
Detecting correlation changes in multivariate time series:
A comparison of four non-parametric change point
detection methods

Jedelyn Cabrieto1 & Francis Tuerlinckx1 & Peter Kuppens1 & Mariel Grassmann2,3
&

Eva Ceulemans1

Published online: 6 July 2016
# Psychonomic Society, Inc. 2016

Abstract Change point detection in multivariate time series is a
complex task since next to the mean, the correlation structure of
the monitored variables may also alter when change occurs.
DeCon was recently developed to detect such changes in mean
and\or correlation by combining a moving windows approach
and robust PCA. However, in the literature, several other
methods have been proposed that employ other non-parametric
tools: E-divisive, Multirank, and KCP. Since these methods use
different statistical approaches, two issues need to be tackled.
First, applied researchers may find it hard to appraise the differ-
ences between the methods. Second, a direct comparison of the
relative performance of all these methods for capturing change
points signaling correlation changes is still lacking. Therefore,
we present the basic principles behind DeCon, E-divisive,

Multirank, and KCP and the corresponding algorithms, to make
them more accessible to readers. We further compared their per-
formance through extensive simulations using the settings of
Bulteel et al. (Biological Psychology, 98 (1), 29-42, 2014) im-
plying changes in mean and in correlation structure and those of
Matteson and James (Journal of the American Statistical
Association, 109 (505), 334-345, 2014) implying different num-
bers of (noise) variables. KCP emerged as the best method in
almost all settings. However, in case of more than two noise
variables, only DeCon performed adequately in detecting corre-
lation changes.
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Change point detection is an old and important problem in time
series analysis (Basseville & Nikiforov, 1993; Bhattacharya &
Johnson, 1968; Kander & Zacks, 1966; Page, 1954). As indicat-
ed by its name, the goal of change point detection is to detect
whether and when abrupt distributional changes take place in a
time series, which is crucial in a diverse set of fields such as
climate science, economy, medicine, etc. (see Chen & Gupta,
2012). Current applications in the field of behavioral sciences
include detection of workload changes using heart rate variability
(Hoover, Singh, Fishel-Brown, & Muth, 2011), capturing active
state transition in fMRI activity (Lindquist, Waugh, & Wager,
2007) and revealing cardio-respiratory changes preceding the
occurrence of panic attacks (Rosenfield, Zhou, Wilhelm,
Conrad, Roth, & Meuret, 2010). Until recently, research on this
topic focused almost exclusively on univariate time series, yield-
ing approaches to detect changes in mean, and, in some cases,
variance and/or autocorrelation.

With the advance of technology, more and more studies gen-
erate multivariate time series. For example, climate studies
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monitor several environmental factors such as temperature, pre-
cipitation andwater discharges (Jarusikova, 1997). In neurophys-
iology (Terien, Germain,Marque, &Karlsson, 2013), analysis of
biological functions entails following numerous physiological
signals. Turning to examples from the behavioral sciences, in
emotion psychology, experiential, behavioral, and physiological
reactions to emotional stimuli are tracked across time (Christie &
Friedman, 2004; Mauss, Levenson, McCarter, Wilhelm, &
Gross, 2005), and in developmental psychology, performance
on several Piagetian tasks (Piaget, 1972) is examined over time
to assess how cognitive abilities of children develop (Amsel &
Renninger, 1997; Klausmeier & Sipple, 1982; van der Maas &
Molenaar, 1992).

Given multivariate data, change point detection involves
more than changes in single variables because the system char-
acteristics seldom react in an isolated way to change. Indeed, in
many cases, theory prescribes that, next to the mean, also the
correlation structure of (a subset of) the system characteristics
alters when change occurs. In emotion psychology, researchers
postulate that physiological, experiential, and behavioral reac-
tions synchronize in emotion-inducing situations to enable the
organism to quickly and efficiently cope with environmental
threats or opportunities (Mauss et al., 2005). In developmental
psychology, one conjectures that before a sudden developmen-
tal jump – the mastery of a specific ability - the correlation
structure of a set of tasks changes (Amsel & Renninger, 1997;
van der Maas &Molenaar, 1992). Outside psychology, one can
think of the strengthened correlation between economic growth
rates of countries implementing a common monetary policy
(Crowley & Schultz, 2011), parts of the brain exhibiting exces-
sive neuronal synchronization during a seizure (Terien et al.,
2013), or climactic indices demonstrating higher correlations
during cool seasons (Wright & Wallace, 1988). As a conse-
quence, detecting correlation changes becomes an integral as-
pect of the change point analysis problem in the case of multi-
variate data (see Aue, H rmann, Horváth, & Reimherr, 2009;
Müller, Baier, Galka, Stephani, & Muhle, 2005; Terien,
Marque, Germain, & Karlsson, 2009).

Recently, a number of non-parametric multivariate change
point detection methods have been proposed that can be used
to detect changes in both correlation structure andmeans: DeCon
(Bulteel, Ceulemans, Thompson, Waugh, Gotlib, Tuerlinckx, &
Kuppens, 2014), E-divisive (Matteson & James, 2014),
Multirank (Lung-Yut-Fong, Lévy-Leduc, & Cappé, 2012), and
KCP (Arlot, Celisse, & Harchaoui, 2012). However, we see two
problems when an applied researcher wants to apply these
methods. First, the methods are based on different statistical ap-
proaches: Robust methods for DeCon, rank information for
Multirank, the kernel trick for KCP and Euclidean distances for
E-divisive. This diversity makes it difficult for the applied re-
searcher to appraise themethods. Second, because they are based
on different statistical approaches, it is still unknown which of
these four methods should be preferred in which circumstances.

More specifically, a direct comparison between these methods
for the detection of correlational changes is lacking (although
Matteson & James, 2014, conducted a partial comparison).

Given these two problems, this paper fulfills two goals. The
first goal is to introduce the basic principles behind each meth-
od and the corresponding algorithms in easy to follow steps to
make them more accessible to readers. The second goal is to
study the relative performance by means of extensive simula-
tions. Note that we focus on non-parametric methods, given
their wide applicability.

In the remainder of this paper, we first introduce each of the
four methods, using an illustrative hypothetical example. Next,
we apply the methods to two sets of simulated data based on
Bulteel et al. (2014) and on Matteson and James (2014) and to
an empirical data set on pilot reactions. In the final section, the
results are discussed and future research directions are
enumerated.

Method

Before discussing the four methods in detail, we introduce an
illustrative hypothetical data set that will be used throughout this
section. Let X = {X1,X2,…,X50} denote the whole time series,
composed of 50 time points at which three variables are mea-
sured. This time series is shown in Fig. 1. A change point occurs
between the 25th and 26th time point, segmenting the time series
into two phases of 25 subsequent time points. The 25 observa-
tions in Phase 1 are randomly sampled from a multivariate nor-

mal distribution with mean, μ1:25 ¼
1
2
3

2
4
3
5, and covariance matrix,

Σ1:25 ¼
1 0 0
0 1 0
0 0 1

2
4

3
5, implying that all variables are independent. In

Phase 2, the observations are also drawn from a multivariate

normal distribution but the means μ26:50 ¼
3
6
9

2
4
3
5 are higher and the

variables become strongly correlated, as indicated by the covari-

ance matrix Σ1:25 ¼
1 0:9 0:9
0:9 1 0:9
0:9 0:9 1

2
4

3
5. It should be emphasized that the

actual change occurs between the 25th and 26th time points.
However, this true change point is unobserved. Hence, in the
remainder of this paper, we will use the first observation after
the change in distribution as the change point. Thus, for the
hypothetical data, the change point is T = 26.

DeCon

DeCon bases change point detection on outlier identification
using robust statistics (Bulteel et al., 2014). The method slides
a time window of size W across the time series by sequentially
deleting the first time point in the window, and adding one new
observation as the last time point. Per window, it is determined
whether the last time point is an outlier with respect to the dis-
tribution of the other time points in the window. If the latter is the
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case for multiple consecutive windows, this signals that the ob-
servations that are added to the window might come from a
different distribution, and, hence, that a change point occurred.
Specifically, DeCon consists of the following four steps.

1. Apply Robust PCA in each time window and determine
“outlyingness” of the last time point.

Per time window, DeCon computes a robust multivariate
center, μw, and a covariance matrix, Σw, to determine the
distribution of the regular observations (standardized per var-
iable since we are interested in correlations rather than covari-
ances), and generates an outlyingnessmeasure for the last time
point of the window. To this end, the robust principal compo-
nents approach (ROBPCA) of Hubert et al. is used (for details,
see Hubert, Rousseeuw & Vanden Branden, 2005). In this
paper, we retained all principal components to avoid the issue
of how to choose the optimal number of components.1 Given
that we used all components, the outlyingness measure is the
so-called score distance, which equals the Mahalanobis dis-
tance between the last time point Xlast and the robust window-
specific center μw:

SDlast ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X last−μwð ÞT

X −1

w
X last−μwð Þ

r
ð1Þ

Note that the Mahalanobis distance differs from the
Euclidean one, in that the covariance matrix of the variables
under consideration is taken into account. If the data are

normally distributed,2 the squared Mahalanobis distances fol-
low a χ2 distribution with degrees of freedom equal to the
number of variables. Thus, the last time point is classified as
an outlier if the Mahalanobis distance exceeds the square root
of the 97.5th quantile of this χ2 distribution.

For analyzing our hypothetical data, the window size was set
to W = 20. In general, this parameter should be chosen consid-
ering the minimum time period within which no change is ex-
pected to occur (for more considerations and detailed simulation
results, see Bulteel et al., 2014). ROBPCAwas applied to the first
window, X1 : 20, then to the second window, X2 : 21, and so on,
until the last window, X31 : 50. Since the change point occurs at T
= 26, chances are high that the last time point of the first time
window that includes a new phase observation as its last time
point, X7 : 26, has a large score distance. In general, this probabil-
ity depends on how different the means and correlations are in
the subsequent phases. For the time window, X7 : 26, where the

robust center equals μ7:26 ¼
1:41
1:89
3:18

2
4

3
5 and the robust covariancematrix is

given by Σ7:26 ¼
0:29 −0:15 0:11
−0:15 0:62 0:13
0:11 0:13 0:57

2
4

3
5, the last observation, X 26 ¼

1:08
4:37
7:36

2
4

3
5, has a

score distance equal to

SD26 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:08
4:37
7:36

2
4

3
5− 1:41

1:89
3:18

2
4

3
5

0
@

1
A

T
0:29 −0:15 0:11
−0:15 0:62 0:13
0:11 0:13 0:57
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5
−1

1:08
4:37
7:36
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4

3
5− 1:41

1:89
3:18

2
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3
5

0
@

1
A

vuuut
¼ 6:06:

For this example, the cut-off for the score distance is 3.06.
Figure 2 (left panel) shows that the score distance of the last
observation, X26, indeed clearly exceeds the cut-off indicated
by the red line.

1 Note that Bulteel et al. (2014) implemented an automatic procedure to
determine the number of components and classified a time point as out-
lying if either the orthogonal distance or the score distance exceeds the
respective cut-off. However, for the simulations settings reported in this
paper, retaining all components worked equally well.

2 If the normality assumption may not hold for a specific data set, a
variant of ROBPCA for skewed data (Hubert, Rousseeuw & Verdonck
2009) can be plugged in into DeCon.

ase 1 Observations Ph

…

2.35 2.04 2.52 … 2.27 

1.98 2.82 2.07 … 2.10 

3.77 3.62 4.29 … 3.36 

Phase 2 Observations  

…

1.08  4.50  2.01  …  3.77

4.37  7.61  5.26  …  6.72

7.36  10.44  7.88  …  9.67

Fig. 1 Illustrative hypothetical data set with three variables, 50 time
points, and one change point between the 25th and 26th time point,
segmenting the series into two phases. Phase 1 observations, X1 : 25,

were drawn from MVN
1
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3
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5; 1 0 0
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A and Phase 2 observations, X26 : 50,
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2. Track the moving sum of the outlyingness of ten subse-
quent last time points and declare a change point when
this sum equals five at least.

The outlyingness of the last time point is a binary variable and
thus a binary time series is created (with 1 indicating an outlier
and 0 a regular observation). Although the outlyingness of the
last time point of awindowmay correctly signal the presence of a
change point, false negatives or false positives can of course
occur. To mitigate their impact, the results of multiple windows
are combined. Specifically, a moving sum of the outlyingness of
the final time point of ten subsequent windows is computed. As
soon as this sum equals at least five, the first outlying time point
in the corresponding set of time points is declared as the change
point. Note that the 5 out of 10 rule is recommended to balance
Type 1 and Type 2 errors (see Bulteel et al., 2014). Going back to
our example, Fig. 2 (right panel) shows the moving outlier sum
for the whole sequence. Themoving sum cut-off was reached for
the first time when the moving sum included observations, X21,
X22,X23,…,X30 . Out of these observations, the first outlying
one was X26. Thus, the change point is detected at time point
T = 26.

When a change point occurs, it is quite likely that the mov-
ing outlier sum stays relatively high for a while, because the
change in correlation structure and means will only start to
influence the ROBPCA estimates if at least .25W time points
within a window pertain to the next phase. This is because by
default, the ROBPCA estimates are based on the 75 % least
outlying cases only. Therefore, the minimum distance be-
tween subsequent change points equals .25W. In our hypothet-
ical time series no further change points were detected.

3. Repeat steps 1 and 2 in the backward direction.

The original DeCon procedure executed steps 1 and 2 only.
The simulations in the present paper revealed that this “forward
procedure” (forward, because we slide the timewindow from the
first to the last time point), works well for settings where the
correlation decreases. Indeed, in these cases, the first time points
in the moving window come from a more compact joint distri-
bution (higher correlation), while later observations come from a
more scattered joint distribution (low correlation). These later
observations, thus, will generate larger score distances, and will
be correctly flagged as outliers. However, when there is an in-
crease in correlation across time, the time windowmoves from a
phase with a lower correlation (Phase 1) to a phase with a higher
one (Phase 2). If the means and variances remain the same,
observations in Phase 2 will most likely have a small score dis-
tance, when compared to the distribution in Phase 1, because the
distribution of Phase 2 will mostly overlap with that of Phase 1

Fig. 2 ROBPCA outlier plot for window, X7 : 26, and plot of the moving
outlier sum generated by the forward procedure for the hypothetical data.
The left panel shows thatX26 exceeds the score distance cut-off (indicated
by the horizontal line), hence this observation is flagged as an outlier. The
right panel reveals that the moving outlier sum reaches the moving sum

cut-off at T = 21 when the sum is computed across observations, X21,
X22, X23,…,X30. The vertical line indicates that the location of the
change point is set at T = 26, since X26 is the first outlier within these
ten observations

-2 -1 0 1 2

-
2

-
1

0
1

2
3

X

Y

-Phase 1: 

-Phase 2: =0.9 

=0.0 

Fig. 3 Overlapping phase distributions. Observations are bivariate
normal with all means equal to zero and all variances equal to 1. Phase
1 observations are uncorrelated (ρ = 0.0) and Phase 2 observations are
highly correlated (ρ = 0.9)
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(see Fig. 3). Since no outliers are detected, neither is the change
point.

This limitation of the forward DeCon procedure can be re-
solved by also performing a “backward search,” which boils
down to reversing the time order (last time point of the sequence
becomes the first one, etc.) and conducting steps 1 and 2 on this
reversed sequence. Indeed, in the backward search, the increase
in correlation becomes a drop in correlation, since the time points
in Phase 2 constitute the standard against which observations in
Phase 1 will be compared. Therefore, new observations are iden-
tified as outliers, and the change point can be detected. For the
illustrative example, the change point was detected at T = 25.
However, one should be aware that we are now working in the
backward sense, implying that the detected change point actually
is the last observation of a phase, rather than the first one of a new
phase. Thus, to transform the backward estimate of the change
point locations to the correct time order, we should add one to it.
Thus, we obtain T = 26, which is indeed the correct change point.

4. Combine change points detected in the forward and the
backward procedure.

Finally, the change points detected in the forward and back-
ward procedure are pooled together. Of course, it will often
happen that the forward and backward search will detect the
same phase change, but yield slightly different estimates of the

change point. In the simulations, change point estimates that
are within a 10-time point distance will be pooled by comput-
ing their means. However, this maximum between distance for
pooled change points may be adjusted by the user to a higher
number when one deals with a much longer time series.
Moreover, when the mean does not correspond to an exact time
point in the series, we round the estimate to the next time point.

E-divisive

E-divisive detects change points by quantifying how different the
characteristic functions of the distributions of subsequent seg-
ments of the time series are (Matteson & James, 2014). Indeed,
given that characteristic functions uniquely describe a probability
distribution (Gnedenko, 2005), changes in the characteristic
function signal distributional change (Matteson & James,
2014). E-divisive performs the following segmentation steps.

1. Segment the time series into two phases for which the
characteristic functions maximally differ.

To segment the time series into two phases for which the
characteristic functions maximally differ, based on derivations
from Szekely and Rizzo (2005), the following divergence
measure of phases,X1 : τ andXτ + 1 : n, is computed for different
τ-values:

Q̂ τð Þ ¼ τ n−τð Þ
n

2

τ n−τð Þ
Xτ
i¼1

Xn
j¼τþ1

∥X i−X j∥−
τ
2

� �−1Xτ−1
i¼1

Xτ
k¼iþ1

∥X i−X k∥−
n−τ
2

� �−1 Xn−1
j¼τþ1

Xn
k¼ jþ1

∥X j−X k∥�;
"

ð2Þ

where ‖ ⋅ ‖ denotes the Euclidean distance.3 The left-most
term within the square brackets expresses the average
Euclidean distance of time points belonging to different
phases, whereas the two right-most terms quantify the average
within-phase distances, separately for Phase 1 and Phase 2.
For instance, if we divide our illustrative time series into two
candidate phases X1 : 25 and X26 : 50 by setting τ equal to 25,
the corresponding divergence measure equals:

Q̂ τð Þ ¼ 25 25ð Þ
50

Dist:Between X1:25;X26:50−Dist:Within X1:25−Dist:Within X 26:50½ � ¼ 136:42

Indeed,

Dist : Between X1:25;X 26:50 ¼ 2

25 25ð Þ
X25
i¼1

X50
j¼26

X i−X j
�� ��

¼ 2

25 25ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:35−1:08ð Þ2 þ 1:98−4:37ð Þ2 þ 3:77−7:36ð Þ2

q�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:35−4:50ð Þ2 þ 1:98−7:61ð Þ2 þ 3:77−10:44ð Þ2

q
þ…

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:27−3:77ð Þ2 þ 2:10−6:72ð Þ2 þ 3:36−9:67ð Þ2

q �
¼ 15:28

Dist :Within X 1:25 ¼ 25
2

� �−1X24
i¼1

X25
k¼iþ1

X i−X kk k

¼ 25
2

� �−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:35−2:04ð Þ2 þ 1:98−2:82ð Þ2 þ 3:77−3:62ð Þ2

q�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:35−2:52ð Þ2 þ 1:98−2:07ð Þ2 þ 3:77−4:29ð Þ2 þ…

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:19−2:27ð Þ2 þ 1:72−2:10ð Þ2 þ 3:86−3:36ð Þ2

q �
¼ 1:90

3 Matteson and James (2014) mention the option of raising the Euclidean
distances to a powerα, with 0<α <2. In this paper, we used the defaultα-
value of 1, since the same authors claim that similar results are obtained
when other α -values are used.
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Dist :Within X26:50 ¼ 25
2

� �−1X49
j¼26

X50
k¼ jþ1

X j−X k
�� ��

¼ 25
2

� �−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:08−4:50ð Þ2 þ 4:37−7:61ð Þ2 þ 7:36−10:44ð Þ2

q�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:08−2:01ð Þ2 þ 4:37−5:26ð Þ2 þ 7:36−7:88ð Þ2 þ…

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:37−3:77ð Þ2 þ 6:19−6:72ð Þ2 þ 9:41−9:67ð Þ2

q �
¼ 2:46

The optimal estimate of the change point location can be

derived by inspecting which τ-value maximizes Q̂: For our
illustrative time series, Fig. 4 (first panel) shows the Q̂ -values
that are obtained when τ is varied from 1 to 50. As expected,

Q̂ is maximal for τ = 25, implying that the distribution chang-
es after T = 25, generating a change point estimate at T = 26.

2. Determine if the change point is significant through a
permutation test.

After estimating the change point location, its signif-
icance is tested by means of a permutation test on the

maximal Q̂ -value. This test is conducted by generating
R permuted time series that are obtained by randomly
changing the time order of the sequence. Step 1 is ap-
plied to each of these permuted sequences, yielding R
new maximal Q̂ -values. The p-value of the permutation
test equals the percentage of permuted sequences that

generated a larger maximal Q̂ -value than the one ob-
tained for the original sequence. For the illustrative da-

ta, the p-value for the maximal Q̂ is 0.002, implying

that the change point, T = 26, is considered significant
(at a pre-specified significance level of 0.05).

3. Divide the sequence into separate phases according to the
detected change point and look for further change points
in each of them.

If the change point corresponding to the maximal Q̂ -
value obtained in Step 1 is found significant in Step 2,
the sequence is divided into the corresponding phases.
Steps 1 to 3 are then applied within each phase to detect
additional change points, yielding a change point detec-
tion process that is hierarchically structured. Applying the
procedure to the hypothetical data, the time series is split
into two phases after the first change point was found
significant in Step 2. The first phase, X1 : 25, was further
bisected, and the optimal change point estimate was T =
11. For the second phase, X26 : 50, the optimal change
point location was T = 41. The p-values were 0.668
and 0.268, respectively, for the first and second phases,
implying non-significance of these additional change
points. The phases were not further bisected and it was
concluded that the time series contains one change point
only.

Multirank

Multirank makes use of a homogeneity statistic, which
is a multivariate extension of the Kruskal-Wallis test
statistic (Lung-Yut-Fong, Lévy-Leduc, & Cappé, 2012).
Hence, Multirank only takes the rank order of the

Fig. 4 Optimization of the E-divisive,Multirank, and KCP segmentation
statistics over all possible change point locations, τ ∈ 1 : n, for the
hypothetical data. The first panel shows the maximization of the

divergence measure, Q̂, for E-divisive. The second panel displays the

maximization of the homogeneity statistic, T̂ , for Multirank. The last

panel exhibits the minimization of the variance-like criterion, R̂, for
KCP. For all three methods, the statistics were optimal when τ = 25,
implying that a change point occurred at T = 26
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scores per variable into account. The method consists of
two steps.

1. Check whether the time series contains at least one sig-
nificant change point.

Considering all possible τ-values, the sequence is di-
vided into two phases X1 : τ and Xτ + 1 : n. For each τ-
value, the dissimilarity of these phases is determined
by computing the following homogeneity statistic

T̂ τð Þ ¼ 4

n2
τð ÞR1

0
Σ̂

−1
R1 þ n−τð ÞR2

0
Σ̂
−1
R2

h i
ð3Þ

where Σ̂ is the empirical covariance matrix of the rank

orders of the scores, and Rk is a phase specific vector
containing deviations of the observed mean phase ranks
from the expected mean phase rank if the whole se-
quence is homogeneous. In case of homogeneity, the
rank order of a score is completely random and, thus,
the expected mean rank within a phase equals nþ1

2 .
However, if a change point segments the sequence into
phases with different distributions, the rank orders
would not be random anymore but dependent on the
distributions. Consequently, the deviations of the mean
phase ranks from the expected rank under homogeneity,

and thus also T̂ ; would be large. Hence, to decide
whether the time series contains at least one change

point, the significance of the highest T̂ –value is tested
by computing the associated asymptotic p-value under
the assumption of homogeneity. Details on this compu-
tation, which is based on Bessel functions of the first
kind and the gamma function, can be found in Lung-
Yut-Fong et al. (2012).

Figure 4 (second panel) displays the T̂ -values that were
obtained for our illustrative example using different τ-values,

and indicates that τ = 25 yields the highest T̂ -value. This
implies a possible change point at the 26th observation.
Specifically, the maximal homogeneity statistic equals
40.27, since

R1 ¼

R 1ð Þ
1 þ R 1ð Þ

2 þ R 1ð Þ
3 þ…þ R 1ð Þ

25

25
−
nþ 1

2
R 2ð Þ
1 þ R 2ð Þ

2 þ R 2ð Þ
3 þ…þ R 2ð Þ

25

25
−

nþ 1

2
R 3ð Þ
1 þ R 3ð Þ

2 þ R 3ð Þ
3 þ…þ R 3ð Þ

25

25
−

nþ 1

2

2
6666664

3
7777775

¼

31þ 26þ 33þ…þ 30

25
−25:5

14þ 22þ 15þ…þ 16

25
−25:5

19þ 16þ 24þ…þ 15

25
−25:5

2
666664

3
777775 ¼

−9:22
−12:30
−12:50

2
4

3
5;

R2 ¼

R 1ð Þ
26 þ R 1ð Þ

27 þ R 1ð Þ
28 þ…þ R 1ð Þ

50

25
−

nþ 1

2
R 2ð Þ
26 þ R 2ð Þ

27 þ R 2ð Þ
28 þ…þ R 2ð Þ

50

25
−

nþ 1

2
R 3ð Þ
26 þ R 3ð Þ

27 þ R 3ð Þ
28 þ…þ R 3ð Þ

50

25
−

nþ 1

2

2
6666664

3
7777775

¼

12þ 49þ 25þ…þ 50

25
−25:5

29þ 49þ 31þ…þ 40

25
−25:5

29þ 48þ 31þ…þ 41

25
−25:5

2
666664

3
777775 ¼

9:22
12:30
12:50

2
4

3
5

and

Σ̂
−1

¼
8:48 −0:83 −6:09
−0:83 11:75 −9:45
−6:09 −9:45 16:03

2
4

3
5:

In Step 1, R2 is always equal to −R1, since we are looking
for one change point. When considering multiple change
points, this property will of course not hold. The associated

p-value for the maximal T̂ is 1.38 × 10− 7, confirming that the
change point, T = 26, is highly significant. Henceforward, we

will denote the maximal T̂ as T̂max.

2. Decide on the number of change points and on their
location.

If the change point obtained in Step 1 is found to be signif-
icant, multiple change point detection is conducted by com-
puting the generalized form of the homogeneity statistic in
Eq. 3, where K denotes the number of change points, τ0 = 0
and τK + 1 = n:

T̂ τ1; τ2;…τKð Þ ¼ 4

n2
XK
k¼0

τ kþ1−τkð ÞRk
0
Σ̂
−1
Rk ð4Þ

To determine the number of change points and their loca-
tion, K is varied from 0 to Kmax. For each K-value, the phase
boundaries, τ1, τ2,…, τK, in Eq. 4 are varied and the homoge-

neity statistic, T̂ , for the resulting phases is computed. The
change point locations that generate the maximal homogene-

ity statistic, T̂max, are stored (see Table 1). Next, the T̂max

values are plotted against the number of change points K
(see Fig. 5, left panel). To choose the optimal K, two linear
regressions are performed for each K -one starting from 0 up
to K and one on the points from K onwards. The total residual
sum of squares of both regressions4 is then computed. The K-
value associated with the lowest sum is retained as the optimal
estimate of the number of change points. Based on Table 1, the

4 The before and after regression is only done forK = 1,…Kmax, since the
test for K being equal to zero or not is already conducted in Step 1.
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K-value with the lowest total residual sum of squares is K = 1,
revealing that our hypothetical data contain only one change
point, located at T = 26. This is easily spotted as well in Fig. 5
(left panel), where K = 1 generated the best before and after
regression fit as shown by the black lines.

KCP

The Kernel Change Point (KCP) method proposed by Arlot et
al. (2012) detects change points by evaluating how similar or
dissimilar the scores at the observed time points are to each
other. To this end, the observations are transformed to similar-
ities by means of a kernel function (Shawe-Taylor &
Christianini, 2004). In this paper, like Arlot et al. (2012), we
used the Gaussian kernel, which is the most widely applied
kernel in the literature (Sriperumbudur, Gretton, Fukumizu,
Lanckriet, & Scholkopf, 2010).

1. Compute pairwise similarities using a Gaussian kernel
function.

For each pair of observations, Xi and Xj, the pairwise sim-
ilarity is computed using a Gaussian kernel function,

k X i; X j
� 	 ¼ exp

− X i−X j
�� ��2

2h2

 !

The similarities take on values close to 0 whenXi andXj are
distant and values close to 1 when Xi and Xj are similar. The
bandwidth, h, is a smoothing parameter that indicates how
strict one is when deciding if two observations are similar
(see examples of usage in Hastie, Tibshirani, & Friedman,
2009). In this paper, we determined the bandwidth using the
procedure of Arlot et al. (2012) which sampled 250 observa-
tions Xi from the whole time series and set h to the median
Euclidean distance among those 250 observations.

2. For different numbers of change points K, minimize the
total intra-phase scatter to detect their location.

For varying numbers of change points, K = 0,…, Kmax,
KCP minimizes the following criterion across all possible
change point locations (τ1, τ2,…, τK):

R̂ τ1; τ2;…; τKð Þ ¼ 1

n

XK
k¼0

V̂ k

where V̂ k is the intra-phase scatter. V̂ k measures how homo-
geneous the corresponding phase is,

V̂ k ¼ τ k−τk−1ð Þ− 1

τk−τk−1

X
i¼τ k−1þ1

τk X
j¼τ k−1þ1

τk

k X i;X j
� 	

Indeed, the more similar the observations in a segment,
X τk−1þ1: X τk , are, the larger the sum that is subtracted by the

Table 1 Maximal Multirank homogeneity statistic, T̂max, total residual
sum of squares of the before and after K regressions and estimated change
point locations for the hypothetical data

K T̂max Total residual sum
of squares

Change points

0 0.00 - -

1 40.27 10.22 26

2 47.55 189.54 9, 26

3 57.67 291.47 19, 21, 26

4 62.99 427.62 19, 21, 23, 26

5 67.71 565.21 4, 9, 19, 21, 26

Fig. 5 MultiRank and KCP heuristic procedures for choosing the
number of change points, K, for the hypothetical data. The left panel

shows the T̂max vs. K plot for Multirank, where the best before and

after regression fit is generated when K is set to 1. The right panel
displays the tuning of the penalty coefficient, C, for KCP, which
generated K = 1 as the most stable K
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rightmost term of V̂k and thus the smaller the intra-phase scatter.

Moreover, the smaller are the V̂k ’s for all k, the smaller the

criterion, R̂, will be. For example, Fig. 4 (third panel) which shows
the R̂ -values obtained when looking for the optimal location of a
single change point (τ= τ1) in our illustrative time series, reveals

that R̂ is minimal for τ= 25, creating segments,X1 : 25 andX26 : 50.

Specifically, the intra-phase scatters for these two phases are

V̂1 ¼ 25−
1

25

X25
i¼1

X25
j¼1

k X i;X j
� 	 ¼ 4:55

V̂2 ¼ 25−
1

25

X50
i¼26

X50
j¼26

k X i;X j
� 	 ¼ 7:00;

generating the minimal criterion value, R̂ τ ¼ 25ð Þ
¼ V̂1þV̂2

n ¼ 11:55
50 ¼ 0:23. Henceforward, this minimal KCP

criterion generated from the optimal change point locations
will be denoted as R̂min. Applying the method for K = 0 to
Kmax = 5, yields the change points listed in Table 2.

3. Decide on the optimal number of change points.

After Step 2, what remains to be determined is the most

appropriate number of change points, K. Since the R̂min -
values decrease with increasing K, Arlot et al. (2012) pro-
posed to penalize the R̂min -values for the additional complex-
ity that is introduced by allowing for extra change points.
Specifically, they select the number of change points which
minimizes

critK ¼ R̂min þ penK ; ð5Þ

where penK ¼ C Vmax Kþ1ð Þ
n 1þ log n

Kþ1


 �h i
. The constant,C,

is a tuning parameter that controls the influence of the penalty
term (see below). The remaining constant, vmax, is determined
by computing the trace of the estimated covariance matrix for
the first 5 % time points as well as for the last 5 % time points,
and choosing whichever is larger.

As can be expected, the value chosen for C, greatly influ-
ences the performance of the method, where a smaller C fa-
vors numerous change points, while a larger C causes
undersegmentation. Whereas in previous simulations
(Matteson & James, 2014) this tuning issue was dealt with
by just setting a particularC value, without further motivation,
we propose selecting C by plugging linearly increasing values
starting from C = 1 into Eq. 5. When C = 1, the generated
estimate for K is Kmax. If C is increased, the effect of the
penalty term is strengthened and the generated estimate for
K becomes smaller. Thus, the procedure terminates when C
becomes so high that the associated estimate for K equals 0.
Based on the theoretical motivations in Lavielle (2005), theK-
value that is selected most often in this grid search is retained
as the optimal number of change points. Figure 5 (right panel)
shows the K-values that are selected across different C-values
between 1 and 151.9 for our illustrative example. Since the
mode of the selected K-values equals 1, as could be expected,
we decided that the time series contains one change point.
Note that in case only Kmax and 0 are selected in the grid
search, it should be concluded that the time series contains
no change points (see details in Lebarbier, 2005).

Software

For DeCon and for the tuning steps of the other methods,
Matlab codes are available upon request from the first author
of this paper. E-divisive can be applied using the ecp package
in R.Multirank was programmed in Python, and the codes can
be requested from the second author of the corresponding
paper (Lung-Yut-Fong et al., 2012). For KCP, R codes are
included in the supplementary files provided by Matteson
and James (2014). The hypothetical data used for illustrating
the methods was simulated with the “mvtnorm” R-package
and can be obtained from the first author as well.

Simulation studies

Two simulation studies will be performed to compare the four
methods, i.e., DeCon, E-divisive, Multirank and KCP, using
the settings of Bulteel et al. (2014) and Matteson and James
(2014). Neither of those earlier studies compared all four
methods examined in this paper.

Simulation settings of Bulteel et al. (2014): Mean changes,
correlation changes or both

The first simulation study is conducted to compare the perfor-
mance of DeCon, E-divisive, MultiRank and KCP in
detecting changes in mean, changes in correlation, or both.
In particular, we used the simulation settings of Bulteel et al.
(2014) to generate time series of 300 time points with 5

Table 2 Minimal KCP criterion, R̂min; and change point locations for
different values of K for the hypothetical data

K R̂min Change points

0 0.56 -

1 0.23 26

2 0.21 26, 41

3 0.19 26, 34, 41

4 0.17 26, 27, 34, 41

5 0.16 26, 27, 34, 35, 41
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variables. Each time series consisted of two phases containing
150 time points each. The time series variedwith respect to the
following three factors, which were fully crossed with 1,000
replicates per cell of the design:

1. Change in mean between the two phases (three levels):
There could be no change, an increase of 1 standard de-
viation for 3 variables, or an increase of 2 standard devi-
ations for three variables (in the latter two levels, the mean
of the other two variables remains the same).

2. Change in correlation structure between the two phases
(two levels): The correlation structure of the variables is
manipulated by generating true scores according to a prin-
cipal component model. For settings with no correlation
change, a 300×5 matrix was generated according to a
model with 3 components. For settings with correlation
change, two 150×5 matrices were generated, where the
first one is based on three components and the second
one on two components. The loadings on these compo-
nents were sampled from a uniform distribution on the
interval (-1,1). The component scores, on the other hand,
were drawn from a standard normal distribution. Note that
the loadings and the error values were rescaled to obtain
data that contain 25 % noise.

3. Strength of autocorrelation within the phases (three
levels): 0, .3 and .7.

Each simulated time series was constructed by adding
true scores and noise. The noise was sampled from a
multivariate normal distribution having a zero vector as
its mean vector and the identity matrix as its covariance
matrix. Next, we imposed a lag-one autocorrelation on
these noise scores by means of a recursive filter
(Hamilton, 1994).

All four methods under study were then applied to these
simulated data sets. The tuning parameters for each method
are tabulated in Table 3. For E-divisive, default settings by
Matteson and James (2014) were maintained imposing a max-
imum of ten phases and a minimum phase size of 30.
Equivalently, for Multirank and KCP, Kmax

5 was set to 9.
For DeCon, on the other hand, a window size of 75 was
chosen to impose a minimum phase size6 of .25WS ≈ 19.

To quantify how well the four methods revealed the under-
lying phases, we computed the Rand Index (RI) between the
recovered phases and the true phases. AnRI value of 1 implies
perfect recovery of the underlying phases, while 0 implies that
recovered and underlying phases do not resemble one another

(Rand, 1971). We also recorded the detected number of
change points.

Results show that KCP outperforms the three other
methods, exhibiting the highest RIs in almost all
settings (Table 4). It also proved to be the most robust to the
presence of autocorrelation, which leads to false detections for
the other methods. All methods succeeded in detecting chang-
es inmean, thoughDeCon performedworse for settings with a
small mean change (1 standard deviation). Furthermore,
change in correlation (without change in mean) proved to be
harder to detect. Though KCP (RI≥ 0.94) and DeCon
(RI≥0.87) still showed acceptable detection performance in
these settings, performance of Multirank (RI≤0.61) and E-
divisive (RI≤ 0.80) was inadequate. The RI-values for
Multirank were close to 0.50, because the method either did
not detect the change point and concludes that the time series
contains only a single phase (no or weak autocorrelation) or
yields too many change points (strong autocorrelation), rather
than the correct two phases. Finally, for settings where both
changes in mean and in correlation were introduced, all
methods retrieved the change point in most cases. Note that
a repeated measures ANOVAwith method as within subjects
factor and size of mean change, size of correlation change, and
size of autocorrelation as between subjects factors, revealed
that two effects had a generalized effect size (ηG

2 ) larger than
.13, indicating a medium effect size (Bakeman, 2005): size of
mean change (ηG

2 =.27) and its interaction with the method
used (ηG

2 =.18).

Simulation settings of Matteson and James (2014):
Correlation change and presence of noise variables

The first simulation study already showed that changes in
correlation structure are more difficult to detect. To get further
insight into the performance of the four methods in revealing
correlation change, we ran a second study7 based on the sim-
ulation settings of Matteson and James (2014). An interesting
feature of these settings is that they allow to investigate how
performance is affected by the presence of noise variables.
Noise variables are variables that do not change in means
and correlations. Specifically, Matteson and James (2014)
generated normally distributed time series that consist of three
phases of equal length. In the first phase, the variables are
uncorrelated. In the middle phase, they become strongly cor-
related, such that their pairwise correlations amount to 0.9.
And in the final phase, the variables are uncorrelated again.
Three factors were manipulated, with 1,000 replicates per
possible combination:

5 MaxNumberof Phases ¼ 300
minphase size ¼ Kmax þ 1≈10:

6 The window size for DeCon cannot be tuned to a minimum phase size
of 30 since that would imply choosing a window size equal to 120, which
is larger than the real phase size of 100.

7 Tuning parameters in the first simulation study were maintained in the
second simulation study, with the exception ofKmax being set to 19 and 29
for settings with N = 600 and N = 900, respectively.
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1. Number of variables D (three levels): 2, 5, and 9.
2. Number of time points n (three levels): 300, 600, and 900.
3. Number of noise variables (two levels): 0 (i.e., all vari-

ables correlate in the middle phase) and number of vari-
ables minus two (only two variables become correlated in
the middle phase).

When no noise variables are present, KCP is the best meth-
od in all conditions but one (two variables, 300 time points),
with RI values larger than 0.97 (see Table 5).Multirank, on the
other hand, consistently failed, being the worst method. Its RI
values were close to 0.33, because no change points are de-
tected, thus generating 1 phase only, instead of the three un-
derlying phases. A repeated measures ANOVA, with method
as within subjects factor and number of variables and number
of time points as between subjects factors, revealed that RI
was indeed clearly influenced by method (ηG

2 =.87), as well as
by its two-way interaction with number of variables (ηG

2 =.34)
and three-way interaction with number of variables and num-
ber of time points (ηG

2 =.15); the main effect of number of
variables (ηG

2 =.29) was strong as well.
When noise variables were present, DeCon was the clear

winner, with RIs being consistently larger than 0.81. Moreover,
its RI performance was not extremely affected by the number of
noise variables or the number of time points, although both fac-
tors have an impact on the number of detected change points. All
the other methods yielded inadequate RI values in all with noise
settings and thus are severely affected by the presence of noise
variables. In almost all settings (except for KCP on five variables
and 900 time points), their RI values were close to 0.33, because
no change point was detected formost data sets. Not surprisingly,
the repeated measures ANOVA revealed that the main effect of
method (ηG

2=.72) explained the bulk of the differences in the RIs
for settings with noise.

In summary, the following conclusions can be drawn. First,
KCP and Multirank seem to be reliable methods for detecting
mean changes, whereas E-divisive and DeCon often yield
false change points. Second, KCP and DeCon are the best
methods for detecting correlation change, although KCP often
fails if noise variables are present. DeCon is too sensitive
however and frequently yields false positives. Thus, change
points that are only found by DeCon should be approached

cautiously: They can signal real correlation changes as well as
false positives.

Illustrative application

Change point detection

We further assessed the performance of the methods by apply-
ing them to multivariate time series data obtained from a study
on cardiorespiratory assessment of mental load in the field of
aviation (Grassmann, Vlemincx, von Leupoldt, & Van den
Bergh, in press). Male pilot applicants were subjected to four
experimental periods: a resting baseline, a “vanilla” baseline, a
highly demanding multiple task and a recovery period. During
the resting baseline, participants were instructed to fix their
eyes on a cross that was presented on the screen. In the vanilla
baseline, they were asked to complete a minimally demanding
vigilance task which was intended to reduce anticipatory
arousal, hence improving the validity of baseline measures
(see Jennings, Kamarck, Stewart, Eddy, & Johnson, 1992).
In the multiple task period, participants had to perform three
tasks simultaneously, tapping perceptual speed, spatial orien-
tation and working memory (for a detailed description see
Grassmann et al., in press). Finally, during the recovery peri-
od, participants watched a relaxing underwater movie. Each
period lasted for 6 min, however the first and last 30 s were cut
before data processing to procure stationary data, and to ex-
clude artifacts that were occasionally caused by speech and
movement during the periods of transition. Heart rate, respi-
ration rate and partial pressure of end-tidal CO2 (petCO2)
were monitored throughout the experiment.

Based on previous findings, the means of all three physio-
logical variables were expected to change across the phases
(e.g., Backs & Seljos, 1994; Brookings, Wilson, & Swain,
1996; Veltman & Gaillard, 1998; Wientjes, Grossman, &
Gaillard, 1998). Heart rate, for instance, was hypothesized to
decrease during the vanilla baseline and to increase during the
multiple task while readjustments were expected for the re-
covery period (Jennings et al., 1992). Regarding correlation
changes, we expect an increase in the correlation of cardiore-
spiratory variables in the vanilla baseline, as it requires fo-
cused attention and low cognitive activity (Wu & Lo, 2010).
During the multiple task, where tasks are more highly de-
manding, a decrease in correlation could occur (Zhang, Yu,
& Xie, 2010).

The study included 115 pilot applicants; however, for this
paper, we analyzed data from a single randomly chosen pilot.
The variables were initially measured in different frequencies.
Cardiac data (sampled at 1,000 Hz) were processed beat-by-
beat whereas respiratory data (sampled at 20 Hz) were proc-
essed breath-by-breath. For the present analyses, common
time points were re-aligned by up-sampling the respiratory

Table 3 Tuning parameters for the four change point detection
methods: first simulation study based on simulation settings of Bulteel
et al. (2014)

Method Initial parameters

Decon Window Size = 75, Moving Sum Cut-off = 5/10

E-divisive Min. Cluster Size = 30, R = 499, Significance level = 0.05

Multirank Kmax = 9

KCP Kmax = 9

998 Behav Res (2017) 49:988–1005



data (i.e., respiration rate and petCO2 values of one breath
were assigned to each heart rate value that was initiated within
the corresponding respiratory cycle). It is also important to

note that variables were all scaled to have a variance of 1 as
three methods, E-divisive, DeCon, and KCP, calculate dis-
tance measures which are influenced by the scale of the data.

Table 4 Mean Rand indices and number of detected change points: first simulation study based on simulation settings of Bulteel et al. (2014) with one
real change point

ΔCorr ΔMean AR Coeff E-divisive Multirank KCP DeCon

RI No. of CPs RI No. of CPs RI No. of CPs RI No. of CPs

0 0 0.0 0.97 0.06 1.00 0.03 0.91 0.49 0.97 0.08

0.3 0.94 0.14 0.96 0.30 0.90 0.53 0.94 0.14

0.7 0.68 1.24 0.39 5.32 0.81 0.94 0.75 0.72

1 0.0 0.97 1.05 1.00 1.00 1.00 1.00 0.81 0.71

0.3 0.97 1.12 0.99 1.01 1.00 1.00 0.82 0.76

0.7 0.90 1.89 0.97 1.34 0.99 1.00 0.85 1.40

2 0.0 0.99 1.05 1.00 1.00 1.00 1.00 0.98 1.09

0.3 0.98 1.14 1.00 1.00 1.00 1.00 0.97 1.10

0.7 0.91 1.91 1.00 1.01 1.00 1.00 0.94 1.62

1 0 0.0 0.77 0.68 0.50 0.07 0.97 1.07 0.87 1.01

0.3 0.78 0.81 0.51 0.35 0.96 1.11 0.88 1.11

0.7 0.80 1.79 0.61 4.40 0.94 1.21 0.88 1.79

1 0.0 0.98 1.07 1.00 1.00 1.00 1.00 0.96 1.33

0.3 0.98 1.13 0.99 1.01 1.00 1.00 0.96 1.40

0.7 0.91 1.78 0.97 1.30 0.99 1.00 0.91 1.98

2 0.0 0.99 1.06 1.00 1.00 1.00 1.00 0.97 1.33

0.3 0.98 1.13 1.00 1.00 1.00 1.00 0.97 1.37

0.7 0.92 1.80 1.00 1.00 1.00 1.00 0.92 1.93

Table 5 Mean Rand indices and number of detected change points: second simulation study based on simulation settings of Matteson and James
(2014) with two real change points

Noise N D E-divisive Multirank KCP DeCon

RI No. of CPs RI No. of CPs RI No. of CPs RI No. of CPs

None 300 2 0.40 0.23 0.33 0.03 0.76 2.15 0.86 1.79

5 0.91 1.93 0.34 0.09 0.98 2.24 0.96 2.65

9 0.98 2.14 0.34 0.24 0.98 2.21 0.94 2.76

600 2 0.53 0.68 0.34 0.06 0.97 2.21 0.88 1.88

5 0.99 2.07 0.34 0.14 1.00 2.03 0.96 3.15

9 0.99 2.07 0.35 0.30 1.00 2.01 0.90 4.59

900 2 0.91 1.80 0.33 0.04 0.99 2.03 0.89 1.92

5 1.00 2.07 0.34 0.20 1.00 2.00 0.96 3.35

9 1.00 2.08 0.35 0.42 1.00 2.00 0.87 5.99

With 300 5 0.36 0.11 0.33 0.03 0.39 0.39 0.81 1.53

9 0.36 0.12 0.33 0.01 0.35 0.12 0.87 2.21

600 5 0.37 0.17 0.34 0.03 0.47 0.83 0.84 1.77

9 0.36 0.13 0.34 0.04 0.36 0.19 0.88 3.75

900 5 0.38 0.21 0.33 0.03 0.61 1.56 0.84 1.88

9 0.37 0.15 0.33 0.03 0.37 0.22 0.85 5.13
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Where possible, methods were initialized in such a way that at
maximum 20 phases8 would be discerned.

The change point detection results are displayed in Fig. 6.
Employing DeCon, five change points were detected by the
forward search (411, 568, 672, 889, 1,064), and three by the
backward search (681, 901, 1,055). Given that the change
point estimates from the backward search were considerably
close to the last three change point estimates from the forward
search, and given that the time series is quite long, we pooled

8 The following tuning parameters were employed. DeCon:Window Size
= 300, Moving Sum Cut-off = 5/10. E-divisive: Min. Cluster Size = 75, R
= 499, significance level = 0.05. Multirank: Kmax = 19. KCP: Kmax = 19,
C = 79.3

1-326

1-102

103-190

103-326

191-32

Multirank: Before and After Regression Fit

1-673

6 327-417

E-divisive: Hierarchical segmentation

327-673

327-563

418-563

564-673

1-1393

674-9

KCP: Tuning of the Penalty Coefficient

67

674-1053

03 904-1053

1054-1189

4-1393

1054-1393

1054-1267

1190-1267

1268-1393

Fig. 6 Change point selection output of the four methods for the cardio-
respiratory data. The topmost panel displays the DeCon moving outlier
sum from the forward and the backward procedure, implying five change
points. The next panel exhibits the hierarchical change point detection
process by E-divisive, generating ten change points. The lowest left panel

shows the T̂max vs K plot for Multirank, indicating two change points.
The lowest right panel demonstrates the linear tuning of the penalty co-
efficient for KCP, suggesting using two change points
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these change points by computing their means. Thus, the final
set of change points generated by DeCon is (411, 568, 676,
895, 1,060).

E-divisive yields ten change points: 103, 191, 327, 418,
564, 674, 904, 1,054, 1,190, and 1,268, five of which are very
close to the ones detected by DeCon. We initially attributed
the five additional change points to Type 1 errors as E-divisive
does not correct for multiple testing. However, changing the
significance level did not dramatically change the results (nine
change points for significance level = .01). Multirank and
KCP both suggest that two change points might be present.
Their change point estimates, 674 and 1,054 are identical, and
were also obtained with DeCon and E-divisive. Examining
Fig. 7, these two time points correspond to the boundaries of
the Multiple task, confirming that the cardio respiratory mea-
sures from this specific pilot exhibited changes at the moment
the highly demanding task was introduced as well as when the
recovery period started. Given that in the simulations KCP
and Multirank were reliable in detecting change points signal-
ing changes in mean, whereas KCP and DeCon succeed rather
well in revealing correlation change, we may say that the two
common change points probably indicate changes in mean as
well as changes in correlation.

Auxiliary analyses

To verify that both mean and correlation changed during
the Multiple task (as hypothesized above on the basis of
the simulation results), and to determine which variables
specifically exhibited these changes, we conducted some
auxiliary analyses. Focusing on mean changes, Mann-
Whitney U tests revealed that the mean of all variables
increased during the multiple task, and decreased again
in the recovery period (see Fig. 8).

In order to check for correlation changes during the multiple
task, we utilized the test for the difference of two correlations
based on the Fisher’s z-transformation of the sample correlation
coefficients (Cohen, Cohen, West, & Aiken, 2003). On one
hand, we concluded that heart rate and respiration rate became
more negatively correlated during the multiple task, and corre-
lated less during the recovery period. For petCO2, no signifi-
cant correlation changes were found during the transition to the
multiple task. However, during the transition to recovery,
petCO2 significantly changed correlation with heart rate
(negatively) and with respiration rate (positively).

Discussion and Conclusion

Change point detection in multivariate time series data pre-
sents a major data-analytical challenge because the variables
involved can exhibit changes in means, in correlation, or in
both (Terien et al., 2009). Detecting changes in correlation is
crucial when one wants to understand the behavior of the
system that is comprised of these variables. In this study, we
compared the performance of four recently proposed non-
parametric multivariate change point detection methods, fo-
cusing on changes in correlation.

In the first simulation study, Multirank and KCP, and to a
somewhat lesser extent E-divisive, succeeded well in detect-
ing mean changes. These results confirmed previous findings
of Matteson and James (2014) regarding mean changes.
DeCon, on the other hand, could only compete with these
methods for large mean changes (Δmean ≥ 2sd). Change in
correlation without mean changes, proved to be harder to cap-
ture. For this specific setting, KCP and DeCon clearly
outperformed E-divisive and Multirank. E-divisive missed to
detect the change points in a considerable number of repli-
cates, while Multirank failed in almost all cases. The second

Fig. 7 Cardio-respiratory data and change points detected by the four methods. The experimental phases: resting baseline, vanilla baseline, multiple
task, and recovery are indicated by the varying background shading
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simulation study revealed that when the correlation change to
be detected is sizeable (no noise settings), KCP performs the
best. These results are somewhat different from those reported
by Matteson and James (2014) which suggested that KCP
performs poorly compared to E-divisive and Multirank for a
relatively small sample size (n = 300). These differences are
attributed to the additional tuning step of the penalty coeffi-
cient, C, that we implemented for KCP. In contrast, our
Multirank results are worse than those of Matteson and
James (2014), because we included the significance test for
a single change point, which was proposed by the original
authors but not implemented by Matteson and James (2014),
leading to false positives. It is important to note that DeCon
was clearly the best method in detecting changes in correlation
for settings with only two variables, as well as settings in

which the majority of the variables were noise variables (with
noise settings). All other methods performed badly in these
settings, failing to detect all change points.

Overall, we thus conclude that which methods perform
well strongly depends on the specific data setting. Therefore,
we recommend using multiple methods in order to be more
sensitive to different types of changes. However, we see a
major issue that needs to be tackled when applying multiple
methods. For the simulation study, it was straightforward to
know which methods produced correct detections and which
ones generated false positives because we introduced the
changes ourselves. When applying the methods to real data,
such as in the application section, this is almost always not the
case. The task of deciphering which change points are impor-
tant then lies in the hands of the user. Based on our simulation
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Fig. 8 Mean changes for the two change points, indicated by the vertical lines, that were detected by all four methods. Levels of cardio-respiratory
variables increased in the second phase, then decreased again
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results, we provide the following advice: For detecting mean
changes, one should inspect the changes that are detected by
both KCP and Multirank. For detecting correlation changes,
change points yielded by both KCP and DeCon are probably
trustworthy. Lastly, when numerous variables are monitored,
without prior knowledge whether some of them are noise var-
iables, change points unique to DeCon should be scrutinized
as well as they may signal correlation change.

Aside from the simulation results, an overview of the sim-
ilarities and differences between the four change point detec-
tion methods under study with respect to statistical method,
segmentation strategy and number of change points heuristic
used could help an applied researcher in deciding which meth-
od or set of methods is appropriate for the data at hand, and
could yield interesting directions for future methodological
research. Regarding the statistical method used, Multirank is
based on a multivariate version of the Kruskal-Wallis test sta-
tistic, which looks at deviations from the overall median, thus
it is mainly sensitive to changes in levels. DeCon looks at
score distances computed using a robust center and covari-
ances, thus it is expected to pick up not just changes in levels
but also in correlations. E-divisive and KCP, on the other
hand, are both based on Euclidean distances which can be
influenced by changes in any moments of the distribution.
This explains why these methods can capture both mean and
correlation changes. An extra feature of the similarity measure
in KCP, though, is that it uses a non-linear transformation of
this distance through a Gaussian kernel, magnifying the dif-
ferences. Therefore, it is not unexpected that KCP performs
better than E-divisive when the change introduced in the sim-
ulations was purely correlational. Regarding segmentation
strategy, KCP andMultirank optimize an overall homogeneity
statistic to locate multiple change points simultaneously. E-
divisive employs binary segmentation such that only one
change point is estimated at a time, leaving previously found
change points untouched. DeCon on the other hand does not
look for the optimal location for a change point, but indicates
for every time point whether or not it is likely that a change
occurred (because the time point is outlying with respect to the
previous ones). When deciding on the optimal number of
change points, the number of change points obtained with
DeCon can hardly be controlled; the method for instance can-
not be used to retrieve the three most likely change points. E-
divisive employs a permutation test which is embedded in the
hierarchical segmentation, but this test disrupts the natural
ordering of time points and is not corrected for family wise
error rate. Both KCP and Multirank use a heuristic procedure
which weighs both the minimization (maximization) of the
distance measure and the number of change points. This
weighting proved to be effective in avoiding false detections
for KCP and Multirank. One could postulate that generalizing
the E-divisive divergence measure to more than two groups
might decrease false detections. A pruning step, in which all

change points are re-examined and only the most evident ones
are retained, could possibly improve the performance of
DeCon.

Finally, a common limitation of all considered change point
detection methods is that they neither indicate which type of
change (mean/correlation/both) occurred nor which variables
are involved. Regarding the type of change, the methods un-
der study might even indicate changes in higher moments.
This is the price to pay, of course, when applying non-
parametric methods as the distance measures used can be
caused by numerous types of changes in the joint distribution.
In contrast, most parametric methods monitor specific param-
eters (Chen & Gupta, 2012). Thus, when a change is detected,
one immediately knows which type of changes was exhibited.
Regarding the variables involved, the four non-parametric
methods are not able to pinpoint which channels demonstrate
the changes and which ones did not. To address this limitation,
one could implement auxiliary analyses as we did for the
illustrative application. However, this is cumbersome, espe-
cially when there are numerous recovered phases. Future re-
search may therefore aim to determine the type of change and
the variables involved during change point detection.

In conclusion, KCP was generally the best method in de-
tecting changes in mean, changes in correlation, or both, and
can therefore be recommended. When the goal is capturing
changes in mean, results can be confirmed by Multirank, as it
detects this type of change with comparable reliability. When
the focus is capturing changes in correlation, we recommend
inspecting DeCon change points as well. Although in general,
DeCon performed less reliably than KCP, the method is quite
sensitive to correlation changes, especially when the multivar-
iate time series contains multiple noise variables.
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