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Abstract The extent to which distracting information influ-
ences decisions can be informative about the nature of
the underlying cognitive and perceptual processes. In a
recent paper, a response time-based measure for quantifying
the degree of interference (or facilitation) from distract-
ing information termed resilience was introduced. Despite
using a statistical measure, the analysis was limited to qual-
itative comparisons between different model predictions.
In this paper, we demonstrate how statistical procedures
from workload capacity analysis can be applied to the new
resilience functions. In particular, we present an approach to
null-hypothesis testing of resilience functions and a method
based on functional principal components analysis for ana-
lyzing differences in the functional form of the resilience
functions across participants and conditions.

Keywords Response time · Information processing ·
Statistics · Conflict

Introduction

Understanding the time course of decision-making and
behavior requires that we are able to make accurate infer-
ences about how information is processed and integrated.
Modern approaches to studying information processing aim
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to differentiate several general properties of information-
processing systems. These properties can be categorized as
follows: (1) Is information processed in sequence or simul-
taneously (i.e., in a serial or parallel architecture)? (2) Does
the decision stop only after processing all of the informa-
tion or can the decision terminate prior to that point (i.e., an
exhaustive or self-terminating stopping rule)? (3) Is infor-
mation processed independently or is there an interaction
between processing channels? and (4) How does the pro-
cessing efficiency change with increasing workload (i.e., the
workload capacity of information processing)?

In this paper, we focus on a recently defined metric for
resilience: How information-processing systems deal with
conflicting information (Little et al., 2015, 2016); that is,
information frommultiple sources, which provides evidence
for contrasting responses, actions, or decisions. Resilience,
as demonstrated in Little et al., (2015, 2016) and summa-
rized below, is affected by a combination of the four basic
properties. For example, the presence of additional informa-
tion, whether conflicting or not, affects workload (attribute
4 from the previous paragraph). If information is processed
dependently, then contrasting information can inhibit pro-
cessing (attribute 3). These influences and the influences of
architecture (attribute 1) and stopping rule (attribute 2) are
discussed in detail later.

Like the list of information-processing attributes above,
the initial investigation of conflict relied on qualitative con-
trasts between a functional measure of resilience, R(t),
derived by Little et al. (2015). The goal of this paper is
to introduce a set of quantitative tools for the quantitative
assessment of the resilience function and the closely related
conflict contrast function. We begin by demonstrating an
approach to estimating these functions that has desirable
statistical qualities. Next, we derive a null-hypothesis sig-
nificance test for comparing resilience and conflict contrast
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functions to baseline models. Finally, we demonstrate an
approach to formal exploratory analysis of the resilience
and conflict contrast functions based on functional principal
components analysis (fPCA; Ramsay & Silverman, 2005).

The main focus of these analyses is correct response
times. The analysis of the error response times is complex;
with multiple sources of error, one must consider how each
source of information might fail. In some cases, failure of
a local process may lead to an error response, whereas in
other cases the systemmay be robust enough to protect itself
against failure of any local process. Each of these situa-
tions needs to be carefully considered for each processing
architecture. Townsend and Altieri (2012) presented such an
extension for capacity, and it is possible that an extension
might be possible for resilience. However, this is beyond the
scope of the present paper.

Houpt and colleagues (Houpt & Townsend, 2012; Houpt
et al., 2013) recently introduced statistical tests for a mea-
sure of workload capacity termed the capacity coefficient,
C(t), and Burns et al. (2013) demonstrated the use of
fPCA for comparing among multiple C(t) functions. The
resilience function is based on similar functions of observed
response times as the capacity coefficient; hence, the same
statistical procedures can be leveraged for resilience anal-
ysis. The main distinction between the resilience function
and the capacity coefficient is the experimental conditions
used to obtain the response times that are used in the mea-
sure. The resilience function compares response times with
congruent information to response times with incongru-
ent information, whereas the capacity coefficient compares

response times with congruent information to the sources
of information in isolation. Little et al. (2015) show that
with conflicting information, the resilience function reflects
the speed of processing of the conflicting information. On
its own, this measure allows only limited inference about
processing architecture, but by contrasting conflicting infor-
mation of different salience, one can gain substantial infor-
mation about the underlying processing architecture. Hence,
the statistical tools that are introduced here are developed to
allow for testing not only resilience but also the difference
between resiliency functions, Rdiff (t) and conflict contrast
function.

We first describe the definition and motivation for the
resilience and resiliency difference functions and then intro-
duce the statistical tools necessary for testing the various
qualitative contrasts between these functions.

Resilience and resiliency difference functions

Consider the question of whether a bat is a mammal or
a bird? Although, the answer to this question should be
obvious, the fact that bats share some similarity with birds
makes this question harder than related questions which do
not contain any conflict between biological properties and
similarity. For example, is a robin a mammal or a bird?
Many basic psychological tasks share an analogous con-
flict between two sources of information (see Fig. 1). In
the categorization task that we use in this paper, a stimu-
lus might contain multiple features some of which satisfy
rules for one category and others which satisfy rules for a

Fig. 1 Examples of tasks containing conflicting information. a Simon
task: the color of the cue conflicts with its location in the incongru-
ent condition. b Stroop task: the color name conflicts with the font
color in the incongruent condition. c Flanker task: the central target is

in conflict with the flanking distractors in the incongruent condition.
d Oddball Search: the oddball target shares some information with the
distractors in the incongruent condition

Behav Res (2017) 49:1261–12771262



Fig. 2 Schematic illustration of a categorization structure containing
conflicting information for some members of the OR category. The
stimuli in the upper right quadrant of the space are the members of
the AND category since member of this category need to have values
greater than the vertical boundary on dimension 1 and the horizon-
tal boundary on dimension 2. The remaining stimuli are the members
of the OR category since members of this category have a value one
dimension 1 less than the horizontal boundary or a value on dimen-
sion 2 less than the vertical boundary. For the AND category, H and L
refer to the high- and low-discriminability dimension values, respec-
tively. Values further from the boundary are easier to categorize. For
the OR category, the redundant (AB) stimulus satisfies the OR rule on
both dimensions. The remaining OR stimuli are indexed as a combina-
tion of one dimension value which satisfies one of the OR rules (either
A for dimension 1 or B for dimension 2) and a dimension value which
provides evidence for the AND category (X for dimension 1 and Y
for dimension 2). The subscripts H and L for the OR category stimuli
reflect whether the conflicting information provides evidence for the
AND category of high or low discriminability, respectively. For exam-
ple, the OR stimulus AYL provides only weak evidence for the AND
category on dimension 2 (i.e., because this dimension is close to the
horizontal boundary on dimension 2)

different category (Allen and Brooks, 1991; Folstein et al.,
2008; Nosofsky, 1991; Nosofsky & Little, 2010). In all
of these tasks, the response times (RTs) for the incongru-
ent trials, which contain conflicting information, are slower
than the RTs for the congruent trials, which do not con-
tain conflict information. However, simply finding the RT
difference between responses to congruent and incongruent
stimuli only allows for limited inference about processing.
Our approach is to outline the conditions of congruency and
incongruency that allow for strong inferences to be made
about information processing. Namely, the resilience analy-
sis demonstrates that varying the salience of the conflicting
information allows for a contrast that can differentiate sev-
eral important theoretical models.1

A schematic of a categorization task which contains the
type of conflict considered here is shown in Fig. 2. In this

1This approach is similar to how initial RT difference approaches
to analyzing redundancy gains were extended using more theoreti-
cal methods including capacity (Miller, 1982; Townsend & Nozawa,
1995).

task, observers must categorize the nine stimuli, which are
created by orthogonally combining the three values on each
dimension, into two categories that are defined by an “L-
shaped” category. The category formed by the four stimuli
in the top-right corner are defined by a conjunctive rule,
and this category is consequently termed the AND category.
That is, an item’s membership in this category requires that
it have a value on dimension 1 greater than the value indi-
cated by the vertical bound and a value on dimension 2
greater than the value indicated by the horizontal bound. By
contrast, the remaining stimuli are defined by a disjunctive
rule applied to both dimensions. A decision about this cat-
egory can be made by noting that an item has a value on
dimension 1 less than the value indicated by the vertical
bound or a value on dimension 2 less than the horizon-
tal bound. This category is consequently termed the OR
category.

The four stimuli in the AND category are coded by
whether they have either low or high discriminability from
the other category (i.e., as defined by distance from the
category boundary). In a series of studies, Little and col-
leagues showed how these stimuli could be used to diag-
nose whether the processing of both stimulus dimensions
occurred either in a serial or parallel fashion or, as a
third alternative, pooled into a single processing channel
(Blunden et al., 2015; Fific et al., 2010; Little et al., 2011;
Little & Lewandowsky, 2012; Little et al., 2013; Moneer
et al., 2016). In the present paper, however, we focus on the
items which belong to the OR category.

The OR category items are coded according to whether
their component parts satisfy the disjunctive rule for the
OR category, in which case the first dimension is coded A

and the second dimension is coded B (see Fig. 2). Alterna-
tively, one of the components of an OR category stimulus
might satisfy only one of the disjunctive rules for the OR
category; the other component, however, satisfies the rule
for the AND category. We label these items with an X or
a Y according to whether they satisfy the vertical or the
horizontal rule for the AND category, respectively. Con-
sequently, for most of the OR category items, there is a
conflict or incongruency between the dimensions with one
dimension providing evidence for the OR category and the
other dimension providing evidence for the AND category.

This experimental design can be used as an analogue
for many tasks which contain conflicting information. Like
the conflicting contrast category members (e.g., AY or
XB), many tasks contain incongruent conditions that con-
tain stimuli satisfying only one response rule. For example,
in the Simon task (Proctor & Vu, 2006; Simon & Rudell,
1967), the location of the cue, which is irrelevant to the
response, can be in conflict with the identity of that cue.
The color satisfies the rule for determining the left-hand
response but the location does not (see Fig. 1, panel a). In
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the classic Stroop task (Stroop, 1935), the incongruent stim-
uli (e.g., the word “red” presented in GREEN) contain one
source of information which provides evidence for the cor-
rect response (i.e., the color GREEN) and another providing
evidence for an incorrect response (the word “red”). The
color provides the correct response, but the word itself pro-
vides evidence for an incorrect response (see Fig. 1, panel
b). In a flanker task, the central target might cue a right hand
response but incongruent flankers provide a cue toward an
erroneous left hand response (see Fig. 1, panel c) The pro-
cessing of the distracting flankers interferes with responding
and slows RT (Eriksen & Eriksen, 1974). Finally, in visual
search, a target can share features with distractors (Duncan
& Humphreys, 1989; see Fig. 1, panel d). The unique fea-
tures signal that an item is a target, but the shared features
provide evidence against this decision. Although each of
these tasks involve different processes (e.g., with regard to atten-
tional processes; Chajut et al., 2009; Shalev &Algom, 2000),
the logical structure of conflict in these tasks is similar.

Little et al. (2015) showed how one could apply the
capacity coefficient function to the compare performance
on the congruent target, AB, to performance on the pair
of incongruent stimuli, e.g., AY and XB (see Fig. 2), that
satisfy only one of the disjunctive rules. The capacity coef-
ficient was designed to evaluate the effect of increasing the
workload of an information processing by comparing the
processing of redundant (i.e., congruent) signals, e.g., AB,
to the processing of each of those signals presented in iso-
lation, A and B. When applied to the question of workload,
under some basic assumptions (especially assuming inde-
pendence between the processing channels), there are strong
links between the observed capacity and the underlying pro-
cessing architecture. For instance, unlimited-capacity, inde-
pendent, parallel, (UCIP) self-terminating models, which
predict that processing can terminate as soon as a target is
detected predict that the time to process the redundant tar-
get should equal the minimum time derived from each of
the single targets presented alone. In particular, for a UCIP
model, log (SAB (t)) = − log (SA (t) × SB (t)), or in terms
of the cumulative hazard function (H(t) = − log [S(t)]),
HAB (t) = HA (t) + HB (t). The capacity coefficient func-
tion (Eq. 1) compares observed performance with redundant
targets to the performance predicted by a UCIP model (i.e.,
− log (SA (t) × SB (t))).

C (t) = − log (SAB (t))

− log (SA (t) × SB (t))
= HAB (t)

HA (t) + HB (t)
(1)

Consequently, a UCIP model predicts a capacity function
of 1 across all t . If we assume that the processing time
of the redundant target is unaffected by the presence or
absence of a second signal, an assumption termed context
invariance (cf. Miller, 1982; Townsend & Eidels, 2011),
then serial self-terminating and serial exhaustive models

predict capacity functions less than 1 (i.e., limited capacity;
Townsend & Nozawa, 1995). By contrast, coactive mod-
els that pool information together predict capacity functions
that are greater than 1 (i.e., supercapacity; Townsend &
Nozawa, 1995; Townsend & Wenger, 2004). Parallel mod-
els with non-independent, interactive channels may predict
capacity functions which are less than or greater than one
depending on whether the interaction is inhibitory or facil-
itatory, respectively (Eidels et al., 2011; Townsend and
Wenger, 2004).

Resilience

The same function can be applied to the present case where
there is again a redundant target, AB, but in which the
“single targets” are not presented alone but in the presence
of conflicting information, AY and XB. Under these con-
ditions, Little et al. (2015) showed that the function does
not reflect changes in workload, but instead captures how
quickly the conflicting information is processed relative to
the target information. We term this function resilience,
R(t), to capture the idea that the function tells us something
about how the system copes with conflicting information
(see Eq. 2).

R (t) = − log (SAB (t))

− log (SAY (t) × SXB (t))
= HAB (t)

HAY (t) + HXB (t)

(2)

For example, consider the case in which the stimulus AX

is processed in an independent parallel self-terminating
fashion. The decision time (for correct decisions) is still
determined by the time taken to process dimension A (and
likewise, the processing XB only depends on B under the
UCIP model); consequently, the derived minimum time and
consequently the value of, R(t), remains unchanged under
the assumption of UCIP processing. For R(t), the UCIP
model can again take on the role of a baseline model for
comparison. If the dimensions are processed in a serial fash-
ion, then the distracting information when AY is presented
has some probability of being processed before the target
information, hence slowing the overall processing time rel-
ative to A alone and increasing HAY , or the distracting
information when XB is present has some probability of
being processed first and HXB increases. This implies that
the denominator in Eq. 2 will be smaller than predicted by
the UCIP and results in an R(t) function which is greater
than 1. However, because the redundant targets do not ben-
efit from statistical facilitation, as with a UCIP model, the
numerator will also be smaller, indicating R(t) could also
be less than 1.

More generally, if the target information is processed
faster when distractor information is present, then the
derived minimum time might be faster than the redundant
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target processing time, resulting in an R(t) function which
is less than 1. If the target information is processed slower
when distractor information is present, then the derived
minimum time might be slower than the redundant target
processing time, resulting in R(t) > 1. With conflicting or
distracting information present in the single target stimuli,
the link between architecture and the value of the function
is less clear cut than for the capacity coefficient.

Resiliency difference function

The ambiguity in how resilience reflects architecture can be
resolved by noting that the discriminability or strength of
the conflicting information determines the effect of the con-
flict on the derived minimum time. In a UCIP model, there
is no effect of the conflicting information, but in a serial,
self-terminating model, faster-processed conflict informa-
tion results in a faster derived minimum time than slower
processed conflict information. The category space in Fig. 2
effectively manipulates the discriminability of the conflict
information by varying the distance from the boundary for
items along both the horizontal boundary (e.g., AYL and
AYH ) and the vertical boundary (e.g., XLB and XH B; see
Ashby & Gott, 1988; Fific et al., 2010). The change in the
derived minimum time with the discriminability of the dis-
tracting item implies that, under the assumption that the
discriminability manipulation is effective, that the resiliency
functions will be ordered for a serial model with the RH (t)

function being lower than the RL(t) function. By contrast, a
coactive model predicts the opposite ordering: The stronger
the evidence for the AND category, the slower the derived
minimum time. Consequently, for a coactive model, the
RH (t) should be larger than the RL(t) function because
of the slowed derived minimum time. These relations are
shown in Fig. 3 (top panel).

This ordering of resiliency functions suggests that the
difference between the resilience function computed from

the high and low conflict items can provide a diagnostic
of the underlying processing architecture. Little et al. 2015
introduced the resilience difference function, Rdiff (t), as
follows:

Rdiff (t) = RH (t) − RL(t) = HAB(t)

HAYH
(t) + HXH B(t))

− HAB(t)

HAYL
(t) + HXLB(t)

. (3)

The predictions of this function are shown in Fig. 3 (bottom
panel).

A large set of different models can be differentiated
based on the value of the Rdiff (t) function. Consequently,
this function can be added to a growing set of theoretical and
methodological tools, termed Systems Factorial Technol-
ogy, which includes, among others, the capacity coefficient
(Townsend & Nozawa, 1995), the single-target capacity
function (Blaha & Townsend, 2014), the mean interaction
contrast, and survivor interaction contrasts (which can be
applied to, for example, the factorial combination of dis-
criminabilties in the AND category; Townsend & Nozawa,
1995). Following Houpt and Townsend (2010, 2012), the
goal of the remainder of this paper is to introduce meth-
ods for providing significance tests for the resilience and
resilience difference functions.

Little et al. (2016) presented an alternative form of the
resilience difference function known as the conflict con-
trast function, CCF(t). This function takes advantage of
the fact that the ordering of the derived minimum time is
preserved even without considering the double target, AB.
Consequently, a simple contrast of the RTs for the high and
low conflict stimuli can be computed as follows:

CCF(t) = [
HAYL

(t) − HAYH
(t)

]+[
HXLB(t) − HXH B(t)

]

(4)

This function has the benefit of predicting the same qual-
itative distinctions between the models as shown in Fig. 3

Fig. 3 Top: Ordering of resilience functions based on the discriminability of the conflict items. Bottom: Resilience difference functions

Behav Res (2017) 49:1261–1277 1265



(bottom panels) but allows for the application of the contrast
to tasks where it may not be natural to include a double tar-
get (e.g., in the Simon task, see Fig. 1, the incongruent and
neutral stimuli can be used as the high and low salience con-
flict items, respectively). In the following, we also provide
the relevant statistics for the CCF(t) function.

Estimation

The first step in developing a hypothesis test for the
resilience difference function and the conflict contrast func-
tion is to determine the appropriate estimator. One approach
would be to bin the observed response times to estimate the
probabilities, then sum them to estimate the survivor func-
tion, and finally take the natural log to estimate each term
(cf. Wenger & Townsend, 2000). Alternatively, we can use
the fact that the negative log of the survivor function is
equal to the cumulative hazard function, which is in turn the
integral of the density divided by the survivor function,

− log S(t) = H(t) =
∫ t

0

f (s)

S(s)
ds. (5)

To estimate the survivor function for correct response
times we can use one minus the empirical cumulative distri-
bution function (ECDF), a well-established estimator (e.g.,
Parzen, 1962). The basic idea of the ECDF is to estimate the
probability that a response time occurs at or before a given
time by the proportion of observed correct response times
that were faster than that time. Formally,

Ŝ(t) = 1−F̂ (t) = 1− 1

n

n∑

i=1

I (Ti ≤ t) = 1

n

n∑

i=1

I (Ti > t) .

Here, n is the total number of observed correct response
times used to estimate the ECDF, Ti is one of the observed
correct response times, and I (·) is an indicator function
which is 1 if the argument is true and zero otherwise.

The next step is to estimate the density. This simplest
approach is tousef̂ (t)=1/nwhenever t is equal to an observed
correct response time and f̂ (t) = 0 for all other times,

f̂ (t) =
{
1/n if t = Ti for some i

0 otherwise.

With this estimator of the density, the integral in Eq. 5
becomes a sum over all of the times s < t at which there
was a correct response,

Ĥ (t) =
∑

Ti<t

1/n

Ŝ(Ti)
=
∑

Ti

1
∑n

j=1 I
(
Tj > Ti

) . (6)

Equation 6 is known as the empirical cumulative hazard
function (ECH). The ECH could be used in Eqs. 2, 3 and 4,
however if there are incorrect responses or cases in which
the participant does not respond in time the ECH will be

biased. One approach used by Houpt et al. (2013) is to mit-
igate that bias by treating time-outs and incorrect response
times as censoring, e.g., assuming that if the participant
had more time or if they had not already made an incor-
rect response, they would eventually choose the correct
response. This leads to a generalization of the ECH known
as the Nelson-Aalen estimator of the cumulative hazard
function (NAH, Andersen et al., 1993; Aalen et al., 2008).

The NAH is essentially the same as the ECH, but with the
sum in the estimated survivor function, Ŝ replaced with a
sum over all response times instead of only correct response
times. To clean up the notation a bit, we use bold notation for
a set of times with a subscript indicating if there is a bound
on that set, e.g., T≤t is the set of response times less than or
equal to t . If we wish to indicate only correct response times,
we use the superscript c, e.g., Tc

>t are the correct response
times that occurred after t . This allows us to write the NAH
as,

Ĥ (t) =
∑

s∈Tc≤t

1
∑

r∈T I (r > s)
. (7)

The NAH has a number of useful statistical properties
(for details, see Andersen et al., 1993; Aalen et al., 2008). It
is an unbiased estimator of the true cumulative hazard func-
tion.2 Furthermore, the variance of the difference between
the NAH and the true cumulative hazard function is straight-
forward to calculate. Using Y (s) for

∑
r∈T I (r > s)i,

σ̂ 2
H (t) =

∑

s∈Tc≤t

1

Y 2(s)
.

Also, the NAH is a uniformly consistent estimator of the
true cumulative hazard function, and the difference between
the NAH and the true cumulative hazard function converges
in distribution to a zero mean Gaussian process.

Another particularly useful fact is that finite linear com-
binations of uncorrelated NAHs are again unbiased, uni-
formly consistent, and the difference between the estimate
of the linear combination and the true linear combination is
a mean zero Gaussian process with variance (with arbitrary
coefficients am),

Var

(
m∑

i=1

amĤm(t)

)

=
m∑

i=1

a2i σ̂
2
Hi

(t). (8)

Null-hypothesis testing

With a well-defined estimator for terms in the resilience, we
can focus on hypothesis testing. Like Houpt and Townsend
(2012), we will stick to differences of cumulative hazard

2Technically, this statement and the variance statement are only true
for t up to the time the last observed response occurs.
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functions for hypothesis tests rather than ratios. In particu-
lar, that means instead of testing R(t) = 1, we test if the
difference between the numerator and denominator of R(t)

is zero. Of course if the ratio between the numerator and
denominator is 1 then the difference is zero. We will also
focus on null-hypothesis tests for the CCF rather than on the
resiliency difference function.

A null-hypothesis test may not always be appropriate for
analyzing resilience functions for many of the same reasons
null-hypothesis tests are avoided in other contexts. In par-
ticular, these tests treat the null-hypothesis differently than
other alternatives so the outcome of a null-hypothesis test
should not be interpreted as a model comparison. Like all
other null-hypothesis tests, these tests cannot offer evidence
in favor of the null. If one is interested in model compari-
son questions, particularly in relative evidence for the null
model, the semiparametric Bayesian analysis proposed by
Houpt et al. (2016) offers promise, although its application
to resilience analyses are beyond the scope of this paper.

The resilience function

Our first step is to encode the null hypothesis of UCIP
processing into a statement about the estimators. Under
the UCIP model, the processing time survivor function
should be the same for A (B) regardless of the context, i.e.,
SAY (t) = SA(t) (SXB(t) = SB(t).

Additionally, if the elements are processed in parallel,
then SAB(t) = SA(t)SB(t). By taking the negative natural
logarithm of both sides, we get,

HAB(t) = − log (SAB(t)) = − log (SA(t)) − log (SB(t))

= HA(t) + HB(t).

Replacing H(t) with its estimator, we arrive at the null
hypothesis in terms of observable quantities:

H0: ĤAB(t) − ĤAY (t) − ĤXB(t) = 0. (9)

From the previous section, we know that the limit distri-
bution of each of the terms on the left hand side, and hence
their linear combination, is Gaussian. Thus, to get a test
statistic distribution, we only need to determine the mean
and variance. Because the NAH is an unbiased estimator,
under the null hypothesis the expected value of Eq. 9 is zero
for all t . Because the data used to estimate each term in Eq. 9
is independent, we can use Eq. 8 to determine the variance,

Var
[
ĤAB(t) − ĤAY (t) − ĤXB(t)

]

= Var
[
ĤAB(t)

]
+ Var

[
ĤAY (t)

]
+ Var

[
ĤXB(t)

]
.

This allows us to calculate a statistic for any fixed time3

t that, under the null-hypothesis, has a standard normal
distribution,

R′ = ĤAB(t) − ĤAY (t) − ĤXB(t)
√
Var

[
ĤAB(t)

]
+ Var

[
ĤAY (t)

]
+ Var

[
ĤXB(t)

]

d→ N (0, 1).

For testing cases when the entire resilience function is
expected to be either above, equal to, or below one for all
t , a single test at the largest possible response time (tm) is
most sensible because it uses the largest amount of data.
For this reason, in all of the null-hypothesis testing reported
below, we use a single z-test at the maximum possible
time.

The conflict contrast function

Here again we use the UCIP first-terminating model as the
null hypothesis. In terms of the estimated cumulative hazard
functions,

H0:
[
ĤAYH

(t) − ĤAYL
(t)

]
+
[
ĤXH B(t) − ĤXLB(t)

]
= 0.

Again, the limit distribution of each term is Gaussian
and the estimators are unbiased and consistent so the limit
of the distribution has mean 0. The estimate of the vari-
ance is unbiased and consistent, so dividing the difference
by the sum of the variances results in limit distribution with
unit variance. Together, this implies that, under the null
hypothesis,

CC′ =
[
ĤAYH

(t)−ĤAYL
(t)

]
+
[
ĤXH B(t)−ĤXLB(t)

]

√
Var

[
ĤAYH

(t)
]
+Var

[
ĤAYL

(t)
]
+Var

[
ĤXH B(t)

]
+Var

[
ĤXLB(t)

]

d→ N (0, 1).

Weighting functions

Following Aalen et al. (2008), Houpt and Townsend (2012)
also demonstrated the possibility of using weighting func-
tions with the hypothesis test to emphasize different regions
of time. One such weighting function is the Harrington-
Fleming function,

L(t) = SKM(t)ρ
YAB(t) [YAY (t) + YXB(t)]

YAB(t) + YAY (t) + YXB(t)
.

3Or any time that is chosen based only on information up to that time
(formally, any stopping time; see Houpt & Townsend, 2012 for details).
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Here, S(t) is left-continuous version of the Kaplan-Meier
estimate of the survivor function for the pooled response
times, ŜKM(t) = ∏

ti<t

(|T>ti | − 1
)
/
(|T>ti |

)
. With �N(s)

indicating the number of correct responses times that
occurred at time s,

S(t) =
∏

s∈Tc
<t

(
1 − �N(s)

YAB(s) + YAY (s) + YXB(s)

)
.

The parameter ρ can be chosen to emphasize lower
response times more (larger ρ) or less (smaller ρ).

When the weighting function is used, the numerator of
R′ is replaced with,

∑

s∈TAB,c
≤t

L(s)

YAB(s)
−

∑

s∈TAY,c
≤t

L(s)

YAY (s)
−

∑

s∈TXB,c
≤t

L(s)

YXB(s)
.

The denominator of R′ is replaced with,

√√√√
∑

s∈TAB,c
≤t

L(s)

Y 2
AB(s)

+
∑

s∈TAY,c
≤t

L(s)

Y 2
AY (s)

+
∑

s∈TXB,c
≤t

L(s)

Y 2
XB(s)

.

Hence, we define the resilience statistic with a weighting
function as,

R=
∑

s∈TAB,c
≤tm

L(s)

YAB(s)
−∑

s∈TAY,c
≤tm

L(s)

YAY (s)
−∑

s∈TXB,c
≤tm

L(s)

YXB(s)√
∑

s∈TAB,c
≤tm

L(s)

Y 2
AB(s)

+∑
s∈TAY,c

≤tm

L(s)

Y 2
AY (s)

+∑
s∈TXB,c

≤tm

L(s)

Y 2
XB(s)

.

(10)

An analogous weighting function for the CCF is given by

LC(t) = S(t)ρ

[
YAYH

(t) + YXH B(t)
] [

YAYL
(t) + YXLB(t)

]

YAYH
(t) + YXBH

(t) + YAYL
(t) + YXBL

(t)
.

The numerator of CC′ is replaced with,
⎡

⎢
⎣

∑

s∈TAYH ,c
≤t

LC(s)

YAYH
(s)

−
∑

s∈TAYL,c
≤t

LC(s)

YAYL
(s)

⎤

⎥
⎦

+
⎡

⎢
⎣

∑

s∈TXH B,c
≤t

LC(s)

YXH B(s)
−

∑

s∈TXLB,c
≤t

LC(s)

YXLB(s)

⎤

⎥
⎦ .

The denominator of CC′ is replaced with,

√√√√
∑

s∈TAYH ,c
≤t

LC(s)

Y 2
AYH

(s)
+

∑

s∈TAYL,c
≤t

LC(s)

Y 2
AYL

(s)
+

∑

s∈TXH B,c
≤t

LC(s)

Y 2
XH B(s)

+
∑

s∈TXLB,c
≤t

LC(s)

Y 2
XLB(s)

.

Likewise, we define the conflict-contrast statistic as,

CC =

[
∑

s∈TAYH ,c
≤t

LC(s)

YAYH
(s)

− ∑
s∈TAYL,c

≤t

LC(s)

YAYL
(s)

]
+
[
∑

s∈TXH B,c
≤t

LC(s)

YXH B(s)
− ∑

s∈TXLB,c
≤t

LC(s)

YXLB(s)

]

√
∑

s∈TAYH ,c
≤t

LC(s)

Y 2
AYH

(s)
+ ∑

s∈TAYL,c
≤t

LC(s)

Y 2
AYL

(s)
+ ∑

s∈TXH B,c
≤t

LC(s)

Y 2
XH B(s)

+ ∑
s∈TXLB,c

≤t

LC(s)

Y 2
XLB(s)

. (11)

Because L(t) and LC(t) are non-negative, measur-
able processes, the limit distribution of the statistics are

unchanged, soR
d→ N (0, 1) andCC

d→ N (0, 1) (cf. Aalen
et al., 2008, Chapter 3 ).

Simulation study

In this section we explore performance of the R and CC

statistics on simulated data sets for which we know the
ground truth. First, we will examine the extent to which
reasonably sized samples from model which predicts null
effects are represented by derived statistics. In particular, we
will test whether the Type I error rates are approximately
0.05 for α at that level (which we use for all simulations

below). Second, we will examine the statistical power for
two types of effects: the categorical effect of having a model
other than the null (i.e., not parallel ST) and the ratio scale
effect of moderating the rate of processing when distractors
are present in a parallel ST model.

Following Houpt and Townsend (2012), we simulated
data assuming the underlying processing time distribu-
tions were exponential. Additionally, we tested the statistics
on data generated from the Linear Ballistic Accumulator
Model (LBA, Brown & Heathcote, 2008). This allowed us
to explore the power with more realistic response time dis-
tributions as well as explore the effect of higher error rates.
Each simulated dataset consisted of 1000 samples. For each
simulated data set, we tested power with five different levels
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of ρ ranging from zero (corresponding to a log-rank test) to
one (corresponding to Wilcoxon test, cf. Aalen et al., 2008,
p. 107).

In theory it is possible to achieve arbitrary precision on
estimates of the effects of number of trials, rate factor,
model type and ρ, however in practice we are limited by the
resources available for running simulations. Although 1000
samples per combination of factors allows for quite high
precision, we also applied Bayesian linear regression mod-
els to quantify the evidence in favor of, or against, an effect
of the factors of interest (cf. Rouder & Morey, 2012).

Exponential model R

For the exponential model, each correct subprocess com-
pletion time was sampled from an exponential distribu-
tion with rate 0.69 for the targets and 0.93 for the con-
trast stimuli. For each combination of parallel/serial and
exhaustive/first-terminating, the simulated subprocess com-
pletion times were combined using the appropriate rule
(e.g., the minimum of the subprocess completion times for
parallel, first-terminating processing of the redundant tar-
gets). We calculated the resilience statistic for each model
using ρ = {0, .2, .4, .6, .8, 1} and the number of trials
per distribution ranging from ten to 150 in increments of
ten.

First, as a confirmation that distribution of R converges
to a Gaussian relatively quickly, we found that the rate of
significant findings for the two-tailed test of R for the par-
allel, self-terminating for all ρ and all numbers of trials
at between 0.030 and 0.067 percent of the generated sam-
ples. There was no evidence that increases either in ρ or
the number of trials led to increases or decreases in the
rate of significance for R (BF= 0.729 and BF= 1.05,
respectively).

For the parallel, exhaustive model, the rate of signif-
icance increased from 0.32 with ten trials and reached
asymptote of nearly 1.0 around 80 trials. Averaged across
the number of trials, ρ had nearly no effect. A Bayes factor
test comparing linear models of main effect of number of
trials and ρ as well as an interaction indicated only the num-
ber of trials as an important factor (BF= 51.0 over the next
best, which included an interaction and both main effects).

With the data generated from a serial, self-terminating
model, the Bayes factor test again indicated only the number
of trials as an important factor (BF= 2849 over the next
best model). The rate of significance increased linearly from
0.067 with ten trials to 0.55 with 150 trials.

The Bayes factor test also indicated only the number of
trials as an important factor for the serial-exhaustive data
(BF= 51.7 over the next best model). Like the parallel-
exhaustive data, the rate of significance rose from .33 with
ten trials to an asymptote of nearly 1.0 with 80 trials.

To test the effect of distractor interference, we also simu-
lated a decreasing rate of processing in each of the channels
when they were used together in a parallel, self-terminating
model. There was no effect of ρ so the following results
are averaged across values of ρ. For small levels of inter-
ference (90 % efficiency), power increased linearly but
only reached 0.15 by 150 trials. As interference increased,
the rate of increase in power as a function of number of
trials increased and became less linear due to the upper
bound of perfect power. For only ten trials, power was
good for the highest levels of interference (0.77 with 30 %
efficiency). To achieve power higher than 0.8 for moder-
ate interference (70 % efficiency), at least 110 trials were
needed.

Across all of the simulations, the number of trials had
a clear effect on the power, with 80 trials per distribu-
tion being sufficient for nearly perfect power for parallel
and serial exhaustive models, and 110 trials sufficient to
detect moderate distractor interference, but more than 150
trial necessary for good power on a serial first-terminating
model. There was no indication of an effect of ρ, which may
in part be due to the fact exponential random variables have
a flat hazard function across time (recall that ρ differentially
weights earlier versus later response times in calculating
R), although only the parallel, first-terminating model main-
tains the flat hazard rate when the two sub-processes are
combined.

Exponential model CC

For the CC, we tested a range of increases in rates from low
to high speed (five levels from 1.2 times to 2.0 times the
rate) in addition to testing the effects of varying architecture,
stopping-rule, ρ and number of trials.

Across all simulations with the parallel self-terminating
model, the 0.048 of the simulation runs were significant.
There was evidence for an effect of increasing the number
of trials leading to a small increase (3.14 × 10−05 per trial;
95 % HPD =[1.63×10−05, 4.65×10−05]) in the number of
simulation runs that were significant (BF = 5.42 over the
next best model, which included rate as a factor as well).

In the parallel exhaustive data, there was evidence for an
interaction between rate and number of trials (the increase in
power as a function of number of trials increased faster with
higher rates) and all of the main effects (BF = 3.73 over the
next best model which also included a ρ by rate interaction).
Power increased as a function of rate (0.68 per unit, HDI =
[0.65, 0.72]), ρ (0.045 per unit, HDI = [0.020, 0.072]) and
number of trials (0.0045 per trial, HDI = [0.0042, 0.0047]).

For the serial first-terminating data, all of the two-way
interactions were included in the best model, along with
main effects, but not the three-way interaction (BF = 7.37
over the next best model, which dropped the ρ by rate
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interaction). Like the parallel exhaustive data, the power
increased as a function of number of trials increased faster
with higher rates. The larger ρ was, the lower the increase
in power as a function of number of trials and as a function
of the rate factor. Overall, increases in ρ led to decreases in
power (−0.029, HDI = [−0.046, −0.012]) while increases
in the rate (0.35, HDI = [0.33, 0.37]) and number of tri-
als (0.0023, HDI = [0.0021, 0.0024[) led to increases in
power.

The most likely model for the serial-exhaustive data was
the same as for the parallel exhaustive data, an interaction
between the rate and number of trials and all three main
effects (BF = 3.73 over the next best model which added
a ρ by rate interaction). The interaction between rate and
number of trials had the same qualitative effect as it did for
the exhaustive data, an increase in the rate led to a larger
increase in power per trial. An increase in rate increased
power (0.68, HDI = [0.65, 0.71]) as did an increase in the
number of trials (0.0045, HDI = [0.0042, 0.0047]) and ρ

(0.046, HDI = [0.019, 0.072]).
The statistic had decent power when the rate of process-

ing in a parallel self-terminating model that was affected by
the distractors. For large changes in rate (i.e., the rate with
distractors was less than 50 % or more than 200 % of the
processing rate without distractors) approximately 40 tri-
als per condition were sufficient to achieve 0.8 power. For
moderate changes in rate due to the presence of a distrac-
tor (i.e., the rate was between 60 % and 70 % or 140 % and
160 %) approximately 120 trials per condition were neces-
sary to achieve a power of 0.80. For smaller changes (80 %
or 125 %) power was approximately 0.50 even with 150
trials per distribution.

LBA model R

To explore the power for R and CC in data that looks more
like human response times, and particularly does not have
a flat hazard function across time, we also simulated data
from the Linear Ballistic Accumulator model (Brown &
Heathcote, 2008). We used 0.69 as the mean accumulation
rate parameters for the targets, 0.93 as the mean accumu-
lation rate for the contrast stimuli, 0.1 for the standard
deviation of the accumulation rate, 0 for the base time and
0.5 for both the incorrect and correct thresholds.

The rate of significance for the parallel self-terminating
model was low, ranging between 0.035 and 0.073 across
all numbers of trials and values of ρ. The parallel, exhaus-
tive model was significant on nearly every run with ten
trials; only non-significant 3 times out of 6000 runs across
all ρ values and was significant on every run for 20 or
more trials. There was no room for the ρ to have any effect
due to the high rate of significance. The serial first-
terminating model was significant on only 0.080 of the runs

with ten trials but increased to 0.93 with 150 trials and there
was no effect of ρ. Like the parallel, exhaustive model,
the power was quite high with only ten trials, 0.996 and
there were no non-significant runs with 20 or more trials.
In the coactive model, power ranged from 0.23 with ten tri-
als to perfect performance, reaching 0.99 by 90 trials per
distribution. Again, there was no effect of ρ.

The power to detect that the rate of processing in a par-
allel self-terminating model was affected by the distractors
was nearly identical to that found with the exponential sim-
ulation. For large changes in rate 40 trials or fewer per
condition were sufficient to achieve 0.8 power. For mod-
erate changes in rate due to the presence of a distractor,
approximately 120 trials per condition were necessary to
achieve a power of 0.80. For smaller changes, power was
approximately 0.50 even with 150 trials per distribution.

The power of the resilience test for the LBA data was
generally quite good. Only ten trials per distribution were
sufficient for nearly perfect power for parallel and serial
exhaustive models, and 40 were trials sufficient to detect
high levels of distractor interference. The coactive model
had lower power, needing 90 or more trials per distribution
to reach power of essentially 1 and performance was worst
with the serial first-terminating which only reached 0.93
with 150 trials. Despite the LBA having non-constant haz-
ard rate, there was still no indication of a meaningful effect
of ρ.

Exponential model CC

For the CC, we tested a range of increases in rates from low
to high speed (five levels from 1.2 times to 2.0 times the
rate) in addition to testing the effects of varying architecture,
stopping-rule, ρ and number of trials.

Across all simulations with the parallel self-terminating
model, the 0.056 of the simulation runs were significant.
The rate of significance was stable across all levels of ρ,
numbers of trials and rate increase factor.

In the parallel exhaustive data, there was an increase in
the power with an increase in number of trials (from 0.16 to
0.86 averaged across ρ and rate factor) and with an increase
in the rate factor (from 0.24 to .90 averaged across the other
factors). Additionally, the increase in power as a function
of number of trials increased faster with higher rates. There
was no evidence of an effect of ρ.

LBA model CC

For the serial first-terminating data, ρ did have an effect:
lower ρ values led to higher power and faster increases in
power as a function of the other variables with ρ = 0
giving the best performance. With ρ = 0, the power was
0.15 with ten trials increasing to 0.88 with 150 average
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across rate factor. Increased rate also increased power, from
0.58 to 0.88 across the levels tested and averaged across
number of trials, although it had little additional benefit
beyond 1.6. There was again an interaction in that power
increased faster across trials with larger rate factors, up
to 1.6.

The serial exhaustive data indicated an effect of increas-
ing the number of trials, from 0.32 to 1.0 by 100 trials, and
rate factor, from 0.77 to 0.94 for 1.6 and above, but not ρ.
Increasing the rate factor again increased the rate at which
increasing trials increased power, up to the rate factor of 1.6
after which there was no difference.

The coactive model was easily distinguished with a
power of 0.75 with the lowest rate factor and ten trials and
0.98 and above for the rest of the simulated conditions.
There was no evidence of an effect of ρ.

fPCA of the resilience function

In some cases, it may be useful to examine the overall shape
of a resilience function or conflict contrast function, particu-
larly as it varies across individuals or tasks (for example, the
simulated results in Fig. 3 indicate that shape may vary with
processing strategy). Recently, Burns et al. (2013) demon-
strated the use of functional principle components analysis
(fPCA) for extracting important features of the capacity
coefficient function. Like the capacity coefficient statistics,
we can also adapt the fPCA approach for both resilience and
conflict contrast functions.

Summary of fPCA approach

The main idea of functional principle components analysis
is exactly the same as the more familiar principle com-
ponents analysis. Each datum is represented as a linear
combination of bases, where the bases are chosen such that
variation across data along the first basis is maximized,
then each subsequent basis is chosen such that variation is
maximized subject to the constraint that the basis is orthog-
onal to all previously chosen basis. The distinctive feature
of fPCA compared to standard PCA is that the bases are
functions (or infinite dimensional vectors) rather than finite
length vectors. Ramsay and coauthors have a series of books
on functional data analysis, including fPCA, for the inter-
ested reader (Ramsay and Silverman, 2005; Ramsay et al.,
2009).

The basic procedure is to first subtract the mean function
(averaged across individuals, conditions, etc.; not averaged
across time) from each of the collected functions. Next,
to find the basis along which the most variation across
sample functions occurs, we solve for the weighting func-
tion ξ1(t) that maximizes

∑
i (ξ1(t)xi(t) dt)2 subject to

∫
ξ21 (t) dt = 1, where xi(t) are the resilience (or con-

flict contrast) functions. The subsequent basis functions
are found in a similar manner, ξj is chosen to maxi-

mize
∑

i

(
ξj (t)xi(t) dt

)2 subject to
∫

ξ2j (t) dt = 1 and
the orthogonality constraint,

∫
ξj (t)ξk(t) dt = 0 for all

k < i. In practice, the optimization can be over a finite
dimensional basis space, such as a b-spline basis, using stan-
dard constrained optimization functions. Alternatively, one
could represent the full functional as by evaluating each
sample at a finite vector of times then use standard PCA
techniques.

In theory, one can veridically represent the full variation
across the functional data by using as many bases function
as there are samples. Normally, fPCA is used to extract just
the dimensions on which there is the most variation, so only
the first few bases are calculated. For example, all of the
resilience functions from an experiment can be represented
in the fPCA space as, Ri(t) = ∑

j f
(j)
i ξj where f

(j)
i is the

factor score for the ith resilience function on the j th basis.
To represent the resilience functions with a low dimensional
(e.g., n dimensional) basis, one simply may use the first n

principle functions,

Ri(t) ≈
n∑

j=1

f
(j)
i ξj .

Now each resilience function can be represented by the

n-dimensional vector fi =
(
f

(1)
i , f

(2)
i , . . . f

(n)
i

)
. Note

that, once this reduced dimensional vector space is used to
represent the data, any rigid transformation of the space rep-
resents the data equally well, so it is common practice to
choose a particular rotation, such as varimax, to represent
the data for further analysis (cf. Ramsay & Silverman, 2005,
Ch. 8).

Application to empirical data

Little et al. (2011, Experiment 1) measured RTs from
four observers for each item in the categorization design
shown in Fig. 2. The stimuli in this experiment were
schematic lamps which varied in the width of the base
(dimension 1) and the curvature of the top piece (dimen-
sion 2). The lamps also varied randomly on their design
and lamp shade; however, these dimensions were not rel-
evant for the task. Using visual analysis of the SIC (cf.
Townsend & Nozawa, 1995) coupled with statistical tests
of the mean RTs patterns and parametric modeling, Little
et al. (2011) inferred that observers in this task processed
the base and top of the lamps in a serial, self-terminating
manner.

Little et al. (2013, Experiment 1) also measured RTs from
four observers for each of the items in the design shown in
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Table 1 SIC & MIC statistics for Little, Nosofsky & Denton (2011; Exp. 1) and Little, Nosofsky, Donkin & Denton (2013, Exp. 1)

Negative SIC test Positive SIC test MIC test

Experiment Observer value p value p value p

LND2011 Exp 1 1 0.68 0.00 0.19 0.00 serial −63.64 0.18 serial

2 0.44 0.00 0.17 0.01 serial −39.57 0.19 serial

3 0.29 0.00 0.15 0.02 serial 28.80 0.84 serial

4 0.45 0.00 0.21 0.00 serial 44.72 0.06 serial

LNDD2013 Exp 1 1 0.07 0.46 0.06 0.54 ? 0.00 0.14 serial

2 0.06 0.47 0.22 0.00 coactive 0.05 0.00 coactive

3 0.08 0.37 0.09 0.23 ? 0.01 0.05 coactive

4 0.02 0.96 0.20 0.00 coactive 0.06 0.00 coactive

Note: LND2011 = Little, Nosofsky & Denton (2011); LNDD2013 = Little, Nosofsky, Donkin & Denton (2013)

Fig. 2. In this experiment, the stimuli were small Munsell
color squares (hue 5R) varying in saturation and bright-
ness. Using the same set of tools, the authors concluded
that the best model of the RT data was a coactive pro-
cessing architecture. The finding that the lamp dimensions
were processed in a serial, self-terminating manner and that
the brightness and saturation dimensions were processed in
a coactive manner corresponds nicely to the long-standing
distinction between separable and integral dimensions (Fific
et al., 2008; Garner, 1974).

Because the OR category items in this task (with the
exception of item AB, see Fig. 2) satisfy the decision rule
for the OR category on one of the dimensions but satisfy the
decision rule for the AND category on the other dimension,
there is a conflict between the two dimensions. For exam-
ple, for itemAYH , the curvature of the top piece is below the
boundary on dimension 2, but the base of the lamp is wider
than the value indicated by the boundary on dimension 1.

Consequently, for this stimulus, the base provides strong
evidence for the AND category, which, for this stimulus, is
the incorrect response.

In each of these stimuli, two dimensions are always
present, which precludes the use of the workload capac-
ity measure. However, because the values of this incorrect
dimension are varied in their discriminability (e.g., from
AYH to AYL and from XH B to XLB), the resilience dif-
ference function and conflict contrast function can be used
to provide further evidence about the processing architec-
ture. Little et al. (2016) reported that the CCF(t) functions
for each observer were negative indicating support for the
serial, self-terminating model. Likewise, Little et al. (2016)
reported that the CCF(t) functions for each observer were
positive indicating coactivity. Here we apply the CC statis-
tic developed above, along with the relevant SIC statistics
(see Houpt & Townsend, 2010; Houpt et al., 2013), which
have not been reported previously. We also applied the

Table 2 CC statistics for Little, Nosofsky & Denton (2011; Exp. 1) and Little, Nosofsky, Donkin & Denton (2013, Exp. 1)

CC test

Experiment Observer value p Inference

LND2011 Exp 1 1 −5.96 0.00 serial ST/serial EX/parallel EX

2 −7.20 0.00 serial ST/serial EX/parallel EX

3 −3.65 0.00 serial ST/serial EX/parallel EX

4 −1.33 0.18 parallel STa

LNDD2013 Exp 1 1 11.19 0.00 coactive

2 6.39 0.00 coactive

3 9.59 0.00 coactive

4 6.02 0.00 coactive

Note: LND2011 = Little, Nosofsky & Denton (2011); LNDD2013 = Little, Nosofsky, Donkin & Denton (2013)
aIn the present case, although we do not reject the null hypothesis, the best inference in this case is the parallel ST model. While we cannot rule
out the other models on the failure of this test, the inference can still be useful in conjunction with the results of tests of other aspects of the data
(for instance, as in, Table 1)
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Kolmogorov–Smirnov test of stochastic dominance (Houpt
et al., 2013) to test whether the AND category data meet the
assumption of selective influence necessary for use of the
SIC. Stochastic dominance was confirmed for all subjects.

Null-hypothesis tests

Table 1 shows the SIC statistics for Little et al. (2011)
and Little et al. (2013). The results of the CC statistic are
shown in Table 2. The statistical SIC tests largely agree
with the conclusions reported in those papers. The SICs
from the separable dimension case (e.g., lamps, Little et al.,
2011) demonstrate significant negative and positive deflec-
tions from zero consistent with the predicted shape for a
serial exhaustive SIC. (Note that the AND category used this
tasks necessitates exhaustive processing even from a self-
terminating system). The MIC tests for all four observers
are not significantly different from zero. For the CC test,
three of the observers demonstrate significantly negative
CC statistics, indicating that the CCF(t) function is signif-
icantly less than 0. For one observer, we failed to reject
the null hypothesis that the CCF(t) function was differ-
ent from 0; although, the CC statistic was negative as
expected. A significantly negative CCF(t) function is con-
sistent with serial self-terminating, serial exhaustive, or

parallel exhaustive processing. Taken together with the SIC
results, the present analyses, to a large extent, agree with
Little et al.’s (2011) conclusions of serial self-terminating
processing.

For the integral dimensioned stimulus data, the SIC tests
are more varied. In two cases, there is a significant positive
deflection from zero, consistent with coactive processing.
For one of the observers who does not show any signifi-
cant deflections in the SIC, the MIC is significantly positive
supporting an inference of coactivity. We failed to reject the
null hypothesis for the remaining observer; though we note
that the parametric modeling results favored an inference of
coactivity for this observer as well (Little et al., 2013). For
this experiment, the CC tests are all significantly positive
supporting an inference of coactivity for all observers.

fPCA

We applied the fPCA Resilience Difference analysis to
the Rdiff (t) functions from Little et al. (2011) and
Little et al. (2013) (see Fig. 4). Recall that in Little et al.
(2011), the stimuli were comprised of separable dimen-
sions but in Little et al. (2013), the stimuli were comprised
of integral dimensions. As shown, the Rdiff (t) functions
are negative for the separable-dimensions data and positive
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Fig. 6 Percentage of variance accounted by adding each eigenfunc-
tion up to 5. The first eigenfunction captures approximately 90 % of
the variance across all of the resilience difference functions shown in

the right panel of Fig. 5. The second eigenfunction adds approximately
an additional 9 % and the rest of the eigenfunctions add only negligible
amounts
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Fig. 7 Left panel: The first functional principle component weighted
by the average magnitude of the factor score compared to the mean
resilience difference function. Middle panel: The first functional prin-
ciple component weighted by the average magnitude of the factor score

after subtracting the resilience difference function. Right panel: Fac-
tor scores for each participant’s resilience difference function in both
experiments

for the integral-dimensions data consistent with the infer-
ence of serial self-terminating and coactive processing,
respectively.

Figure 5 shows the mean resilience difference function
and the resilience difference functions after subtracting the
mean function. As shown in Fig. 6, most of variation in
the resilience difference functions was captured by the first
functional principle component and only this component is
selected for analysis. The first function principle compo-
nent, weighted by the average magnitude of the factor score,
is shown in Fig. 7 along with the mean function. This func-
tion increases at earlier times and then decreases at later
times (for positive factor scores; the inverse is true for neg-
ative factor scores). The factor scores shown in the right
panel of Fig. 7 nicely separate the observers who catego-
rized separable dimensioned stimuli(with negative scores)
and the observers who categorized the integral dimensioned
stimuli.

Conclusions about data from resilience

The factor weights in from the fPCA provide a low dimen-
sional representation of the resilience difference functions
shown in Fig. 4, and consequently, allow a convenient

analysis of differences between conditions and participants
that does not require qualitative comparison between func-
tions. The factor weights provide further support for the
conclusion that integral dimensions are processed differ-
ently from separable dimensions. The key insight provided
by the resilience difference function is that the integral
dimensions are consistent with coactive processing whereas
the separable dimensions are consistent with indepen-
dent channel processing (i.e., serial and self-terminating
although other architectures are possible candidates). Con-
sequently, the analyses outlined here (see also Little et al.,
2015, 2016) can be added to the growing set of method-
ological and theoretical analyses termed Systems Factorial
Technology (Townsend and Nozawa, 1995).

Discussion

We have demonstrated a means for quantitatively analyz-
ing resilience functions. The form of the resilience is quite
similar to the capacity coefficient, and hence we were able
to adapt the main tools for analyzing the capacity coeffi-
cient. However, despite the similarity in formulation, the
resilience and resilience-difference functions are developed
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for a different set of inferences than the capacity func-
tion. We adapted the Houpt and Townsend (2012) null-
hypothesis tests for inferences about whether the resilience
functions are different from zero, a prediction of the par-
allel, first terminating model. Directional versions of the
Houpt-Townsend test can additionally be used to reject
either coactive or serial/parallel-exhaustive models. Follow-
ing, Burns et al. (2013), we also demonstrated the use
of fPCA for exploring differences among the shapes of
resilience and resilience-difference functions.

Simulations indicated good statistical power of the
null-hypothesis tests with reasonable numbers of simu-
lated trials for both exponentially distributed times and
response times generated from the LBA model (Brown and
Heathcote, 2008). Similar to the findings reported in Houpt
and Townsend (2012), we explored variations in the relative
weighting across the range of response time and showed that
there was not a strong effect on Type-I or Type-II error rates.

Using these new statistical approaches, we reexam-
ined two datasets collected from experiments following the
design in Fig. 2. Of the eight observers tested across the two
datasets, seven had significantly non-zero CCFs using our
new null-hypothesis test. The first experiment used stimuli
made up of attributes that are traditionally classified as sep-
arable and hence our a priori assumption was that the best
model would be either independent-serial or independent-
parallel. Thus, we expected a negative CCF, which was
observed for all observers and the null-hypothesis of a zero
CCF (parallel, self-terminating) was rejected for three of
the four observers. These findings were further corroborated
using the SIC and MIC, other SFT measures of architecture
and stopping-rule. The second experiment we analyzed used
attributes considered to be integral. Hence, we expected the
best model to be coactive, indicated by a positive CCF. This
is indeed what we found: all observers had positive CCFs
and the null hypothesis of zero CCF was rejected for each.
Although the SIC and MIC were less decisive with the sec-
ond dataset, coactive processing was indicated for three of
the four observers.

Further analyses of these data using the fPCA approach
indicated that the Resilience-Difference function shapes
were distinctive between the integral and separable stimuli.
The fPCA indicated that this distinction was most evident
in the overall magnitude of the Rdiff function for earlier
response times.

Future directions

While the addition of these analyses is a major improvement
over qualitative judgment of resilience analyses, there are
potential further improvements. Perhaps most important to
many users of resilience analysis is the ability to make both
group and individual level inferences. The current suggested

approach to aggregating across subjects is to first calculate
each individuals resilience (or CCF) statistic, then perform
standard null-hypothesis tests on those values. For exam-
ple, to test whether the participants had a higher CCF with
integral stimuli than with separable stimuli, we could have
used a t-test on the CC statistics. A hierarchical analysis
offers a more principled approach, in particular incorporat-
ing the uncertainty of the estimated CCF into tests about
group differences. Houpt et al. (2016) recently proposed a
hierarchical Bayesian model for estimating cumulative haz-
ard functions and cumulative reverse hazard functions based
on a piecewise-exponential model of response times. They
have demonstrated success using the model for inferences
regarding standard capacity coefficients, so the approach
holds promise for resilience analysis as well.
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