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Abstract Diffusion models (Ratcliff, 1978) make it possible
to identify and separate different cognitive processes underly-
ing responses in binary decision tasks (e.g., the speed of
information accumulation vs. the degree of response conser-
vatism). This becomes possible because of the high degree of
information utilization involved. Not only mean response
times or error rates are used for the parameter estimation, but
also the response time distributions of both correct and error
responses. In a series of simulation studies, the efficiency and
robustness of parameter recovery were compared for models
differing in complexity (i.e., in numbers of free parameters)
and trial numbers (ranging from 24 to 5,000) using three dif-
ferent optimization criteria (maximum likelihood,
Kolmogorov–Smirnov, and chi-square) that are all imple-
mented in the latest version of fast-dm (Voss, Voss, &
Lerche, 2015). The results revealed that maximum likelihood
is superior for uncontaminated data, but in the presence of fast
contaminants, Kolmogorov–Smirnov outperforms the other
two methods. For most conditions, chi-square-based parame-
ter estimations lead to less precise results than the other opti-
mization criteria. The performance of the fast-dm methods
was compared to the EZ approach (Wagenmakers, van der
Maas, & Grasman, 2007) and to a Bayesian implementation
(Wiecki, Sofer, & Frank, 2013). Recommendations for trial
numbers are derived from the results for models of different
complexities. Interestingly, under certain conditions even

small numbers of trials (N < 100) are sufficient for robust
parameter estimation.
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The diffusion model was introduced almost four decades ago
by Roger Ratcliff (1978) as a model for cognitive processes in
memory retrieval. Since then, it has been shown that the mod-
el can map cognitive processes from a multitude of different
cognitive tasks that require fast binary decisions, including—
for example—color or numerosity classifications, or lexical
decision tasks (see Voss, Nagler, & Lerche, 2013, for a
recent review). Thus, the diffusion model can be seen as a
generic model for binary decisions. Why have accumulator
models like the diffusion model become so popular in recent
years? The advantage over traditional analyses of response
time (RT) means (or error rates) is that different aspects of
cognitive processing can be measured separately. Imagine a
study on cognitive aging that analyzes the stability (or decline)
of cognitive performance in a specific task at high age. If the
mean RT is used as the dependent measure, you cannot be sure
whether the longer RTs are really based on slower information
processing, because older adults may be more cautious—that
is, they may respond only if they are really sure about the
correct response (e.g., Forstmann et al., 2011; Ratcliff,
Thapar, Gomez, &McKoon, 2004). Additionally, older adults
may be slower in motor response execution (e.g., Ratcliff,
Thapar, & McKoon, 2004). Thus, it is important to get a valid
measure for speed of information processing that is not con-
founded by speed–accuracy settings or the speed of motor
response. In the diffusion model framework, the drift param-
eter provides such a measure of cognitive speed (see Voss,
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Rothermund, & Voss, 2004, for an experimental validation
study).

In the first three decades following its introduction in psy-
chological research, Ratcliff’s (1978) diffusion model was
used primarily by researchers with a profound interest in,
and knowledge of, mathematical psychology. In recent years,
however, the diffusion model has increasingly attracted the
attention of researchers from various other fields of psychol-
ogy. Examples indicating the wide range of applications for
the diffusion model include analyses of cognitive processes in
such typical experimental paradigms as the lexical decision
task (e.g., Yap, Balota, & Tan, 2013), sequential priming par-
adigms (e.g., Voss, Rothermund, Gast, &Wentura, 2013), task
switching (Schmitz&Voss, 2012, 2014), or prospective mem-
ory paradigms (e.g., Boywitt & Rummel, 2012). Other appli-
cations encompass social cognitive research (e.g., Germar,
Schlemmer, Krug, Voss, & Mojzisch, 2014; Klauer, Voss,
Schmitz, & Teige-Mocigemba, 2007; Voss, Rothermund, &
Brandtstädter, 2008), cognitive aging (e.g., McKoon &
Ratcliff, 2013; Spaniol, Madden, & Voss, 2006), cognitive
processes related to psychological disorders (e.g., Metin
et al., 2013; Pe, Vandekerckhove, & Kuppens, 2013; White,
Ratcliff, Vasey, & McKoon, 2010b), and other fields of
psychology.

So far, the diffusion model has often been applied for the
detection of differences between groups or conditions (e.g.,
Boywitt & Rummel, 2012). More recently, the correlations
between diffusion model parameters and external criteria have
also constituted a research field (e.g., between drift rate and
general intelligence; see Ratcliff, Thapar, & McKoon, 2010).
On the basis of such observations, lately, the idea has been
expressed that the diffusion model might also be used as a
diagnostic tool (e.g., Aschenbrenner, Balota, Gordon,
Ratcliff, & Morris, 2016; Ratcliff & Childers, 2015).

These different types of applications of the diffusion model
go along with different requirements regarding parameter es-
timation accuracy. For example, for the detection of differ-
ences between conditions, biases in parameter estimation are
not necessarily a problem. Imagine an estimation procedure
that results in a systematic overestimation of the drift rates in
both of two conditions. If the estimation bias is similar over
conditions, it will not affect the power of difference detection.
If, however, the estimation bias depends on the experimental
condition (e.g., via the number of error responses), the power
to detect differences between the conditions might be affected.
In another scenario, there might be no systematic estimation
bias, but imprecise measurement could lead to large average
deviations between the true and reestimated parameter values.
The increased error variance would directly diminish the pow-
er of difference detection. In this case, an increase in the num-
ber of participants can reestablish the power to detect any
effects on parameters. Finally, if the diffusionmodel is applied
for the diagnosis of interindividual differences in cognitive

functioning, it is important that the relevant parameter be es-
timated very accurately (i.e., reliably) for each single individ-
ual. Thus, depending on the aim of the researcher, more or less
strict criteria would have to be applied.

One important methodological factor that directly influ-
ences the precision of results is the number of trials. There
has been a huge variation in the numbers of trials used for
previous diffusion model experiments, ranging from less than
100 to several thousands of trials per participant. The choice
of trial numbers typically seems to be rather arbitrary. It is
remarkable that the required trial numbers have rarely been
analyzed systematically so far (see Lerche & Voss, in press;
Ratcliff & Childers, 2015; and Wiecki, Sofer, & Frank, 2013,
for some exceptions).

The main aim of the present article is to provide well-
founded recommendations regarding the requisite trial num-
bers for robust diffusion modeling. As we discussed above,
the question of requisite trial numbers is closely related to the
precision that is necessary for a specific research question. In a
series of simulation studies, we tested the precision of param-
eter estimation procedures for very small to very high trials
numbers. This allowed us to derive conclusions for minimally
required trial numbers (i.e., a number below which diffusion
modeling becomes virtually meaningless), as well as
Bmaximum^ trial numbers (above which increases in preci-
sion become negligible).

A factor influencing the required number of trials is the
efficiency of the applied estimation procedure. Accordingly,
a second objective of this article is the comparison of the
efficiency of different optimization criteria for the parameter
search procedure for diffusion modeling. The simulations in
this article were carried out using fast-dm-30 (Voss, Voss, &
Lerche, 2015), which is the newest version of fast-dm (Voss &
Voss, 2007, 2008). Besides the Kolmogorov–Smirnov criteri-
on that was implemented in former versions, fast-dm-30 now
includes implementations of the chi-square and maximum
likelihood criteria. The implementation of these within the
same program facilitates comparisons of the criteria’s perfor-
mance. Thus, in contrast to studies that have compared differ-
ent programs (e.g., van Ravenzwaaij & Oberauer, 2009), we
can exclude the possibility that any differences between opti-
mization criteria are due to program specifics.

Finally, a third focus is the influence of model complexity
on the required numbers of trials. Typically, diffusion model
analyses allow for intertrial variations of the diffusion model
parameters (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx,
2002). Although estimates of intertrial variability seldom al-
low for meaningful psychological interpretations, they often
do improve model fit. However, it remains unclear how this
increase in model complexity would influence the precision of
estimates for the more meaningful diffusion model parame-
ters. To investigate the influence of model complexity, we
analyzed four differently complex models. Note that in the
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present article only models for simple experimental designs
are considered. If data from more complex designs with dif-
ferent conditions were mapped, models would probably be
more stable (and hence, the requisite trial numbers lower) if
it were known on which parameters the manipulation would
map; if not, the increasing number of model parameters might
make the model even more unstable.

In the following sections, we first give a short introduction
to diffusion modeling. This is followed by the presentation of
the main properties of the different optimization criteria (i.e.,
chi-square, maximum likelihood, and Kolmogorov–
Smirnov). In the subsequent section, the available computer
programs for diffusion model analyses are briefly presented.
After this, we go into the main research issues, giving an
overview of initial simulation studies comparing different op-
timization criteria and different trial numbers. Finally, we out-
line and discuss the methods and results of our simulation
studies.

The rationale of the diffusion model

Researchers dealing with data from binary decision tasks often
use either the percentage of correct responses or the mean RTs
as dependent measures. However, some research questions
cannot be properly addressed on the sole basis of (one of)
these measures. For instance, different speed–accuracy set-
tings can make it difficult to interpret an observed difference
in mean RTs between two groups or conditions. Are the longer
RTs in one of these conditions due to slower information up-
take, or rather the result of a conservative response style? The
diffusion model helps solve this problem, because it maps
speed–accuracy settings and the speed of information process-
ing on independent parameters. This decomposition becomes
possible by taking into account the complete distributions of
both correct and error responses (and thus, implicitly, also the
error rate). Thereby, several cognitive components are identi-
fied that have clear psychological interpretations (Voss et al.,
2008; Voss et al., 2004). This makes it possible to answer not
only the question of whether or not people (or tasks) differ in
their performance in a cognitive task, but also to determine in
what way they differ (e.g., why one person is faster than an-
other). Note that several mathematical models allow such a
separation of the different components involved in decision
tasks. One prominent example is the linear ballistic accumu-
lator model (Brown & Heathcote, 2008). In this article, we
focus on the diffusion model (Ratcliff, 1978).

The basic assumption of the diffusion model is that deci-
sions are based on a continuous information-sampling process
that is described by a Wiener diffusion process (i.e., a diffu-
sion process with constant drift) running in a corridor between
two thresholds (see Fig. 1). The current information drives the
decision process toward the upper or the lower threshold,

representing two possible decisional outcomes. As soon as
the upper or lower threshold is hit, the decision is reached,
and a corresponding motor program is initiated. Because the
diffusion process is a stochastic (i.e., noisy) process, durations
and outcomes may vary from trial to trial, even if identical
stimulus information is presented.

In the following paragraphs, we briefly present the param-
eters of the diffusion model. The drift rate (parameter ν)
indicates the average speed (and direction) of information up-
take. High (absolute) drift rates lead to fast responses and few
errors, whereas a drift around zero indicates chance perfor-
mance with long RTs. Thus, high drift rates indicate higher
cognitive speed or easy tasks.

A second model parameter is the distance between the two
thresholds (parameter a). This parameter defines how much
information is considered before a decision is made. A large
threshold separation means that a lot of information needs to
be sampled before the decision is made, which will result in
large RTs with a low error rate. Thus, conservative decision-
makers will have large threshold separations, and liberal
decision-makers small ones.

The starting point (parameter z) defines the position at which
information accumulation begins. If z is not centered between
the thresholds, there is a decision bias in favor of the threshold
that is closer to the starting point. To reach this Bpreferred^
threshold, the process needs less information, and the corre-
sponding responses will therefore be more frequent and faster.
Instead of the absolute value z, often the relative starting point
zr = z/a is reported (e.g., Voss et al., 2015), with zr = .5 reflecting
an unbiased decision process. Note that the decision bias
mapped by the starting point is conceptually similar to response
bias in the signal detection framework. We prefer the term
decision bias because it influences the decision process, and
not merely response execution.

In addition to the decision times, in the analysis of RT data
the duration of nondecisional processes (parameter t0 or Ter,

Fig. 1 Example illustration of the decision process of the diffusion
model. The process starts at z (here situated in the middle of threshold
distance a) and moves with mean drift rate v until a threshold is hit (here
the upper threshold). In the following, the motoric execution of the
associated response (here Response A) is initiated
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not shown in Fig. 1) also needs to be considered. These
nondecisional processes can temporally precede (e.g.,
encoding of information) or follow (motoric execution of the
response) the accumulation process.

Furthermore, the diffusion model can also explain trial-to-
trial fluctuations in performance that arise—for example—
from variability in the stimulus information or in the attention
of the participant. For this purpose, intertrial variability pa-
rameters have to be included (Ratcliff & Rouder, 1998;
Ratcliff & Tuerlinckx, 2002; see also Laming, 1968).
Specifically, it is assumed that the drift across trials follows
a normal distribution with mean ν and standard deviation sν.
The starting point and nondecision time are assumed to be
normally distributed, with means zr and t0 and widths szr
and st0, respectively. More recently, the diffusion model has
been expanded to include a response bias parameter (param-
eter d) that maps differences in the duration of nondecisional
processes between the two responses (Voss, Voss, & Klauer,
2010; Voss et al., 2015).

Finally, the diffusion model includes the diffusion coeffi-
cient—that is, the amount of noise in the diffusion process
(sometimes called the intratrial variability of drift). The dif-
fusion coefficient is typically not estimated but instead used as
a scaling parameter (theoretically, either ν or a could be used
as the scaling parameter, and then the diffusion coefficient
could be estimated). We set the diffusion coefficient to s = 1
(and thus held it constant across conditions; see Donkin,
Brown, & Heathcote, 2009, for a different suggestion). If an-
other value is used, all diffusion parameters (except t0 and st0)
are rescaled by the factor s (e.g., Ratcliff usually sets s to .1 in
his applications).

Optimization criteria

One common aim in diffusion model analysis is to find a set
of parameters that optimally describes the empirical data.
To achieve this, deviations between the observed data and
the data predicted from a certain set of parameters are min-
imized by adjusting the parameter values. For this purpose,
different optimization criteria quantifying the goodness of
fit between the observed and expected data have been used
in the diffusion model literature. In the following discus-
sion, we present three criteria that have frequently been
applied in the context of diffusion modeling: chi-square
(CS), maximum likelihood (ML), and Kolmogorov–
Smirnov (KS) (see also Table 1).

Chi-square The CS criterion has often been used for pa-
rameter estimation (Ratcliff & McKoon, 2008; Ratcliff &
Tuerlinckx, 2002; Wagenmakers, Ratcliff, Gomez, &
McKoon, 2008). To calculate CS, responses are grouped
into bins according to latency. This is done separately for

the responses at the upper and lower thresholds. The
borders of the bins are based on quantiles of the RTs
observed. Ratcliff and Tuerlinckx (2002) proposed the use
of six bins, with the two outer bins each comprising 10 % of
the observed RTs, and the other four bins 20 % each.
Accordingly, the borders of the RT bins are defined by
the 10th, 30th, 50th, 70th, and 90th percentiles of the em-
pirical RT distributions. These bins are then applied to the
predicted distributions. From the deviations between the
numbers of predicted and observed responses for each
bin, a CS value is computed.1 In an iterative parameter
search process, this CS sum is minimized. Because the pre-
dicted (cumulative) distributions only need to be evaluated
at the borders of the bins, computation is fast and indepen-
dent of the number of trials.

Maximum likelihood The ML criterion is used in various
mathematical modeling approaches. In contrast to the CS ap-
proach (e.g., Ratcliff & Tuerlinckx, 2002), the ML approach
uses every RT, and no binning is necessary. A set of parame-
ters is sought to maximize the likelihood of the empirical data.
For technical reasons (see Ratcliff & Tuerlinckx, 2002), typi-
cally the sum of logarithmized density values is maximized
rather than the product of densities. Unlike CS, the computa-
tion time required by ML depends strongly on the number of
trials per data set, because the predicted density has to be
computed for each trial.

Kolmogorov–Smirnov The KS criterion was introduced as
an optimization criterion for diffusion modeling by Voss et al.
(2004) and has been applied in numerous studies (e.g., Horn,
Bayen, & Smith, 2011; Metin et al., 2013; Voss, Rothermund,
et al., 2013). The criterion is based on the cumulative distri-
bution functions (CDFs) of RTs. To calculate the KS criterion,
the distributions at the upper and lower thresholds are com-
bined bymultiplying all RTs from the lower threshold by –1 (a
procedure first proposed by Voss et al., 2004; see also Voss &
Voss, 2007). This creates a cumulative density function for the
whole data set. The KS criterion is the maximum absolute
vertical distance between the observed and predicted CDFs.
Accordingly, for each observed RT the distance between the
two CDFs needs to be computed to identify the maximum.
The iterative search for parameter estimates then aims at min-
imizing this maximum distance.

1 Strictly speaking, the resulting value is not exactly a chi-square value,
because the borders of the bins are determined from the empirical distri-
butions and not from the predicted distributions (Speckman & Rouder,
2004). However, the values approximate a chi-square distribution (Fifić,
Little, & Nosofsky, 2010). In diffusion model analyses, CS is usually
calculated in this way, because it is computationally much easier and
faster.
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Estimation programs

For many years researchers had to develop parameter search
implementations of their own for the diffusion model analy-
ses. In recent years, several programs were published for this
purpose. Among them is the EZ-diffusion model (Grasman,
Wagenmakers, & van der Maas, 2009; Wagenmakers, van der
Maas, Dolan, & Grasman, 2008; Wagenmakers, van der
Maas, & Grasman, 2007), which is available as JavaScript,
R code, a MATLAB implementation, and an Excel spread-
sheet. In comparison with search procedures based on the
three optimization criteria presented in the last section, EZ
uses a more limited amount of information. In the original
version of EZ (Wagenmakers et al., 2007), parameters were
estimated from error rates and the mean and variance of the
correct responses. Closed-form equations are utilized for the
parameter calculation. In this way, estimates for three param-
eters can be obtained (a, ν, t0). In the extended versions of EZ
(Grasman et al., 2009; Wagenmakers, van der Maas, et al.,
2008), further parameter options are available, such as estima-
tion of the parameter z and the consideration of contaminant
data.

The Diffusion Model Analysis Toolbox (DMAT;
Vandekerckhove & Tuerlinckx, 2007, 2008) is a MATLAB
toolbox. In DMAT, the CS method is implemented.
Furthermore, the toolbox offers the possibility of using quantile
maximum probability estimation (see also Heathcote &Brown,
2004; Speckman & Rouder, 2004).

A third program, fast-dm (Voss & Voss, 2007, 2008), is a
command-line program. In fast-dm-29 and all earlier versions,
parameter search was generally based on KS as the optimiza-
tion criterion. The newest version, fast-dm-30 (Voss et al.,
2015), offers a choice between the KS, ML, and CS
approaches.

The last few years have seen the advent of software solutions
for hierarchical diffusion model analyses. Vandekerckhove,
Tuerlinckx, and Lee (2011) proposed a plug-in to the
WinBUGS software. A platform-independent solution,
HDDM (for hierarchical drift diffusion model) has been
presented by Wiecki et al. (2013). HDDM is a toolbox based

on Python and uses a Bayesian method for parameter estima-
tion. It can be used either for fitting a hierarchical model or for
fitting parameters for each individual subject. Recently, another
platform-independent software option was introduced by
Wabersich and Vandekerckhove (2014).

Literature on comparison of optimization criteria

There is a lack of systematic research on the performance of
different optimization criteria for diffusion modeling. One ex-
ception is the study by van Ravenzwaaij and Oberauer (2009),
who compared the performance of EZ, fast-dm, and DMAT
(using the multinomial log-likelihood function, MLF). They
found KS to be superior to MLF in terms of the correlations
between the true and recovered parameter values. However,
MLF performed better than KS in recovering the mean true
values. Since the comparison of the optimization criteria KS
and MLF was based on different software solutions, however,
program details may have been the factor behind the resulting
differences, which were not necessarily based on the different
optimization criteria. Interestingly, EZ performed very well in
this study. Especially in the event of a reduction in the number
of trials (80 instead of 800), EZ outperformed fast-dm in the
correlations (DMAT could not even be applied in this condi-
tion, since it needs a minimum of 11 errors in each RT
quantile). However, EZ (even in the more recent versions)
does not allow for the estimation of intertrial variabilities, so
full comparability with KS and MLF cannot be established.
Note that the estimation of intertrial variabilities (especially sz
and sν) posed serious problems for fast-dm and DMAT. This
may have had a negative influence on the recovery of the other
parameters. EZ, on the other hand, circumvents the estimation
difficulties associated with intertrial variabilities by providing
estimates for only three parameters (a, ν, and t0). Besides, no
contaminated trials were included in the simulation studies.
Contaminants are responses resulting from sources other than
a diffusion process. In several simulation studies, Ratcliff
(2008) demonstrated the sensitivity of EZ to the presence of

Table 1 Comparison of optimization criteria

Chi-Square Maximum Likelihood Kolmogorov–Smirnov

Term to be minimized
in the optimization
process

∑ oi−pið Þ2
pi

Note: oi /pi correspond to
the numbers of responses
observed/predicted in bin i

−∑ln(d(RTi, ki))
Note: d(RTi, ki) corresponds to the

density value of the RT observed
in trial i with response ki

max
i¼1…n

eCDF RTið Þ–
pCDF RTið Þ

�
�
�
�

�
�
�
�

Note: n is the number of responses observed;
eCDF/pCDF are the empirical/predicted
cumulative distribution functions; RTi is
the RT in trial i

Information utilization low high medium

Computation time low high medium
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contaminants (but see Wagenmakers, van der Maas, et al.,
2008).

Ratcliff and Tuerlinckx (2002) compared ML, CS, and a
weighted least squares (WLS) fitting method, both with and
without the inclusion of contaminants. They showed that for a
model consisting of eight parameters (a, t0, four drift rates, sz,
and sν; z was assumed to be centered between the thresholds)
and data without contaminants, ML outperformed CS and
WLS. When contaminants were added, ML’s performance
deteriorated dramatically. CS was also impaired by the pres-
ence of contaminant trials, whereas the performance of WLS
deteriorated only slightly. Ratcliff and Tuerlinckx
counteracted the deterioration of ML and CS by explicitly
modeling the contaminants with a uniform distribution.
Consequently, parameter recovery improved. Furthermore,
they included the intertrial variability of t0 into the model
(st0), and with both this additional parameter and the modeling
of contaminants, CS resulted in precise and unbiased estima-
tion when 1,000 trials per condition were used. For 250 trials
per condition, the performance was significantly worse. The
authors recommended using CS with the correction for con-
taminant trials and st0 included in the model. Note, however,
that for 250 trials per condition, the performance of CS in this
model was Bvery poor^ (p. 467). Subsequently, many re-
searchers have used CS, referring to the studies by Ratcliff
and Tuerlinckx, and stated that CS Bprovides the best balance
between robustness and the ability to recover parameter
values^ (Wagenmakers, Ratcliff, et al., 2008, p. 146).

Recently, the performance of newly developed hierarchical
diffusion models has been tested. Wiecki et al. (2013) com-
pared CS- andML-based algorithms to HDDM, their software
solution for a hierarchical Bayesian estimation of parameters.
Their work revealed the superiority of HDDM, especially for
small trial numbers. Besides, ML often outperformed CS.

Ratcliff and Childers (2015) ran a series of simulation stud-
ies in which they compared eight different estimation methods
and programs. DMAT cut a poor figure, and EZ did not per-
form very well in the presence of contaminants. However, CS
(based on either ten or six bins), ML, and KS generally recov-
ered the parameters quite well. Some of the findings for
HDDM were inconsistent. For example, in Simulation
Study 1, in one design (with four drift rates) HDDM featured
high correlations between the true and reestimated parameter
values even for small trial numbers, outperforming the other
methods. In another design (with two drift rates) for smaller
numbers of trials, it performed worse than most of the other
methods. Besides, in another simulation study (Simulation
Study 2), unexpectedly, high biases were found for a large
trial number, whereas the biases for a small trial number were
smaller than those in the other methods.

With the availability of fast-dm-30 (Voss et al., 2015), the
three criteria CS (based on six bins), ML, and KS can be
compared to each other independently of confounding factors

(i.e., program specifics). As we outlined in the section on
optimization criteria, CS, ML, and KS differ in the amounts
of information used for the fitting process. Whereas CS re-
duces the available information by dividing the distributions
into bins, ML and KS consider the exact value of each RT
observed. This is why we expected our simulation studies to
reveal that the number of trials required for efficient parameter
estimation was higher for the CS criterion than for ML and
KS. KS requires calculation of the vertical distance for each
RT observed; the criterion itself, however, is based on only
one of these distances (the maximum distance). Accordingly,
ML may be a more efficient estimator than KS.

However, we also expected the optimization criteria to dif-
fer in terms of robustness in the presence of Bcontaminants.^2

Because the (log-)likelihood can be strongly influenced by
single RTs, we assumed that results from the ML method
would be most strongly biased when RT distributions were
contaminated, whereas the CS and KS criteria were expected
to be more robust. Therefore we expected ML to require the
lowest number of trials, followed by KS and CS, with uncon-
taminated data. In the presence of contaminants, however, ML
should perform worse than KS.

Number of trials required

Is diffusion modeling restricted to experimental designs with
more than 1,000 trials per participant? After receiving regular
inquiries from researchers greatly interested in diffusion
modeling but uncertain about the number of trials required
for robust analysis, we decided to address this issue systemat-
ically. Conventionally, high numbers of trials are used for
diffusion modeling. For instance, Ratcliff, Thapar, Gomez,
et al. (2004) used 2,100 trials in their experimental session
(see also Leite & Ratcliff, 2011; Ratcliff & Rouder, 1998;
Ratcliff & Van Dongen, 2009; Wagenmakers, Ratcliff, et al.,
2008; but see Klauer et al., 2007). Although generally a large
database makes the fitting of mathematical models more sta-
ble, obviously using extraordinarily large trial numbers can
cause problems of its own. First, the experimental sessions
require more time and effort. More importantly, psychological
effects may change over time due to practice effects, and after
several hundred trials, some effects of interest may be dimin-
ished, or even disappear completely. Additionally, it may of-
ten be difficult to find sufficient stimuli, if they are not sup-
posed to be repeated.

One interesting approach to addressing the issue of trial
numbers by way of experimental design has been proposed
by White, Ratcliff, Vasey, and McKoon (2009), who used
filler trials (see also White et al., 2010b) to achieve higher

2 We consider an estimation procedure to be Brobust^ when its results are
not biased by contaminants.

518 Behav Res (2017) 49:513–537



accuracy in parameter estimation. Some parameters (response
criteria and nondecisional processes) were estimated on the
basis of both target and filler trials. In this way, the authors
could use several hundred trials for the parameter estimation,
resulting in more stable estimates for the drift rates, which
were the actual focus of their studies. Although this approach
addresses the problem of sparse stimulus material, the authors
were still using several hundred trials, and the question re-
mains unanswered whether these high trial numbers are actu-
ally necessary.

There is a general consensus that higher trial numbers lead
to higher accuracy in parameter estimation. This has been
confirmed by several simulation studies (e.g., Ratcliff &
Tuerlinckx, 2002; Vandekerckhove & Tuerlinckx, 2007). In
these studies, however, trial numbers were manipulated only
in a limited range. A more systematic comparison of different
trial numbers was done by Wiecki et al. (2013; see also
Ratcliff & Childers, 2015). They varied the number of trials
from 20 to 150 per condition (in a design with two drift rates
and st and sz fixed at zero) and analyzed the mean absolute
errors of the single parameters and the probability of detecting
a significant difference between the two drift rates. Their re-
sults revealed an improvement in parameter estimation when
the number of trials was increased.

Although these studies clearly demonstrated that parameter
estimation improves with the number of trials, they did not
focus on the inference of guidelines for the trial numbers
required.

Method

To compare the performance of different parameter estimation
methods (CS, KS, and ML) and programs (HDDM and EZ),
and to infer guidelines for the numbers of trials necessary for
efficient and robust parameter estimation, a set of simulation
studies was carried out. In the following sections, we first
describe the design of these studies, proceeding from there
to present our criteria for evaluating the performance of the
optimization criteria.

Design

In our studies, we tackled two different designs, in which
one drift rate or two drift rates were estimated. Diffusion
models with one drift rate are mostly used to analyze data
that has been coded as correct (e.g., upper threshold) versus
error (e.g., lower threshold). This kind of analysis allows
col laps ing data across di fferent s t imulus types .
Alternatively, one-drift models might be applied for subsets
of data based on the same stimulus types. The one-drift
design was used in a first series of simulations. Both for
simulation and parameter reestimation, we used models

that differed in the number of free parameters. The seven-
parameter model was composed of all seven parameters
typically used in diffusion model analyses (a, ν, t0, zr, sν,
st0, and szr); in the six-, four-, and three-parameter models,
certain parameters were fixed at constant values. In the six-
parameter model, the relative starting point zr was fixed at
.5 (the process starts centered between the two thresholds);
in the four-parameter model, the three intertrial variabilities
(sν, st0, and szr) were fixed at zero; and in the three-
parameter model, both the intertrial variabilities and the
starting point were fixed. For each model (i.e., the three-,
four-, six-, and seven-parameter models), 1,000 random
parameter sets were generated with typical parameter
values observed in previous applications. The parameter
values were drawn from uniform distributions with the mini-
mum and maximum values shown in Table 2. Subsequently,
for each parameter set, seven random data sets with different
numbers of trials (24, 48, 100, 200, 500, 1,000, and 5,000)
were simulated with construct-samples,3 resulting in a total
number of 4 (models) × 1,000 (parameter sets) × 7 (trial num-
bers) = 28,000 simulated data sets.

Whenever performance differs between the stimulus types,
or when there is an a priori bias in favor of one of the re-
sponses, a more complex model using two drift rates is need-
ed. Typically, thresholds are associated with responses for the
two stimulus types, and drift rates are estimated separately for
each stimulus type in one model (e.g., White, Ratcliff, Vasey,
& McKoon, 2010a; Yap, Balota, Sibley, & Ratcliff, 2012).
This results in a drift with positive sign for the stimulus at
the upper threshold and a drift with negative sign for the stim-
ulus at the lower threshold. In our simulations, this procedure
was mapped by a Btwo-drift design.^ In particular, we simu-
lated data sets with two stimulus types, using one positive and
one negative drift that were allowed to vary in absolute values
(i.e., difficulty). The drift values were drawn from a multivar-
iate normal distribution. They were generated to represent
a difference of dz = 0.35 (Cohen, 1988).4 All other pa-
rameters were equivalent to those in the one-drift design.
We also used the same numbers of trials as in the one-
drift design, with, for example, 24 trials composed of 12
trials of one stimulus and 12 trials of the other.5 A total
of 1,000 data sets were constructed for each of the four
models (with different numbers of parameters) and for
each trial number, resulting in another 28,000 data sets

3 Construct-samples is part of the fast-dm software. It simulates RT data
by applying a random walk with very small time steps.
4 Effect size formula: dz ¼ M1−M2

SDdiff
, with dz = 0.35,M1 = 2.00,M2 = 2.35,

SD1 = SD2 = 1, and r = .50.
5 CS, as implemented in fast-dm, only allows for parameter estimation if
in each condition at least 12 trials are observed for one of the two re-
sponses. Accordingly, in the condition with 24 trials, the comparability of
the CS method to the other estimation methods is limited, because not all
datasets met this precondition.
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(4 models × 7 trial numbers × 1,000 parameter sets). In
the remainder of this study, we refer to the models as the
three-, four-, six-, and seven-parameter models, so as to
use the same terms as in the one-drift design, even if
each model actually contains one further parameter (i.e.,
the second drift rate).

We also performed robustness tests for both the one-drift
and two-drift designs. In particular, 4 % of the trials of each
data set were randomly chosen and substituted for by either
fast or slow contaminants. Fast contaminants were used to
simulate fast guesses, that is, trials in which participants re-
spond quickly without processing the target stimulus. Since
fast-guess response is situated on the level of chance
(Swensson, 1972), the response of each selected trial was
randomly set to either 0 (lower threshold) or 1 (upper
threshold). In terms of RTs, we used latencies at the left-
hand edge of the original distribution for fast contaminants,
thus ensuring that these values cannot be easily identified as
outliers; real Bstatistical^ outliers farther from the original dis-
tribution would bias the result more severely but would at the
same time be easier to detect prior to analysis. More specif-
ically, latencies for fast contaminants were drawn ran-
domly from a uniform distribution with a range of
200 ms centered around the fastest theoretically possible
time for each parameter set (i.e., using an interval from
tmin – 100 ms to tmin + 100 ms, with tmin = t0 – st0/2).
Secondly, we were interested in the influence of slow
contaminants resulting from temporary distraction of
participants from the task in hand. In this condition,
only the RTs of the selected trials were changed, but
not the respective types of response. Latencies for these
types of contaminants were randomly chosen from a
uniform distribution ranging from 1.5 to 5 interquartile
ranges above the third quartile of the original data.

Parameter estimation

Parameter values were recovered using fast-dm-30 (Voss
et al., 2015) from uncontaminated and contaminated data
sets.6 This was done using each of the three optimization
criteria (CS, KS, ML). Furthermore, we analyzed all data sets
with HDDM (Wiecki et al., 2013) and the data sets of the
three-parameter model additionally with the EZ method
(Wagenmakers et al., 2007).7 As with our settings for
HDDM (version: 0.5.3), we used 2,000 samples and a 20-
sample burn-in, and the proportion of outliers was fixed at
zero.8

In total, for both the one-drift and two-drift designs we used
28,000 data sets (4 models × 1,000 parameter sets × 7 trial
numbers) with three types of contamination (none, fast, and
slow) analyzedwith fourmethods (CS, KS,ML, and HDDM),
requiring 672,000 runs (+ 21,000 runs of EZ) of the parameter
estimation procedure.9

As we mentioned before, the number of parameters
reestimated was equivalent to those of the parameter model
on which the simulation was based. For instance, in the case of
the three-parameter model in the one-drift design, only the
three parameters a, ν, and t0 were estimated, whereas the
remaining four parameters were each fixed at the correct con-
stant value (st0 = szr = sν = 0, zr = .5). The four- and seven-
parameter models included estimation of starting point zr. This
is only possible if there are two distributions of responses (at
the upper and lower thresholds). If no data are available for
one of the two thresholds, the distance from the starting point
to the Bempty^ threshold is not defined. Accordingly, for the
models that estimated a starting point, we excluded all data
sets in which the smaller distribution (response 0 or response

6 Fast-dm was executed with the precision parameter set to 3. Setting the
precision to 4 significantly slows down the estimation process without
having any relevant positive impact on the parameter recovery achieved.
7 EZ cannot be applied to data sets with an accuracy rate of 0%, 50%, or 100
%. For data sets with an accuracy of 100 %, we applied an edge correction
method that has also been used by Wagenmakers et al. (2007): accuracy=
1− 1

2�n, with n being the number of trials. We used similar approaches
for the 0 % (accuracy = 1

2�n) and 50 % (accuracy = 0:5 þ 1
2�n) accuracy

rates. In the two-drift design, EZ was applied separately to the trials of each
response type. We then computed the means over the two threshold sepa-
rations and the two nondecision components.
8 The prior distributions in HDDM are a Gamma distribution (threshold
separation, nondecision time), a normal distribution (drift rate, starting
point), a half normal distribution (intertrial variability of drift rate and non-
decision time), and a Beta distribution (intertrial variability of starting point;
see also Wiecki et al., 2013). Note that these distributions differ from the
one (uniform distribution for all parameters) that we used to create the
parameter values, which could deteriorate the performance of HDDM.
9 The estimations with fast-dm and HDDM were carried out using the
computational resource bwUniCluster, funded by theMinistry of Science,
Research and Arts and the Universities of the State of Baden-
Württemberg, Germany, within the framework program bwHPC.

Table 2 Minimum and maximum values of each diffusion model
parameter used for the creation of parameter sets, and Bpossible
accuracy^ of each parameter

Parameter Minimum Maximum Possible Accuracya

a 0.5 2.0 .054

ν –4.0 4.0 .270

t0 0.2 0.5 .032

zr 0.3 0.7 .035

sν 0.0 1.0 .849

st0 0.0 0.2 .031

szr 0.0 0.5 .402

The diffusion coefficient in fast-dm is set to 1. To compare parameter
ranges and accuracies with parameter values cited in studies using a
coefficient of .1, the parameters a, ν, zr, sν, and szr need to be multiplied
by .1. a 95% quantile of absolute deviations of true values and reestimated
values using theML criterion for uncontaminated simulated data sets with
5,000 trials and at least 4 % of trials at each threshold
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1) comprised fewer than 4 % of all trials (i.e., at least one trial
at each threshold in the smallest data sets with 24 trials). The
number of remaining data sets ranged from 689 to 801 out of
1,000 for the different conditions in the one-drift design. In the
two-drift design, only in one condition did one data set have to
be excluded due to the B4 % criterion^. Because in the three-
and six-parameter models the starting point is fixed (and thus
the distance from a threshold without trials to the starting point
is also defined), the estimation was carried out for all data sets.

Evaluation criteria

The evaluation of parameter estimation performance was
based on four main criteria: (1) correlations between the true
and reestimated parameter values, (2) parameter estimation
biases (i.e., deviations of the reestimated from the true param-
eter values), (3) the numbers of participants required for de-
tection of a drift rate difference in the two-drift design, and
(4) the estimation precision, assessed as squared deviations of
the reestimated from the true parameter values. In the follow-
ing discussion, we present the rationale for the choice of these
criteria (see also Table 3 for a summary) and give details on
the computation. Additionally, (5)we evaluated the computa-
tion time required for parameter estimation.

First, parameter recovery performance was assessed by the
correlations of each parameter’s true values with the
reestimated values. This criterion is of relevance if the focus
of the researcher lies in the detection of relationships between
diffusion model parameters and external criteria (e.g., the
relationship between the drift rate and general intelligence;
see, e.g., Ratcliff et al., 2010). One weakness of correlation
coefficients is that they fail to reveal systematic biases in pa-
rameter recovery. Often, such a systematic bias might be un-
problematic, because it does not invalidate interpretation of
the results. However, there might be cases in which an esti-
mation bias is related to the true parameter values (e.g., an
estimation bias might be stronger when fewer error data are
present—i.e., when drift is strong). In such a case, biased
parameter estimation might challenge the internal validity of
results.

Thus, our second criterion was a measure of parameter
biases. For each parameter, we computed the differences be-
tween the estimated and true parameter values. Accordingly, a
positive value indicated that the parameter was overestimated,
whereas a negative value showed a parameter underestimation.
Besides, we computed the mean bias for each parameter quar-
tile (i.e., the mean of all data sets lying in the first, second, third,
and fourth quartiles of the true parameter values), to graphically
depict possible dependencies between the parameter values and
biases. We also computed Pearson correlation coefficients be-
tween the true parameter values and the respective biases.

Note that a parameter might be estimated without bias, but
still with low precision. For some participants the parameter
might be overestimated, and for some underestimated, with no
clear pattern. This can be a problem for difference detection, due
to higher variability of the values within groups/conditions.
Using a higher number of trials is one way to enhance the power
of a statistical test, as parameters are estimatedwith less of a noise
variance. Another way is to enhance the number of participants.
Our third criterionwas the number of participants required for the
detection of a drift rate difference between two conditions.
Specifically, for the two-drift model we calculated the effect sizes
resulting from the recovered drift rates. Using pwr.t.test from the
pwr R package (Champely, 2012; R Development Core Team,
2014) for the observed effect sizes between the two drift esti-
mates, we obtained the numbers of participants required for a
power of 80 % (in a two-sided paired t test with a significance
level of 5%). If the drift parameters were estimated perfectly (i.e.,
with no deviations of the estimated from the true parameter
values), 66 participants would be required to detect this differ-
ence with a power of 80 % (two-sided testing).

Although an increase in the sample increases the power to
detect differences between conditions, no such compensation
for low precision is possible, when the aim of the researcher
lies in a diagnostic application of the diffusion model
(Aschenbrenner et al., 2016; Ratcliff & Childers, 2015). For
this purpose, it is of great importance that parameters be esti-
mated precisely for all individuals, thus minimizing deviations
between the true and estimated values. Accordingly, our fourth
evaluation criterion was the precision of parameter estimates,
calculated as the squared deviations of the reestimated from

Table 3 Juxtaposition of the four evaluation criteria of parameter estimation performance

Evaluation Criterion Aim of Researcher

Correlations between true and reestimated parameter values Detection of relationships between diffusion model parameters and external criteria
(e.g., between drift rate and intelligence)

Parameter estimation biases (i.e., deviations of reestimated
from true parameter values)

Detection of parameter differences between conditions; interpretation of effect sizes
(over- or underestimation of true effect?)

Number of participants required for detection of drift rate
difference

Sample size computation for detection of parameter differences between conditions

Estimation precision—Squared deviations of reestimated
from true parameter values

Diagnostic use of diffusion model parameters (e.g., drift rate for the measurement
of intelligence)
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the true parameter values. In contrast to the bias measure, here
we did not differentiate between over- and underestimation of a
parameter (using squared values, any deviation would contrib-
ute equally). Note that the diffusion model parameters have
quite different scales, and the accuracy of recovery varies ap-
preciably between parameters.Whereas, for example, t0 can be
estimated very precisely (e.g., to the third decimal place), the
deviation of the true and recovered values is oftenmuch greater
for the drift. Accordingly, to enhance the comparability of pa-
rameters, we standardized each parameter’s bias by its respec-
tive Bpossible accuracy.^ These Bpossible accuracies^ were
deducted from an optimal parameter recovery condition—that
is, from the parameter reestimations using theML approach for
data sets in the one-drift designwith 5,000 trials, a minimum of
4 % of trials at each threshold, and no contaminants. From the
results of these analyses, the 95 % quantiles of the absolute
differences between the true and estimated parameter values
were used as the Bpossible accuracies^ for all parameters (see
Table 2 for each parameter’s Bpossible accuracy^).

Finally, our last criterion—of minor importance relative to
the four evaluation criteria previously presented—was com-
putation time, which was the time required for the estimation
process. An efficient optimization criterion should not only
recover the true parameter values with high efficacy, but also
require only a short time for the estimation process.

Results

In the following sections, we report our results structured by
our five evaluation criteria: (1) correlations between the true
and reestimated parameter values; (2) parameter estimation
biases; (3) the number of participants required for detection
of drift rate differences; (4) estimation precision—that is,
squared deviations of the reestimated from the true parameter
values; and (5) computation time.

Evaluation Criterion 1: Correlations between true
and reestimated parameter values

Figure 2 shows the results obtained for our first evaluation
criterion—that is, the correlations between the true and
reestimated parameter values. The dependent variable in the
figure is the mean correlation averaged across all parameters
of the respective model using Fisher’s Z transformation. The
figure shows that—as expected—with higher trial numbers,
higher correlation coefficients were reached. Two main as-
pects emanate from these correlational analyses: (1)The CS
estimation criterion mostly shows lower correlation coeffi-
cients than the other estimation methods, and (2) the six- and
seven-parameter models performed worse than the more re-
strained three- and four-parameter models. Responsible for
the latter finding is the poor parameter recovery of the

intertrial variability parameters szr and sν, which generally
cannot be recovered well. Even under the Boptimal^ condition
(no contamination, 5,000 trials, and ML as the optimization
criterion), for szr and sν only moderate correlations of .31 and
.47, respectively, are found. The performance of st0 (.97) in
this optimal condition is much better and, most importantly,
the correlation coefficients of parameters a (1.00), t0 (.99), ν
(1.00), and zr (.99)—which are usually of greater interest than
the intertrial variabilities because of their high psychological
validity (Voss et al., 2004)—are excellent.

Evaluation Criterion 2: Parameter estimation biases

Second, we analyzed parameter estimation biases. Figures 3,
4, 5, and 6 present the results of the one-drift design for the
four psychologically most interesting diffusion model param-
eters a, ν, t0, and zr, respectively.

10 We will sum up the main
findings from the figures, always starting with the mean bias
of each parameter (indicated by the large symbols connected
by lines), passing on to an examination of the relationship
between the true parameter values and the biases.

As can been seen in Fig. 3, CS clearly overestimated param-
eter a. This overestimation decreased with the number of trials
and, in the condition with no contaminants, became negligible at
about 200 trials in the three- and four-parameter models, and at
approximately 500 trials in the six- and seven-parameter models.
The biases of the other methodswere smaller and—akin to CS—
became stable from around 200 to 500 trials on. In the case of
slow or fast contaminants, often a notable bias in threshold sep-
aration remained even at large trial numbers. An interesting find-
ing is observed for ML and HDDM for the condition with fast
contaminants in the three- and four-parameter models. Whereas
the biases of the other methods decreased with the number of
trials, their biases increased (again, getting stable from around
200 to 500 trials on). This reveals that the absolute number of fast
contaminants (the relative frequency was stable, with 4 % for all
trial numbers) has an influence on the recovery of parameter a.
We want to anticipate that a similar pattern emerged for param-
eter t0, which was systematically underestimated by ML and
HDDM, with this bias increasing with the number of trials.
This makes sense, because these methods try to account for all
RTs and adapt t0 to the smallest observed time.With the inclusion
of st0—as in the six- and seven-parameter models—the biases
were much smaller, because st0 helps to explain very fast RTs.

Next, we analyzed whether and how the bias depends on
the true value of the parameter. For the condition with no
contaminants, there were at maximum small relationships with
no clear pattern (|r| < .30). For the condition with slow con-
taminants, however, the relationship of the true parameter

10 We also analyzed biases for the two-drift design. The findings were
very similar to those from the one-drift design.
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value a to the bias increased with the number of trials. For
example, for the three-parameter model estimated by ML, the
correlation rose from r= –.07 to .89, for n = 24 and n = 5,000,
respectively. This increase with the number of trials was less
pronounced for the more complex models (e.g., for the seven-
parameter model and ML: r = .15 at n = 24 and r = .46 at
n = 5,000). In the condition with fast contaminants, the pattern
was less clear-cut. For KS and CS, there were mostly no rela-
tionships or very small relationships. For ML and HDDM, on
the other hand, especially in the three- and four-parameter
models, a (negative) relation of the true value and the bias
increased with the trial number (e.g., for the four-parameter
model andHDDM: r = –.08 at n = 24 and r = –.64 at n = 5,000).

Akin to parameter a, for the drift rate, biases (mostly overes-
timation, especially in the six- and seven-parameter models) got
stable at approximately 200–500 trials. Relationships between
the true drift value (with negative true values transformed into
positive values11) and the respective bias were very small for data

with no contaminants in basically all conditions. For data with
slow contaminants, the (negative) relationship increased with the
number of trials, especially in the three- and four-parameter
models (e.g., for the four-parameter model and ML: r = –.30
for n = 24 and r = –.95 for n = 5,000). A similar increase was
observed for the condition with fast contaminants in the three-
parameter model, and for ML and HDDM in the six-parameter
model. In the four- and seven-parameter models, the relation-
ships were mostly positive, with a smaller influence of the num-
ber of trials.

The nondecision time was estimated quite precisely in the
conditions with no or slow contaminants. Again, stability of the
biases was reached at 200–500 trials. In the condition with fast
contaminants, we observed a systematic underestimation, which
is plausible given the added fast outliers. As we mentioned be-
fore, for ML and HDDM in the three- and four-parameter
models, this bias increased essentially with the number of trials.
Importantly, there was no relevant relationship between the true
value of t0 and the sign and size of the bias (with the exception of
HDDM showing negative correlations of at maximum r = –.28;
these relationships decreased with the number of trials).

Finally, the pattern for zr revealed that this parameter was
more often under- than overestimated. More importantly, we

11 This transformation was used so that the four quartiles would span a
range from a very slow to a very high speed of information accumulation.
Note that the results were very similar if positive and negative true drift
rates were analyzed separately.

Fig. 2 Scatterplot of mean correlation between true and reestimated
parameters in the one-drift design, for uncontaminated data sets (left
column), data sets with slow contaminants (middle column) and data sets
with fast contaminants (right column). On the basis of data sets with at

least 4 % of trials at each threshold. Power functions were fitted to the
data. Whenever the curve was a poor fit (R2 < .80), lines were drawn
between adjacent trial numbers
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found a negative relationship between the size of zr and the
bias present for almost all conditions. There was also no clear
improvement with the number of trials. Sometimes the rela-
tionship decreased in absolute value (e.g., for no contaminants
in the seven-parameter model and HDDM: r = –.70 for n = 24
and r = –.10 for n = 5,000); often, however, it did not change,
or even increased (e.g., for no contaminants in the seven-
parameter model and KS: r = –.29 for n = 24 and r = –.38
for n = 5,000). The method with the smallest absolute corre-
lation was ML. However, in the condition with fast contami-
nants, all methods featured essential negative relationships
(e.g., for the seven-parameter model, ML: r = –.45 for
n = 5,000).

Evaluation Criterion 3: Numbers of participants required
for detection of a drift rate difference

Figure 7 shows the numbers of participants required for de-
tecting a difference in drift rates (dz = 0.35) in a two-sided
paired t test with a power of .80 conditional on the number
of trials. If parameters were recovered perfectly (i.e., the esti-
mated drift rates were equivalent to the true drift rates), 66
participants were needed for the detection of this difference
(represented by the horizontal line in the figure). Obviously,

parameters are estimated less precisely from small than from
higher trial numbers. Thus, more participants are required in
order to compensate for the inflated error variance. Figure 7
shows that an increase of trial numbers above 200–500 did not
further reduce the required sample size. In most conditions,
ML outperformed the other methods. Interestingly, even for
data sets with fast contaminants, ML showed a good perfor-
mance. Furthermore, HDDM failed to outperform the non-
Bayesian ML approach in either condition. A further finding
is that the performance of EZ was generally very good.

Evaluation Criterion 4: Estimation precision—Squared
deviations of reestimated from true parameter values

Akin to the mean correlation coefficient over all parameters,
we also computed an average measure for the squared devia-
tions. Figure 8 shows the 95 % quantiles of these mean
squared deviations for each condition, depending on the num-
ber of trials in the one-drift design. The use of the 95 %
quantiles makes it possible to compare the worst cases for
each condition, since deviations are smaller for most data sets.
If the parameters are to be used for diagnostic purposes, it is
important that the parameters be estimated accurately for all
individuals.

Fig. 3 Mean differences between estimated and true values of parameter a
for each quartile of the true parameter values (numbers 1–4; small symbols)
and for all datasets (larger symbols connected by lines) depending on the

contamination condition, parameter model, estimation method and number
of trials. On the basis of data sets with at least 4% of trials at each threshold.
Few values are not depicted as they fall outside the y-axis limits
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One central aim of this article is to provide guidelines on
the numbers of trials required for diffusion model analyses.
Because the squared deviation criterion is the strictest criteri-
on, we used this criterion for the definition of required trial
numbers.

In the subsequent section, we first specify our procedure for
identifying the trial numbers required. Then we report the
results for data sets without contaminants, followed by the
results observed in the conditions with contaminants.
Whereas Figure 8 shows the Bmean deviations^ (averaged
over all parameters of the respective model), in the following
sections we present results separately for the four main diffu-
sion model parameters (i.e., a, ν, t0, and zr).

Criteria for trial numbers required As can be seen from
Fig. 8, for the one-drift design, the higher the number of trials,
the better the estimation usually is.12 For uncontaminated da-
ta, the relation of deviations to trial numbers is mostly

described well by power functions.13 To find the requisite trial
numbers, the fitted power functions were used whenever they
fitted well (i.e., when the adjusted R2 was at minimum .80);
otherwise, linear interpolation was used.

We defined a squared deviation of 15 as a criterion for the
minimal number of trials required, indicating that the 95 %
quantiles of the deviations should be no more than 15 times as
large as in the Boptimal^ condition. This value is obviously
quite high (allowing for large deviations), and at least in part
arbitrary. For interpretation, one has to bear in mind that 95 %
of data sets would fit better (i.e., have a squared deviation
below 15). We further determined the number of trials at
which the stricter criterion of deviations of 5 was reached for
95 % of the data sets, thereby deriving guidelines on the trial
numbers needed for low (15) and high (5) precision.

As the asymptotic courses of the fitted functions describing
the relation of trial numbers to mean deviations in Fig. 8 illus-
trate, adding further trials is very helpful when the number of
trials is small, but for higher trial numbers further increases
bring only marginal gains in accuracy. Accordingly, we also
defined the number of trials above which a further increase12 Some exceptions have been found. We observed that the performance

of KS deteriorated from the condition with 1,000 to that with 5,000 trials
in the four- and seven-parameter models. So did the performance of
HDDM in the six- and seven-parameter models. We had similar findings
using the two-drift design.

Fig. 4 Mean differences between estimated and true values of parameter ν
for each quartile of the true parameter values (numbers 1–4; small symbols)
and for all datasets (larger symbols connected by lines) depending on the
contamination condition, parameter model, estimation method and number

of trials. All negative drift values were transformed to positive values so that
the true values are all located between 0 and 4. On the basis of data sets with
at least 4 % of trials at each threshold

13 D ¼ b0⋅nb1 , where D is the 95 % quantile of the squared deviations
and n is the number of trials.
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had only a minimal impact on the quality of parameter recov-
ery. As a criterion, we used the point at which the functions
describing the relation of deviations to trial numbers had a
slope of –0.01. The trial numbers required for low and for
high precision and the limit at which a further increase made
little sense are presented in Table 4 (one-drift model; at least 4
% of trials at each threshold), Table 5 (one-drift model; less

than 4 % of trials at one threshold), and Table 6 (two-drift
model; at least 4 % of tr ials at each threshold).
Trial numbers are given separately for the four main diffusion
model parameters (a, ν, t0, and zr), depending on the complex-
ity of the parameter model (three-/four-/six-/seven-parameter
models), the type of contamination (none/fast/slow), and the
estimation method (KS/ML/CS/HDDM/EZ).

Fig. 5 Mean differences between estimated and true values of parameter
t0 for each quartile of the true parameter values (numbers 1–4; small
symbols) and for all datasets (larger symbols connected by lines)
depending on the contamination condition, parameter model, estimation

method and number of trials. On the basis of data sets with at least 4 % of
trials at each threshold. Few values are not depicted as they fall outside the
y-axis limits

Fig. 6 Mean differences between estimated and true values of parameter
zr for each quartile of the true parameter values (numbers 1–4; small
symbols) and for all datasets (larger symbols connected by lines)
depending on the contamination condition, parameter model, estimation

method and number of trials. On the basis of data sets with at least 4 % of
trials at each threshold. Few values are not depicted as they fall outside the
y-axis limits
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Trial numbers required for uncontaminated data In the
three- and four-parameter models of the one-drift design,
using ML or HDDM, low precision could be reached with
fewer than 60 trials, and high precision with fewer than 160
trials. KS also performed well, with fewer than 200 trials for
low precision. EZ applied to the three-parameter model was
competitive with ML, HDDM, and KS in terms of drift rate
estimation, with approximately 70 trials for low and 200 trials
for high precision. Parameters a and t0, on the other hand,
were estimated worse. CS showed the poorest performance
requiring still fewer than 290 trials for low precision. The
comparison of the different parameters reveals that with the
exception of EZ, the nondecision time required the least num-
ber of trials, followed by the drift rate, and the threshold sep-
aration. Parameter zr was estimated very well by ML and
HDDM (requiring fewer than 40 trials for low precision),
whereas KS and CS required more trials ( < 170).

In the six- and seven-parameter models, more trials were
required than in the three- and four-parameter models. Again,
the lowest trial numbers were always needed for the nondeci-
sion time, and the highest numbers were usually required for
the threshold separation. The drift rate was estimated best by
KS, with fewer than 200 trials for low precision in both
models. CS, on the other hand, required more than 700 trials

in the six-, and more than 400 trials in the seven-parameter
model. In fact, CS is usually applied with such trial numbers
(or even higher ones), and should thus give reliable results.
However, our results also show that other methods can supply
satisfying reliability already with smaller trial numbers.

For data sets with fewer than 4 % of trials at one of the two
thresholds, the estimation of parameters a and ν requires
higher trial numbers (see Table 5). Only t0 was estimated with
a performance similar to that for the other data sets.

The numbers of trials required by the two-drift design are
depicted in Table 6, analogous to Table 4 for the one-drift de-
sign.14 The parameter that suffered most from the more complex
design was the threshold separation. The drift rate was also esti-
mated worse, whereas there was no deterioration (and sometimes
even an improvement) for the nondecision time. Besides, the
starting point was estimated better in the two-drift design. As
for the comparison of the different optimization criteria, the pat-
tern was similar to the one observed for the one-drift design.
Most importantly, HDDM in sum showed the best performance,
followed byML,KS, andCS. EZ also performed verywell, even
beating ML for the estimation of the drift rate.

Fig. 7 Scatterplot of the number of participants required for the detection
of a difference in reestimated drift rates, depending on the number of trials
and the estimation method. The horizontal line indicates the number of

participants required for the original effect size (n = 66 for dz= 0.35). On
the basis of data sets with at least 4 % of trials at each threshold. Required
numbers of participants exceeding 300 are not depicted

14 The requisite trial numbers for the drift rate are based on the mean
squared deviations of the two drift rates.
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For a better understanding of the precision of the results for
trial numbers derived from the criteria for low and high pre-
cision, we also calculated the correlations of the true and
recovered parameters at these points. Toward this aim, power
functions15 or linear interpolation (if the adjusted R2 was be-
neath .80) were used. Importantly, the correlations were gen-
erally very high (most of them above .90), and therefore do
not imply that even stricter criteria should be applied for the
trial numbers required. The correlation coefficients were low-
est for parameters t0 (ranging from .79 to .97) and zr (.76–.96).
Note that the trial numbers required for t0 were often very low
(even n < 24). Because usually many more trials will be used,
even higher correlation coefficients may be reached.

Besides the requisite trial numbers, Tables 4, 5, and 6 also
show the maximum trial numbers based on the slope criterion.
For instance, in the three- and four-parameter models with un-
contaminated data and at least 4 % of trials at each threshold,
HDDM and ML reached this criterion for all parameters after
fewer than 300 trials in the one-drift design, and after fewer than
600 trials in the two-drift design. In the six- and seven-parameter
models, the criterion was reached after fewer than either 700

trials (one-drift design) or 1,000 trials (two-drift design).
Generally, the criterion was reached earlier for nondecision time,
drift rate, and starting point than for threshold separation.

Trial numbers required for contaminated data Up to this
point, we have only presented results for the condition without
contaminant trials. The middle and right columns of Fig. 8
show the mean deviations of the recovered parameters from
contaminated data. As can be seen in Tables 4 (one-drift
design) and 6 (two-drift design), in the condition with slow
contaminants, parameter a was estimated much worse, requir-
ing more trials in almost all conditions. The drift rate did not
suffer much in the three- and four-parametermodels, but it often
required many more trials in the six- and seven-parameter
models. The nondecision time and starting point often did not
suffer from the addition of slow contaminants. Finally, EZ es-
timated the drift rate quite well, but nondecision time and, es-
pecially, threshold separation required much higher trial num-
bers than in the condition with no contaminants and than the
other methods.

In the presence of fast contaminants, KS continued to dis-
play good parameter recovery. By contrast, the results from
bothML andHDDMwere affected strongly by the occurrence
of fast contaminants. This applied to both the threshold

Fig. 8 Scatterplot of 95% quantiles of mean deviation between true and
reestimated parameters in the one-drift design, for uncontaminated data
sets (left column), data sets with slow contaminants (middle column) and
data sets with fast contaminants (right column). On the basis of data sets

with at least 4 % of trials at each threshold. Quantiles exceeding a mean
deviation of 25 are not depicted. Power functions were fitted to the data.
Whenever the curve was a poor fit (R2 < .80), lines were drawn between
adjacent trial numbers

15 That is, correlation = b0 + b1/n, where n is the number of trials.
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separation and nondecision component in the three- and four-
parameter models, and to all parameters in the four-parameter
model. Here, ML and HDDM stayed above the critical value
of 15. In the more complex models, nondecision time was
estimated better (probably due to the intertrial variability of
nondecision time; see also the findings for the bias measure).
Besides, in the six-parameter model, especially, HDDM
turned in a good performance for the other parameters as well.
Across the different parameter models, the performance of CS
was often better than that of ML and HDDM, but still worse
than that of KS. Interestingly, EZ showed a good performance
for drift rate and nondecision time despite the presence of fast
contaminants. For the data sets in which the smaller response
distribution comprised fewer than 4 % of the data, the pattern
of results was similar.

Since the added contaminant trials were situated partly out-
side, partly overlapping with the RT distribution, they could

not all be identified and excluded before parameter estimation.
Applying the frequently used criterion of 200 ms as the lower
limit for the condition with fast contaminants to the one-drift
design led to the exclusion of 0.6 % of the trials on average (so
only a small part of the 4 % contaminants were identified). We
additionally applied the Tukey criterion (Tukey, 1977) to ex-
clude further possible contaminants. In the condition with fast
contaminants, this led to a total exclusion of 5.5 % of the trials
on average. The average percentage of trials correctly identi-
fied as fast contaminants was 98.4 %. However, also 4.7 % of
the trials were falsely identified as slow contaminants. In the
condition with slow contaminants, 7.1 % of the slow trials
were excluded, but only 56.3 % of these were Btrue^ slow
contaminants (the percentage of falsely identified fast contam-
inants was very small).

To see whether the exclusion of trials led to an improve-
ment in parameter recovery, we reestimated the parameters for

Table 5 Numbers of trials required in the one-drift design for data sets with fewer than 4 % of trials at one threshold, depending on the parameter
model, estimated parameter, type of contamination, and estimation method

Three-Parameter Model Six-Parameter Model

a ν t0 a ν t0

No contaminants KS >5,000
2,086

101; 473
400

35; 147
253

3,813; >5,000
1,316

213; 1,918
493

<24; 94
202

ML 463; 1,003
870

74; 183
314

<24; 47
148

1,584; 3,491
1,777

760; 1,516
1,182

41; 126
250

CS 1,703; 3,492
1,916

206; 502
550

102; 221
358

4,988; >5,000
>5,000

4,949; >5,000
>5,000

36; 163
259

HDDM 439; 1,275
816

48; 142
267

<24; 25
112

>5,000
1,000

>5,000
500

<24; 32
130

EZ >5,000 4,087; >5,000
500

<24; 4,544
1,000

Slow contaminants KS >5,000
500

98; >5,000
200

<24; 102
192

>5,000
1,000

316; >5,000
492

33; 76
100

ML 603; 2,965
830

44; 420
100

<24; <24
91

4,821; >5,000
2,397

505; 1,114
914

<24; 142
214

CS >5,000
500

298; >5,000
500

87; 100
200

>5,000 4,938; 4,997
>5,000

<24; 175
229

HDDM 568; 2,928
799

32; 356
100

<24; <24
91

>5,000
1,000

>5,000
500

<24; <24
77

EZ >5,000
1,000

4,295; >5,000
500

<24; >5,000
500

Fast contaminants KS >5,000
500

124; >5,000
200

<24; 175
200

>5,000
500

180; 1,547
469

<24; 113
182

ML >5,000
1,000

100; 3,465
200

>5,000
200

>5,000 >5,000 71; 99
200

CS 3,417; >5,000
2,653

>5,000
200

>5,000
200

>5,000
1,000

>5,000
1,000

46; 394
100

HDDM >5,000
4,762

80; 1,840
322

>5,000
283

>5,000
1,000

>5,000
200

<24; 28
98

EZ >5,000
1,000

498; >5,000
1,000

<24; >5,000
500

The cells comprise the requisite trial numbers for low and high precision (first row) and the limit (i.e., the number of trials not worth exceeding, since
performance then improves only marginally; second row).
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the adjusted data sets. This procedure led to basically the same
results as when all trials were used for parameter estimation.
For almost all cases in the condition with fast contaminants,
the numbers of trials required were equal to or higher than the
values with the full data set. For data sets with slow contam-
inants, an improvement was observed for some conditions
(mostly in the six- and seven-parameter models), but a deteri-
oration or equal performance in most conditions. In sum, no
systematic overall improvement pattern could be identified
from the exclusion of trials according to the standard proce-
dure of identifying outliers.

Another option for dealing with possible contaminant trials
would be including in the model a further parameter to explicitly
estimate the percentage of contaminant trials. To exemplify the
effect of this additional parameter, we implemented the approach
proposed by Ratcliff and Tuerlinckx (2002) to the ML criterion.
The requisite trial numbers resulting from the inclusion of this
further parameter were compared to the trial numbers shown in
Tables 4 and 5. For the data sets with slow contaminants, we
observed improvements for some conditions (almost all of them
in the six- and seven-parameter models), but deteriorations in
other conditions (in the three- and four-parameter models). For
the conditions with fast contaminants, the criteria for low and
high precision were—as for the data without adjustments—
mostly not reached.16 In total, the inclusion of this further param-
eter, at least for the range of trial numbers analyzed in our study,
did not have a clear positive effect. The positive effect possibly
resulting from the estimation of the proportion of contaminants
might have been undermined by the negative effect of adding a
further parameter calling for estimation.

Criterion 5: Computation time

Our final evaluation criterion was the computation time needed
for parameter estimation, averaged across individual data sets. In
the three- and four-parameter models, no relevant time difference
was apparent between the three optimization criteria KS, ML,
and CS. On average, parameter estimation took less than 5 s per
individual data set for all methods. Only after inclusion of the
intertrial variabilities did the three optimization criteria differ sub-
stantially in terms of computation time, with ML for large trial
numbers taking considerably longer than KS and CS. Even then,
however, the computation process took no longer than 30 min
per data set in the one-drift design, and 40 min in the two-drift
design. Accordingly, as long as the traditional methods are used,
computation time will probably not affect a researcher’s choice
of optimization criterion. The HDDM approach, however,

involved longer computation times, requiring anything up to
5 h per data set. Because EZ is based on closed-form equations,
the computation time was negligibly small.

Discussion

As is demonstrated by the increasing number of research articles
applying Ratcliff’s diffusion model (Ratcliff, 1978), the interest
in diffusion modeling is growing in various fields of psychology
(Voss et al., 2013). This development can be attributed to a rec-
ognition of the main benefit of the diffusion model, that is, its
capacity to disentangle several latent cognitive processes. The
recent increase in popularity of the diffusion model is further
fostered by the availability of user-friendly software solutions.
Due to these programs the growing interest in diffusionmodeling
is not hampered by any lack of mathematical or programming
skills (Vandekerckhove & Tuerlinckx, 2008; Voss &Voss, 2007;
Wagenmakers et al., 2007). However, knowledge is still scarce
about the preconditions of diffusion modeling. In any diffusion
model study, the probably most important issue that a researcher
has to examine is validity of parameters. In recent years, several
experimental validation studies (e.g., Arnold, Bröder, & Bayen,
2015; Voss et al., 2004; Wagenmakers, Ratcliff, et al., 2008) and
correlational analyses (e.g., Ratcliff, Thapar, & McKoon, 2011;
Schubert, Hagemann, Voss, Schankin, & Bergmann, 2015) have
supplied promising results regarding parameter validity.
However, for any new paradigm, the validity has to be first
examined.

A second prerequisite for diffusion modeling is robustness
of parameter estimation. One important question here regards
the amount of data that are required. Typically, very large
numbers of trials (>1,000) have been used in diffusion model
analyses (e.g., Ratcliff & Rouder, 1998; Wagenmakers,
Ratcliff, et al., 2008). The present article aimed at clarifying
whether this convention could be corroborated by data. Only
very few studies have systematically analyzed the effects of
different numbers of trials on the precision of parameter esti-
mation (e.g., Ratcliff & Tuerlinckx, 2002; van Ravenzwaaij &
Oberauer, 2009). To fill this gap, we ran a set of simulation
studies using different numbers of trials with the aim of de-
ducing guidelines for the necessary trial numbers. In these
studies, the precision of parameter estimation was compared
for models differing with regard to the number of parameters
while using different optimization criteria. In particular, we
analyzed parameter recovery for three-parameter (a, ν, t0),
four-parameter (a, ν, t0, zr), six-parameter (a, ν, t0, sν, st0,
szr), and seven-parameter (a, ν, t0, zr, sν, st0, szr) models, with
either one drift rate or two different drift rates. Data sets were
simulated either without contaminated trials or with 4 % of
slow or fast contaminants. Then, the parameters were
reestimated using the KS, ML, and CS methods, as well as a
Bayesian approach (HDDM;Wiecki et al., 2013). Besides, the

16 HDDM also permits estimation of the proportion of contaminants,
using an approach similar to the one used by Ratcliff and Tuerlinckx
(2002). We applied this approach to our data and found results very
similar to those observed for the non-Bayesian ML approach. Most im-
portantly, the inclusion of the additional parameter did not have a consis-
tent positive effect on parameter estimation.
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EZ-diffusion model (Wagenmakers et al., 2007) was applied
to the data of the three-parameter model.

Parameter estimation performance was evaluated using dif-
ferent criteria. (1) First, we analyzed correlations between true
and reestimated parameters, which is of relevance for re-
searchers interested in relationships between diffusion model
parameters and external criteria. (2) Second, biases (i.e., devi-
ations between true and reestimated parameters) were exam-
ined. We were also interested in the influence of the true value
of the parameter on the bias, as a positive (negative) relation-
ship can lead to overestimation (underestimation) of a differ-
ence between conditions. (3)Third, for the design with two
drift rates, we additionally performed power analyses to elicit
indications of the number of participants required for the de-
tection of a drift rate difference. (4)The precision of estima-
tion was our fourth criterion. Recently, the idea of using dif-
fusion model parameters for individual diagnostics has been
introduced (Aschenbrenner et al., 2016; Ratcliff & Childers,
2015). Certainly, with such an aim it is crucial that parameters
be estimated precisely for each person. As a measure of pre-
cision, we computed squared deviations of the recovered pa-
rameter values from the true values. Thereby—in contrast to
the bias measure—over- and underestimations would not can-
cel each other out. In addition, each parameter’s squared de-
viation was standardized, thereby taking into account the dif-
ferent scales of the different parameters. As a standard value
for each parameter, the best-possible accuracy was used,
which was defined from an optimal condition of parameter
recovery (5,000 trials, at least 4 % of trials at each threshold,
no contaminants, and using ML for parameter recovery). On
the basis of this measure of parameter recovery, we propose
guidelines for how many trials are required for low or high
precision in parameter recovery.

Criterion 1: Correlations between true and reestimated
parameter values

Regarding the correlations between true and reestimated pa-
rameters, all methods turned in a satisfying performance, with
the exception of CS performing worse in small samples.

Criterion 2: Parameter estimation biases

In terms of biases, it is noteworthy that biases sometimes
decrease with the number of trials. In contrast, for the three-
and four-parameter models with fast contaminants, ML and
HDDM showed increasing overestimation of the threshold
separation and increasing underestimation of nondecision
times. This pattern was not observed for the more complex
models. We suppose that the intertrial variability of the non-
decision time (present in both the six- and seven-parameter
models) helped to capture the negative effects of fast contam-
inants. Note that the decreasing and increasing biases are in

contradiction with the hypothesis that only the standard devi-
ation, but not the bias, changes with trial numbers (van
Ravenzwaaij & Oberauer, 2009). Importantly, the biases get
stable at around 200 to 500 trials. Thus, a further increase in
trial numbers does not have a notable influence on the size of
the bias.

The trial numbers also sometimes had an influence on the
relationship between the true parameter value and the bias. For
example, for data with slow contaminants, the relationship
between the true value of the threshold separation and the bias
increased notably with the number of trials (e.g., from r = –.07
for n = 24 up to r = .89 for n = 5,000 for ML estimation in the
three-parameter model). Where positive relationships between
true parameter values and bias lead to an overestimation of the
true effect, negative relationships make it more difficult to
detect a true difference in parameters. The starting point re-
veals a consistent pattern of such negative relationships. Thus,
the detection of a significant difference in zr between condi-
tions would be impeded. For the nondecision time, on the
other hand, there were no relationships between the size of
the true value and the bias.

Criterion 3: Numbers of participants required
for detection of a drift rate difference

The most important finding in terms of our power analyses is
that an increase in trial numbers beyond 500 trials does not
lead to essential further reductions in the requisite number of
participants. Interestingly, EZ-based model fits proved to have
a high power to detect differences between drift rates. For
small trial numbers, EZ outperformed KS, CS, and HDDM.
Only ML performed better than EZ.

Criterion 4: Estimation precision

On the basis of the squared deviations between the true and
reestimated values, we defined criteria for requisite trial num-
bers. The results reveal that in the absence of contaminants,
parameters can be accurately recovered even with small trial
numbers. Analyses for the separate parameters showed that
the required trial number was lowest for nondecision times,
whereas a precise estimation of the threshold separation re-
quired especially high trial numbers. For the condition with no
contaminants, HDDM usually led to the most precise esti-
mates, followed by ML and KS. CS showed the worst results.
Again, for the three-parameter model EZ could recover espe-
cially the drift rates very precisely. In the three- and six-
parameter models, due to the fixed starting point, parameters
were estimated also for data sets with fewer than 4 % of trials
at one of the two thresholds. However, in this case more trials
were required to achieve the same precision.

We now turn to the question of the precision of parameter
estimation in the presence of contaminants. When
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contaminants are slow, both ML and HDDM still provide
better results than the other criteria. With fast contaminants,
however, KS outperforms the other criteria in almost all con-
ditions. In particular, ML and HDDM are generally affected
strongly by fast contaminants. Even our criterion for low pre-
cision was in many conditions never reached—that is, even
very high trial numbers could not compensate for the presence
of fast contaminants. Interestingly, similar to KS, EZ was
barely affected by fast contaminants.

We also investigated up to which point additional trials
appreciably increase the accuracy of the results. As the slope
of the relationship of trial number on precision decreases,
increasing the trial number becomes less and less advanta-
geous. Therefore, exceeding a certain number of trials is of
limited utility, because the costs will probably be greater than
the benefits. For example, it is plausible for the number and
percentage of contaminants to increase when participants get
tired or bored in long experimental sessions. Splitting sessions
over a number of days may also cause problems, since perfor-
mance may vary from one day to another depending on fa-
tigue, motivation, mood, and so forth. A slope of –0.01 was
used to define the point at which more trials did not increase
precision notably. Most importantly, the results revealed that it
is usually not advisable to increase the number of trials to
many hundreds or even thousands, as this improves parameter
recovery only marginally.

Number of parameters

The results of our study also provide some insights into the
role of additional free parameters. From the three- to the
seven-parameter models, there was mostly an increase in the
trial numbers required. These results are in line with our find-
ing that the inclusion of a parameter modeling the proportion
of contaminants did not lead to any consistent improvement in
parameter recovery. In the comparison of the design with one
drift rate to the design with two drift rates the additional pa-
rameter had a negative effect on threshold separation and drift
rate. However, nondecision time was estimated very similarly
in both designs, and the starting point was estimated even
better in the two-drift design.

One topic urgently calling for further exploration is the
poor estimation of the intertrial variabilities szr and sν. Even
in the condition with 5,000 trials, parameter estimates of szr
and sν displayed correlations with true values lower than .50
(for similar results, see Ratcliff & Tuerlinckx, 2002;
Vandekerckhove & Tuerlinckx, 2007; van Ravenzwaaij &
Oberauer, 2009). Typically, these parameters are included in
the model to explain fast (szr) or slow (sν) error RTs. One study
in which the role of the intertrial variabilities has been explic-
itly tackled was conducted by Lerche and Voss (manuscript
under review). They examined the question of whether fixing
these parameters at zero might result in better overall

estimation of the remaining parameters, even if there is mod-
erate variability in the true parameter values. To this end, they
compared differently complex parameter models analyzing
both simulated and empirical data sets. The results showed
that the seven-parameter model often provides poorer results
than less complex models. In line with these findings is a
study by van Ravenzwaaij, Donkin, and Vandekerckhove
(manuscript under review), who compared the power to detect
parameter differences between EZ (Wagenmakers et al., 2007)
and a full diffusionmodel estimation (i.e., inclusive of all three
intertrial variabilities). Although the data-generating model
included intertrial variabilities, the EZ model (ignoring these
variabilities) led to better power than the more complex model
for the detection of differences in drift rate and threshold sep-
aration. Note that in our analyses, EZ also proved to be very
good at estimating drift rates.

Choice of estimation procedure

It is important to note that our results cannot provide one clear-
cut answer to the questions of which estimation method
should be used and how many trials are required. Several
aspects (e.g., type of contamination, presence of intertrial var-
iabilities) have an influence on whichmethod will produce the
most reliable results. In the following, we shortly sketch some
guidelines that can help researchers to make qualified deci-
sions for their analyses.

First, researchers have to think about an appropriate exper-
imental paradigm to analyze their research question. Several
experimental paradigms have already been analyzed in terms
of validity (experimentally or by means of correlations with
external criteria). Completely new paradigms should first be
validated before applying them to analyze new research ques-
tions. Note that in our study we only analyzed two rather
simple experimental designs (one-drift and two-drift designs).
We suppose, however, that the main patterns of results will
remain similar (e.g., best performance of HDDM/ML for un-
contaminated data and of KS in the presence of fast
contaminants).

Second, the number of trials of an experiment has to be
defined. This question will often be related to the chosen par-
adigm. Especially, if material is restricted, it might be difficult
to compose high trial numbers. The homogeneity of the ma-
terial also influences the decision process, with more hetero-
geneous material resulting in higher intertrial variability of the
drift. Besides, the researcher has to consider the fatigue that
the type of task might cause. For tasks that are very demand-
ing and that take very long, a higher percentage of contami-
nants is to be expected.

Third, after collecting the data, the researcher should ana-
lyze their quality before applying a diffusion model. This
means, for example, figuring out whether there are supposedly
many contaminants. If, for example, the RT distributions
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include many statistical outliers according to typical outlier
detection procedures (e.g., Tukey, 1977), this might indicate
a high level of contaminants. Note that the exclusion of out-
liers does not necessarily lead to better parameter estimates, as
our additional analyses showed. The problem is that not all
contaminants will be detected (especially not if they are situ-
ated overlapping with the true RT distribution), and Breal^RTs
might be accidentally removed from the distribution (false
positives). Thus, an estimation method that is robust to con-
taminants (like KS) is in such cases more adequate than an
overly strict data cleaning. Besides, estimation of the intertrial
variability of the nondecision time (but not of the rather poorly
estimated other two variability parameters) can help to coun-
teract the influence of fast contaminants.

Furthermore, one can analyze whether there might be a
response bias for one of the two stimuli. If, for example, cor-
rect responses to stimulus A are faster than errors, whereas for
stimulus B the errors are faster than the correct responses, the
starting point might be positioned closer to stimulus A than to
B. In such a case, the researcher should not collapse over the
two stimuli by estimation of a model with correct and error
responses at the two thresholds. Rather, he or she should use a
model with the two different stimuli at the thresholds and
freely estimate the starting point. Besides, an analysis of the
mean RTs of correct and error responses can give a hint as to
whether there might be high intertrial variability in the data.
Finally, on the basis of these analyses, the researcher can de-
cide which parameters to estimate and which estimation meth-
od to use.

Thus, one main message of this article is that there is no
single type of diffusion model analysis. Several aspects influ-
ence the parameter estimation, and thus, the estimation proce-
dure has to be carefully selected. Our work is intended as a
first step in the development of general guidelines for diffu-
sion modeling.

Conclusions

Whereas several hundred or even several thousand trials are
often used in the application of the Ratcliff diffusion model
(Ratcliff, 1978), our simulation studies—executed with the
newest version of fast-dm (Voss et al., 2015)—indicate that
in most cases considerably lower trial numbers are sufficient.
Using a lot more than the necessary number of trials can also
be more detrimental than useful. It leads to higher costs (e.g.,
longer preparation and execution time of the experiment, or
fatigue of the participants) without clearly improving param-
eter estimation performance. In this article, we give guidelines
for the number of trials required, depending on the optimiza-
tion criterion applied, the number of parameters estimated,
and the presence of contaminants.

Our simulations provide the following stable patterns of
results: (1)CS is generally not advisable for small to moderate
trial numbers; (2) parameter recovery often does not improve
much if more than around 500 trials are used; (3) for less
complex models (i.e., exclusive of intertrial variabilities), no-
tably smaller trial numbers are sufficient; (4)ML and HDDM
perform best for uncontaminated data; and (5)KS and EZ are
the methods least affected by fast contaminants.

Author note This research was supported by a grant from the German
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