than 2.7.6 and lower than
3.0. This guide assumes you will use the default installa-
tion settings.

https://www.python.org/downloads/

3. Install PyYAML.
At a command prompt, enter Bpip install

pyyaml^ after installing Python.
http://pyyaml.org/wiki/PyYAML

4. Install PsychoPy, along with all its dependencies.
Probably the easiest way to do this is to download the

BStandalone^ PsychoPy version and merge PsychoPy2/
Lib/site-packages into Python27/Lib/site-packages (i.e.,
after the install, copy the contents of PsychoPy2/Lib/
site-packages and paste them into Python27/Lib/site-
packages; if there are any conflicts, keep the original files
in Python27/Lib/site-packages).

https://github.com/psychopy/psychopy/releases
5. Install Git.

https://git-scm.com/downloads
6. Install the experiment.

Create a folder that you want the experiment to go in.
Open the Git Bash to that folder, and enter the following
command (all one line):

An easy way to set up multiple computers is to copy and
paste the Python files installed on the first computer to the
other computers (you do not have to repeat Steps 5–8 sepa-
rately for each computer).
7. Copy the handler.py file to the computer on which you

want to run it. Any lab computer or server in your local
area network that has Python installed can run the handler.
Note the IP address of the handler’s computer, and make
sure that incoming traffic is allowed on port 11111. You
only need to do this step once.

8. Open the EyeGames.cfg file in a text editor.
Specify the numbers of players, rounds, and

games, and the handler IP. In the following example
you will find the header of the config file for one
two-player game with ten rounds. A PGG multiplier
of 1.8 is used for this round (see the main text), and
the location of the handler is set to the local machine
(localhost). Note that you would have to specify the
IP address of the handler on the other machines
here!

git clone --recursive git://github.com/michaelschulte/ThePyeTribe.git

exp_parameters:
num_players: 2
exp_version: 2.0.2
num_rounds: 10
num_games: 1
multipliers:
    - 1.8
endowment: 20
currency_per_point: 0.035
show_up_fee: 6
num_calib_points: 9

exp_globals:
margin: 100
background_color: &background_color steelblue
font_size : &font_size 40
port: 11111
handler IP: 'localhost'
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Running the experiment

Start the handler (open a command prompt to the han-
dler’s folder and enter Bpython handler.py^).
On each computer, plug in the Eye Tribe tracker and start
the Eye Tribe Server. You can use the icon generated
during the setup to open the Eye Tribe in 30-frame-per-
second mode, or you can open it from the command
prompt and specify the frame rate there. For a 60-
frame-per-second setup, you would enter:

eyetribe –framerate=60
On each computer, begin the experiment by either double-
clicking on main.py or entering into a command prompt
(within the experiment folder): python main.py
Select Bexperiment^ mode for the full experience, or
Bdemo^ mode for an experience run in a window.
BDebug^ mode allows developers to quickly reach any
given point in the experiment’s flow.
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