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Abstract Multicollinearity is irrelevant to the search for mod-
erator variables, contrary to the implications of Iacobucci,
Schneider, Popovich, and Bakamitsos (Behavior Research
Methods, 2016, this issue). Multicollinearity is like the red
herring in a mystery novel that distracts the statistical detective
from the pursuit of a true moderator relationship. We show
multicollinearity is completely irrelevant for tests of modera-
tor variables. Furthermore, readers of Iacobucci et al. might be
confused by a number of their errors. We note those errors, but
more positively, we describe a variety of methods researchers
might use to test and interpret their moderated multiple regres-
sion models, including two-stage testing, mean-centering,
spotlighting, orthogonalizing, and floodlighting without re-
gard to putative issues of multicollinearity. We cite a number
of recent studies in the psychological literature in which the
researchers used these methods appropriately to test, to inter-
pret, and to report their moderated multiple regressionmodels.
We conclude with a set of recommendations for the analysis
and reporting of moderated multiple regression that should
help researchers better understand their models and facilitate
generalizations across studies.
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Saunders (1955, 1956) introduced moderated multiple regres-
sion (MMR), a simple but very general statistical method for
determining whether the relationship between two variables,
say Y and X, depends on or is moderated by a third variable Z.
The analysis determines whether adding the product XZ to an
additive regression model (ADD) containing the components
X and Z significantly increases the explained variation or,
equivalently, whether the coefficient for the product XZ is
statistically significant. Specifically, for these two estimated
models

ADD : Ŷ ¼ b0 þ b1X þ b2Z
MMR : Ŷ ¼ c0 þ c1X þ c2Z þ c3XZ;

ð1Þ

the test of the difference RMMR
2 − RADD

2 assesses moderation.
Furthermore, c3 estimates the raw magnitude of the modera-
tion, testing the null hypothesis c3 = 0 is an equivalent test of
moderation, and its magnitude is indexed by standardized ef-
fect size measures such as the squared partial correlation (pr2

or η2) or the squared semi-partial correlation (sr2), the latter
being equivalent to the difference RMMR

2 − RADD
2 . The model is

agnostic as to which variable is moderating the other so re-
searchers often simply refer to a significant contribution from
the product XZ as an Binteraction.^ Interactions form the basis
for many psychological theories and data analyses. For exam-
ple, Riglin et al. (2016), investigated whether the relationship
between stress (X) and depressive symptoms (Y) was buffered
or moderated by cognitive ability (Z, a continuous variable)
and by gender (G, a dichotomous variable).

Iacobucci, Schneider, Popovich, and Bakamitsos (2016,
this issue, hereinafter ISPB) attempt to sort out various
multicollinearity issues in the testing of moderated regression
models. Unfortunately their attempt is substantially flawed
and is likely to leave many readers confused about how best
to test moderated regression models. The reasoning of ISPB
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appears to fall prey to the danger of inappropriately applying
heuristics learned for additive regression to moderated multi-
ple regression (Irwin & McClelland, 2001). Metaphorically,
multicollinearity is like a red herring in a mystery novel: seem-
ingly guilty, but actually innocent, wasting the time of the
detective in the search for the culprit. The arguments in
ISPB ignore the difference between a stochastic relationship
such as the correlation between the two predictors (e.g., stress
and cognitive ability, rXZ, or stress and gender, rXG, in the
example above) and the structural relationship between the
predictors and their product (e.g., stress, X, as a component of
the product stress * cognitive ability, XZ). As we will show
below, the correlation induced by the structural1 relationship
can always be reduced to zero by change-of-origin transfor-
mations whereas stochastic relationships are invariant to such
transformations. Another serious error throughout their paper
is references to the coefficients c1 and c2 fromMMR as Bmain
effects^ when, as shown below, they are actually conditional
effects when the other predictor is zero. Their numerical ex-
ample attempting to elucidate the role of multicollinearity in a
model with interactions is unhelpful because there is no inter-
action in their example (b = −0.063, t(26) = −0.53, p = 0.60).
We provide a more informative numerical example below
with a statistically significant interaction. Finally, ISPB’s
method for estimating standardized regression coefficients in
MMR is incorrect.

We will throughout provide more details on the failings of
ISPB as specific issues are discussed. However, our primary
intent is to provide positive guidance for researchers using
MMR to understand how relationships among their variables
influence the accuracy and especially the interpretability of the
coefficients estimated by MMR.

Some researchers are disconcertingly surprised by the
sometimes dramatic change in coefficients for X and Z be-
tween the ADD and MMR models and have sometimes mis-
takenly attributed the changes to multicollinearity. For what-
ever reasons, this mistake has been more of an issue in the
marketing and management literature than in recent psychol-
ogy research. We provide numerous contemporary examples
below of how psychology researchers are appropriately using
MMR without regard to multicoll inearity issues.
Un fo r t una t e ly, ISBP pe rpe tua t e the myth tha t
multicollinearity, whether Bmicro^ or Bmacro,^ has anything
to do with the appropriate use of MMR and interpretation of
its coefficients and standard errors. In the following we at-
tempt to reduce the confusion sown by ISBP and others by
examining the correct strategies to use when employing
MMR, and then focus on what does and does not influence

the accuracy (i.e., standard errors) of the parameter estimates
in MMR. For example, we will discuss how correlation
among the predictor variables X and Z can enhance the statis-
tical power for detecting the interaction.

Interpreting coefficients in MMR

We begin by examining the change in the coefficients between
ADD and MMR that is the essence of an interaction: different
slopes for different levels of the other variable or for different
groups defined by the other variable. Rearranging and factor-
ing the terms of the moderated model

MMR : Ŷ ¼ c0 þ c2Zð Þ þ c1 þ c3Zð ÞX ð2Þ
shows that the slope (i.e., the partial derivative) relating X
to Y is (c1 + c3Z), which, as it must, depends on the level of
Z. Whereas b1 in the additive model estimates the average
partial relationship between X and Y controlling for or
holding constant Z at any level of Z, the coefficient c1 in
the moderated model estimates the conditional relationship
between X and Y when and only when Z=0. If zero is out-
side the range of the values of Z, then c1 estimates a mean-
ingless simple effect (Cohen, 1978, uses the term Barbitrary
nonsense^). In the example above from Riglin et al. (2016)
the coefficient for X (stress) would represent the relation-
ship between stress and depression (Y) when and only
when Z (cognitive ability) equals zero, surely a highly un-
likely value.2 ISPB confuse this issue by referring to X and
Z as Bmain effect variables.^ Variables are not main effects;
regression coefficients for those variables may either be
partial relationships (i.e., the coefficients b1 and b2 from
the ADD model, known as Bmain effects^ in ANOVA) or
only conditional relationships (known as Bsimple effects^
in ANOVA) at a fixed level of the other variable (i.e., the
coefficients c1 and c2 from MMR). ISPB never use the term
Bsimple effect^ even though that is primarily what they are
talking about rather than the Bmain effects^ they reference.
The generalization of the concept of Bmain effect^ from
balanced experimental designs to regression models is ten-
uous and best avoided (Irwin & McClelland, 2001). This is
especially the case in moderated regression models where
the predictor coefficients focus on conditional relation-
ships. We prefer not to even use the term Beffect^ borrowed
from ANOVA because it implies a causal relationship
based on an experimental design with random assignment.
For observational studies, we can only assess relationships,

1 Our use of Bstochastic^ and Bstructural^ relationship correspond roughly
to ISPB’s use of Bessential^ and Bnonessential^ collinearity. We avoid
those terms because, as ISPB note, they are pejorative, and, more impor-
tantly, they beg the issue that the structural relationship has anything to do
with multicollinearity.

2 In the two data sets, 0 on the cognitive ability measure they used would
have been either –7.3 or –8.6 standard deviations below the mean. Riglin
et al. (2016) do not report the minimum scores but it is most unlikely there
were any cognitive ability scores nearly that low. As we note later, they
avoided this potential interpretational problem by using mean-centering.
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which may or may not be causal effects. In the following
we use Bpartial relationship^ to refer to the coefficients b1
and b2 in the ADD model because they are the Bpartial
coefficients when controlling for the other variable^ and
we use Bconditional partial relationship^ (usually short-
ened to Bconditional relationship^) to refer to the coeffi-
cients c1 and c2 because they are the Bpartial coefficients
when controlling for the other variable conditioned on that
other variable having a specific value.^

Psychological researchers have followed several different
strategies for talking meaningfully about the results of MMR.
We briefly list these strategies and provide a contemporary
example or two of each one’s appropriate use in the psycho-
logical literature.

Two-stage modeling Cohen (1978) recommended a hierar-
chical test of first ADD, then MMR. The coefficients b1 and
b2 from ADD represent the partial relationships and the coef-
ficient c3 from MMR represents the interaction qualifying
those two effects (e.g., Kitayama et al., 2015). Some re-
searchers decide the partial relationships are not interesting
because they are qualified by an interaction so they only report
and discuss c3 from MMR (e.g., Duffy & Chartrand, 2015)
and perhaps at spotlighted (Irwin & McClelland, 2001) or
pick-a-point (Hayes, 2013) values of the other variable such
as conditional relationship tests for the slopes of different
groups (e.g., Chugani, Irwin, & Redden, 2015; Duffy &
Chartrand, 2015) or floodlight (Bauer & Curran, 2005;
Spiller, Fitzsimons, Lynch, & McClelland, 2013) to test all
possible simple effects (e.g., Disatnik & Steinhart, 2015;
Martin, Ryan, & Brooks-Gunn, 2010).

Mean-centering A little more than a decade after Cohen’s
(1978) recommendations, a number of authors (e.g., Aiken
& West, 1991; Jaccard, Turrisi, & Wan, 1990; Judd &
McClelland, 1989) suggested mean-centering predictors be-
fore multiplying them (e.g., Kenrick et al., 2016; note espe-
cially that Riglin et al., 2016, usedmean-centering to avoid the
interpretational problems inherent in testing the conditional
relationship of stress on depression when cognitive ability
was zero (i.e., more than seven standard deviations below
the mean). The interaction coefficient c3 and its tests are in-
variant to all changes of origin such as mean-centering, but
now c1 and c2 represent the conditional slope of the respective
predictor at the mean level of the other predictor. These esti-
mates of the conditional coefficients using mean-centered pre-
dictors are often close to but not the same as the partial coef-
ficients b1 and b2 except when the predictor distributions are
exactly symmetric. Note the purpose of the mean-centering
recommendation was not to alter multicollinearity but rather
to produce meaningful interpretations within the range of the
data for c1 and c2. As Hayes (2013, p. 289) states in his excel-
lent discussion of mean-centering:

I have debunked the myth that mean centering of X and
M is necessary prior to the estimation of a model with an
interaction between X andM. I cannot take credit for this,
however, as this myth and it corollaries have been repeat-
edly debunked in themethodology literature yet doggedly
persist in spite of that literature (see e.g., Cronbach, 1987;
Echambadi & Hess, 2007; Edwards, 2009; Friedrich,
1982; Hayes et al., 2012; Irwin & McClelland, 2001;
Kam & Franzese, 2007; Kromrey & Foster-Johnson,
1998; Shieh, 2011; Whisman & McClelland, 2005). To
be sure, there are interpretational advantages associated
with mean centering, but the differences in model coeffi-
cients and standard errors have nothing to do with re-
duced multicollinearity that results from mean centering.

Orthogonal transformation Smith and Sasaki (1979) and
Friedrich (1982) showed there always exist change-of-origin
transformations X′ = X − j and Z′ = Z − k such that the predictor
coefficients using X′ and Z′ in MMR will be exactly the same
as the predictor coefficients (i.e., the partial relationships) in
the ADD model. That is,

ADD : Ŷ ¼ b
0
0 þ b1X

0 þ b2Z
0

MMR : Ŷ ¼ c
0
0 þ b1X

0 þ b2X
0 þ c3X

0
Z

0
:

ð3Þ

This transformation may put researchers more at ease be-
cause it leaves the predictor coefficients from the ADD model
unchanged. Friedrich (1982, p. 812) defines the orthogonal
transformation in terms of components of the variance-
covariance matrix of the parameter estimates:

X
0 ¼ X −

−CV c2; c3ð Þ
V c3ð Þ

Z
0 ¼ Z−

−CV c1; c3ð Þ
V c3ð Þ ;

ð4Þ

whereCVand V represent the covariance and variance, respec-
tively, of the estimated parameters. Unfortunately, we have not
been able to find any uses of this extremely helpful transfor-
mation. Perhaps this is because most researchers are not fa-
miliar with the variance-covariance matrix of coefficients,
even though most regression programs easily produce it. We
have derived a new version of this orthogonal transformation
(details in the Appendix) that should be much easier for re-
searchers to implement. Obtain the coefficients from ADD
and MMR as in Eq. 1 above and then compute new variables
using the coefficients from those models.

X
0 ¼ X −

b2−c2
c3

Z
0 ¼ Z−

b1−c1
c3

:
ð5Þ
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Using these transformed variables in an MMR produces
the results in Eq. 3 above. This transformation prevents mis-
interpretations of the MMR coefficients of the type made by
ISPB and by some researchers. For an example of how not
quite getting the conditional relationships correct due to either
mean-centering or dummy coding a dichotomous predictor
can cause confusion, see the dispute between Crawford,
Jussim, and Pilanski (2014) and Nosek and Linder (2014).
More importantly for purposes of this commentary, the trans-
formation in Eq. 5 will help us disentangle the effects of cor-
relations among the predictors on the standard errors of coef-
ficients in MMR.

Lance (1988), echoed by Little, Bovaird, and Widaman
(2006) and Geldhof et al. (2013), proposed Bresidual center-
ing^ in which the residual product, after predictions using both
components, is entered into a regression analysis with the
ADD model. This method produces identical regression coef-
ficients and tests for the conditional relationships and product
as does the orthogonal transformation. Ato, Galián, and
Fernández-Villar (2015) provide a recent example of the use
of residual centering in psychology; however, their
multicollinearity motivation for using this method is incorrect
because the usefulness of residual centering is in the interpre-
tation of the parameters, not in the reduction of
multicollinearity.

Numerical example

We generated a more complex example than that used in ISPB
in order to illustrate alternative strategies for interpreting
models with interactions and, in particular, the consequences
of the various transformations. X and Z in this dataset are
substantially correlated (r = 0.50) and have skewed distribu-
tions (beta-binomial) over 1- to 7-rating scales. We generated
100 observations3 with Y as a function of X, Z, and XZ, added
normally-distributed errors, and rescaled to a seven-point rat-
ing scale. We now compare the additive multiple regression
model with several alternative representations of the moderat-
ed multiple regression model for this dataset. Hayes, Glynn,
and Huge (2012, see especially Table 1) and Hayes (2013, see
especially Table 9.2) provide similar useful illustrations of
using different transformations to examine alternative models.

Additive The first row of Table 1 presents the coefficients,
standard errors, and variance inflation factors for the ADD
model. These coefficients capture the partial slope for each
predictor variable when controlling for the other one. The
variance inflation factors, VIF = 1.355, reflect the substantial

correlation (r = 0.50) between the two predictor variables. For
the ADD model, R2 = 0.328.

MMR—raw The second row of Table 1 presents the same
values for the MMR using the original, untransformed or raw
values. Adding the product term to the model increases R2

significantly (F1,96 = 7.10, p = 0.009) to 0.374 (so the squared
semi-partial correlation equals sr2 = 0.374 − 0.328 = 0.046).
Note that the coefficients for X and Z are very different from
those in the additive model and the variance inflation factors
are enormous. Such high VIFs in an additive model would
generally indicate extreme trouble with accuracy of estima-
tion. ISPB cite Marquardt’s (1970) recommendation that VIF
should not exceed 10. However, this recommendation is a
completely inappropriate generalization of a heuristic for an
additive model to a moderated model (Irwin & McClelland,
2001) because it confuses structural with stochastic relation-
ships. We shall see these coefficients are estimated accurately
and consistently across all models, despite the high values of
VIF.

We know from Eq. 2 that the slope relating X to Y as a
function of Z is defined by (c1 + c3Z). We can graph this linear
relationship with Z as a straight line along with its 95% con-
fidence bands, as in Fig. 1. Spiller et al. (2013) provide the
details of constructing this graph and describe it as a Bflood-
light^ illuminating all possible tests of the simple slope of for
X for any fixed level of Z (for a use of this graph in psycholo-
gy, see Martin, Ryan, & Brooks-Gunn, 2010, see also exam-
ples in Hayes, 2013). The coefficient for X in the raw MMR
equals –0.066 and represents the conditional relationship or
equivalently the slope relating X to Y when and only when Z =
0 (the left-most mark on the line in Fig. 1). Because Z values
were on a rating scale from 1 to 7, this is a predicted slope for
X beyond the range of the data, as indicated by the dotted lines
in Fig. 1. Also note that the confidence band is wider at that

3 The dataset is available for download at http://psych.colorado.
edu/~mcclella/interactionExample.csv

Table 1 Unstandardized regression coefficients, standard errors (in
parentheses), and variance inflation factors (VIF, in brackets) for four
regression models of the numerical example dataset

X Z XZ

ADD 0.473
(0.082)
[1.335]

0.039
(0.094)
[1.335]

MMR
Raw

−0.066
(0.218)
[9.894]

−0.709
(0.297)
[14.016]

0.152
(0.057)
[32.680]

MMR
Centered

0.553
(0.085)
[1.526]

0.031
(0.092)
[1.336]

0.152
(0.057)
[1.176]

MMR
Orthogonal

0.473
(0.080)
[1.335]

0.039
(0.091)
[1.335]

0.152
(0.057)
[1.00]

ADD additive regression model, MMR moderated multiple regression
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point than at any other value of Z in the graph, again because it
is a prediction beyond the range of the data, far from the center
of the data values. The changed value of the coefficient for X
and its large standard error have nothing to do with
multicollinearity (i.e., the high VIFs nominally computed)
and everything to do with the meaning of the coefficient for
X changing and being outside the range of the data. A similar
analysis shows that the coefficient for Z is also meaningless
and its standard error is large because it is outside the range of
the data and far from the center of the data values.

MMR—mean-centered The analysis in the third row of
Table 1 uses mean-centered predictors in the moderated mul-
tiple regression model. That is, the predictors are

X
0 ¼ X−X ¼ X−4:87

Z
0 ¼ Z−Z ¼ Z−4:08:

ð6Þ

Now the coefficient for X′ equals 0.553 and represents the
conditional relationship between X and Ywhen and only when
Z equals its mean 4.08 or, equivalently, when Z′ = 0. The right-
most mark, indicated by BC^ on the upper axis of Fig. 1,
represents this coefficient. Its standard error is noticeably
smaller than that for the estimate in the raw MMR model
simply because the parameter estimate is for a conditional
relationship more in the middle of the data. The variance in-
flation factors are now at levels that should not frighten any-
one, even though they are irrelevant for the statistical test of
the interaction. Note, as proved many times before, the coef-
ficient for the product term and its standard error are identical
for both the raw and mean-centered MMR models (Cohen,
1978), despite the large differences in the VIFs for the two
models.

MMR—orthogonal transformation The fourth row of
Table 1 reports the results for orthogonally transformed vari-
ables, using the parameter values for ADD and the raw MMR
in the first two rows:

X
0 ¼ X−

b2−c2
c3

¼ X−
0:039− −0:709ð Þ
0:152

¼ X−4:92

Z
0 ¼ Z−

b1−c1
c3

¼ Z−
0:473− −0:066ð Þ
0:152

¼ Z−3:55:
ð7Þ

Note that the coefficients for the predictorsX and Z are now
identical to those coefficients in the ADDmodel. Indeed, they
represent the same partial relationships between the predictors
and Y. Also note that their standard errors are ever so slightly
smaller in the orthogonal MMR model than in the ADD. This
will be the case whenever and to the extent that the test of the
interaction has |t| > 1.0 (i.e., the benefit of the reduction in the
mean sum of squares is greater than the loss of one degree of
freedom). Furthermore, as shown by Friedrich (1982), the
standard errors are the smallest possible standard errors for
those coefficients. Figure 1 illustrates this minimum by show-
ing the narrowness of the confidence bands for the mark at Z =
3.55, under the BP^ on the upper axis. Hence, a substantial
interaction effect, despite the structural relationship between
the predictor variables and their product, actually improves the
accuracy of the estimates of the partial relationships. Of
course, the estimate, standard error, and test of the interaction
coefficient remain unchanged. Also, the R2 = 0.374 for the
overall model remains the same as it was for the Raw and
Mean-Centered analyses.We emphasize that if one only wants
to report and discuss the interaction, then this transformation
is not needed. However, if there is any interest in reporting and
discussing the same partial relationships as in the ADDmodel,
this orthogonal transformation avoids all confusion in under-
standing MMR results. Finally, note that the VIF for the

Fig. 1 BSpotlight graph^ of the linear relationship between the conditional slopes and the moderator, with its 95 % confidence band. Highlighted points
are described in the text
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product term now equals 1.0, indicating that it is completely
independent of or orthogonal to the estimates of the partial
relationships. The VIFs for the two predictor variables are
now identical to their values in the ADD model. That is, the
only remaining correlation in the model is attributable to the
initial correlation between the two predictors.

Note that in the three moderated models of Table 1, the
VIFs for the product term are 32.680, 1.176, and 1.00; how-
ever, the regression coefficient for the product and its standard
error are identical for all three models. This demonstrates that
multicollinearity is completely irrelevant for the accurate esti-
mation and testing of the interaction. Rules-of-thumb learned
about the effects of stochastic relationships among variables in
additive regression models do not generalize to the structural
relationships in moderated multiple regression models (Irwin
& McClelland, 2001).

As a final note on Fig. 1, observe that the 95 % confidence
bands intersect the line for a slope of 0 at Z = 1.92. To the left
of that point, no conditional slopes for Xwould be statistically
significant at the conventional criterion of p < 0.05, and to the
right of that point all conditional slopes would be significant.
Johnson and Neyman (1936) first derived that point (or points,
there may be an upper limit in some cases) as the simple slope
that is just significant (i.e., p = 0.05). See Bauer and Curran
(2005), Hayes (2013), Hayes and Matthes (2009), and Spiller
et al. (2013) for details of computing the Johnson-Neyman
point(s). It is identified in Fig. 1 by BJN^ on the upper axis.
Recent examples in psychology identifying the Johnson-
Neyman point(s) include Beach et al. (2012) and Bushman
et al. (2012).

Figure 1 makes clear that all the different MMR analyses in
Table 1 simply spotlight different slopes for X conditional on
different levels of Z. The raw MMR spotlights the simple
slope for X when Z = 0, a value outside the range of the data.
The mean-centered MMR analysis spotlights the simple slope
when Z equals its mean. The MMRwith the orthogonal trans-
form spotlights the original partial relationships. Finally, the
Johnson-Neyman point spotlights the value of Z for which the
conditional relationship between X and Y is just significant.
None of these is more correct than the others, they simply
highlight different parts of the elephant that is the interaction.

Extensions

The example above used continuous variables. Nevertheless,
the issues apply whether X and/or Z are dichotomous so long
as these variables are numerically coded (e.g., contrast, effect,
or dummy codes) in a regression analysis. Especially when the
data are not from a balanced, orthogonal design, all of the
transformations above are useful. For example, when Z repre-
sents two groups, a spotlight analysis first using the dummy
codes (0, 1) and a second analysis using (1, 0) provides tests of

the conditional slopes within each group (e.g., Duffy &
Chartrand, 2015)

Another interesting extension is to quadratic regression in
which X effectively moderates itself. Consider the linear and
quadratic models:

L I N : Ŷ ¼ d0 þ d1X
QUAD : Ŷ ¼ e0 þ e1X þ e2X 2:

ð8Þ

The coefficient d1 is the simple linear relationship of X and
Y. The coefficient e2 indicates the degree to which that linear
relationship depends on the level of X. Using the raw variable,
e1 estimates the conditional relationship when and only when
X = 0, which may or may not be within the range of the data or
relevant. All the tools above—mean-centering, orthogonal
transformation, spotlight or pick-a-point, floodlight, and
Johnson-Neyman—may be used to better understand the na-
ture of the quadratic relationship. Miller, Stromeyer, and
Schwieterman (2013) provide details of the extension of some
of the tools described here for interpreting quadratic models;
Foster, Shiverdecker, and Turner (2016) use these tools to
interpret quadratic models for psychological variables. For
the quadratic model, the conditional slope is slightly more
complicated than it was for MMR so the orthogonal transfor-
mation is slightly different. The slope is the first derivative,
which equals e1 + 2e2X. That is, the slope relating X to Yvaries
as a function of X. The transformation

X
0 ¼ X−

d1−e1ð Þ
2e2

ð9Þ

yields the following quadratic model in which the coefficient
for X′ will be identical to its value in the simple linear model:

Ŷ ¼ e
0
0 þ d1X

0 þ e2X
02
: ð10Þ

Correlation between X and Z

The results for the orthogonal transformation show that the
only correlation of importance in MMR is that between the
predictor variables. The consequences of this correlation for
estimating and interpreting the partial regression coefficients
are exactly as they are for additive multiple regression.
Correlated predictors inflate the standard errors for the
coefficients b1 and b2 in the ADD model, and, more
importantly, require that the partial relationships be
interpreted as the relationship of one predictor with the
dependent variable when the other predictor is partialed out,
controlled, or held constant. These consequences for the
partial relationships are identical whether the product term is
added to the model or not.
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Ofgreater interest inMMRis thepossible effect of correlation
between the predictors on the statistical power for detecting the
interaction.Formally,allelsebeingequal, thestandarderror forc3
will be smaller and the statistical powergreaterwhen the residual
variance of the product is larger.McClelland and Judd (1993) in
their mathematical analysis of the statistical power problems in-
herent inMMRwith continuouspredictors provide a formula for
the residual variance of the product. When the predictors are
jointly symmetric, the variance of the product reduces to

V X
0
; Z

0
� �

¼ V X
0

� �
V Z

0
� �

þ CV X
02
; Z

02
� �

−CV2 X
0
; Z

0
� �

ð11Þ

Usually, as the correlation between two variables increases,
the covariance of their squares increases more rapidly than the
square of their covariance. Hence, increasing correlation will
usually increase the variance of the product, which in turn re-
duces thestandarderrorand increases thestatisticalpower for the
interaction. Joint symmetry is a strong condition. McClelland
andJudd(1993)provide themoregeneral equationnotassuming
joint symmetry, but analysis of the effects of increased predictor
correlation in the more general case does not seem tractable nor
are those effects likely to be large.Wesimplymake the point that
unlikeinadditiveregression,correlationamongthepredictorsby
creating cases extreme on both X and Y can sometimes improve
the power of moderated regression for detecting an interaction.

Standardized regression coefficients in MMR

Standardized regression coefficients, often called Bbeta-
weights,^ are meant to represent the regression coefficients
one would obtain if all the variables were first converted to
z-scores. The first step in computing a z-score is to mean-
center the variable and the second step is to divide by the
variable’s standard deviation. In other words, z-scores are al-
ways mean-centered! It is therefore very confusing that ISPB
purport to compare the standardized regression coefficients
for raw and mean-centered predictors. If the analysis is done
correctly, the same standardized regression coefficients should
be obtained whether one starts with raw or mean-centered
predictors. However, the β’s reported in their Table 3 are de-
cidedly not equal to one another for the raw and mean-
centered analyses. The problem is that most regression pro-
grams use a shortcut for computing standardized regression
coefficients that assumes an additive model. The shortcut is
inappropriate because it ignores the fact that the product of
two z-scores does not in general equal the z-score of the prod-
uct. This problem has been noted by Aiken and West (1991),
Friedrich (1982), Irwin and McClelland (2001)—all cited by
ISPB—and many others (e.g., Hayes, 2013). Hayes (2013) is

unambiguous on this matter: Bstandardized regression coeffi-
cients generated by your OLS regression program should nev-
er be reported, and you should never probe an interaction
using these regression coefficients [emphasis in original, p.
295].^ These sources generally recommend against the use
of standardized regression coefficients in MMR because they
do not have the meaning most researchers believe they have.
Footnote 2 in ISBP suggests a reviewer noted this problem
with standardized scores in MMR. As that reviewer sug-
gested, researchers using moderated multiple regression
should use a measure such as the squared partial correlation
pr2 or the squared semi-partial correlation sr2 to compare ef-
fect sizes of the variables instead of standardized regression
coefficients.

If one absolutely must have standardized regression
weights, the solution, as first detailed by Friedrich (1982), is
to standardize the predictors, compute the product from the
standardize predictors, and perform a multiple regression on
those variables; then the reported regression weights will cor-
respond to standardized regression coefficients. Allen et al.
(2015), Keller et al. (2005), and Sherman et al. (2015) are
successful examples of this approach in psychology. In con-
trast, ISPB used the incorrect method for computing standard-
ized regression weights. For both analyses reported in Table 3
of ISPB, when computed according to the correct method, the
standardized regression coefficients for the two predictors and
the interaction are, respectively, 0.422, 0.554, and –0.082. For
the original variables none of the reported β-weights are cor-
rect; for the centered variables, the interaction β-weight is
incorrect. Because ISPB used the same incorrect method for
computing the standardized regression coefficients in their
simulations, the results in their Figures 2, 3, and 4 are incorrect
and should be completely ignored.

Summary and recommendations

Multicollinearity, whether it be ISPB’s Bmicro^ or Bmacro^
varieties, is a red herring in the hunt for interactions in mod-
erated multiple regression. Researchers using MMR need not
compute any multicollinearity diagnostics nor worry about it
at all. They need not use mean-centering or the orthogonal
transformation or do anything else to avoid the purported
problems of multicollinearity. The only purpose of those
transformations is to facilitate understanding ofMMRmodels.

We offer simple recommendations for analyzing and
reporting moderated multiple regression models. The motiva-
tion for these recommendations is to enhance the interpreta-
tion of MMR and has nothing to do with modifying supposed
multicollinearity.

1. Using original variables fit the model Ŷ = c0 + c1X + c2Z +
c3XZ.
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2. If the only interest is the interaction, then report c3, its test,
and an effect size measure; and report R2 and its test for
the overall model.

3. If there is interest in reporting and testing any spotlighted
conditional relationships such as at the mean of the other
variable, or a value of the other variable of particular prac-
tical or theoretical interest, or the original partial relation-
ships, then use one or more of the transformations
discussed above. In general, to estimate and test the con-
ditional relationship of X (i.e., the slope relating X to Y)
when Z = k, then use Z′ = Z − k to fit the model Ŷ = c0 +
c1X + c2Z′ + c3XZ′, in which c1 represents the desired con-
ditional relationship. Useful values of k include the mean
of Z as well as any specific values of theoretical or prac-
tical importance. Hayes (2013, p. 239), Irwin and
McClelland (2001), and Spiller et al. (2013) recommend
against the common practice of setting k at one standard
deviation above or below the mean because it impedes
generalization across samples. Instead they recommend
testing specific conditional relationships that are meaning-
ful in terms of the original metric.

4. Finally, researchers who wish to examine all possible con-
ditional relationships or to help their readers who might
want to consider other conditional relationships, should
construct the floodlight graph (e.g., Fig. 1), according to
the directions of Bauer and Curran (2005) or Spiller et al.
(2013), and identify the Johnson-Neyman point(s) defin-
ing regions of statistical significance.

Following these recommended steps yields MMR models
that are easy to report and to understand. Additionally, these
models will be easier to generalize across studies, leading to a
cumulative understanding of the processes underlying the
moderation.
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Appendix

From Friedrich (1982) we know that there exist variables
X′ = X − j and Z′ = Z − k such that both variables are indepen-
dent of their product X′Z′. Given that we know that changes of
origin do not affect the partial regression coefficients in addi-
tive regression (only the intercept changes), we know the ad-
ditive model will be:

Ŷ ¼ b
0
0 þ b1X

0 þ b2Z
0
; ðA:1Þ

where b1 and b2 are identical to the coefficients obtained from
the additive regression model using the original, untrans-
formed variables. Given that the product is independent of
both X′ and Z′, adding the product to themodel will not change
the partial regression coefficients, so that in the MMR model

Ŷ ¼ c
0
0 þ c

0
1X

0 þ c
0
2Z

0 þ c3X
0
Z

0 ðA:2Þ

the interaction coefficient is unchanged and the predictor var-
iable coefficients must be the same as in the Eq. A.1. Hence,
c1
′ = b1 and c2

′ = b2. The equation for the simple slope when
Z = k is

c
0
1 ¼ c1 þ c3k; ðA:3Þ
and after substituting for c1

′ becomes

b1 ¼ c1 þ c3k: ðA:4Þ

Finally, to find k we only need to solve the above equation
for k:

k ¼ b1−c1
c3

: ðA:5Þ

Similarly,

j ¼ b2−c2
c3

: ðA:6Þ

All the coefficients necessary for computing the transfor-
mation are available from the original ADD andMMR regres-
sions using the untransformed variables.
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