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Abstract We explored the consequences of ignoring the sam-
pling variation due to stimuli in the domain of implicit atti-
tudes. A large literature in psycholinguistics has examined the
statistical treatment of random stimulus materials, but the rec-
ommendations from this literature have not been applied to the
social psychological literature on implicit attitudes. This is
partly because of inherent complications in applying crossed
random-effect models to some of the most common implicit
attitude tasks, and partly because no work to date has demon-
strated that random stimulus variation is in fact consequential
in implicit attitude measurement. We addressed this problem
by laying out statistically appropriate and practically feasible
crossed random-effect models for three of the most commonly
used implicit attitude measures—the Implicit Association
Test, affect misattribution procedure, and evaluative priming
task—and then applying these models to large datasets (aver-
age N = 3,206) that assess participants’ implicit attitudes to-
ward race, politics, and self-esteem. We showed that the test
statistics from the traditional analyses are substantially (about
60 %) inflated relative to the more-appropriate analyses that
incorporate stimulus variation. Because all three tasks used the
same stimulus words and faces, we could also meaningfully
compare the relative contributions of stimulus variation across
the tasks. In an appendix, we give syntax in R, SAS, and SPSS
for fitting the recommended crossed random-effects models to
data from all three tasks, as well as instructions on how to
structure the data file.
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models

Over the past three decades, researchers have increasingly
relied on implicit measures to assess automatic associations
(Fazio & Olson, 2003; Gawronski & Payne, 2010; Greenwald
& Banaji, 1995). These measures typically require that partic-
ipants make speeded responses to a set of stimuli over repeat-
ed trials. The stimuli themselves are selected to represent cat-
egories that are thought to elicit automatic or implicit associ-
ations; for example, in studies of implicit race attitudes (e.g.,
Fazio, Jackson, Dunton, & Williams, 1995), the typical stim-
uli would be pleasant and unpleasant words and photographs
of Black and White faces. The responses to stimuli across
repeated trials are typically aggregated for each participant,
to yield a set of participant-level scores. These scores are then
often used to examine group differences or to predict relevant
behaviors.

Although such analysis techniques are easy to interpret
because they yield a single Bbias^ score for each participant,
they are likely to be problematic because they ignore system-
atic variation in the trial-by-trial responses due to the individ-
ual stimuli that are used. When systematic variation due to
stimuli exists, ignoring stimulus variance is analogous to
treating stimuli as a fixed factor rather than a random factor,
meaning that results can be generalized to other samples of
participants but only if the exact same stimuli are used (Clark,
1973; Judd,Westfall, & Kenny, 2012).What this means is that
current analytic practices run the risk of finding statistically
Bsignificant^ results that fail to replicate when different but
comparable sets of stimuli are used in those implicit measures.
Given the recent attention to failures to replicate experimental
findings in psychology (Brandt et al., 2014; Earp & Trafimow,
2015; Francis, 2012; Galak, LeBoeuf, Nelson, & Simmons,
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2012; Open Science Collaboration, 2015; Pashler & Harris,
2012; Pashler & Wagenmakers, 2012), it seems prudent for
researchers working with stimulus samples to use statistical
models that lead to appropriately conservative conclusions
about the generalizability of findings to future participant
and stimulus samples.

Our goal in this article is to consider in detail three of the
most commonly used implicit attitude measures (Nosek,
Hawkins, & Frazier, 2011): the Implicit Association Test
(IAT), the affect misattribution procedure (AMP), and the
evaluative priming task (EPT). For each of these measures
we develop the appropriate analytic strategy that treats both
stimuli and participants as random factors, thus modeling re-
sponses to these implicit measures as a function of both stim-
ulus and participant variation.We then examine the magnitude
of stimulus variance in each of the tasks and discuss, for each,
the degree of bias that results when the traditional analyses
that ignore stimulus variance are conducted.

Implicit attitude measures: analytic considerations

Abundant psychological literature has used implicit attitude
measures to index implicit or automatic evaluations of many
different attitude objects and to predict behavior from these.
Clinical psychologists have used implicit attitude measures of
fear associations to examine the efficacy of phobia interven-
tions (Teachman & Woody, 2003) and implicit attitude mea-
sures of death/suicide associations to predict suicide attempts
(Nock et al., 2010). In the realm of political psychology, un-
decided voters’ voting behavior has been predicted using im-
plicit policy attitude measures (Arcuri, Castelli, Galdi,
Zogmaister, & Amadori, 2008). Measures of implicit attitudes
are, perhaps, most prevalent in research on stereotyping and
prejudice. Responses on the EPT, one common implicit atti-
tude measure, have been shown to predict trait inferences for
members of different racial groups (Olson & Fazio, 2004).
Additionally, scores on implicit racial attitude measures are
related to nonverbal behavior during interracial interactions
(Dovidio, Kawakami, & Gaertner, 2002). In sum, implicit
attitudemeasures have been used inmany areas of psychology
to measure many different kinds of implicit evaluations and
they have demonstrated their validity and utility by predicting
important behaviors.

All implicit tasks involve participants’ trial-by-trial re-
sponses to a large number of presentations of different stimuli.
Typically, for analysis purposes, those responses are reduced
to a single score for each participant, such as mean latencies
(or mean latency differences on different trials), proportions of
responses of a given type across trials (or again differences in
proportions), or some other aggregate score that collapses
across trials. These scores are then used in further analyses,
assessing group differences in them as a function of some

independent variable or predicting some behavioral outcome
from them. With few exceptions, the unit of analysis in these
studies is the participant, and confidence intervals of any es-
timated effects of interest are derived from the variability in
scores across participants.

However, the individual trials in implicit tasks are not
exact replicates of each other, and therefore potentially im-
portant trial-to-trial variability in responses within a partici-
pant may exist. In fact, in nearly all implicit tasks, responses
are given to particular stimuli that vary across trials. Such
stimuli are thought to be instantiations of stimulus
categories that really are the focus of theoretical interest.
For instance, responses might be given to particular words
of a positive or negative valence (e.g., horrible, terrible,
pleasant, wonderful), particular category exemplars (e.g.,
specific Black or White faces, or names of Republican and
Democratic politicians) or particular pronouns that are self-
referencing or other-referencing (e.g., me, I, he, they).
Again, what are of interest are responses to the general cat-
egory thought to be instantiated by the particular stimuli
used. In essence, the stimuli used in particular implicit tasks
can be thought of as a sample of stimuli that might have
been drawn from the categories that are actually of theoret-
ical interest. Put differently, in principle, other stimuli could
have been used that would have served the experimenter’s
purposes just as well as those that did happen to be used. To
the extent that there is random variation across these possi-
ble stimulus samples, this random variation should be
reflected in the standard errors of the parameter estimates
of interest in the study.

As we described above, the typical analysis of data from
implicit tasks takes into account the participant-to-
participant variability in the data but ignores the variability
associated with stimuli. In the language of analysis of var-
iance (ANOVA), it treats participants as a random factor
but stimuli as a fixed factor. In other words, participants
are considered a sample of possible participants and statis-
tical inference asks about generalization to other samples
that might be used in future studies. But by ignoring var-
iation associated with individual stimuli, they are treated as
fixed rather than as random, meaning that the traditional
analysis only permits generalization to future studies that
use the exact same stimuli. If in fact one would like to
generalize beyond the particular stimuli used in any one
study to the category of stimuli as a whole that might have
been used, then it can be shown that the traditional analy-
ses, ignoring stimulus variance, leads to inappropriately
small standard errors and, hence, inflated Type I error rates
(Clark, 1973; Judd et al., 2012). This means that many
effects reported in the literature may not be replicated when
other stimulus samples are employed, even if the future
stimulus samples are comparable in all theoretically and
methodologically relevant ways to the original stimuli.
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To permit generalization to studies involving different sam-
ples of both participants and stimuli, analyses need to treat
both factors as random,1 estimating appropriate error vari-
ances from variability in responses across both random fac-
tors. Until recently, such estimation was possible only in high-
ly restricted experimental designs through the use of quasi-F
ratios (Clark, 1973;Winer, 1971).More recently, a muchmore
efficient and general approach has been outlined using what
are called linear mixed models (Baayen, Davidson, & Bates,
2008; Judd et al., 2012). Such models have been relatively
widely used in education and intervention research, in the
context of hierarchically nested or multilevel research designs
(e.g., Raudenbush & Bryk, 2001; Snijders & Bosker, 2011) in
which the multiple random factors are nested under one an-
other. For instance, in education, students within classrooms
might be measured and both the students and the classrooms
are appropriately considered to be random factors. In most
implicit tasks, the two random factors of participant and
stimuli are not nested, but rather are crossed, in that each
participant gives responses to the same full set of stimuli
across trials. Westfall, Kenny, and Judd (2014; see also Judd,
Westfall, & Kenny, in press) provide details on model speci-
fication, appropriate standard errors, and power estimation for
a range of designs involving crossed random effects of partic-
ipants and stimuli.

Our specific goals

In this article, we consider three commonly used implicit eval-
uation measures in detail: the IAT (Greenwald, McGhee, &
Schwartz, 1998), the AMP (Payne, Cheng, Govorun, &
Stewart, 2005), and the EPT (Fazio et al., 1995) We used data
from a large national dataset involving the responses of many
participants to these three tasks in three different domains:
implicit racial attitudes, implicit political attitudes, and implic-
it self-evaluations. In considering each of these three implicit
tasks, our goals were threefold. First, we wanted to lay out the
mixed-model specification that would permit an analysis of
data from each of the tasks to appropriately treat both partic-
ipants and stimuli as crossed random factors. An Appendix
contains syntax for estimating these models in R, SAS, and
SPSS, as well as instructions on how to structure the data file.
Second, on the basis of the model estimation for the data at

hand, we examined the extent to which variation due to the
stimuli contributed to the responses in each task, thus permit-
ting us to examine the extent to which the traditional analyses,
which collapse across stimuli, result in bias (i.e., standard
errors that are too small, and test statistics that as a result are
too large). Finally, we examined individual participant scores
from each task, using both the traditional analytic approach
and the newer mixed-model estimation, to examine the extents
to which the two approaches converge or diverge in indexing
participant implicit evaluations in the three attitude domains.

Dataset and measures

Dataset

The data that we used come from Bar-Anan and Nosek
(2014). They were collected on the Project Implicit website
(implicit.harvard.edu) between November 6, 2007, and
May 30, 2008, as part of a larger study. Participation in studies
on this website is open to the public. The participants were
visitors to the website who volunteered to be randomly
assigned to complete one or more tasks from a set of implicit
attitude measures, explicit attitude measures, and various oth-
er measures. Participants who did not complete an IAT, AMP,
or EPT were excluded from our analysis. The initial dataset
contained data from 24,015 participants. Of those, 11,878 par-
ticipants had completed at least one of the three implicit mea-
sures of interest (i.e., the IAT, AMP, and EPT). The final
sample sizes for each individual task are listed below.

Although this is a large and inmanyways appealing dataset
for our purposes, it is not without its limitations. Participants
could complete multiple tasks, and these may have contami-
nated each other. Also, some parameters of the various tasks
did not exactly mirror the procedures that the original creators
of the task recommended, and some of the stimulus samples
were unusual. We discuss these limitations in the Discussion
section of this article. Nevertheless, for our purposes, this
dataset seemed to us to be the best available, for reasons we
also detail below.

Measures

Implicit association test

In the IAT, participants are asked to simultaneously sort two
classes of stimuli (e.g., good/bad words and Black/White
faces) sharing the same response keys. In the race IAT, for
example, participants were asked to press one key each time
they saw a Black face or a bad word and to press a different
key each time they saw a White face or a good word. After
completing a short (20 trials) and a long (40 trials) block in
this configuration, participants completed two tasks with the

1 In saying that both participants and stimuli ought to be treated as ran-
dom factors, we are not suggesting that in typical studies they are actually
sampled randomly from defined populations. Rather, most typically the
sample of stimuli used in any given study is a convenience sample, much
like the sample of participants in nearly all studies in psychology is a
convenience sample. The point is that by treating both participants and
stimuli as random factors, one becomes able to generalize the results to
other samples of both participants and stimuli, sampled in similar
Bconvenient^ ways in future studies.
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response mappings reversed (i.e., with Black faces and good
words sharing a response key and White faces and bad words
sharing a response key). Blocks in which the response map-
pings were consistent with cultural attitudes (Race: Black/bad
and White/good; Politics:2 Democrats/good and Republicans/
bad; Self-Esteem: Self/good and Other/bad) will be referred to
as Bcongruent,^ and blocks with the opposite response map-
pings will be referred to as Bincongruent^ (see Table 1). In this
task, implicit attitudes were indexed by the difference in the
speeds with which participants responded to trials in the in-
congruent versus the congruent blocks.

Data cleaning The IAT data were cleaned according to sug-
gestions provided by Greenwald, Nosek, and Banaji (2003).
First, trials in which participants made errors were identified
and an error rate was calculated for each participant. Only four
participants had error rates over 50 % across the three IATs.
Given this small number, no participants were excluded. Next,
we identified participants who had a high proportion of trials
with extremely fast response times. Trials on which partici-
pants responded faster than 300 ms were identified, and a by-
participant Bfast rate^was calculated. In total, 194 participants
(21 in the race IAT, 101 in the politics IAT, and 62 in the self-
esteem IAT) had fast rates on more than 10 % of trials; these
participants were excluded from the analysis. Those who did
not complete all blocks (for race 93, for politics 140, and for
self-esteem 143) were also excluded from the analysis.
Finally, participants were excluded if the stimuli appeared to
be inconsistent with the type of task they were recorded as
having completed (one participant on the race IAT). This re-
sulted in the following numbers of participants for each task—
race IAT, 3,240; politics IAT, 3,084; self-esteem IAT, 3,080.

In addition to the excluded participants, trials were exclud-
ed if the response latency was extremely fast (<400 ms) or
extremely slow (>10,000 ms). Response latencies were not
adjusted for error versus nonerror trials. This is based on the
fact that the response latencies included in the datasets were
the times elapsed from presentation of the target until a correct
response.

Scoring The standard individual-difference score yielded
from an analysis of IAT data is an IAT D-score (Greenwald
et al., 2003). IATD-scores are calculated by first averaging the
response latencies3 for a given participant by block. The dif-
ference in the average response times for the congruent block
is subtracted from the average response latency for the incon-
gruent block for the short and long IAT blocks separately.

Separate D-scores for the short and long blocks are then cal-
culated by dividing each of the obtained differences by a par-
ticipant’s overall standard deviations across both incongruent
and congruent blocks of the same length. Finally, these scores
are averaged together to form the participant’s overall score.
Higher positive scores indicate higher levels of implicit posi-
tivity toward the normatively more positive attitude object
category.

Affect misattribution procedure

In the AMP, participants are briefly exposed to a prime (e.g., a
Black face) and then shown a neutral stimulus. Participants are
asked to rate the neutral stimulus (e.g., a Chinese ideograph)
as either pleasant or unpleasant relative to other Chinese ideo-
graphs. Participants were specifically instructed to ignore the
primes: Bevaluate each Chinese drawing and not the image
that appears before it. The images are sometimes distracting.^
After a block with three practice trials, participants completed
two 36-trial blocks. Each block contained 12 trials from each
of the categories of interest (i.e., Black and White, Democrat
and Republican, and Self and Other) and 12 trials with a con-
trol prime. On each trial, the prime was presented for 75 ms,
and the Chinese ideograph was presented for 100 ms (follow-
ed by a pattern mask that remained on screen until participants
had responded). Typically, implicit attitudes are characterized
as the relative proportions of Chinese ideographs that are rated
as pleasant following the presentation of one type of prime
(e.g., a Black face) versus the proportion that are rated as
pleasant following the other type of prime (e.g., a White face).

Data cleaning Participants who completed more than the
specified 72 trials were excluded from the analysis.
Participants were also excluded if the stimuli appeared to be
inconsistent with the type of task they were recorded as having
completed. Participants who responded in the same way on all
trials (either pleasant or unpleasant) were also excluded. In
addition to exclusions on a by-participant basis, trials involv-
ing the neutral stimulus were deleted for all participants. This
resulted in three datasets with the following numbers of par-
ticipants: race AMP, 3,276; politics AMP, 3,363; self-esteem
AMP, 3,293.

ScoringTypical scoring of the AMP first involves calculating,
for each participant, the proportion of trials on which a
Bpleasant^ rating is made (relative to an Bunpleasant^ rating)
for each prime category (e.g., Black vs. White faces). The
means for the two prime categories are then compared using
a within-subjects ANOVAwith prime type as a predictor. We
used both the raw and logit-transformed proportions in this
analysis.

2 Although it is clear in the case of the race and self-esteem categories
which response corresponds to the attitude generally held by the culture,
our designation of the Democrat/good, Republican/bad block as
representing the Bculturally held attitude^ is arbitrary.
3 The response latency in this task is defined as the time from stimulus
onset to a participant’s correct response on a given trial.
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Evaluative priming task

As in the AMP, participants who completed the EPTwere first
shown a prime (the attitude object) followed by a stimulus to
which they were asked to respond. In the case of the EPT, the
stimuli to which participants responded were positively and
negatively valenced words that they were to categorize as
either Bgood words^ or Bbad words.^ Participants were
instructed to categorize the words as quickly as possible while
making as few mistakes as possible. A 1,500-ms timeout win-
dow was given for each trial. Participants completed one
block without primes (28 trials), followed by three blocks that
included primes. Each of these blocks contained 60 trials (15
trials for each prime category/target combination). Each prime
trial consisted of a 200-ms presentation of the prime, followed
by a blank screen for 50 ms. Finally, the valenced word ap-
peared until either a response was made or the 1,500-ms
timeout was reached. A final block tested participants’ mem-
ory of the stimuli and will not be analyzed or discussed further.
Implicit attitudes are typically characterized as the relative
difference in the speeds of sorting good versus bad words
for one attitude object category compared to another.

Data cleaning Participants were excluded if they completed
more than 60 trials in any of the three critical blocks.
Participants were also excluded if the stimuli appeared to be
inconsistent with the type of task they were recorded as having
completed. In addition to these by-participant exclusions,

trials were eliminated if the response was an error (e.g., cate-
gorizing a Bgood^word as Bbad^), if the response latency was
under 300 ms, or if the trial ended in a timeout (over
1,500 ms). These exclusions resulted in three datasets with
the following numbers of participants: race EPT, 3,172; poli-
tics EPT, 3,060; self-esteem EPT, 3,286.

Scoring Implicit attitude scores are calculated from the EPT
by first log-transforming the response latencies on all correct
trials.4 Next, four mean log latencies are calculated for each
participant: one for each possible trial type (e.g., Black face/
good words, Black face/bad word, White face/good word,
White face/bad word). These means are then submitted to a
2 × 2 within-subjects ANOVA. The expectation is that, in a
participant sample that has a relatively positive implicit atti-
tude toward Whites relative to Blacks (on average), responses
will be faster on trials with good words and White faces than
on trials with bad words and White faces, and the reverse
pattern will emerge for trials involving Black faces. Thus, a
prime type by word valence interaction is the expected effect.

4 We used a log transformation because this is standard practice in studies
involving the EPT. We also fit a series of models using an inverse trans-
formation (1/reaction time) to see whether this led to more normal distri-
butions of the model residuals and random effects than did the log trans-
formation, but we ultimately found that it made little difference for these
data: The distribution of level-1 model residuals was perhaps closer to
normal under the inverse transformation, but the distributions of random
effects were not appreciably different, nor were the fixed- and random-
effect results.

Table 1 Contrast codes by block
type or trial type for each task, as
well as the expected directions of
these effects

Effect Block Type (IAT) or Trial Type (AMP and EPT) Expected Direction
of Effect

Good Word Bad Word No Word

White Black White Black White Black
Dem. Rep. Dem. Rep. Dem. Rep.
Self Other Self Other Self Other

Word Type

Positive vs. Negative 1 1 –1 –1 NA NA NA

IAT Effects (block type)

Congruent –1 1 1 –1 NA NA +

AMP Effects (prime type)

Black vs. White 1 –1 1 –1 1 –1 +

Dem. vs. Rep. 1 –1 1 –1 1 –1 NA

Self vs. Other 1 –1 1 –1 1 –1 +

EPT Effects (Prime Type × Target Type)

Black/White × Good/Bad –1 1 1 –1 NA NA +

Dem./Rep. × Good/Bad –1 1 1 –1 NA NA NA

Self/Other × Good/Bad –1 1 1 –1 NA NA +

Note that for the IAT, the effect of interest (congruent vs. incongruent) varies at the block level, whereas for the
AMP and EPT, the effects of interest vary at the trial level. IAT = Implicit Association Test, AMP = affect
misattribution procedure, EPT = evaluative-priming task, Dem. = Democrat, Rep. = Republican, Con. = congru-
ent IAT block, Incon. = incongruent IAT block, NA = not applicable
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Models and analyses

The three goals of our article—deriving mixed models for
three implicit attitude measures, estimating the consequences
of ignoring stimulus variance in such tasks, and comparing
traditional individual-difference estimates of implicit attitudes
with estimates derived from mixed models—were accom-
plished using two sets of analyses. To address our first two
goals, we estimated mixed-effects models that allowed effects
of interest to vary by both participants and stimuli for each
implicit measure. To achieve the third goal, we examined the
degree to which allowing effects to vary on the basis of stimuli
yielded participant-level Bbias^ scores that differed from the
bias scores derived from the standard analyses.

One of the advantages of the dataset used is that the attitude
object stimuli were consistent across the three types of implicit
measures, thus permitting comparisons across the three mea-
sures based on the same actual stimuli. Accordingly, across
measures, we used consistent contrast codes to differentiate
the different categories of attitude objects (i.e., Blacks vs.
Whites, Democrats vs. Republicans, and self vs. other). As
is shown in Table 1, the normatively more positively viewed
attitude objects (i.e., Whites, Democrats, self) were coded as
+1, whereas the normatively negatively viewed attitude object
stimuli (i.e., Blacks, Republicans, other) were coded as –1.
Additionally, both the EPT and IAT included both positively
and negatively valencedwords. Formodels examining each of
these tasks, +1 was used to denote positive words, and –1 was
used to denote negative words. In the following sections we
outline, for each task, the models used to estimate implicit
associations, using both mixed-effects models that treat stim-
uli as random effects and more conventional methods for ex-
amining implicit associations.

Model estimation

Implicit association test

The mixed-model analysis of the IAT modeled the latency on
each individual trial divided by the standard deviation across
all trials in that block (i.e., across all long- or short-block trials,
depending on the block type), following the recommendations
of Greenwald, Nosek, and Banaji (2003). Each trial occurred
in either a congruent or incongruent block and the specific
target on each trial was either a category object (i.e., category
exemplar) or a valenced word (i.e., positive or negative). The
latencies were modeled as a function of whether the trial was
in a congruent or incongruent block (–1 if congruent, +1 if
not), and three contrast codes that coded the category of the
specific stimulus used. The first of these coded whether the
stimulus on the trial was a category object or a valenced word;
the second coded the category of the attitude object, given that
the trial presented a category of attitude object, using the codes

defined earlier; and the third coded the word valence, given
that the trial presented a valenced word, again using the codes
defined in Table 1. Additionally, three interaction terms were
included in the model, involving products of congruency
block code with the three codes that coded the specific stim-
ulus type used on each trial, in order to test whether stimulus
type moderated the congruency effect. Accordingly, including
the intercept, a total of eight fixed effects were included in
these models.

The best way to estimate the random effects for the IAT
model was not immediately obvious. Participants responded
to both valenced words and category exemplars, but these stim-
uli appeared in separate, alternating trials. Thus, random stim-
ulus effects could reasonably be separated out into two different
random factors. Additionally, since responses to both valenced
word stimuli and category exemplar stimuli were crossed with
block type (i.e., congruent/incongruent), it would be possible to
estimate separate random congruency slopes due to word stim-
ulus and to exemplar stimulus. Ultimately, we chose to combine
these two potential random factors into one overall Stimulus
random factor that consisted of both valenced words and cate-
gory exemplars. Combining these two types of stimuli into a
single random factor allowed for a simpler, easier-to-estimate
model requiring fewer parameter estimates. However, before
combining these random factors into one, we did examine the
degrees to which the variance components for valenced words
and category exemplars were different. Likelihood ratio tests
comparing the models we report here to models that would
allow the two stimulus types to have different random variances
provided little statistical evidence that the stimulus types had
any meaningful difference in their random variances [the like-
lihood ratios for these comparisons in the race, politics, and self
models were, respectively, χ2(1) = 0.99, p = .319; χ2(1) = 3.34,
p = .068; and χ2(1) = 3.82, p = .051].

The so-called maximal model for this task would involve
estimating many parameters (Barr, Levy, Scheepers, & Tily,
2013; Bates, Kliegl, Vasishth, & Baayen, 2015). Since partic-
ipant was crossed with word type, face type, and congruency,
all of the fixed effects in the IAT model could be allowed to
vary randomly across participants. Since stimuli were
responded to in both congruent and incongruent blocks, the
effect of congruency could vary randomly across the stimuli.
And because each participant responded to each stimulus mul-
tiple times in the congruent block and multiple times in the
incongruent block, it was possible estimate random intercepts
and congruency slopes for the participant-by-stimulus interac-
tion. However, fitting such a model would be extremely com-
putationally challenging, given the very large number of pa-
rameters to be estimated. In fact, in our case the maximal
model failed to converge, even with the relatively large
datasets we were using.

We instead recommend a more simplified model, the pa-
rameters of which are shown in Table 2. In this model, we
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estimated random intercepts, random congruency slopes, and
their covariances for both participants and stimuli. This model
allowed for the estimation of the random effects that are of
particular interest inmost cases, as well as beingmore likely to
converge when using smaller datasets. The statistical rationale
behind simplifying the model in this particular way was that
this model contains all and only the random effects that con-
tribute substantially to the estimation of the standard error for
the fixed congruency slope (Barr et al., 2013; Westfall, 2015),
which is typically the test of interest in the IAT.5

The standard method for analyzing IAT scores, the D-score
(Greenwald et al., 2003), is essentially a within-participant
comparison of incongruent and congruent blocks. Thus, the
average D-score within a sample gives an estimate of the
extent to which responses are faster in one type of block than
in the other, across participants and ignoring stimuli. The anal-
ogous linear mixed-model effect is the fixed effect of block
type, since it will examine, on average across participants and
stimuli, the difference in response times for congruent and

incongruent blocks. The important distinction is that the
mixed-effects model estimate will also control for random
stimulus effects and account for their variance. That is, the
model partials out any variance due to the stimuli. If stimulus
variance really does contribute to an inflated test statistic in the
case of the traditional D-score analysis, then the test statistic
for the single-sample t test of the average D-score, relative to
0, should be higher than that of the corresponding effect in the
mixed-effects model. Additionally, the estimate of the degree
to which the effect of block varies from stimulus to stimulus
should be larger to the extent that the stimulus variance is
more heavily influencing the outcomes with regard to the
traditional analysis.

Affect misattribution procedure

The traditional analysis for the AMP involves computing for
each participant the simple proportion for each type of prime
(e.g., Black vs. White faces) for which the subsequently pre-
sented target Chinese character is judged as pleasant (rather
than unpleasant). Then the means of these are compared, as a
function of prime type, using a within-participant ANOVA.

Since mean proportions are calculated for each category of
prime, the traditional analysis collapses across stimulus types.
To examine the extent to which stimulus variance may

5 To verify that none of the variance components omitted from the model
would in fact substantially alter the test statistics for the fixed congruency
effects, we also estimated models that included random slopes for all of
the simple effects in themodel (but not the interactions, since the resulting
maximal models usually failed to converge). The test statistics for the
congruency effects in these expanded models were negligibly different
from those in the simpler models; they differed by less than 1 %.

Table 2 Implicit Association Test (IAT) mixed-model results

Race Politics Self

IAT fixed effects Coefficient t Coefficient t Coefficient t

Intercept 2.45 124.07*** 2.51 102.7*** 2.57 104.44***

Congruent 0.14 31.09*** 0.13 23.16*** 0.23 36.42***

Word vs. Face –0.12 –8.29*** 0.08 3.67*** ~0 –0.13

Word type ~0 –0.05 0.04 0.84 –0.01 –0.3

Face type 0.04 1.8† 0.02 0.64 0.08 2.59**

Congruent × Word vs. Face –0.04 –10.67*** –0.02 –6.76*** –0.04 –7.29***

Congruent × Word Type –0.02 –4.12*** ~0 –0.54 –0.01 –1.26

Congruent × Face Type 0.01 1.65† ~0 –0.83 –0.01 –1.71†

IAT random effects SD % of variance SD % of variance SD % of variance

Participant

Intercept 0.75 33.1 % 0.71 31.14 % 0.71 30.79 %

Congruent 0.17 1.7 % 0.25 3.94 % 0.14 1.28 %

Correlation (–.09) – (–.03) – (–.05) –

Stimulus

Intercept 0.07 0.3 % 0.08 0.4 % 0.1 0.6 %

Congruent 0.01 0.01 % 0.01 0.01 % 0.02 0.04 %

Correlation (–.28) – (–.43) – (0) –

Residual 1.05 64.89 % 1.02 64.52 % 1.04 67.3 %

Note that this model also estimates all applicable covariances between the random effects, although these parameter estimates are not shown in the table.
The percentages of variance for the random effects (i.e., the variance-partitioning coefficients, or VPCs) were computed by dividing each variance
component by the total random variance, computed as the sum of the random-effect variances (Westfall, 2015; Westfall et al., 2014). t = t statistic
associated with each regression coefficient, SD = standard deviation. † p < .1, ** p < .01, *** p < .001
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influence AMP effects, mixed-effects models that modeled
the likelihood of categorizing an ideograph as positive on each
trial were used (see the Appendix for example data structures).
The by-trial analysis allowed us to treat both participants and
stimuli as random factors. Since the outcomes for these
models were dichotomous, the analysis was conducted using
a generalized linear mixed model with a logistic link function.

This mixed model contains two random stimulus factors,
since on each trial both a prime stimulus (e.g., a White face or
a Black face) and a target stimulus (i.e., a specific Chinese
character about which a judgment is given) were presented.
In total, 12 different primes (e.g., six White faces and six
Black faces) and 72 different Chinese characters were used
as target stimuli. The mixed model that was estimated (again
with a logistic link function) allowed random intercepts for the
prime stimuli and random intercepts and prime type slopes for
the target stimuli.

It should be noted that, once again, we did not estimate the
maximal model with all possible random effects. For example,
since participants completed trials with different pairings of
the target and prime stimuli (where the target and prime stim-
uli were both repeated within participants), it would be possi-
ble to estimate several types of random interaction effects.
However, in the interest of parsimony (and model conver-
gence), we estimated only the random effects that would con-
tribute substantially to the standard error of the fixed effect of
interest.

Evaluative priming task

The traditional analysis of data from the EPT involves a log
transformation of the latencies from correct trials. For each
participant, four mean log latencies are computed: one for
each cell of the crossed target (positive vs. negative) and prime
(e.g., Black vs. White faces) factors. Implicit associations are
conceptualized as the prime by target interaction resulting
from the within-subjects ANOVA of these log latencies is
the effect of interest. The expectation is that congruent means
(e.g.,White primes with good target and Black prime with bad
target) will be smaller (i.e., shorter latencies) than the incon-
gruent combination means.

Comparing means for the four types of trials in a within-
participant ANOVA collapses across stimulus type and
removes the possibility of examining whether the implicit
associations measured depend on the stimulus. The estimation
of a mixed-effects model addresses this issue. For the mixed-
model analyses, we modeled the log-transformed latencies at
the level of the individual trial, with contrast codes for prime
(i.e., attitude object category), target valence (i.e., word va-
lence), and their interaction (see Table 1). Modeling latencies
at the level of the trial rather than the participant allowed for
the preservation of information regarding different response
patterns to different types of stimuli across participants. This

allowed for the treatment of both prime stimulus and target
stimulus as random factors. Accordingly, we estimated ran-
dom intercepts and target type slopes for the prime stimuli,
and random intercepts and prime type slopes for the target
stimuli.

As with the IAT and AMP, the maximal model could have
contained random participant-by-stimulus interaction effects,
because each participant saw each stimulus multiple times
with different types of target stimuli. However, these more
complex models were avoided, since they would be much
more computationally challenging to fit, and because these
random participant-by-stimulus effects would not contribute
to the standard error of the fixed effect of interest to any mean-
ingful extent (Westfall, 2015).

Results

Comparing traditional analyses to mixed-model analyses

The parameter estimates for all nine mixed models are given
in Tables 2, 3, and 4. For each model, we extracted the rele-
vant test statistic (t or z statistic) that testedwhether there was a
nonzero implicit preference, on average—for example, in the
IAT tasks, this would be the test statistic associated with the
simple effect of congruency—and compared these to the cor-
responding test statistics based on the traditional analyses,
which ignore random stimulus variability. This comparison
is illustrated in Fig. 1, which shows that in all nine cases the
traditional test statistics are inflated to some extent. A linear
regression predicting the traditional test statistics from the
corresponding mixed-model test statistics yielded a regression
line that essentially passes through the origin, with an estimat-
ed slope of 1.60, indicating that the traditional test statistics are
inflated by an average of about 60 % in the large datasets that
we examined (95 % CI = [1.11, 2.09]).

It is interesting that the inflation of the test statistics is so
substantial, despite the fact that the stimulus variance compo-
nents themselves are all quite small in comparison to the other
variance components. The explanation for this is that the de-
gree of inflation depends not only on the size of the stimulus
variance components that are being ignored in the traditional
analyses, but also on the sample sizes. For example, the dele-
terious effect of stimulus variance on the traditional analyses is
attenuated when there are more stimuli. In the present case,
although the stimulus variances are small, the stimulus sample
sizes are also small: 10 to 28 in most tasks, with the notable
exception that the AMP uses a sample of 72 target stimuli
(Chinese ideographs). Because of these small sample sizes,
the test statistics can be substantially inflated even when the
degree of stimulus variability is relatively small in comparison
to the other variance components.
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Comparing variance components across tasks

As we mentioned earlier, each attitude category was represented
by the same words and photographs across all three tasks. This

permittedmeaningful comparisons of the amounts of stable stim-
ulus variance across tasks. For example, since participants
responded to the same stimuli when taking the IAT and the
EPT, larger stimulus variance components in one of these tasks

Table 4 Evaluative priming task
(EPT) mixed-model results Race Politics Self

EPT fixed effects Coefficient t Coefficient t Coefficient t
Intercept 6.455 934.72*** 6.454 919.89*** 6.488 1,024.29***

Prime type 0.002 2.62** ~0 –0.14 –0.002 –1.73†

Target type 0.019 3.48*** 0.014 2.54* 0.014 2.8**

Prime × Target 0.002 0.99 0.007 3.21** 0.009 13.99***

EPT random effects SD % of variance SD % of variance SD % of variance
Participant
Intercept 0.245 49.50 % 0.238 47.42 % 0.224 45.62 %
Prime × Target 0.011 0.1 % 0.018 0.27 % 0.01 0.1 %
Correlation (–.15) – (–.02) – (.02) –

Target
Intercept 0.028 0.65 % 0.028 0.64 % 0.026 0.6 %
Prime type 0 0 % 0 0 % 0.002 0 %
Correlation (–1) – (1) – (.33) –

Prime
Intercept 0.003 0.01 % 0.006 0.03 % 0.004 0.01 %
Target type 0.006 0.03 % 0.006 0.03 % 0.001 0 %
Correlation (.81) – (.89) – (.69) –
Residual 0.245 49.71 % 0.248 51.61 % 0.243 53.67 %

Note that this model also estimates all applicable covariances between the random effects, although these param-
eter estimates are not shown in the table. The percentages of variance for the random effects (i.e., the variance-
partitioning coefficients, or VPCs) were computed by dividing each variance component by the total random
variance, computed as the sum of the random-effect variances (Westfall, 2015; Westfall et al., 2014). t = t statistic
associated with each regression coefficient, SD = standard deviation. † p < .1, * p < .05, ** p < .01, *** p < .001

Table 3 Affect misattribution procedure (AMP) mixed-model results

Race Politics Self

AMP fixed effects Coefficient z Coefficient z Coefficient z

Intercept 0.73 15.64*** 0.34 5.92*** 0.62 14.22***

Prime type –0.16 –6.07*** 0.24 4.93*** 0.08 5.63***

AMP random effects SD % of variance SD % of variance SD % of variance

Participant

Intercept 1.03 22.7 % 0.9 17.32 % 0.9 18.59 %

Prime type 0.48 5 % 0.71 10.84 % 0.34 2.71 %

Correlation (–.27) – (–.04) – (–.01) –

Target

Intercept 0.29 1.82 % 0.27 1.52 % 0.33 2.51 %

Prime type 0.01 0 % 0.01 0 % 0.01 0 %

Correlation (–.23) – (1) – (1) –

Prime

Intercept 0.09 0.15 % 0.14 0.44 % 0.03 0.03 %

Residual 1.81 70.32 % 1.81 69.88 % 1.81 76.15 %

Note that this model also estimates all applicable covariances between the random effects, although these parameter estimates are not shown in the table.
This is a mixed-effects logistic regressionmodel, so all of the parameter estimates are on the logit scale. The percentage of variance for the random effects
(i.e., the variance-partitioning coefficient, or VPC) depends on the variance of the latent residual term, which is not identifiable, so we have fixed its

standard deviation to π2 =
ffiffiffi

3
p

(see Goldstein, Browne, & Rasbash, 2002, p. 228). The percentage of variance was then computed by dividing each
variance component by the sum of the random-effect variances, including the residual variance. t = t statistic associated with each regression coefficient,
SD = standard deviation. *** p < .001
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would suggest that the responses in that task were relatively
more affected by idiosyncratic stimulus characteristics than
those in the other task. The participant variance components
were also of interest, since the participant variance is essen-
tially the Bsignal^ that these implicit attitude tasks are de-
signed to measure. For example, the race IAT aims to mea-
sure individual differences in people’s implicit preferences
toward White or Black people, and the variance of those
individual differences is directly estimated by the variance
of the Bcongruent^ slopes across participants in the mixed
model. Thus, comparing the sizes of the participant variance
components across tasks allowed us to compare the relative
sensitivities of the different tasks in picking up on the rele-
vant psychometric signal.

In Fig. 2, we plot the participant and stimulus variance
components for each task and category. Only the variance
components that are statistically relevant to the implicit
preference being measured (e.g., in the case of the IAT,
those that appear in the standard error of the fixed con-
gruency effect) are shown in the figure; more detailed
information is given in the figure legend. To facilitate
comparisons, the variance components are computed as
variance-partitioning coefficients (VPCs; Goldstein,
Browne, & Rasbash, 2002; Westfall, 2015; Westfall
et al., 2014)—that is, as proportions of the total random
variation due to each variance component.

The pattern revealed in Fig. 2 is that the IAT and EPT
both seem to involve relatively little stimulus variance,

whereas the AMP involves relatively more stimulus vari-
ance. As for the participant variance, the AMP consistent-
ly shows the most stable participant variance, followed by
the IAT, and with the EPT a fairly distant third. In fact,
the degree of stable participant variance in the EPT is low
enough to be a cause for concern about its psychometric
reliability.6 A comparison of the IAT and AMP does not
show either one to be clearly superior in these data; the
IAT seems to involve relatively less noise due to the stimuli,
but also less signal due to participants, whereas the AMP
involves relatively more noise due to the stimuli, but also
more signal due to participants.

Results: comparing individual-difference estimates

Next, we wished to compare individual-difference esti-
mates for the traditional and mixed-effects model anal-
yses, to determine whether the estimates differed in any
systematic way. However, whereas the unit of analysis
using traditional scoring is the individual-difference es-
timate itself (i.e., D-scores for the IAT, differences in
proportions for the AMP, and mean differences between
the congruent and incongruent trial types in the EPT),
the mixed models do not immediately offer individual-
difference estimates for each participant.

It turns out that it is possible to extract individual-
difference estimates, known as best linear unbiased pre-
dictors (BLUPs), from the mixed-effects models (Kliegl,
Wei, Dambacher, Yan, & Zhou, 2011). In this case,
each BLUP represents the slope of interest for a given
participant, centered around the overall fixed effect and
Bshrunk^ toward the fixed effect in proportion to the
precision with which the participant’s random slope is
estimated. In the case of the IAT, each BLUP is the
estimate of the congruency slope for a given participant,
centered around the overall fixed congruency slope; in
the case of the AMP, each BLUP represents a partici-
pant’s slope for prime type; and in the case of the EPT,
each BLUP is an estimate of a participant’s prime type
by target type interaction.

Figure 3 shows scatterplots of the traditional individual-
difference scores and BLUPs for each type of implicit measure
analyzed. First, the relationship between traditional scores and
BLUPs is quite strong across all measures, with correlations
between the two individual-difference estimates ranging from
.87 to .99. Overall, there is strong agreement between the

6 As we detail in the Discussion section, the limitations of the dataset and
the procedures used for the measures may in part be responsible for some
of these results.

Fig. 1 Comparison of test statistics (t or z, depending on the task) of
participants’ average implicit preferences, taking into account random
stimulus variability, with the corresponding test statistics based on
traditional analyses that ignore stimulus variability
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traditional implicit scores and implicit scores that account for
random effects due to the stimulus.

Despite this overall strong agreement, differences in the
correlation values as a function of the type of implicit task
are striking. The correlations are uniformly high and the

scatterplots as expected for the IAT and AMP tasks, with
somewhat lower (but still substantial) correlations for the
EPT. Thus, although the traditional scores and BLUPS are
nearly identical for the IAT and AMP, there is a somewhat
smaller degree of correspondence for the EPT.

Fig. 2 Variance-partitioning coefficients (VPCs), computed as the
proportions of the total random variation due to each variance
component—that is, by dividing each variance component by the sum
of the random-effect variances (Westfall, 2015; Westfall et al., 2014).
Only the variance components that are statistically relevant to the implicit
preference being measured are shown in the figure. For the Implicit
Association Test (IAT), the participant variance is the variance of the
participant congruency slopes, and the stimulus variance is the variance

of the stimulus congruency slopes. For the affect misattribution procedure
(AMP), the participant variance is the variance of the participant prime
type slopes, and the stimulus variance is the sum of the variances of the
target prime type slopes and the prime intercepts. For the evaluative-
priming task (EPT), the participant variance is the variance of the partic-
ipant Prime Type × Target Type slopes, and the stimulus variance is the
sum of the variances of the target prime type slopes and the prime target
type slopes

Fig. 3 Comparison of individual-
difference scores derived from
linear mixed models (LMMs) to
individual-difference scores
computed in the traditional
fashion, for each task and attitude
domain. There is generally strong
but not perfect agreement
between the LMM scores and the
traditional scores. Prop.
difference = difference in
proportions
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In sum, it is possible to obtain individual-difference esti-
mates of implicit associations even when accounting for stim-
ulus variance. In fact, the BLUPs look quite similar to those
from traditional methods of computing implicit association
scores. With that said, there are some differences between
BLUPs and traditional scores, as evidenced by the fact that
their correlations were less than unity. In particular, the
BLUPs obtained from the EPT tend to be less closely related
to the estimates obtained from the more traditional forms of
estimation.

Discussion

We were able to successfully construct models that
accounted for stimulus variance by using linear and
generalized linear mixed-effects models that treat stimu-
lus as a random factor. Comparisons of these models to
models that did not account for stimulus variance dem-
onstrated that failing to account for stimulus variance
inflates the magnitude of the test statistic for all three
implicit measures, the IAT, AMP, and EPT. Such infla-
tion was expected because the significance tests for the
new models focus on generalization across future stud-
ies with different stimulus samples as well as with dif-
ferent participant samples. For both the AMP and EPT,
the linear and generalized linear mixed-effects models
used the same fixed effects as the traditional analysis.
Although models that do not account for stimulus vari-
ance have an advantage with regard to simplicity of
estimation and interpretation, the inflation of the test
statistics for these models relative to those that do ac-
count for stimulus variance highlight the importance of
accounting for variance due to stimuli.

It is important to note that the magnitude of these differ-
ences varies consistently across the three different implicit
tasks, with the least inflation in general for the IAT and the
largest for the EPT. Across the three stimulus domains on
average, the t-statistic for the EPT traditional analysis was
308 % the size of the mixed-model t statistic. The inflation
of the t statistic was smaller for the AMP, with the traditional t-
statistic being 245 % the size of the mixed-model t statistic, on
average. Finally, the IAT demonstrated the smallest inflation
of the t-statistic from the linear mixed models to the traditional
model, with the traditional t statistic being, on average, 171 %
of the mixed-model t statistic. Clearly the inclusion of stimu-
lus random factors in the EPT and AMP analyses makes a
much bigger difference that it does in the case of the IAT.
This conclusion seems likely due to the fact that in the IAT
on each trial the stimulus and word category labels are con-
tinuously present, but in the case of the EPT and AMP,

participants are never prompted to think about the categoriza-
tion of the prime stimuli.

Perhaps surprisingly, the typical results for the im-
plicit tasks involving race were not robust in these data,
in spite of the large participant sample sizes used and in
spite of the frequency with which these implicit tasks
have been used in the literature to assess implicit racial
attitudes. That is, the expected implicit preference for
White over Black targets does not emerge for all tasks
and for all models. In fact, for the AMP the typical
congruence effect is reduced and for the EPT it is quite
small in absolute magnitude. In the models with stimu-
lus variance components these test statistics are further
reduced, leading even to statistical nonsignificance in
the case of the EPT. Only in the IAT does this implicit
racial bias effect seem robust. This is true in spite of
the fact that implicit participant scores for race were
reasonably highly correlated across implicit tasks. One
wonders whether the choice of stimuli (i.e., professional
basketball players) for this task may have influenced
these results particularly on those tasks in which cate-
gory labels were not presented alongside the category
facial photographs.

It should be noted that the purpose of this article is not
to determine which implicit attitude measure is the Bbest,^
but rather to demonstrate how stimulus variance may be
modeled in these tasks and to compare the relative contri-
butions of stimulus variance to the test statistics estimated
using standard analysis techniques. We refrain from mak-
ing generalized comparisons of measure quality for several
reasons. First, the role of stimulus variance in estimating
implicit attitudes should not be the only metric considered
when deciding which implicit attitude measure to use.
Second, some limitations with regard to the dataset used
for this article discourage such comparisons. The status of
the Project Implicit website as a well-known attitude mea-
surement website may have impacted participants’ re-
sponses as could the possibility that the same participants
completed the same tasks under multiple study sessions.
Further, some concessions were made with regard to the
parameters of the implicit measures in order to reduce
participant fatigue. For example, the inter-trial interval
used for the EPT was considerably shorter than what is
typically used for this task. Such factors may severely
limit our ability to draw strong conclusions about other
psychometric properties that would be important for mak-
ing strong comparisons across tasks. Finally, in terms of
stimulus variance, the Bbest^ measure may depend on
one’s purpose. If the goal is to measure broad-level cate-
gory-based attitudes (as is often the case in studies of race
or political preference), then a measure with relatively
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little stimulus variance may be optimal. However, if one is
interested in measuring attitudes toward individuals, a
measure that is sensitive to the stimuli used may be more
helpful.

In sum, we were able to successfully construct models
that account for stimulus variance in three common im-
plicit measures. Comparisons of traditional analysis to
analyses that account for stimulus variance overwhelming-
ly provided evidence that ignoring stimulus variance arti-
ficially inflates the value of the test statistic of interest in
the IAT, AMP, and EPT. Overall, point estimates of im-
plicit associations that account for stimulus variance ap-
peared quite similar to traditional estimates, although this
was somewhat less true for IAT scores. If the goal of
using implicit measures is to assess implicit associations
toward attitude objects at a broad, categorical level, it is
important to account for the fact that we, as researchers,
sample from a population of stimuli just as we sample
from a population of students. If we desire to draw infer-
ences past the set of stimuli to which participants respond
within an implicit measure, it is important to treat stimuli
as random factors in the design. As illustrated above, fail-
ing to account for random stimulus variance when that is
the intent results in an inflation of the test statistic and the
increased potential for a Type I error. Although only one
effect presented above was reduced to non-significance in
this study, it should be noted that the sample sizes are
much larger than those of typical studies that use implicit
measures. It is the hope of the authors that greater con-
sideration of stimulus variance will be given in studies
involving implicit measures or, more broadly, studies that
involve repeated responses to multiple stimuli.

Appendix: estimating the mixed models in R, SAS,
and SPSS

Data preparation

We assume that the data are loaded in the Blong^ format (i.e.,
one row per trial response) and are stored in a data set named
dat. RTD is the trial response time divided by the standard
deviation across the short- or long-block IAT trials
(Greenwald, Nosek, & Banaji, 2003), logRT is the natural log-
arithm of the trial response time, and the response itself (a
column of 0 or 1 values indicating which response was made)
is named Y. The columns of identifying labels for the partici-
pants, stimuli, primes, and targets are named, respectively, par-
ticipant, stimulus, prime, and target. The predictors are defined
as in Tables 1, 2, 3, and 4 of the main text; importantly, they are
assumed to be entered as numeric variables consisting of con-
trast code values, not as a factor (in R), class (in SAS), or string
(in SPSS) variable. Examples of how the dataset should be
structured for each analysis are shown in Tables 5, 6, and 7.

Syntax

R

Mixed models can be fit in R using the lme4 and
lmerTest packages (Bates, Maechler, Bolker, & Walker,
2015; Kuznetsova, Brockhoff, & Christensen, 2015), the
latter of which tests fixed effects using the Satterthwaite
approximate degrees of freedom. Before running any of
the models below, the user must first install and load
these packages using the following commands:

IAT model
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AMP model

EPT model

SAS

IAT model

AMP model

EPT model
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SPSS

IAT model

AMP model

EPT model

Table 5 Example of how the
dataset should be structured for
fitting the IAT model

Participant Stimulus Congruent Wordvsface Wordtype Facetype RTD

p1 Wonderful –1 –1 –1 0 2.38

p1 Poison –1 –1 1 0 2.46

p1 mtmmbm2.jpg –1 1 0 –1 2.01

p1 mtmmwm1.jpg –1 1 0 1 1.83

p1 Love 1 –1 –1 0 1.71

p1 Grief 1 –1 1 0 1.58

p1 mtmmbf1.jpg 1 1 0 –1 1.17

p1 mtmmwm2.jpg 1 1 0 1 1.47

p2 Paradise –1 –1 –1 0 1.57

p2 Poison –1 –1 1 0 1.21

p2 mtmmbm3.jpg –1 1 0 –1 1.37

p2 mtmmwf2.jpg –1 1 0 1 1.96

p2 Cheer 1 –1 –1 0 1.35

p2 Bomb 1 –1 1 0 1.16

p2 mtmmbf1.jpg 1 1 0 –1 1.50

p2 mtmmwf3.jpg 1 1 0 1 1.30
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