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Abstract In the current paper, we present a method to con-
struct nonparametric confidence intervals (CIs) for single-case
effect size measures in the context of various single-case de-
signs. We use the relationship between a two-sided statistical
hypothesis test at significance level α and a 100 (1 – α) %
two-sided CI to construct CIs for any effect size measure θ that
contain all point null hypothesis θ values that cannot be
rejected by the hypothesis test at significance level α. This
method of hypothesis test inversion (HTI) can be employed
using a randomization test as the statistical hypothesis test in
order to construct a nonparametric CI for θ. We will refer to
this procedure as randomization test inversion (RTI). We il-
lustrate RTI in a situation in which θ is the unstandardized and
the standardized difference in means between two treatments
in a completely randomized single-case design. Additionally,
we demonstrate how RTI can be extended to other types of
single-case designs. Finally, we discuss a few challenges for
RTI as well as possibilities when using the method with other
effect size measures, such as rank-based nonoverlap indices.
Supplementary to this paper, we provide easy-to-use R code,
which allows the user to construct nonparametric CIs accord-
ing to the proposed method.

Keywords Single-case experiments .Effect size .Confidence
intervals . Hypothesis testing . Nonparametric statistics .
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Introduction

Single-case experiments (SCEs) can be used to assess the
efficacy of an intervention or treatment for a single person.
In such experiments, repeated measurements are taken for a
single person on a dependent variable of interest and the treat-
ment can be considered as one of the levels of the independent
variable (Barlow, Nock, & Hersen, 2009; Kazdin, 2011;
Onghena, 2005). Over the years, the use of SCEs has risen
steadily in disciplines such as school psychology, clinical psy-
chology, and medical science (Hammond & Gast, 2010;
Shadish & Sullivan, 2011; Swaminathan & Rogers, 2007).

SCE data are traditionally analyzed visually and this remains
the primary analysis method to date (e.g., Bulté & Onghena,
2012; Gast & Ledford, 2014; Kazdin, 2011; Kratochwill et al.,
2010). The main advantage of visual analysis is that aspects of
SCE data such as level, trend, variability, immediacy of the
effect, and overlap can be assessed in a flexible way (Horner
et al., 2005; Kratochwill, Levin, Horner, & Swoboda, 2014;
Lane & Gast, 2014). However, visual analysis has been
criticized for its lack of established formal decision guide-
lines which leaves the method vulnerable to subjectivity
and inconsistency between researchers (e.g., Deprospero &
Cohen, 1979; Fisch, 1998; Gibson & Ottenbacher, 1988;
Harrington & Velicer, 2015; Ximenes, Manolov, Solanas,
& Quera, 2009).

Over the years, several types of statistical analysis methods
have been proposed for SCE data with the intent to obtain more
objective measures of effect size (ES) that can be used to com-
plement the results of visual analysis. These include regression-
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based measures (e.g., Allison & Gorman, 1993; Center, Skiba,
&Casey, 1985-1986; Solanas,Manolov, &Onghena, 2010; Van
den Noortgate & Onghena, 2003; White, Rusch, Kazdin, &
Hartmann, 1989), standardized mean difference measures
(e.g., Busk & Serlin, 1992; Hedges, Pustejovsky, & Shadish,
2012) and measures based on data nonoverlap between phases
(e.g., Parker, Hagan-Burke, &Vannest, 2007; Parker &Vannest,
2009; Parker, Vannest, & Brown, 2009; Parker, Vannest, Davis,
& Sauber, 2011). These advances in developing useful measures
of ES for SCE data were also propagated by the increasing
demand from scholarly journals, academic organizations, and
policy makers to include effect sizes (ESs) in the publication
of scientific results. For example, the fourth edition of the pub-
lication manual of the American Psychological Association
(1994) included a new guideline to report ESs as a standard
practice in psychological research. Similarly, Wilkinson and
the Task Force on Statistical Inference (1999) advocated the
use of ESs in addition to the reporting of p-values in the behav-
ioral sciences. The call for more frequent use of ESs in SCEs
also stems from the increasingly popular evidence-based prac-
tice movements in school psychology (Kratochwill & Stoiber,
2000) and clinical psychology (Chambless & Ollendick, 2001).

Apart from the quantification of ES, another aspect of evalu-
ating SCE data is statistical inference – performing statistical
hypotheses tests and constructing confidence intervals (CIs) for
ESs. However, the validity of statistical inferences based on
parametric procedures is frequently doubtful because the
assumptions underlying these procedures (e.g., random sam-
pling or specific distributional assumptions) are implausible in
many areas of behavioral research, and for single-case research
in particular (e.g., Adams & Anthony, 1996; Dugard, 2014;
Edgington & Onghena, 2007; Ferron & Levin, 2014; Levin,
Ferron, & Gafurov, 2014; Micceri, 1989). Therefore, the ran-
domization test (RT) has been proposed as a nonparametric
alternative to test statistical hypotheses in randomized SCEs
(e.g., Bulté & Onghena, 2008; Edgington, 1967; Onghena &
Edgington, 1994, 2005; Heyvaert & Onghena, 2014; Levin,
Ferron & Kratochwill, 2012; Onghena, 1992). The RT makes
no assumption of random sampling and no distributional
assumptions. Instead, the test uses the random assignment of
measurement occasions to treatment conditions as the basis of
its validity (Edgington & Onghena, 2007).

The current paper proposes a method to construct nonpara-
metric CIs for mean difference type ESs in SCEs using the RT
rationale. This method is developed by combining, one the one
hand, the principle of hypothesis test inversion (HTI) (e.g.,
Garthwaite, 2005; Tritchler, 1984)which exploits the equivalence
between a hypothesis test and a CI and on the other hand, the use
of RTs. Consequently, we have named this newmethod random-
ization test inversion (RTI). The method offers flexibility with
regard to the choice of an ES measure and can be used with
any randomized experimental design. The focus of this paper will
be on the application of RTI to randomized single-case designs.

We hope that RTI can be of value to the applied single-case
researcher for gauging the uncertainty of the size of a treat-
ment effect. However, note that we do not propose to replace
visual analysis with the sole use of nonparametric CIs for ESs.
We concur with the general consensus in the field of single-case
research that visual and statistical analysis are complementary
and in most cases should be used together to corroborate the
conclusions and to increase the acceptability by the wider
scientific community (e.g., Bulté & Onghena, 2012; Busk &
Marascuilo, 1992; Harrington & Velicer, 2015; Kratochwill
et al., 2014; Tate et al., 2013).

In the following sections, we will elaborate on the two main
components of the RTI method: (1) the principle of HTI and (2)
the use of RTs, and how they fit together in order to form the
proposed RTI method. We will use a step-by-step approach in
which we gradually build up to the application of the proposed
RTI method for single-case designs. We will start with an ex-
planation of the HTI principle in the context of a between-
subject design and illustrate how we can use this principle to
invert a parametric test (a two-sample t-test in the example) in
order to arrive at the same parametric CI that can be analytically
derived for that parametric test. Next, we will elaborate on how
the HTI principle can be combined with an RT (forming the
RTI method) in order to produce nonparametric CIs for ES
measures in between-subject designs. Subsequently, we will
show and illustrate how the RTI method can be extended to
accommodate various types of single-case designs such as
completely randomized single-case designs (CRD), alternating
treatments designs (ATD), randomized block designs (RBD), as
well as phase designs (so-called AB, ABA, or ABAB designs).
The ESs we will use in our illustrations for single-case designs
consist of an unstandardized and standardized mean difference
for CRDs, ATDs, and RBDs and an immediate treatment effect
index for phase designs. Finally, we will discuss a few chal-
lenges for RTI as well as possibilities when the method is im-
plemented with other ESs, such as rank-based nonoverlap
indices.

Hypothesis test inversion

There exists a necessary equivalence between a two-sided
hypothesis test and a two-sided CI. More specifically, a 100
(1 – α) % two-sided CI for a parameter θ consists of all point
null values of θ that cannot be rejected by a two-sided hypoth-
esis test at significance level α (Neyman, 1937). From this
equivalence, one can construct CIs for θ by repeatedly
performing hypothesis tests on a range of hypothesized values
of θ and including the nonrejected values as part of the CI. We
will refer to this procedure as the method of hypothesis test
inversion (HTI).

HTI goes as follows: Let θ denote the parameter for which
we want to construct a two-sided CI. We can then choose a
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range of point null values (θ0) for which we test the null
hypothesis θ = θ0 against the two-sided alternative hypothesis
that θ ≠ θ0. If α is the significance level of the two-sided
hypothesis test, we can construct a 100 (1 – α) % CI for the
parameter θ that contains all θ0 values for which the null hy-
pothesis is not rejected (Garthwaite, 2005; Tritchler, 1984).

To introduce HTI, we will start with the situation in which
wewant to construct a parametric CI for a mean difference based
on a classical t-procedure in the context of a between-subject
experimental design. We will subsequently show that inverting
the t-test throughHTI results in exactly the same parametric CI as
the one that can be computed analytically.

Confidence intervals (CIs) for completely
randomized between-subject designs using
hypothesis test inversion

Suppose a therapist wants to test a new experimental treatment
to improve quality of life in patients with chronic pain using a
randomized experiment. Assume that this experiment consists
of a between-subject design with 16 patients, eight of whom
are randomly assigned to the control condition and eight of
whom are randomly assigned to the experimental condition.
This type of design is also known as a completely randomized
design (CRD). Let us assume the therapist is interested in the
population parameter θ that represents the difference in means
between both conditions. Let the variables A and B contain the
scores (measured on a rating scale from 1 to 10) of the control
condition and the experimental condition respectively. Now
consider the hypothetical data as shown in Table 1.

The mean quality-of-life scores are 4.625 and 8 for A
and B, respectively, and the observed difference in means

θobs = B� A = 3.375. If we are willing to assume that the
scores represent independent random samples from two
normally distributed populations with equal variances,
we can test the null hypothesis that θ0 = 0 against the
alternative that θ ≠ θ0 with a two-tailed parametric t-test.
This test gives a t-value of 4.6208, with 14 degrees of

freedom, and a resulting two-sided p-value of .0004, in-
dicating a statistically significant difference in means of A
and B for a 5 % significance level.

We can construct a parametric CI for the difference in
means by using analytically derived formulas that can be
found in any introductory statistics textbook (e.g., Mann,
2006). A t-procedure for these data results in a 95 % CI of
[1.81–4.94]. With an observed mean difference of 3.375,
the t-procedure shows that we can be 95 % confident that
the true mean difference lies between 1.81 and 4.94. This
means that if the therapist would repeat the experiment a
large number of times and subsequently analyze the
resulting samples, the true parameter value will be
contained in the CI constructed by the t-procedure in 95
% of the times (Moore, McCabe, & Craig, 2014).

The same parametric 95 % CI can also be constructed
using HTI. To obtain the boundaries of the CI, we repeat-
edly perform t-tests for a range of θ0 values, starting from
the observed θobs = 3.375 and going upward. For each θ0
value, the observed test statistic is compared to a t-distri-
bution with and 14 degrees of freedom at the 5 % level.
The upper boundary of the CI is found as the largest θ0
that is not rejected by the t-test; the lower boundary is just
at equal distance at the other side of θobs. Formally, cal-
culate the difference θdiff between this largest θ0 and θobs,
that is θdiff = largest θ0 – θobs. The CI is defined as [Lower
boundary; Upper boundary] with

Lower boundary ¼ θobs – θdiff
Upper boundary ¼ θobs þ θdiff

Table 2 illustrates the process of inverting the t-test for the
hypothetical data of the chronic pain patients.

Obviously, if we test for θ0 = θobs = 3.375, then the
numerator of the t-statistic becomes 0, which is in the
middle of the sampling distribution, and so the null hy-
pothesis is not rejected. Therefore, the value of 3.375 is
included in the CI. By gradually increasing θ0, we can
search for the boundaries of the CI (see Table 2). For a
95 % CI the boundaries are constructed using the largest
θ0 value for which a two-tailed t-test provides a p-value
that is larger than .05. For the example data, this results in
the following CI:

Lower boundary : 3:375þ 1:565 ¼ 1:81
Upper boundary : 3:375�1:565 ¼ 4:94

The obtained CI is exactly the same as the analytically
derived CI according to the t-procedure, as it should be. The
boundaries of the CI can be reached at any desired level of
precision, conditional on the granularity of the θ0 range
(Garthwaite, 2005).

Table 1 Hypothetical
quality-of-life scores of
16 patients with chronic
pain in a completely
randomized design,
comparing a control
group (A) to a treatment
group (B)

A B

7 9

5 8

7 7

4 9

5 8

3 6

4 9

2 8
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Nonparametric CIs for completely randomized
between-subject designs

Nonparametric CI for an unstandardized mean difference

Parametric tests such as the t-test from the previous example
depend on classical assumptions such as random sampling
and specific population distributions. In case of one or more
of these assumptions being possibly violated, the therapist can
analyze the data with a randomization test (RT), which as-
sumes a random assignment model. RTs obtain their validity
by randomly assigning experimental units to experimental
conditions. By randomizing the condition labels referring to
the levels of the independent variable, the null hypothesis that
there is no differential effect of the levels of the independent
variable on the dependent variable can be tested (Edgington &
Onghena, 2007). We will refer to a specific randomization of
the condition labels as an assignment.

Heyvaert and Onghena (2014) describe the necessary steps
for performing RTs on experimental data. The first step must
be made prior to executing the experiment and consists of
listing all permissible assignments for the chosen experimen-
tal design. A permissible assignment is an assignment that
adheres to the restrictions imposed by the chosen randomiza-
tion scheme. An example of a randomization restriction for a
completely randomized between-subject design could be that
the same number of subjects is assigned to each of the condi-
tions. The set of permissible assignments is defined by the
choice of a specific experimental design (Onghena &
Edgington, 2005). After listing all permissible assignments,
one of them is randomly selected as the assignment for the
actual experiment. Next, one must choose a test statistic that is
adequate to answer the research question. For example, when
one is interested in the overall effect of the levels of the inde-
pendent variable on the dependent variable, one can use a
mean difference statistic to quantify this effect. Note that
RTs can be one-sided or two-sided depending on whether
the chosen test statistic is sensitive to the direction of the
alternative hypothesis. For a two-sided RT, a nondirectional
test statistic (e.g., an absolute mean difference) has to be used.

The next step involves constructing the randomization dis-
tribution by computing the value of the test statistic for all

permissible assignments. The randomization distribution
functions as a reference distribution that can be used to deter-
mine the statistical significance of the observed test statistic:
The two-sided p-value of an RT is calculated as the proportion
of (absolute value) test statistics in the randomization distri-
bution that are at least as extreme as the observed test statistic.
Depending on the chosen significance level, the therapist then
either rejects or accepts the null hypothesis based on the
p-value. Because the observed value of the test statistic also
stems from one of the permissible assignments, the smallest
achievable p-value with an RT is equal to the inverse of the
number of permissible assignments (Onghena & May, 1995).
There are several software packages designed to perform RTs.
For example, Huo and Onghena (2012) developed a
Windows-based program for performing RTs. Software for
RTs is also available from the Bcoin^ R package (Hothorn,
Hornik, van de Wiel, & Zeileis, 2008).

Performing the two-sided RT for the chronic pain example
yields a p-value of .0014 indicating a statistically significant
difference between the means of A and B, so we reject the null
hypothesis that there is no differential treatment effect on the
quality-of-life scores. Notice that this p-value is only slightly
larger than the p-value of the parametric t-test, but at the same
time that we are operating within a nonparametric framework,
without making any distributional assumptions and without
making an assumption of random sampling (Edgington &
Onghena, 2007).

It is also possible to perform an RT for effects other than a
null effect. This can be done by assuming that the experimen-
tal condition has a constant additive effect (denoted byΔ) on
the scores of the outcome variable. This model is called the
Bunit-treatment additivity model^ and it is the model that is
most popular and well studied within nonparametric statistics
(e.g., Cox & Reid, 2000; Hinkelmann, & Kempthorne, 2008;
Lehman, 1959; Welch & Gutierrez, 1988). The Bunit-treatment
additivity model^ expresses the observed scores as:

Xi
B¼ Xi

A þ Δ

where Xi
B is the observed score of experimental unit i if i is

assigned to the experimental condition B, Xi
A is the hypothet-

ical score of i if i instead was assigned to the control condition

Table 2 Using hypothesis test inversion to construct a parametric 95 % confidence interval (CI) for the data in Table 1

θdiff 0 0.005 … 1.565 1.570

θ0 3.375 3.380 … 4.940 4.945

p 1 .9946 … .0502 .0496

In CI YES YES YES YES NO
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A (i.e., the null score or the score that would be observed if the
null hypothesis of no treatment effect is true), and Δ is the
constant additive effect of the treatment. Note that Xi

B and Xi
A

can never be observed simultaneously and that Δ has no in-
dex, that is,Δ is assumed to be constant for every experimen-
tal unit. When one performs the RT for a null effect of the
experimental manipulation, Δ equals zero. In this case:

Xi
B¼ Xi

A

implying that under the null hypothesis that the experimental
treatment has no effect, the observed score for experimental unit i
is independent from the condition towhich it is assigned.One can
test for non-null effects by specifying a non-zero value forΔ.

Returning to the HTI method, we can use the model of unit-
treatment additivity to compute a CI for a mean difference by
inverting the RT. This boils down to performing the RT for a
range of Δ-values and retaining the non-rejected Δ-values to
construct the nonparametric CI. We will further refer to this
method as randomization test inversion (RTI). In this context,
Δ is actually the equivalent of the point null parameter value (θ0)
that we used in the introductory section on HTI. Note that this
RTI method assumes that the unit-treatment additivity model is
adequate to capture the treatment effect if the null hypothesis is
false. Other models can be conceived of, but this would require
the development of an alternative procedure. Furthermore, note
that the choice for the unit-treatment additivity model implies
that certain measures of ES are more obvious candidates to be
used in RTI than others. In this respect we should emphasize that
the unit-treatment additivity model that we adopt here is most
suitable for measures of ES that indicate mean level separation.
We will come back to this issue in the Discussion section where
we will also critically reflect on the adequacy of the unit-
treatment additivity model for single-case data.

When performing the two-sided RT in a between-subject
design, we use the randomization schedule of a completely
randomized design (CRD) (Onghena & Edgington, 2005).
Suppose we want to test whether the treatment effectΔ equals
3.375. In this case, the model of unit-treatment additivity ex-
presses the observed score of Xi

B as:

Xi
B¼ Xi

A þ 3:375

This implies that we can test the null hypothesis (H0)
that Δ = 3.375 against the alternative hypothesis (H1) that
Δ ≠ 3.375 by subtracting Δ from all Xi

Bs in the data and
then by performing the RT. Depending on whether the RT
rejects H0 at significance level α, we can determine
whether or not 3.375 is in the (100 – α) % CI.
Constructing a CI for Δ through RTI consists of execut-
ing the RT for multiple absolute values of Δ and retaining
all values that are not rejected by the RT. In this approach,
each iteration of the search uses a two-sided RT at the α
level in order to gain a (100 – α) % CI.

When using RTI with a computer algorithm, the step size
for changes inΔ from one iteration to the next must be deter-
mined in advance. The precision of the RTI procedure (and of
the resulting CI) can be increased by lowering the step size,
but a smaller step size will also require more computing time
before the boundaries of the CI are reached. An efficient al-
gorithm that balances precision and computing time uses a
stepwise iterative procedure, which minimizes the number of
iterations needed to calculate the boundaries of the CI for a
certain amount of decimals. The algorithm we propose here
calculates the boundaries of the CI at any number of decimals
by using a stepwise iterative procedure. This procedure starts
with a relatively large step size to get a rough estimate of the
boundaries very quickly. Next, the algorithm starts again from
the last Δ that yielded a p-value that is larger than the signif-
icance level, but this time with a step size that is ten times as
small. This procedure is repeated until the algorithm arrives at
the boundaries of the CI for the desired precision. In this way,
the boundaries of the CI can be determined very accurately
without requiring a lot of unnecessary iterations of the algo-
rithm. Note that we will use two decimals to report CIs for the
examples in this paper.

The search method for the chronic pain experiment with
intermediate output of the algorithm with the step size set to
0.005 is illustrated in Table 3.

Lower boundary : 3:375�2:125 ¼ 1:25
Upper boundary : 3:375þ 2:125 ¼ 5:50

The 95 % CI for Δ for the chronic pain experiment is
[1.25–5.50] and the two-sided p-value is .0014. Because
RTI assumes a constant additive treatment effect, Δ can
be interpreted as the difference in the average quality-of-
life score between the patients of the control condition
and the patients of the experimental condition. The inter-
pretation of the nonparametric CI is similar to the para-
metric CI following the t-procedure, but the repetitions do
not refer to repeated random sampling but to repeated
random assignments of the patients to the two conditions.
Note that Δ = 0 is not included in the interval which
confirms that the sample means differ from each other in
a statistically significant way (see RT p-value of .0014
calculated previously). This illustrates that the CI conveys
the same information as the hypothesis test, with the ad-
vantage of providing a range of Bplausible values^ for the
computed ES (du Prel, Hommel, Röhrig, & Blettner,
2009). Also note that the abandonment of the implausible
assumptions of random sampling and normality of the
population distributions leads to a CI that is somewhat
wider than the CI in the parametric case. This means that
the broader applicability and general validity of nonpara-
metric CIs comes at the expense of a small loss of statis-
tical power, as compared to parametric CIs.
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Nonparametric CI for a standardized mean difference

As a way of standardizing the mean difference statistic from
the previous example, we can divide the mean difference be-
tween the A condition and the B condition by a standard
deviation term such that we obtain a d statistic. Our d statistic
then becomes:

d ¼ B− A
sA;B

Note that sA;B is the standard deviation of all observed data
before Δ is subtracted from the B scores and is thus a constant
for the calculation of the test statistic for each assignment and for
each testedΔ. If sA;B would be calculated after Δ is subtracted
from the data of the experimental condition, sA;B increases when
Δ is increased and results in an inflation of the variance of the
randomization distribution. In this case, different Δs would be
tested using randomization distributions with different vari-
ances. This is not desirable as the unit-treatment additivitymodel
does not contain a variance parameter. In sum, by standardizing
the mean phase difference by sA;B we can adjust for the overall
variability of the observed data and simultaneously remain with-
in the unit-treatment-additivity model as is the case in the exam-
ple for the unstandardized mean difference. The observed d-
value for the pain example is 1.5050 and the 95 % CI is
[0.56–2.45]. The two-sided p-value equals .0014. Note that this
p-value is exactly the same as the p-value for the unstandardized
mean difference. This is because both test statistics differ only
by a constant. As such, the position of the observed test statistic
relative to the randomization distribution is exactly the same for
the unstandardizedmean difference as for the standardizedmean
difference which leads to identical two-sided p-values
(Edgington & Onghena, 2007).

Nonparametric CIs for single-case designs

In the previous sections, we have introduced the use of RTI to
derive a nonparametric CI for an unstandardized and standard-
ized mean difference in a well known setting: the comparison

of two independent samples in a completely randomized
between-subject design. We will now demonstrate how this
method can be applied to derive RTI CIs for ES measures in
SCEs, a setting in which the random sampling and distribu-
tional assumptions have traditionally been contested
(Hartmann, 1974; Houle, 2009; Kratochwill et al., 1974).
Note that in the case of an SCE, the repeated measurements
are the experimental units whereas in a between-subject de-
sign the experimental units refer to the different subjects.

Various types of single-case designs can be broadly cate-
gorized into two groups: alternation designs and phase designs
(Onghena & Edgington, 2005). In alternation designs, every
measurement occasion can be randomly (or randomly within
certain restrictions) assigned to every level of the independent
variable. Examples of alternation designs include the
completely randomized design (CRD), the alternating treat-
ments design (ATD), and the randomized block design
(RBD) (Barlow et al., 2009; Onghena & Edgington, 1994).
Phase designs divide the sequence of measurement occasions
into separate treatment phases, with each phase containing
multiple measurements. Examples include the AB design
and extensions thereof such as the ABA and the ABAB design
(Kratochwill & Levin, 2014; Onghena, 1992).

Individual SCEs can be replicated using two types of strat-
egies: simultaneous replication or sequential replication
(Onghena & Edgington, 2005). Using the simultaneous repli-
cation strategy, multiple alternation or phase designs are exe-
cuted at the same time. The best-known example of a simul-
taneous replication design is the multiple baseline across par-
ticipants design (MBD), which combines multiple phase de-
signs (usually multiple AB designs) and in which the treat-
ment is administered in a time-staggered manner across the
individual participants. In the sequential replication strategy,
individual SCEs are replicated sequentially in order to test the
generalizability of the effect to other participants, settings, or
outcomes. For both replication strategies, a multivariate test
statistic or p-value combining can be used to evaluate the null
hypothesis of no treatment effect for any of the individual
experiments (Bulté & Onghena, 2009; Koehler & Levin,
1998; Marascuilo & Busk, 1988; Onghena, 1992; Onghena
& Edgington, 2005).

Table 3 Intermediate output of the randomization test inversion (RTI) algorithm for the hypothetical data of the chronic pain experiment using a two-
sided randomization test. Note that |Δ - θobs| is the RTI equivalent of θdiff from Table 2

|∆ - θobs| |0| … |2.120| |2.125| |2.130|

∆ 3.375 … 5.495 5.50 5.505

p 1 … .0733 .0733 .0412

In CI YES … YES YES NO
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In the following sections, we will use hypothetical research
examples to illustrate RTI for single-case alternation designs
(CRD, RBD, and ATD) as well as for single-case phase de-
signs (AB, ABA, and ABAB). Additionally, we will discuss
how RTI can be extended to simultaneously and sequentially
replicated designs.

In the hypothetical research examples, we will use the un-
standardized and standardized mean difference as ES mea-
sures for the alternation designs and wewill use the immediate
treatment effect index (which is also a mean difference type
test statistic) for the phase designs. However, we should point
out that there is currently little consensus in the SCE commu-
nity regarding which type of ESs are optimal for use with
single-case data (e.g., Campbell & Herzinger, 2010; Lane &
Gast, 2014). Ideally, different types of effects require different
types of ESs which are optimally capable of capturing a spe-
cific type of effect. These effects can be visually explored,
complementary to the statistical analysis, but whatever mea-
sure of ES is selected, valid statistical inference requires that
the expected effects are specified beforehand. If one is inter-
ested in different types of effects beforehand (e.g., level, var-
iability, trend, overlap, immediacy, and consistency) then a
battery of tests or CIs can be administered simultaneously. In
that case the familywise Type I error rate also has to be con-
trolled accordingly (see Westfall & Young, 1993 for
procedures that fit within the RT rationale). That being said,
the mean difference type ESs that we will use in the next
examples are most appropriate for research situations in which
one wants to test or quantify the differences in level or the
immediacy of effects. If other effects are expected then other
ES measures should be put in place.

Nonparametric CIs for single-case alternation
designs

Completely randomized single-case designs

The single-case design that is most similar to the completely
randomized between-subject design is the completely random-
ized single-case design. The randomization scheme of both de-
signs is identical, yielding the same collection of permissible
assignments, with the only difference being that the experimen-
tal units in the single-case CRD are the repeated measurements
of the same subject whereas the experimental units in the
between-subject CRD aremeasurements from different subjects.

Consider the following hypothetical SCE: A therapist
wants to evaluate a customized psychotherapy treatment, de-
signed to elevate the self-esteem of a patient suffering from
depression. The SCE lasts 10 days, where five days are ran-
domly selected for administering the treatment. No treatment
is administered on the remaining five days. At the end of each
day, the patient reports his perceived self-esteem, expressed
on a scale from 1 to 10. The randomization of the treatment
condition (B) and the control condition (A) to the measure-
ment occasions is done by choosing one of the permissible
assignments generated by the CRD randomization scheme.
Suppose we randomly select the following assignment:
ABAABBABAB. Hypothetical data for this SCE are shown
in Fig. 1.

The mean self-esteem scores are 3.8 and 6.2 for A and B,

respectively, and the observed difference in means (θobs = B
� A ) equals 2.4. Application of exactly the same algorithm as
presented before (RTI), results in a 95 % CI of [0.40–4.40].

Fig. 1 Hypothetical data from a completely randomized single-case design evaluating the effect of psychotherapy on self-esteem in a single depressed
patient on a 1–10 rating scale
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For the standardized mean difference, the observed value is
1.4670 with a 95 % CI of [0.25–2.69]. In both cases, the two-
sided p-value is .0238. Note that the value 0 is not included in
any of the intervals, suggesting a statistically significant treat-
ment effect on the perceived self-esteem of the depressed
patient.

Randomized block single-case designs

Building further on the previous example, suppose the same
therapist now wants to evaluate another customized treatment
for another depressed patient with the difference being that
this patient typically has good and bad days influencing the
patient’s perceived self-esteem, irrespective of the treatment
administered on those days. In this case, the therapist can use a
randomized block design for his SCE to control for this con-
founding factor. Suppose the experiment consists of 10 days
(i.e., 10 blocks) where on each day, the therapist administers
both treatments (i.e., the control condition and the actual treat-
ment condition) and records the perceived self-esteem of the
patient after administering each treatment (i.e., two self-
esteem scores per day). The sequence of conditions within a
day (i.e., block) is determined randomly for every day.
Assume the therapist randomly selects the following assign-
ment to collect the data: AB | BA | BA | AB | BA | BA | AB |
BA | BA |AB. The hypothetical data for this SCE are present-
ed in Fig. 2.

For this example, the mean self-esteem scores are 5.5 and
4.9 for A and B, respectively, and the observed difference in

means (θobs = B� A ) is −0.6. The 95 % CI is [−1.60–0.40].
The observed value for the standardized mean difference is

−0.5430 with a 95 % CI of [−1.45–0.36]. Both for the unstan-
dardized mean difference and standardized mean difference,
the two-sided p-value is 0.390625. Because the value 0 is
included in both intervals and because the two-sided p-values
are larger than any conventional significance level, we can
conclude that the unstandardized and standardized treatment
effect for this particular patient are not statistically significant.

Alternating treatments single-case designs

Finally, the therapist can also use an alternating treatments
design (ATD) to evaluate the treatment effect of the custom-
ized psychotherapy treatment on a single patient. Such a de-
sign can be used when rapid alternation between the control
condition and the treatment condition is required. The ran-
domization scheme of an ATD is similar to that of a CRD
but assignments with a predefined number of consecutive ad-
ministrations of the same condition are excluded (Onghena &
Edgington, 1994). Suppose the experiment consists of ten
measurement occasions: Five baseline observations and five
treatment observations and requires that no more than three
subsequent measurement occasions can belong to the same
condition. A permissible assignment for the experiment would
then be: AABABAABBB. Figure 3 illustrates a hypothetical
dataset for this design.

For this example, the mean phase scores are 6.8 and 7 for A
and B, respectively, and the observed difference inmeans (θobs
= B� A ) is 0.2. The 95 % CI is [−0.80–1.20]. The observed
value for the standardized mean difference statistic is 0.2011
with a 95 % CI of [−0.80–1.21]. In both cases, the two-sided
p-value is 1. Note again that the value 0 is included in both

Fig. 2 Hypothetical data from a single-case randomized block design evaluating the effect of psychotherapy on self-esteem in a single depressed patient
on a 1–10 rating scale
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intervals and that both two-sided p-values have attained their
maximum value of 1, evidently indicating that there is no
significant treatment effect.

In this section, we illustrated RTI for three different single-
case alternation designs (CRD, RBD, and ATD). Note that the
RTI method is essentially the same for the three illustrated de-
signs with the sole difference that the employed randomization
scheme of the RT is specific to each of the three designs.

Nonparametric CIs for single-case phase designs

In the next section, we will focus on single-case phase de-
signs. To recapitulate, phase designs divide the sequence of
measurement occasions into separate treatment phases with
each phase containing multiple measurements. As a conse-
quence, randomization of the condition labels in an RT for
phase designs can only pertain to the moment of phase change
but not to the treatment order within phases. In the following
section, we will illustrate RTI for an AB, ABA, and ABAB
phase design using three different examples.

AB phase designs

The simplest example of a phase design is an AB design. This
design consists of a certain number of baseline phase observa-
tions followed by a certain number of treatment phase observa-
tions. As mentioned before, the specific assignments that are
permissible for the RT depend on the characteristics of the de-
sign (e.g., Onghena&Edgington, 2005). In anABphase design,
all A observations precede all B observations. Consequently, the

randomization of the condition labels can only pertain to the
available moments of phase change. The number of moments
that qualify as potential moments of phase change is determined
by the required minimum phase length, which must be
predefined by the experimenter. For example, the experimenter
could require that for an SCE with 20 measurement occasions,
the baseline phase and treatment phase should at least have four
observations in each permissible assignment. For an AB phase
design in general, the number of data randomizations for N
observations with a minimum phase length of k is equal to N –
2k + 1 (Onghena, 1992).

Suppose a therapist wants to evaluate the effectiveness
of a customized behavioral treatment to reduce anxiety
(measured on a scale from 0 to 15) in a patient with
post-traumatic stress disorder. In order to do so, the ther-
apist conducts an SCE consisting of 69 measurement oc-
casions with a minimum phase length requirement of
eight observations. For such a design, the number of per-
missible assignments equals 52 and the smallest attainable
p-value is about .02 (1/52). Suppose the therapist random-
ly selects an assignment consisting of 32 baseline phase
observations and subsequently 37 treatment phase
observations.

The hypothetical scores for the baseline phase (denoted by
A) and treatment phase (denoted by B) are displayed in Fig. 4.

An important indicator for treatment effectiveness in AB

designs is the immediacy of the treatment effect (Kratochwill

et al., 2010). Let us illustrate the RTI for the immediate treat-
ment effect index (ITEI). Following the recommendation by

Kratochwill et al. (2010) we define the ITEI in an AB phase

design as the average difference between the last three A

Fig. 3 Hypothetical data from a single-case randomized alternating treatments design evaluating the effect of psychotherapy on self-esteem in a single
depressed patient on a 1–10 rating scale
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observations and the first three B observations. Denote the

average of the last three A observations as AITEI and the last

three B observations as BITEI . For this example, we choose to

calculate AITEI � BITEI . The observed value is 6.6667 and the
95 % CI using the RTI method turns out to be [2.33–11.00].
The two-sided p-value for the observed ITEI equals .01852.
The p-value and the 95 % CI indicate that the patient showed
significantly lower anxiety levels during the first three mea-
surement occasions in the treatment phase compared to the
last three measurement occasions of the baseline phase.

ABA phase designs

AnABA phase design or withdrawal design is an extension of
a basic AB phase design where the treatment phase is follow-
ed by a return to the baseline phase. Returning to our example
of a customized behavioral treatment to reduce anxiety in a
post-traumatic stress patient, consider an ABA phase design
with 38 measurement occasions and a minimum phase length
of six measurement occasions in order to evaluate treatment
effectiveness. Suppose the therapist randomly selects the as-
signment which comprises ten baseline phase observations
followed by 20 treatment phase observations and then again
followed by eight baseline phase observations. This assign-
ment can be graphically expressed as:

AAAAAAAAAABBBBBBBBBBBBBBBB
BBBBAAAAAAAA

Figure 5 shows a hypothetical dataset for this design.
In contrast to an AB phase design, an ABA phase de-

sign has two distinct moments of phase change. Since

both moments offer the possibility to observe a potential
treatment effect, the ITEI must be calculated from a score
range that includes both phase changes. For this example,
we again choose to subtract the B observations from the A
observations. More specifically, the ITEI is calculated by
taking the mean difference of the pooled B observations
and the pooled A observations that surround each moment
of phase change:

AAAAAAAA11A12A13B11B12B13BBBBBBBBBBBB
BBB21B22B23A21A22A23AAAAA

The ITEI then equals (in case when the B averages are
subtracted from the A averages):
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Note that the way in which we calculate the immediate
treatment effect in this example is not a universally accepted
conceptualization of a treatment effect in an ABA phase de-
sign. More specifically, it can be argued that the introduction
of a treatment (i.e., change from A phase to B phase) is a
qualitatively different effect than the removal of a treatment
(i.e., change fromB phase to the secondA phase). In this view,
the A and B scores from both moments of phase change
should not be pooled together as they represent different ef-
fects. Single-case researchers that want to look at only one
moment of phase change can do so by simply taking only
the data from two phases and analyze them as if they were
either an AB or BA phase design (cf. the hypothetical example
for an AB phase design).

Fig. 4 The hypothetical scores of an AB phase design evaluating the effect of a customized behavioral treatment on anxiety in a patient with post-
traumatic stress disorder on a 1–15 rating scale
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For the current example, the observed ITEI value is 2.83
and the 95 % CI for the ITEI is [0.67–5.00]. The two-sided p-
value equals 0.0087. The p-value and the 95 % CI suggest a
significant average difference in the average anxiety score
between the last three A observations and the first three B
observations for both moments of phase change.

ABAB phase designs

Alternatively, the therapist from the previous example could
also have used an ABAB phase design to evaluate treatment
effectiveness. This design is essentially a double AB design
where an initial first baseline phase and treatment phase are
followed by a second baseline and treatment phase. Suppose
the therapist chose an ABAB phase design with a total of 44
measurement occasions and a minimum phase length of four
observations. Assume the therapist randomly selects an as-
signment which consists of ten A phase observations and 12
B phase observations for the initial A phase and the initial B
phase, followed by ten A observations and 12 B phase obser-
vations for the second A phase and the second B phase, re-
spectively. This assignment can be graphically expressed as:

AAAAAAAAAABBBBBBBBBBBBAAAAAAAA
AABBBBBBBBBBBB

Figure 6 displays a hypothetical dataset for this design.
Using a similar approach as in the ABA phase design, the

ITEI can again be calculated from the group of pooled A
scores and pooled B scores surrounding every moment of
phase change:

AAAAAAAA11A12A13B11B12B13BBBBBBB21B22

B 2 3 A 2 1 A 2 2 A 2 3 A A A A A 3 1 A 3 2 A 3 3 B 3 1

B32B33BBBBBBBBB

The ITEI then equals (in case when the B averages are
subtracted from the A averages):
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Note that the remark we made about the ITEI for ABA
designs regarding the possible qualitative difference between
introducing a treatment and removing a treatment also applies
in the case of anABABdesign. For this example, the observed
value of the ITEI is 2.78 and the 95 % CI is [0.22–5.33]. The
two-sided p-value is 0.0309. The p-value and the 95 % CI
indicate that the average difference in the average anxiety
score between the last three A observations and the first three
B observations for three moments of phase change is
significant.

Nonparametric CI for replicated single-case designs

RTI can also be applied to simultaneously and sequentially
replicated single-case designs. Consider for example a situa-
tion in which a researcher wants to obtain a nonparametric CI
for the treatment effect in anMBD or for the average treatment
effect for a group of sequentially replicated AB designs. Bulté
and Onghena (2009) describe an RT for the MBD which can

Fig. 5 The hypothetical scores of an ABA phase design evaluating the effect of a customized behavioral treatment on anxiety in a patient with post-
traumatic stress disorder on a 1–15 rating scale
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be equally well used for sequentially replicated single-case
designs. In this RT, the assignments are constructed by ran-
domizing the possible start points of the intervention in each
AB design as well as randomly assigning the subjects to the
different AB designs. Next, the chosen test statistic (e.g., the
ITEI) is averaged across all the individual AB designs and a
single reference distribution for this multivariate test statistic
is constructed by repeating the calculation for all assignments.
The p-value of this test statistic can be calculated by compar-
ing the observed value of the test statistic to the reference
distribution. This RTcan then be inverted throughRTI in order
to obtain a nonparametric CI for the selected ES measure.
Note that in this context, the CI is a measure of uncertainty
for the average treatment effect across all individual SCEs that
were included in the analysis.

Discussion

The main purpose of this paper was to propose an RTI
method to construct nonparametric CIs for ES measures
in a variety of single-case designs. Starting with a
between-subject situation, we illustrated how the inver-
sion of a t-test can provide a parametric CI for the dif-
ference in means between two independent samples. We
then proposed the inversion of an RT to obtain a non-
parametric CI when making classical parametric assump-
tions is not desirable. We provided examples of RTI for a
variety of single-case alternation and phase designs such
as CRD, ATD, RBD, AB, ABA, and ABAB designs, and
we also explained how RTI can be used for simultaneous
and sequential replication designs. In this section, we will

make a few more remarks regarding the proper use of the
RTI method.

First of all it should be emphasized that the RT and RTI
method only have guaranteed validity if some form of ran-
dom assignment has taken place (i.e., the random assign-
ment assumption of the RT). Evidently, without random
sampling or random assignment any inference is purely
observational or based on assumed random processes.
That being said, single-case researchers can benefit greatly
from incorporating random assignment into their designs as
randomization increases both the internal validity and the
statistical conclusion validity of SCEs (e.g., Cook &
Campbel l , 1979; Edgington & Onghena, 2007;
Kratochwill & Levin, 2010; Shadish, Cook, & Campbell,
2002). Edgington (1996) argues that by incorporating ran-
domization, single-case studies become experimental studies
from which valid causal inferences can be made by means
of RTs. Randomization strengthens the SCE’s internal va-
lidity because it yields statistical control over known and
unknown confounding variables (Levin & Wampold, 1999;
Onghena, 2005). Confounding variables such as serial cor-
relation, history effects, and maturation effects may have an
influence on the observed data, but all these potential ef-
fects are constant under the permissible assignments of the
randomization scheme if the null hypothesis is true. As
such, these potential effects cannot be considered as expla-
nations in case a significant treatment effect is found. In
addition, randomization also increases the statistical conclu-
sion validity of the SCE because it leads to a statistical test
that is based on the randomization as it actually took place
in the executed design (i.e., the RT) (Kratochwill & Levin,
2010; Onghena & Edgington, 2005).

Fig. 6 The hypothetical scores of an ABAB phase design evaluating the effect of a customized behavioral treatment on anxiety in a patient with post-
traumatic stress disorder on a 1–15 rating scale
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Secondly, readers should realize that RTI additionally re-
quires a treatment effect model. In this manuscript we have
selected the unit-treatment additivity model because it is the
simplest model and because it is most popular and well stud-
ied within nonparametric statistics (e.g., Cox & Reid, 2000;
Hinkelmann & Kempthorne, 2008; Lehman, 1959; Welch &
Gutierrez, 1988). This model assumes that the scores of the
experimental units in the baseline condition and the treatment
condition differ only by a constant additive treatment effect
(Δ). The goal of RTI is then to determine a CI forΔ. Note that
this assumption is not inherent to RTI but rather to the model
that is chosen to reconstruct the null scores from the observed
data. In contrast, a nonparametric p-value requires no such
assumption but also offers less information than a CI. In this
sense, the construction of a nonparametric CI yields more
information than a nonparametric p-value but comes at the
cost of an extra assumption regarding the model that provides
an accurate description of the observed data. This demon-
strates an intriguing general rule: CIs require an additional
assumption (viz., the hypothetical effect function), as com-
pared to a bare-bones significance test. As such the advocacy
for the Bnew statistics^ (Cumming, 2012) in which signifi-
cance tests are replaced by effect sizes and CIs is far too
simplistic. Also in parametric statistics there is an implicit
assumption that the treatment effect is best represented by a
mean shift if a CI for a difference between means is chosen, an
assumption which is similar to the unit-treatment additivity
model of nonparametric statistics.

An important question then is whether the unit-treatment
additivity model provides an accurate description of the effect
in single-case data. Of course, there is no general answer to
this question because of the idiosyncratic nature of any
dataset. However, single-case data comprises repeated mea-
surements of the same person. For this reason, the treatment
effect may be influenced by time-related effects such as serial
correlation (e.g., Matyas & Greenwood, 1997; Shadish &
Sullivan, 2011) and trends (e.g., Beretvas & Chung, 2008;
Manolov & Solanas, 2009; Parker, Cryer & Byrns, 2006).
Furthermore, the onset of the treatment may also interact with
these time-related effects (e.g., a change in trend after the
onset of the treatment compared to the baseline phase, see
Van den Noortgate & Onghena, 2003, or a change in
variability after the onset of the treatment, see Ferron,
Moeyaert, Van den Noortgate, & Beretvas, 2014). These types
of effects are not accounted for in the unit-treatment additivity
model and as such may confound treatment effect estimates
when they are present in the analyzed SCE data.

In addition, because the unit-treatment additivity model
only contains a parameter that represents the treatment effect
as one overall difference, it is most sensible to calculate non-
parametric CIs for mean difference type ESs such as the ones
we used in the illustrations in this article. For example, it
would not be meaningful to use an ES that measures

variability because the unit-treatment additivity model does
not contain a parameter that accounts for variability in the
data. Summarized, the RTI method using the unit-treatment
additivity model is most adequate to be used with mean dif-
ference type ESs and for datasets with small or no trends and
with relatively low variability.

However, as we discussed above, it is important to realize
that the aforementioned limitations are limitations of the unit-
treatment additivity model, not of RTI itself. In fact, a major
strength of RTI is that one can use models other than the unit-
treatment additivity model in order to reconstruct the null
scores from the observed scores. More specifically, all statis-
tical models for null hypothesis testing assume some sort of
relation between the vector of null scores X1

A, X2
A, … Xi

A

and the vector of observed scores X1
B, X2

B, … Xi
B such that

for any null score Xi
A and its observed score Xi

B the following
equation holds:

XB
i ¼ f X A

i

� �

with f being a generic effect function. In the case of the
unit-treatment additivity model, f(x) equals xþΔ. A slightly
more flexible model is the extended unit-treatment additivity
model in which f(x) equals xþΔþ εi where the εi are inde-
pendent and identically distributed random variables with a
mean of zero (Cox&Reid, 2000). By including the εi, random
variables, the treatment effect can vary between experimental
units. Alternatively, one can also formulate a model that con-
tains a trend component that can be used for datasets with
deterministic trends: f(x) = xþΔþ tβ with t indicating the
number of the measurement occasion in the treatment phase
and β being a constant trend effect. By including a time var-
iable t into the model, one could also account for delayed
treatment effects. The aforementioned models are all exam-
ples of additive models. In contrast to additive models, multi-
plicative models assume a nonlinear relation between the null
scores and the observed scores. An example would be xþ 1

x Δ
in which the magnitude of the treatment effect for experimen-
tal unit i is inversely related to its null score. This means that
the treatment effect is smaller for large null scores than for
small null scores.

In sum, although the unit-treatment additivity model might
not be a perfect model for all types of single-case data, the
examples above illustrate that various types of effects can be
included into the model that is used for RTI. While f(x) can in
principle be any function, it is important to keep in mind that
the chosen statistical model regarding the treatment effect
must be plausible and well interpretable. In this respect, the
unit-treatment additivity model that we adopt here is a gener-
ally accepted statistical model for performing nonparametric
tests and constructing nonparametric CIs (e.g., Cox & Reid,
2000; Garthwaite, 2005; Hinkelmann, & Kempthorne, 2008;
Lehman, 1959; Welch & Gutierrez, 1988). Future research
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should focus on comparing other models with the unit-
treatment additivity model with respect to modeling SCE data
for use within RTI and investigating the effect on the resulting
nonparametric CIs in case the employed RTI model is not
adequate for the observed data.

We already mentioned that the RTI approach assumes a
random assignment model instead of a random samplingmod-
el. This is an important distinction with respect to the nature of
the statistical inferences resulting fromRTI.Whereas adopting
a random sampling model (which is done in most parametric
tests) aims at making inferences regarding the population
values of certain parameters, the random assignment model
only allows us to make causal inferences regarding the ob-
served data (e.g., Ernst, 2004; LaFleur & Greevy, 2009;
Ludbrook & Dudley, 1998). This means that when one con-
structs a 95 % CI for the ITEI in a single AB phase design,
conducted to evaluate a chronic pain treatment for a certain
patient for example, the CI does not apply to other patients
which have received the same chronic pain treatment.

Although there are numerous advantages of using RTs in-
stead of parametric tests for the analysis of single-case data,
there are also some limitations, which have been recently
outlined by Heyvaert and Onghena (2014). Because RTI is
based on the equivalence between the RT and the CI that
results from its inversion, it is sensible to briefly review these
limitations as they equally apply for the type of CIs we pro-
pose here.

One limitation that is particularly relevant for RTI con-
cerns statistical power. As mentioned before, one of the
factors that contribute to the statistical power of the RT is
the number of permissible assignments for a given experi-
mental design. Whereas the randomization schemes of alter-
nation designs almost always yield sufficient assignments to
allow adequate statistical power, the number of permissible
assignments in an AB phase design with relatively few mea-
surement occasions and/or a large minimum phase length
can be quite small which compromises the statistical power
of the RT. More specifically, if a given AB phase design has
less than 20 permissible assignments, it is not possible for
the RT to achieve a p-value smaller than .05 and conse-
quently it is not possible to construct a 95 % CI via RTI
(although an interval with a smaller confidence level is pos-
sible). However, it should also be taken into account that an
AB phase design is the Bweakest^ single-case phase design
in this respect: For more advanced phase designs such as the
ABA and ABAB phase designs, the potential issue of insuf-
ficient permissible assignments is generally lacking. For ex-
ample, whereas an AB phase design with 24 observations
and a minimum phase length of two observations yields 21
permissible assignments, an ABAB design with the same
number of observations and minimum phase lengths yields
969 permissible assignments which is more than enough to
achieve small p-values.

Note also that the AB and ABA phase designs do not meet
the What Works Clearinghouse single-case design standards
(Kratochwill et al., 2010). In this sense, the results of the
statistical power of AB and ABA phase designs confirm the
judiciousness of these standards for phase designs with a small
number of observations. In order to meet these standards, an
SCE must have a minimum of four distinct phases (such that
there are at least three moments where a potential treatment
effect can be observed) with at least five data points per phase
(if the SCE has three data points per phase it meets standards
with reservations) (Kratochwill et al., 2010). In addition,
Onghena and Edgington (2005) suggest that the weak statis-
tical power of AB designs can be boosted considerably when
three or more AB designs are combined in a multiple-baseline
design or in a series of sequential AB designs, a suggestion
that was recently supported in an extensive simulation study
by Heyvaert et al. (2016).

Finally, a remark concerning the proposed ITEI for phase
designs is in order. A disadvantage of the ITEI that we used as
an ES for phase designs might be that this statistic is calculated
based on only three data points for each phase. If the ITEI is to
capture a potential treatment effect, the effect must be imme-
diately and effectively observable when comparing the last
three A observations and the first three B observations (sur-
rounding the moment of phase change). Some treatment ef-
fects, however, might not be immediately observable (e.g., a
delayed effect or an effect that occurs gradually over time) and
thus will not be captured well by the ITEI. However, given
that phase designs feature relatively long sequences of serially
correlated observations in the same experimental condition, a
gradual treatment effect is hard to distinguish from trend ef-
fects that are independent of the experimental condition. For
this reason, an immediately observable score change in a
phase design is a strong indicator for a potential treatment
effect. Alternatively, it is possible to calculate the ITEI from
a larger range of values surrounding the moment of phase
change such that more gradual treatment effects could also
be detected.

Future research directions: Developing
nonparametric CIs for nonoverlap statistics

An important advantage of the RT is that it can be used with
any type of ES as the test statistic (Heyvaert & Onghena,
2014). Therefore, RTI can be employed to obtain nonparamet-
ric CIs for any ES provided that the model that generates the
scores under the alternative hypothesis contains a parameter
that pertains to the type of effect that the ES is sensitive for. In
this article, we used RTI with the unit-treatment additivity
model and mean difference type ESs. The unit-treatment ad-
ditivity model can also be used for ESs that are not mean
differences but do measure mean level separation. The only
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requirement is that the respective ES has a monotonic relation
with the constant additive shift parameter (Δ) of the unit-
treatment additivity model. For this reason it would be inter-
esting for future research to investigate the possibility of using
nonoverlap statistics as ESs in RTI because these statistics
measure mean level separation on an ordinal level.

Nonoverlap statistics are a group of nonparametric indices
that are receiving considerable attention from the scientific
community of single-case researchers. These nonoverlap sta-
tistics quantify the extent to which baseline phase data and
treatment phase data do not overlap. This approach is rooted
in the tradition of visually analyzing SCE data where data
nonoverlap has been widely accepted as an indicator of treat-
ment effectiveness (Sidman, 1960). An advantage of
nonoverlap ESs is that they consider the individual data points
in pairwise comparisons across phases and are therefore more
robust to outliers in the data in comparison to mean level
comparisons (Parker, Vannest, & Davis, 2011). Primarily in
the last decade, a whole range of nonoverlap indices has been
developed, including Percentage of Nonoverlapping Data
(PND, Scruggs, Mastropieri, & Casto, 1987), Percentage of
All Nonoverlapping Data (PAND, Parker et al., 2007),
Improvement Rate Difference (IRD, Parker et al., 2009),
Nonoverlap of All Pairs (NAP, Parker & Vannest, 2009),
and Tau-U (Parker et al., 2011). Some of these ESs have no
known sampling distribution (e.g., PND, PAND) and, as such,
CIs for these measures cannot be constructed analytically.
Other measures have a relationship with established statistical
tests (e.g., NAP, Tau-U). For example, NAP is equivalent to

the Mann-Whitney U statistic (Mann & Whitney, 1947) and
Tau-U is essentially a Kendall rank correlation (Kendall,
1938). Existing methods for constructing CIs for these mea-
sures are also based on permutation techniques, but all assume
a completely randomized design (e.g., Bauer, 1972 for the
Mann-Whitney U and Long & Cliff, 1997 for Kendall’s Tau).

As mentioned before, a major strength of the RT is the
enormous flexibility with regard to the choice of the test sta-
tistic, and so also with regard to the choice of the ES measure
that can be used as a test statistic (Heyvaert & Onghena,
2014). All previously mentioned nonoverlap indices could in
principle serve as ES measures in RTI using the treatment-
additivity model provided that they are sensitive for the mean
level separation of two phases. In this way, nonparametric CIs
can be calculated for these measures and, importantly, according
to a randomization scheme that is in accordance with the used
experimental design. Heyvaert andOnghena (2014) have already
used an RT to calculate a nonparametric p-value for PND. An
interesting avenue for further research would be to employ RTI
using the unit-treatment additivitymodel to derive nonparametric
CIs for nonoverlap statistics in randomized block designs, alter-
nation designs, and phase designs.

Software availability

We have developed a set of easy-to-use R-functions to
compute nonparametric CIs according to the method de-
scribed in this paper. The R scripts for each of these

Table 4 Description of arguments for the randomization test inversion functions. Each row in the table contains the name of a specific function
argument, along with a short description and possible values

Data A data frame that contains the measurements. It must consist of two columns (separated by a tab) where the
first column contains the condition labels and the second column contains the recorded scores. Each row
of the data frame must contain only one measurement occasion

Design Specifies the experimental design of the SCE. Possible values are BCRD^, BATD^, BRBD^, BAB^,
BABA^ and BABAB^

Direction Specifies whether for the calculation of the mean difference, standardized mean difference or ITEI the
function should take A� B or B� A and thus accepts the values BA-B^ and BB-A^ respectively

Limit Signifies the minimum phase length when the experimental design is an AB phase design and the maximum
number of consecutive measurement occasions of the same condition when the design is an ATD

Number (only for random versions) Signifies the size of the random sample of permissible assignments. The default value is 2000

Range This argument can be specified if the user wishes to calculate the ITEI in phase designs from a larger range
of values (the default value is three). The Brange^ value equals the amount of observations per phase that
are incorporated in the ITEI calculation. For example, when Brange^ equals four in an AB, the ITEI is
calculated from the four last A observations and the four first B observations. When Brange^ is set to
zero in the function for the unstandardized mean difference in the context of a phase design, the
automatic ITEI selection is overridden and the unstandardized mean difference is used as the test statistic

Precision Specifies the number of decimals at which the CI will be calculated. The default value is two. Note that the
algorithm will calculate the CI for Bthe requested amount of decimals + 1^ and then round the boundaries
to the requested amount of decimals. In this way, rounding errors are avoided

Confidence Specifies the desired confidence level of the CI and accepts values from 0 to 1; a value of 0.95 is default.

SCE single-case experiment, ITEI immediate treatment effect index, ATD alternating treatments designs, CI confidence interval, CRD completely
randomized single-case designs, RBD randomized block designs, AB, ABA, ABAB phase designs
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functions can be downloaded from http://ppw.kuleuven.
be/home/english/research/mesrg/appletsandsoftware. Note
that there are two ways in which an RT can be
executed: (1) the systematic RT uses all of the permis-
sible assignments to construct the randomization distri-
bution, and (2) the Monte Carlo RT uses a random
sample (of a pre-specified size) of the permissible as-
signments to construct the randomization distribution
(Besag & Diggle, 1977).

In situations where the number of permissible assignments
is very large (e.g., in the case of a CRDwith a large number of
measurement occasions), the Monte Carlo RT is computation-
ally more efficient. It has been shown that theMonte Carlo RT
produces valid p-values (Edgington & Onghena, 2007). In
addition, the accuracy of the RTcan be increased to the desired
level simply by increasing the number of randomizations
(Senchaudhuri, Mehta, & Patel, 1995). We have provided
separate functions for the systematic and Monte Carlo ver-
sions of the RTI code. With regard to choice of test statistic,
we have also provided separate functions for the unstandard-
ized mean difference, the proposed d statistic. Note that the
ITEI is selected automatically when the function for the un-
standardized mean difference is used for phase designs
(although this behavior can be overridden). The R-functions
support all single-case designs for which we provided an ex-
ample in the paper (i.e., CRD, RBD, ATD, AB, ABA, and
ABAB). With respect to all of the supported randomization
schemes, we have adapted code from the R package of Bulté
and Onghena (2008) with permission from the authors.
T h e f o u r s e p a r a t e R f u n c t i o n s a r e c a l l e d :
Bmean_diff.systematic.randomization.ci()^ for the systematic
version using the mean difference test statistic,
Bmean_diff.random.randomization.ci()^ for the random
version using the mean difference test stat is t ic ,
Bd.systematic.randomization.ci()^for the systematic version
using the d test statistic, and Bd.random.randomization.ci()^
for the random version using the d test statistic. Table 4 contains
the various arguments of the functions along with all accepted
values for these arguments.

An example of code that needs to be written in the R con-
sole to execute the function can be found below:

mean diff :systematic:randomization:ci data ¼ AB data; design ¼ }AB}; direction ¼ }A‐B}; limit ¼ 2ð Þ

This line of code executes systematic RTI in the
context of an AB phase design with a minimal phase
length of two observations and the ITEI as the

employed test statistic. The example code will con-
struct a CI with a 95 % confidence level that is precise
up to two decimals.

Table 5 Estimated runtimes for systematic randomization test
inversions for alternation designs and phase designs. Cells with a dash
indicate insufficient computer memory for that combination of sample
size and experimental design

N Alternation designs N Phase designs

CRD ATD RBD AB ABA ABAB

10 < 1s < 1s < 1s 20 < 1s < 1s < 1s

12 < 1s < 1s < 1s 40 < 1s < 1s 11s

14 1.3s 1.6s < 1s 60 < 1s 1.5s 1m47s

16 4s 5s < 1s 80 < 1s 4s 9m05s

18 10s 20s < 1s 100 < 1s 7s /

20 37s 2m16s < 1s 200 < 1s 52s /

22 / / < 1s 500 < 1s / /

24 / / 3s
26 / / 4s

28 / / 9s

30 / / 12s

… / / /

CRD completely randomized single-case designs, ATD alternating treat-
ments designs, RBD randomized block designs

Table 6 Estimated runtimes for random randomization test inversions for alternation designs and phase designs using either 2,000 or 10,000 random
samples. Cells with a dash indicate insufficient computer memory for that combination of sample size and experimental design

N Alternation designs N Phase designs

CRD ATD RBD AB ABA ABAB

R=2000 R=10000 R=2000 R=10000 R=2000 R=10000 R=2000 R=10000 R=2000 R=10000 R=2000 R=10000

50 5s 19s 26s 1m31s 7s 41s 100 3s 10s 3s 38s 20s 53s

100 6s 23s 29s 1m45s 12s 1m11s 200 3s 11s 10s 1m49s 3m48s 9m31s

150 8s 30s 1m5s 3m35s 15s 1m27s 500 4s 13s 7m 63m / /

200 13s 39s 1m31s 4m58s 22s 1m51s
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Two additional remarks regarding the RTI R-functions are
in order. First, we recommend the use of systematic RTI
whenever possible because it is the most precise procedure.
In case the user’s dataset is so large that the computer’s pro-
cessing power is insufficient to calculate the CI via the sys-
tematic way within a reasonable runtime, we recommend
switching to random RTI. Random RTI may produce slightly
different p-values and CIs each time the analysis is performed
for the same dataset because of the random sampling of as-
signments. In contrast, the results from systematic RTI are
always the same when the analysis is repeated for the same
dataset because all of the permissible assignments are used to
construct the randomization distribution.

Second, it should be noted that the runtime is dependent on
the selected design, the sample size and the requested amount
of decimals of the CI. For the sake of convenience for the user,
we have provided a table with runtime estimates for various
experimental designs and sample sizes. In order to obtain
these runtime estimates, we used a Dell Optiplex 7010 com-
puter with an Intel Core i5-3570 CPU (3.4 Ghz) and 4 GB of
RAMmemory, running onWindows 7 Enterprise 64 Bit. Note
that these estimates may vary depending on the speed of the
computer that is used. The estimated runtimes for systematic
RTI can be found in Table 5 and the estimated runtimes for
randomRTI (using either 2000 or 10000 random samples) can
be found in Table 6. For each cell in the table we generated
two data samples of size N/2 from a normal distribution with a
mean of zero and a standard deviation of one and applied the
RTI function to this generated data.

From Table 5 one can see that the computational demands
for alternation designs using systematic RTI rise exponentially
when sample size is increased, allowing for only relatively
small sample sizes. However, Table 6 shows that random
RTI allows for far larger sample sizes when using alternation
designs. Table 5 also shows that the computational demands
for phase designs are smaller than for alternation designs,
leading to higher usable sample sizes for phase designs when
using systematic RTI. Nevertheless, random RTI also allows
for larger usable sample sizes when using phase designs com-
pared to systematic RTI.

Conclusion

In this paper, we have illustrated RTI to construct CIs for
ES measures in single-case designs without making clas-
sic parametric assumptions. Although the ESs we illustrat-
ed here were limited to mean differences, RTI can be
easily extended to other ES measures and experimental
designs. In particular, future research could focus on
using RTI to construct nonparametric CIs for nonoverlap
statistics in single-case designs.

Author Note This research was funded by the Research Foundation –
Flanders (FWO), Belgium (grant ID: G.0593.14).

Mieke Heyvaert is a postdoctoral researcher of the Research
Foundation – Flanders, (FWO), Belgium (grant ID:1242413N).

AnnMeulders is a postdoctoral researcher of the Research Foundation
– Flanders, (FWO), Belgium (grant ID:12E3714N).

References

Adams, D. C., & Anthony, C. D. (1996). Using randomization techniques
to analyse behavioural data. Animal Behaviour, 51, 733–738.

Allison, D. B., & Gorman, B. S. (1993). Calculating effect sizes for meta-
analysis: The case of the single case. Behaviour Research Therapy,
31, 621–631.

American Psychological Association (1994). Publication manual of the
American Psychological Association (4th ed.). Washington, DC:
Author.

Barlow, D. H., Nock, M. K., & Hersen, M. (2009). Single case experi-
mental designs: Strategies for studying behavior change (3rd ed.).
Boston: Allyn & Bacon.

Bauer, D. F. (1972). Constructing confidence sets using rank statistics.
Journal of the American Statistical Association, 339, 687–690.

Beretvas, S. N., & Chung, H. (2008). A review of meta-analyses of
single-subject experimental designs: Methodological issues and
practice. Evidence-Based Communication Assessment and
Intervention, 2, 129–141.

Besag, J., &Diggle, P. J. (1977). SimpleMonteCarlo tests for spatial pattern.
Journal of the Royal Statistical Society, Series C, 26, 327–333.

Bulté, I., & Onghena, P. (2008). An R package for single-case randomi-
zation tests. Behavior Research Methods, 40, 467–478.

Bulté, I., & Onghena, P. (2009). Randomization tests for multiple-
baseline designs: An extension of the SCRT-R package. Behavior
Research Methods, 41, 477–485.

Bulté, I., &Onghena, P. (2012).When the truth hits you between the eyes:
A software tool for the visual analysis of single-case experimental
data. Methodology, 8, 104–114.

Busk, P. L., & Marascuilo, L. A. (1992). Statistical analysis in single-case
research: Issues, procedures, and recommendations, with special appli-
cations tomultiple behaviors. In T. R. Kratochwill & J. R. Levin (Eds.),
Single-case research designs and analysis: New directions for psychol-
ogy and education (pp. 159–185). Hillsdale: Erlbaum.

Busk, P. L., & Serlin, R. C. (1992). Meta-analysis for single-case re-
search. In T. R. Kratochwill & J. R. Levin (Eds.), Single-case re-
search design and analysis: New directions for psychology and
education (pp. 187–212). Hillsdale: Erlbaum.

Campbell, J. M., & Herzinger, C. V. (2010). Statistics and single subject
research methodology. In D. L. Gast (Ed.), Single subject research
methodology in behavioral sciences (pp. 91–109). New York:
Routledge.

Center, B. A., Skiba, R. J., & Casey, A. (1985–1986). A methodology for
the quantitative synthesis of intra-subject design research. Journal of
Special Education, 19, 387–400.

Chambless, D. L., & Ollendick, T. H. (2001). Empirically supported
psychological interventions: Controversies and evidence. Annual
Review of Psychology, 52, 685–716.

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design
and analysis issues for field settings. Boston: Houghton Mifflin.

Cox, D. R., & Reid, N. (2000). The theory of the design of experiments.
Boca Raton: Chapman & Hall/CRC.

Cumming, G. (2012).Understanding the new statistics: Effect sizes, con-
fidence intervals, and meta-analysis. New York: Routledge.

DeProspero, A., & Cohen, S. (1979). Inconsistent visual analyses of
intrasubject data. Journal of Applied Behavior Analysis, 12, 573–579.

Behav Res (2017) 49:363–381 379



du Prel, J., Hommel, G., Röhrig, B., & Blettner, M. (2009). Confidence
interval or p-value? Deutsches Ärzteblatt International, 106, 335–339.

Dugard, P. (2014). Randomization tests: A new gold standard? Journal of
Contextual Behavioral Science, 3, 65–68.

Edgington, E. S. (1967). Statistical inference from N=1 experiments.
Journal of Psychology, 65, 195–199.

Edgington, E. S. (1996). Randomized single-subject experimental de-
signs. Behaviour Research & Therapy, 34, 567–574.

Edgington, E. S., & Onghena, P. (2007). Randomization tests (4th ed.).
Boca Raton: Chapman & Hall/CRC.

Ernst, M. D. (2004). Permutation methods: A basis for exact inference.
Statistical Science, 19, 676–685.

Ferron, J. M., & Levin, J. R. (2014). Single-case permutation and ran-
domization statistical tests: Present status, promising new develop-
ments. In T. R. Kratochwill & J. R. Levin (Eds.), Single-case inter-
vention research: Methodological and statistical advances (pp.
153–183). Washington, DC: American Psychological Association.

Ferron, J. M., Moeyaert, M., Van den Noortgate, W., & Beretvas, S. N.
(2014). Estimating casual effects from multiple-baseline studies:
Implications for design and analysis. Psychological Methods, 19,
493–510.

Fisch, G. S. (1998). Visual inspection of data revisited: Do the eyes still
have it? The Behavior Analyst, 21, 111–123.

Garthwaite, P. (2005). Confidence intervals: Nonparametric. In B. S.
Everitt & D. C. Howell (Eds.), Encyclopedia of Statistics in
Behavioral Science (pp. 375–381). Chichester: Wiley.

Gast, D. L., & Ledford, J. R. (2014). Single case research methodology:
Applications in special education and behavioral sciences (2nd ed.).
New York: Routledge.

Gibson, G., & Ottenbacher, K. (1988). Characteristics influencing the
visual analysis of single-subject data: An empirical analysis. The
Journal of Applied Behavioral Science, 24, 298–314.

Hammond, D., & Gast, D. L. (2010). Descriptive analysis of single-
subject research designs: 1983-2007. Education and Training in
Autism and Developmental Disabilities, 45, 187–202.

Harrington, M., & Velicer, W. F. (2015). Comparing visual and statistical
analysis in single-case studies using published studies.Multivariate
Behavioral Research, 50, 162–183.

Hartmann, D. P. (1974). Forcing square pegs into round holes: Some com-
ments on Ban analysis-of-variancemodel for the intrasubject replication
design^. Journal of Applied Behavior Analysis, 7, 635–638.

Hedges, L. V., Pustejovsky, J. E., & Shadish, W. R. (2012). A standard-
ized mean difference effect size for single case designs. Research
Synthesis Methods, 3, 224–239.

Heyvaert, M., & Onghena, P. (2014). Analysis of single-case data:
Random i s a t i o n t e s t s f o r mea su r e s o f e f f e c t s i z e .
Neuropsychological Rehabilitation, 24, 507–527.

Heyvaert, M., Moeyaert, M., Verkempynck, P., Van Den Noortgate, W.,
Vervloet, M., Ugille, & M., Onghena, P. (2016). Testing the inter-
vention effect in single-case experiments: AMonte Carlo simulation
study. Journal of Experimental Education. doi:10.1080/00220973.
2015.1123667

Hinkelmann, K., & Kempthorne, O. (2008). Design and analysis of ex-
periments. I and II (2nd ed.). Hoboken: Wiley.

Horner, R. H., Carr, E. G., Halle, J., McGee, G., Odom, S., &Wolery, M.
(2005). The use of single subject research to identify evidence-based
practice in special education. Exceptional Children, 71, 165–179.

Hothorn, T., Hornik, K., van de Weil, M. A., & Zeileis, A. (2008).
Implementing a class of permutation tests: The coin package.
Journal of Statistical Software, 28, 1–23.

Houle, T. T. (2009). Statistical analyses for single-case experimental de-
signs. InD. H. Barlow,M. K.Nock, &M.Hersen (Eds.), Single case
experimental designs: Strategies for studying behavior change (3rd
ed., pp. 271–305). Boston: Allyn & Bacon.

Huo,M., & Onghena, P. (2012). RT4Win: AWindows-based program for
randomization tests. Psychologica Belgica, 52, 387–406.

Kazdin, A. E. (2011). Single-case research designs: Methods for clinical
and applied settings (2nd ed.). New York: Oxford University Press.

Kendall, M. (1938). A new measure of rank correlation. Biometrika, 30,
81–89.

Koehler, M. J., & Levin, J. R. (1998). Regulated randomization: A po-
tentially sharper analytical tool for the multiple-baseline design.
Psychological Methods, 3, 206–217.

Kratochwill, T. R., & Levin, J. R. (2010). Enhancing the scientific cred-
ibility of single-case intervention research: Randomization to the
rescue. Psychological Methods, 15, 122–144.

Kratochwill, T. R., & Levin, J. R. (Eds.). (2014). Single-case intervention
research: Statistical and methodological advances. Washington,
DC: American Psychological Association.

Kratochwill, T. R., & Stoiber, K. C. (2000). Empirically supported inter-
ventions and school psyhology: Conceptual and practical issues:
Part II. School Psychology Quarterly, 15, 233–253.

Kratochwill T., Alden, K., Demuth, D., Dawson, D., Panicucci, C.,
Arntson, P., … Levin, J. (1974). A further consideration in the ap-
plication of an analysis-of-variance model for the intrasubject repli-
cation design. Journal of Applied Behavior Analysis, 7, 629–633.

Kratochwill, T. R., Hitchcock, J., Horner, R. H., Levin, J. R., Odom, S. L.,
Rindskopf, D. M., & Shadish, W. R. (2010). Single-case designs tech-
nical documentation. Retrieved from What Works Clearinghouse
website: http://ies.ed.gov/ncee/wwc/pdf/wwc_scd.pdf

Kratochwill, T. R., Levin, J. R., Horner, R. H., & Swoboda, C. M. (2014).
Visual analysis of single-case intervention research: Conceptual and
methodological considerations. In T. R. Kratochwill & J. R. Levin
(Eds.), Single-case intervention research: Methodological and sta-
tistical advances (pp. 91–125). Washington, DC: American
Psychological Association.

LaFleur, B. J., & Greevy, R. A. (2009). Introduction to permutation and
resampling-based hypothesis tests. Journal of Clinical Child &
Adolescent Psychology, 38, 286–294.

Lane, J. D., & Gast, D. L. (2014). Visual analysis in single case experi-
mental design studies : Brief review and guidel ines .
Neuropsychological Rehabilitation, 24, 445–463.

Lehmann, E. L. (1959). Testing statistical hypotheses. Hoboken: Wiley.
Levin, J. R., & Wampold, B. E. (1999). Generalized single-case random-

ization tests: Flexible analyses for a variety of situations. School
Psychology Quarterly, 14, 59–93.

Levin, J. R., Ferron, J. M., & Kratochwill, T. R. (2012). Nonparametric
statistical tests for single-case systematic and randomized ABAB…
AB and alternating treatment intervention designs: New develop-
ments, new directions. Journal of School Psychology, 50, 599–624.

Levin, J. R., Ferron, J. M., & Gafurov, B. S. (2014). Improved random-
ization tests for a class of single-case intervention designs. Journal
of Modern Applied Statistical Methods, 13, 2–52.

Long, J. D., & Cliff, N. (1997). Confidence intervals for Kendall’s tau.
British Journal of Mathematical and Statistical Psychology, 50, 31–41.

Ludbrook, J., & Dudley, H. (1998). Why permutation tests are superior to
t and F tests in biomedical research. The American Statistician, 52,
127–132.

Mann, P. S. (2006). Introductory statistics. Hoboken: Wiley.
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two

random variables is stochastically larger than the other. Annals of
Mathematical Statistics, 18, 50–60.

Manolov, R., & Solanas, A. (2009). Percentage of nonoverlapping
corrected data. Behavior Research Methods, 41, 1262–1271.

Marascuilo, L. A., & Busk, P. L. (1988). Combining statistics for
multiple-baseline AB and replicated ABAB designs across subjects.
Behavioral Assessment, 10, 1–28.

Matyas, T. A., & Greenwood, K. M. (1997). Serial dependency in single-
case time series. In R. D. Franklin, D. B. Allison, & B. S. Gorman
(Eds.), Design and analysis of single-case research (pp. 215–243).
Mahwah: Lawrence Erlbaum.

380 Behav Res (2017) 49:363–381

http://dx.doi.org/10.1080/00220973.2015.1123667
http://dx.doi.org/10.1080/00220973.2015.1123667
http://ies.ed.gov/ncee/wwc/pdf/wwc_scd.pdf


Micceri, T. (1989). The unicorn, the normal curve, and other improbable
creatures. Psychological Bulletin, 105, 156–166.

Moore, D. S., McCabe, G. P., & Craig, B. A. (2014). Introduction to the
practice of statistics (8th ed.). New York: W.H. Freeman.

Neyman, J. (1937). Outline of a theory of statistical estimation based on
the classical theory of probability. Philosophical Transactions of the
Royal Society of London. Series A, Mathematical and Physical
Sciences, 767, 333–380.

Onghena, P. (1992). Randomization tests for extensions and variations of
ABAB single-case experimental designs: A rejoinder. Behavioral
Assessment, 14, 153–171.

Onghena, P. (2005). Single-case designs. In B. Everitt & D. Howell
(Eds.), Encyclopedia of statistics in behavioral science (Vol. 4, pp.
1850–1854). New York: Wiley.

Onghena, P., & Edgington, E. S. (1994). Randomization tests for restrict-
ed alternating treatments designs. Behaviour Research and Therapy,
32, 783–786.

Onghena, P., & Edgington, E. S. (2005). Customization of pain treat-
ments: Single-case design and analysis. Clinical Journal of Pain,
21, 56–68.

Onghena, P., & May, R. (1995). Pitfalls in computing and interpreting ran-
domization test p-values: A commentary on Chen&Dunlap. Behavior
Research Methods, Instruments, & Computers, 27, 408–411.

Parker, R. I., &Vannest, K. J. (2009). An improved effect size for single-case
research: Nonoverlap of all pairs. Behavior Therapy, 40, 357–367.

Parker, R. I., Cryer, J., & Byrns, G. (2006). Controlling trend in single
case research. School Psychology Quarterly, 21, 418–440.

Parker, R. I., Hagan-Burke, S., & Vannest, K. (2007). Percent of all non-
overlapping data (PAND): An alternative to PND. Journal of
Special Education, 40, 194–204.

Parker, R. I., Vannest, K. J., & Brown, L. (2009). The improvement rate
difference for single case research. Exceptional Children, 75, 135–150.

Parker, R. I., Vannest, K. J., Davis, J. L., & Sauber, S. B. (2011a).
Combining nonoverlap and trend for single-case research: Tau-U.
Behavior Therapy, 42, 284–299.

Parker, R. I., Vannest, K. J., & Davis, J. L. (2011b). Effect size in single-
case research: A review of nine nonoverlap techniques. Behavior
Modification, 35, 303–322.

Scruggs, T. E., Mastropieri, M. A., & Casto, G. (1987). The quantitative
synthesis of single subject research: Methodology and validation.
Remedial and Special Education, 8, 24–33.

Senchaudhuri, P.,Mehta, C. R., & Patel, N. R. (1995). Estimating exact p-
values by the method of control variates, or Monte Carlo rescue.
Journal of the American Statistical Association, 90, 640–648.

Shadish, W. R., & Sullivan, K. J. (2011). Characteristics of single-case
designs used to assess intervention effects in 2008. Behavior
Research Methods, 43, 971–980.

Shadish,W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and
quasi-experimental designs for generalized causal inference.
Boston: Houghton-Mifflin.

Sidman, M. (1960). Tactics of scientific research: Evaluating experimen-
tal data in psychology. New York: Basic Books.

Solanas, A., Manolov, R., & Onghena, P. (2010). Estimating slope and
level change in N=1 designs. Behavior Modification, 34, 195–218.

Swaminathan, H., & Rogers, H. J. (2007). Statistical reform in school
psychology research: A synthesis. Psychology in the Schools, 44,
543–549.

Tate, R. L., Perdices, M., Rosenkoetter, U., Wakim, D., Godbee, K.,
Togher, L., & McDonald, S. (2013). Revision of a method quality
rating scale for single-case experimental designs and n-of-1 trials:
The 15-item Risk of Bias in N-of-1 Trials (RoBiNT) Scale.
Neuropsychological Rehabilitation, 23, 619–638.

Tritchler, D. (1984). On inverting permutation tests. Journal of the
American Statistical Association, 385, 200–207.

Van den Noortgate, W., & Onghena, P. (2003). Hierarchical linear models
for the quantitative integration of effect sizes in single-case research.
Behavior Research Methods, Instruments, & Computers, 35, 1–10.

Welch, W., & Gutierrez, L. G. (1988). Robust permutation tests for
matched-pairs designs. Journal of the American Statistical
Association, 402, 450–455.

Westfall, P. H., & Young, S. S. (1993). Resampling-based multiple test-
ing: Examples and methods for p-value adjustment. New York:
Wiley.

White, D. M., Rusch, F. R., Kazdin, A. E., & Hartmann, D. P. (1989).
Applications of meta-analysis in individual subject research.
Behavioral Assessment, 11, 281–296.

Wilkinson, L., & the APA Task Force on Statistical Inference. (1999).
Statistical methods in psychology journals: Guidelines and explana-
tions. American Psychologist, 54, 594–604.

Ximenes, V. M., Manolov, R., Solanas, A., & Quera, V. (2009). Factors
affecting visual inference in single-case designs. The Spanish
Journal of Psychology, 12, 823–832.

Behav Res (2017) 49:363–381 381


	Confidence intervals for single-case effect size measures based on randomization test inversion
	Abstract
	Introduction
	Hypothesis test inversion
	Confidence intervals (CIs) for completely randomized between-subject designs using hypothesis test inversion
	Nonparametric CIs for completely randomized between-subject designs
	Nonparametric CI for an unstandardized mean difference
	Nonparametric CI for a standardized mean difference

	Nonparametric CIs for single-case designs
	Nonparametric CIs for single-case alternation designs
	Completely randomized single-case designs
	Randomized block single-case designs
	Alternating treatments single-case designs

	Nonparametric CIs for single-case phase designs
	AB phase designs
	ABA phase designs
	ABAB phase designs

	Nonparametric CI for replicated single-case designs
	Discussion
	Future research directions: Developing nonparametric CIs for nonoverlap statistics
	Software availability
	Conclusion
	References


